51
|
Wolff HA, Rolke D, Rave-Fränk M, Schirmer M, Eicheler W, Doerfler A, Hille A, Hess CF, Matthias C, Rödel RMW, Christiansen H. Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:145-154. [PMID: 21085979 PMCID: PMC3040826 DOI: 10.1007/s00411-010-0341-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
The purpose of this work was to analyze chemokine and chemokine receptor expression in untreated and in irradiated squamous cell carcinoma of the head and neck (SCCHN) tumor cell lines, aiming at the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy. Five low passage and 10 established SCCHN lines, as well as two normal cell lines, were irradiated at 2 Gy or sham-irradiated, and harvested between 1 and 48 h after treatment. For chemokines with CC and CXC structural motifs and their receptors, transcript levels of target and reference genes were quantified relatively by real-time PCR. In addition, CXCL1 and CXCL12 protein expression was analyzed by ELISA. A substantial variation in chemokine and chemokine receptor expression between SCCHN was detected. Practically, all cell lines expressed CCL5 and CCL20, while CCL2 was expressed in normal cells and in some of the tumor cell lines. CXCL1, CXCL2, CXCL3, CXCL10, and CXCL11 were expressed in the vast majority of the cell lines, while the expression of CXCL9 and CXCL12 was restricted to fibroblasts and few tumor cell lines. None of the analyzed cell lines expressed the chemokines CCL3, CCL4, or CCL19. Of the receptors, transcript expression of CCR1, CCR2, CCR3, CCR5, CCR7, CCXR2, and CCXR3 was not detected, and CCR6, CXCR1, and CXCR4 expression was restricted to few tumor cells. Radiation caused up- and down-regulation with respect to chemokine expressions, while for chemokine receptor expressions down-regulations were prevailing. CXCL1 and CXCL12 protein expression corresponded well with the mRNA expression. We conclude that the substantial variation in chemokine and chemokine receptor expression between SCCHN offer opportunities for the establishment of assays to test for the relevance of chemokine and chemokine receptor expression in the response of SCCHN to radiotherapy and radiochemotherapy.
Collapse
MESH Headings
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Cell Line, Tumor
- Chemokines/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/radiotherapy
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Chemokine/genetics
- Reproducibility of Results
Collapse
Affiliation(s)
- Hendrik A. Wolff
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - David Rolke
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Markus Schirmer
- Department of Pharmacology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolfgang Eicheler
- Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annegret Doerfler
- Department of Radiation Oncology, OncoRay-Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrea Hille
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Clemens F. Hess
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Ralph M. W. Rödel
- Department of Otorhinolaryngology-Head and Neck Surgery, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Hans Christiansen
- Department of Radiotherapy and Radiation Oncology, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
52
|
Decoding melanoma metastasis. Cancers (Basel) 2010; 3:126-63. [PMID: 24212610 PMCID: PMC3756353 DOI: 10.3390/cancers3010126] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of morbidity and mortality associated with melanoma. Evidence suggests melanoma has a predilection for metastasis to particular organs. Experimental analyses have begun to shed light on the mechanisms regulating melanoma metastasis and organ specificity, but these analyses are complicated by observations of metastatic dormancy and dissemination of melanocytes that are not yet fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the site of the primary tumor and the site of metastasis, play important roles in mediating the metastatic process. As metastasis research moves forward, paradigms explaining melanoma metastasis as a step-wise process must also reflect the temporal complexity and heterogeneity in progression of this disease. Genetic drivers of melanoma as well as extrinsic regulators of disease spread, particularly those that mediate metastasis to specific organs, must also be incorporated into newer models of melanoma metastasis.
Collapse
|
53
|
Badoual C, Sandoval F, Pere H, Hans S, Gey A, Merillon N, Van Ryswick C, Quintin-Colonna F, Bruneval P, Brasnu D, Fridman WH, Tartour E. Better understanding tumor-host interaction in head and neck cancer to improve the design and development of immunotherapeutic strategies. Head Neck 2010; 32:946-58. [PMID: 20191626 DOI: 10.1002/hed.21346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Head and neck cancers are heavily infiltrated by immune cells, the significance of which is complex. The natural immune response against head and neck tumors, including anti-human papillomavirus (HPV) T cells, and humoral responses has been clearly documented. However, during the course of tumor progression, co-option of the immune system by tumor cells for their own advantage and increased resistance of tumor cells to immune attack also occur. Inflammation and immune subversion to support angiogenesis are key factors promoting tumor growth. Only a better understanding of this tumor-host interaction will permit a rational design of new immunotherapeutic approaches combining immunostimulation with drugs endowed with the ability to counteract immunoevasion mechanisms.
Collapse
Affiliation(s)
- Cécile Badoual
- EA 4054 Universite Paris Descartes, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, 94704 Maisons Alfort, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Mburu YK, Abe K, Ferris LK, Sarkar SN, Ferris RL. Human β-defensin 3 promotes NF-κB-mediated CCR7 expression and anti-apoptotic signals in squamous cell carcinoma of the head and neck. Carcinogenesis 2010; 32:168-74. [PMID: 21071608 DOI: 10.1093/carcin/bgq236] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The microenvironment of aerodigestive cancers contains tumor-promoting inflammatory signals often involved in innate immunity. The epithelial malignancy, squamous cell carcinoma of the head and neck (SCCHN), is characterized by secretion of inflammatory mediators that can promote tumorigenesis and lymph node metastasis. Human β-defensin (hBD) 3 is one such antimicrobial mediator of innate immunity produced by squamous epithelial cells in response to tissue damage and inflammation. Here, we hypothesized that the observed overexpression of hBD3 in SCCHN may have a tumor-promoting effect or contribute to nodal metastasis, which has previously been linked to chemokine receptor (CCR) 7 overexpression. Indeed, treatment of non-metastatic SCCHN cells with hBD3 induced surface CCR7 expression and migration toward its ligand, CCL19. The hBD3-induced CCR7 upregulation in SCCHN cells was significantly reduced by inhibition of nuclear factor (NF)-κB, an inflammatory transcription factor known to influence CCR7 expression. Moreover, hBD3 stimulation provided anti-apoptotic signals to SCCHN cells, as evidenced by tumor resistance to cisplatin-induced cell death, which was regulated by phosphoinositide-3-kinase/Akt activation. Interestingly, the observed hBD3-mediated effects were not dependent on G-protein coupled receptors or toll-like receptors, as has been previously published, but hBD3 was internalized through endocytosis, allowing intracellular signal transduction. Our findings suggest that hBD3 represents a novel NF-κB-regulated mediator of CCR7 expression and anti-apoptotic pathways, which may be exploited by developing SCCHN tumors to enhance their survival and metastasis.
Collapse
Affiliation(s)
- Yvonne K Mburu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
55
|
Shannon LA, Calloway PA, Welch TP, Vines CM. CCR7/CCL21 migration on fibronectin is mediated by phospholipase Cgamma1 and ERK1/2 in primary T lymphocytes. J Biol Chem 2010; 285:38781-7. [PMID: 20889506 DOI: 10.1074/jbc.m110.152173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CCR7 binds to its cognate ligand, CCL21, to mediate the migration of circulating naive T lymphocytes to the lymph nodes. T lymphocytes can bind to fibronectin, a constituent of lymph nodes, via their β1 integrins, which is a primary mechanism of T lymphocyte migration; however, the signaling pathways involved are unclear. We report that rapid (within 2 min) and transient phosphorylation of ERK1/2 is required for T cell migration on fibronectin in response to CCL21. Conversely, prevention of ERK1/2 phosphorylation by inhibition of its kinase, MAPK/MEK, prevented T lymphocyte migration. Previous studies have suggested that phospholipase Cγ1 (PLCγ1) can mediate phosphorylation of ERK1/2, which is required for β1 integrin activation. Paradoxically, we found that inhibition of PLCγ1 phosphorylation by the general PLC inhibitor U73122 was associated with a delayed and reduced phosphorylation of ERK1/2 and reduced migration of T lymphocytes on fibronectin. To further characterize the relationship between ERK1/2 and PLCγ1, we reduced PLCγ1 levels by 85% using shRNA and observed a reduced phosphorylation of ERK1/2 and a significant loss of CCR7-mediated migration of T lymphocytes on fibronectin. In addition, we found that inhibition of ERK1/2 phosphorylation by U0126 resulted in a decreased phosphorylation of PLCγ1, suggesting a feedback loop between ERK1/2 and PLCγ1. Overall, these results suggest that the CCR7 signaling pathway leading to T lymphocyte migration on fibronectin is a β1 integrin-dependent pathway involving transient ERK1/2 phosphorylation, which is modulated by PLCγ1.
Collapse
Affiliation(s)
- Laura A Shannon
- Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
56
|
Arellano-Garcia ME, Li R, Liu X, Xie Y, Yan X, Loo JA, Hu S. Identification of tetranectin as a potential biomarker for metastatic oral cancer. Int J Mol Sci 2010; 11:3106-21. [PMID: 20957082 PMCID: PMC2956083 DOI: 10.3390/ijms11093106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 12/20/2022] Open
Abstract
Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC). A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B). We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients.
Collapse
Affiliation(s)
- Martha E. Arellano-Garcia
- School of Dentistry and Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (M.E.A.-G.); (X.L.)
| | - Roger Li
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (R.L.); (Y.X.); (J.A.L.)
| | - Xiaojun Liu
- School of Dentistry and Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (M.E.A.-G.); (X.L.)
| | - Yongming Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (R.L.); (Y.X.); (J.A.L.)
| | - Xiaofei Yan
- Department of Statistics, University of California Los Angeles, Los Angeles, CA, USA; E-Mail:
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (R.L.); (Y.X.); (J.A.L.)
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shen Hu
- School of Dentistry and Dental Research Institute, University of California Los Angeles, Los Angeles, CA, USA; E-Mails: (M.E.A.-G.); (X.L.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- *Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-310-206-8834; Fax: +1-310-794-7109
| |
Collapse
|
57
|
Ueda M, Shimada T, Goto Y, Tei K, Nakai S, Hisa Y, Kannagi R. Expression of CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4) in head and neck squamous cell carcinoma. Auris Nasus Larynx 2010; 37:488-95. [DOI: 10.1016/j.anl.2009.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/25/2009] [Accepted: 11/29/2009] [Indexed: 12/21/2022]
|
58
|
Benke EM, Ji Y, Patel V, Wang H, Miyazaki H, Yeudall WA. VEGF-C contributes to head and neck squamous cell carcinoma growth and motility. Oral Oncol 2010; 46:e19-24. [DOI: 10.1016/j.oraloncology.2010.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
59
|
Wang H, Teh MT, Ji Y, Patel V, Firouzabadian S, Patel AA, Gutkind JS, Yeudall WA. EPS8 upregulates FOXM1 expression, enhancing cell growth and motility. Carcinogenesis 2010; 31:1132-41. [PMID: 20351091 DOI: 10.1093/carcin/bgq058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies from our laboratory have indicated that overexpression of the epidermal growth factor receptor pathway substrate 8 (EPS8) enhances cell proliferation, migration and tumorigenicity in vivo, although the mechanisms involved remain unexplored. A microarray screen to search for potential mediators of EPS8 identified upregulation of multiple cell cycle-related targets such as the transcription factor FOXM1 and several of its reported downstream mediators, including cdc20, cyclin B1, cyclin A, aurora-B kinase and cdc25C in cells with elevated EPS8, as well as matrix metalloproteinase-9, which we reported previously to be upregulated by EPS8-dependent mechanisms. Cells engineered to overexpress FOXM1 showed increased proliferation, similar to EPS8-overexpressing cells. Conversely, targeted knockdown of FOXM1 in EPS8-overexpressing cells reduced proliferation. Cotransfection of EPS8 with a FOXM1-luciferase reporter plasmid into 293-T- or SVpgC2a-immortalized buccal keratinocytes demonstrated that EPS8 enhances FOXM1 promoter activity, whereas chromatin immunoprecipitation assays revealed elevated levels of acetylated histone H3 associated with the FOXM1 promoter in cells expressing high levels of EPS8. Treatment of EPS8-overexpressing cells with inhibitors of phosphoinositide 3-OH kinase or AKT reduced expression of FOXM1 and aurora-B kinase, a transcriptional target of FOXM1. Overexpression of EPS8 induced expression of the chemokine ligands CXCL5 and CXCL12 in a FOXM1-dependent manner, which was blocked by LY294002 or a dominant-negative form of AKT. Additionally, overexpression of FOXM1 enhanced cell migration, whereas targeted knockdown of CXCL5 or inhibition of AKT reduced migration of EPS8-expressing cells. These data suggest that EPS8 enhances cell proliferation and migration in part by deregulating FOXM1 activity and inducing CXC-chemokine expression, mediated by PI3K- and AKT-dependent mechanisms.
Collapse
Affiliation(s)
- Huixin Wang
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, 521 N. 11th Street, Richmond, VA 23298-0566, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Mammalian target of rapamycin (mTOR) is involved in the survival of cells mediated by chemokine receptor 7 through PI3K/Akt in metastatic squamous cell carcinoma of the head and neck. Br J Oral Maxillofac Surg 2009; 48:291-6. [PMID: 19615795 DOI: 10.1016/j.bjoms.2009.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Metastatic squamous cell carcinoma (SCC) of the head and neck expresses chemokine receptor 7 (CCR7), which activates phosphoinositide-3 kinase (PI3K) to promote invasion and survival of SCC cells in the head and neck. We hypothesised that mammalian target of rapamycin (mTOR) may be the downstream molecule of the CCR7-PI3K pathway. Results have shown that interaction between CCR7 and its ligand CCL19 induces the phosphorylation of mTOR and its target p70s6k. This phosphorylation is abolished by inhibition of CCR7 and PI3K/Akt, indicating that mTOR is involved in the CCR7-PI3K cascade. The inhibitors of mTOR and CCR7-PI3K also lead to a significant increase in CCL19-induced death, apoptosis, and cell-cycle arrest of metastatic SCC cells in the head and neck. Taken together, our data indicate the important part played by mTOR in CCR7-induced survival of such SCC cells.
Collapse
|
61
|
Deutsch AJA, Aigelsreiter A, Steinbauer E, Frühwirth M, Kerl H, Beham-Schmid C, Schaider H, Neumeister P. Distinct signatures of B-cell homeostatic and activation-dependent chemokine receptors in the development and progression of extragastric MALT lymphomas. J Pathol 2008; 215:431-44. [PMID: 18561120 DOI: 10.1002/path.2372] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemokine receptors mediate migration and activation of lymphocytes through binding of their ligands. Recent studies have revealed important contributions of chemokine receptors to the development, progression, and dissemination of haematopoietic neoplasms. Because the chemokine receptor expression profile in extragastric MALT lymphoma is unknown, we performed a comprehensive study on tissue samples of parotid glands, parotid glands affected by Sjögren syndrome, extragastric MALT lymphoma, and extranodal diffuse large B-cell lymphoma (eDLBCL) originating from MALT lymphoma (transformed MALT lymphoma). By investigating the expression of 19 chemokine receptors by real-time PCR using a semi-quantitative approach and of four chemokine receptors (CCR1, CCR5, CXCR6, and XCR1) by immunohistochemistry, we show that the chemokine receptor expression profiles of extragastric MALT lymphomas differ substantially from those of extranodal DBLCL, with lower expression of CCR1, CCR8, and CXCR3, and the absence of expression of CX3CR1 and XCR1 in eDLBCL. Expression of CCR6, CCR7, CXCR3, CXCR4, and CXCR5, responsible for B-cell homing to secondary lymphoid tissue, was detected in both B-cell malignancies. Expression of CCR4 was just detected in trisomy 3-positive MALT lymphoma cases. Comparing gastric with extragastric MALT lymphomas, up-regulation of CXCR1 and CXCR2 accompanied by down-regulation of CCR8 and CX3CR1 and loss of XCR1 expression in extragastric MALT lymphomas appear to be key determinants for the site of origin of MALT lymphomagenesis. Our results support a model of stepwise progression of extragastric MALT lymphoma from a non-neoplastic event to Sjögren syndrome, to MALT lymphoma, and finally to overt eDLBCL, guided by differentially expressed B-cell homeostatic and activation-dependent chemokine receptors and their ligands.
Collapse
Affiliation(s)
- A J A Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
62
|
ErbB receptors in the biology and pathology of the aerodigestive tract. Exp Cell Res 2008; 315:572-82. [PMID: 18778701 DOI: 10.1016/j.yexcr.2008.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 01/02/2023]
Abstract
The most common sites of malignancies in the aerodigestive tract include the lung, head and neck and the esophagus. Esophageal adenocarcinomas (EA), esophageal squamous cell carcinomas (ESCC), and squamous cell carcinomas of the head and neck (SCCHN) are the primary focus of this review. Traditional treatment for aerodigestive tract cancers includes primary chemoradiotherapy (CRT) or surgical resection followed by radiation (or CRT). Recent developments in treatment have focused increasingly on molecular targeting strategies including cetuximab (a monoclonal antibody against epidermal growth factor receptor (EGFR)). Cetuximab was FDA approved in 2006 for treatment of SCCHN, underscoring the importance of understanding the biology of these malignancies. EGFR is a member of the ErbB family of growth factor receptor tyrosine kinases. The major pathways activated by ErbB receptors include Ras/Raf/MAPK; PI3K/AKT; PLCgamma and STATs, all of which lead to the transcription of target genes that may contribute to aerodigestive tumor progression. This review explores the expression of ErbB receptors in EA, ESCC and SCCHN and the signaling pathways of EGFR in SCCHN.
Collapse
|
63
|
Liu CJ, Liu TY, Kuo LT, Cheng HW, Chu TH, Chang KW, Lin SC. Differential gene expression signature between primary and metastatic head and neck squamous cell carcinoma. J Pathol 2008; 214:489-97. [PMID: 18213732 DOI: 10.1002/path.2306] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a world-wide malignancy. This study aimed to identify differential gene expression associated with the progression of disease from primary to metastatic HNSCC. Microdissection retrieved pure epithelial cells from paired primary tumours and cervical lymph node metastasis. cDNA microarray analysis and algorithm grouping identified differential mRNA expression of 301 genes. Quantitative reverse transcription-polymerase chain reaction analysis clarified the up-regulation of CCL19, CR2, EGR2, FUCA1, RGS1, and SELL, as well as the down-regulation of IGFBP6 and KLK8 in nodal metastasis compared to primary tumours. Immunohistochemistry confirmed the up-regulation of SELL and down-regulation of IGFBP6 in nodal metastasis relative to primary tumours. Interestingly, primary tumours exhibiting higher FUCA1 and SELL expression were associated with significantly worse patient survival. In OECM-1 HNSCC cells, inhibition of proliferation, migration, and anchorage-independent growth was noted following knockdown of SELL expression. In SAS HNSCC cells, expression of exogenous SELL resulted in increased invasion, anchorage-independent growth, and xenographic tumourigenesis in nude mice. Knockdown of FUCA1 and treatment with IGFBP6 inhibited the migration of OECM-1 cells. Knockdown of RGS1 inhibited the anchorage-independent growth of SAS cells. Our results provide a useful gene signature profile describing the factors underlying the metastasis of HNSCC to cervical lymph nodes, which may be beneficial for the treatment of HNSCC metastasis.
Collapse
Affiliation(s)
- C-J Liu
- Department of Oral and Maxillofacial, surgery Taipei MacKay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
64
|
Wang J, Seethala RR, Zhang Q, Gooding W, van Waes C, Hasegawa H, Ferris RL. Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer: implications for therapy. J Natl Cancer Inst 2008; 100:502-12. [PMID: 18364504 DOI: 10.1093/jnci/djn059] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The chemokine receptor 7 (CCR7) mediates survival and invasiveness of metastatic squamous cell carcinoma of the head and neck (SCCHN) to regional lymph nodes. Constitutive prosurvival signaling by the phosphoinositide-3 kinase/Akt pathway has been observed in SCCHN cells independent of epidermal growth factor receptor (EGFR) signaling. METHODS Human SCCHN cell lines were treated with agents that block or activate CCR7-mediated signaling, and Akt activation, cell viability in the presence or absence of EGFR inhibition, and cisplatin-induced apoptosis (in the presence or absence of Akt inhibition) were assessed by immunoblotting, the MTT assay, and the detection of annexin V, respectively. Expression and secretion of chemokines by primary tumors, metastatic nodes, and benign nodes of patients with SCCHN were determined by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The role of paracrine activation of CCR7 on tumor growth was analyzed by comparing the growth of orthotopic tumors derived from B7E3 murine oral carcinoma cells in wild-type BALB/c mice, in paucity of lymphoid T cell (plt, deficient in CCL19 and CCL21 expression) mice, and in plt mice in which the implanted B7E3 cells overexpressed CCR7 (n = 14 mice per group). RESULTS In the absence of exogenous ligand treatment, blockade of CCR7 signaling reduced levels of phosphorylated (activated) Akt and decreased SCCHN cell viability by up to 59% (95% confidence interval [CI] = 58.2% to 59.8%), enhancing the effect of EGFR inhibition. CCR7 stimulation protected metastatic SCCHN cells from cisplatin-induced apoptosis in an Akt-dependent manner. Metastatic nodes expressed and secreted higher levels of CCL19 than benign nodes or primary tumors. CCR7-positive murine SCCHN tumors grew more slowly in plt mice than in control BALB/c mice (mean average tumor volume on day 20 = 12.2 and 26.5 mm(3), respectively; difference = 14.3 mm(3), 95% CI = 12.3 to 17.1 mm(3)). CONCLUSIONS Secretion of CCL19 and CCL21 by SCCHN cells and by paracrine sources combine to promote activation of CCR7 prosurvival signaling associated with tumor progression and disease relapse. CCR7 and its cognate chemokines may be useful biomarkers of SCCHN progression, and blockade of CCR7-mediated signaling may enhance the efficacy of platinum- and EGFR-based therapies.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Allen CT, Ricker JL, Chen Z, Van Waes C. Role of activated nuclear factor-kappaB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck 2008; 29:959-71. [PMID: 17405170 DOI: 10.1002/hed.20615] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nuclear factor-kappaB (NF-kappaB), a transcription factor known to modulate expression of factors involved in inflammation, immunity, proliferation, and apoptosis, is constitutively activated and plays a role in pathogenesis and therapeutic resistance in head and neck squamous cell carcinoma (HNSCC). Understanding the molecular alterations leading to aberrant NF-kappaB activation in HNSCC may direct investigators to novel therapeutic targets. METHODS Results of laboratory and clinical studies are reviewed. RESULTS The structure, function, and activation of NF-kappaB, products of NF-kappaB target genes and their role in HNSCC oncogenesis, and current NF-kappaB modulating interventions are described. CONCLUSIONS Aberrant NF-kappaB activation contributes to the expression of oncogenes and the malignant phenotype observed in HNSCC. NF-kappaB, along with providing a link between cancer and inflammation, may serve as an appropriate therapeutic target to inhibit tumor growth and sensitize cancer cells to established cytotoxic anticancer therapies.
Collapse
Affiliation(s)
- Clint T Allen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 10 Center Drive, CRC 4-2732, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
66
|
Takes RP, Rinaldo A, Pablo Rodrigo J, Devaney KO, Fagan JJ, Ferlito A. Can biomarkers play a role in the decision about treatment of the clinically negative neck in patients with head and neck cancer? Head Neck 2008; 30:525-38. [DOI: 10.1002/hed.20759] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
67
|
Vallet S, Raje N, Ishitsuka K, Hideshima T, Podar K, Chhetri S, Pozzi S, Breitkreutz I, Kiziltepe T, Yasui H, Ocio EM, Shiraishi N, Jin J, Okawa Y, Ikeda H, Mukherjee S, Vaghela N, Cirstea D, Ladetto M, Boccadoro M, Anderson KC. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood 2007; 110:3744-52. [PMID: 17715391 PMCID: PMC2077320 DOI: 10.1182/blood-2007-05-093294] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interaction between osteoclasts (OCs) and multiple myeloma (MM) cells plays a key role in the pathogenesis of MM-related osteolytic bone disease (OBD). MM cells promote OC formation and, in turn, OCs enhance MM cell proliferation. Chemokines are mediators of MM effects on bone and vice versa; in particular, CCL3 enhances OC formation and promotes MM cell migration and survival. Here, we characterize the effects of MLN3897, a novel specific antagonist of the chemokine receptor CCR1, on both OC formation and OC-MM cell interactions. MLN3897 demonstrates significant impairment of OC formation (by 40%) and function (by 70%), associated with decreased precursor cell multinucleation and down-regulation of c-fos signaling. OCs secrete high levels of CCL3, which triggers MM cell migration; conversely, MLN3897 abrogates its effects by inhibiting Akt signaling. Moreover, MM cell-to-OC adhesion was abrogated by MLN3897, thereby inhibiting MM cell survival and proliferation. Our results therefore show novel biologic sequelae of CCL3 and its inhibition in both osteoclastogenesis and MM cell growth, providing the preclinical rationale for clinical trials of MLN3897 to treat OBD in MM.
Collapse
Affiliation(s)
- Sonia Vallet
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Pitkin L, Luangdilok S, Corbishley C, Wilson POG, Dalton P, Bray D, Mady S, Williamson P, Odutoye T, Rhys Evans P, Syrigos KN, Nutting CM, Barbachano Y, Eccles S, Harrington KJ. Expression of CC chemokine receptor 7 in tonsillar cancer predicts cervical nodal metastasis, systemic relapse and survival. Br J Cancer 2007; 97:670-7. [PMID: 17687340 PMCID: PMC2360373 DOI: 10.1038/sj.bjc.6603907] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to evaluate the expression of CC chemokine receptor 7 (CCR7) in squamous cell cancer of the tonsil with respect to patterns of spread, relapse-free, overall and disease-specific survival. Eighty-four patients with squamous cell cancer of the tonsil were identified. There was a male predominance of 3 : 1 and the median age at diagnosis was 53 (range 35–86) years. The median duration of follow-up was 33 (range 2–124) months. There was a significant association between CCR7 immunopositivity and synchronous cervical nodal metastasis in patients with tonsillar cancer (Spearman's correlation coefficient 0.564; P<0.001). Relapse-free (P=0.0175), overall (P=0.0136) and disease-specific (P=0.0062) survival rates were significantly lower in patients whose tumours expressed high levels of CCR7. On multivariate analysis, high-level CCR7 staining predicted relapse-free (hazard ratio 3.0, 95% confidence intervals 1.1–8.0, P=0.026) and disease-specific (hazard ratio 10.2, 95% confidence intervals 2.1–48.6, P=0.004) survival. Fifteen percent of patients with the highest level of tumour CCR7 immunopositivity relapsed with systemic metastases. These data demonstrated that CCR7 expression was associated with cervical nodal and systemic metastases from tonsillar cancers. High levels of CCR7 expression predicted a poor prognosis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Lymphatic Metastasis
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Recurrence, Local
- Predictive Value of Tests
- Prognosis
- Receptors, CCR7
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tonsillar Neoplasms/genetics
- Tonsillar Neoplasms/metabolism
- Tonsillar Neoplasms/pathology
Collapse
Affiliation(s)
- L Pitkin
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
| | - S Luangdilok
- The Institute of Cancer Research, McElwain Laboratories, Sutton, UK
| | - C Corbishley
- Department of Cellular Pathology, St George's Hospital, London, UK
| | - P O G Wilson
- Department of Cellular Pathology, St George's Hospital, London, UK
| | - P Dalton
- Department of Cellular Pathology, St George's Hospital, London, UK
| | - D Bray
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
| | - S Mady
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
| | - P Williamson
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
| | - T Odutoye
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
| | - P Rhys Evans
- Head and Neck Unit, Royal Marsden Hospital, London, UK
| | - K N Syrigos
- Head and Neck Unit, Royal Marsden Hospital, London, UK
| | - C M Nutting
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
- Head and Neck Unit, Royal Marsden Hospital, London, UK
| | - Y Barbachano
- Statistics Unit, Royal Marsden Hospital, London, UK
| | - S Eccles
- The Institute of Cancer Research, McElwain Laboratories, Sutton, UK
| | - K J Harrington
- Thomas Tatum Head and Neck Unit, St George's Hospital, London, UK
- Head and Neck Unit, Royal Marsden Hospital, London, UK
- The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
- Targeted Therapy Laboratory, The Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK. E-mail:
| |
Collapse
|
69
|
Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 2007; 11:526-38. [PMID: 17560334 DOI: 10.1016/j.ccr.2007.04.020] [Citation(s) in RCA: 412] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 03/20/2007] [Accepted: 04/26/2007] [Indexed: 02/05/2023]
Abstract
CCR7 is implicated in lymph node metastasis of cancer, but its role is obscure. We report a mechanism explaining how interstitial flow caused by lymphatic drainage directs tumor cell migration by autocrine CCR7 signaling. Under static conditions, lymphatic endothelium induced CCR7-dependent chemotaxis of tumor cells through 3D matrices. However, interstitial flow induced strong increases in tumor cell migration that were also CCR7 dependent, but lymphatic independent. This autologous chemotaxis correlated with metastatic potential in four cell lines and was verified by visualizing directional polarization of cells in the flow direction. Computational modeling revealed that transcellular gradients of CCR7 ligand were created under flow to drive this response. This illustrates how tumor cells may be guided to lymphatics during metastasis.
Collapse
Affiliation(s)
- Jacqueline D Shields
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | | | | | | | | |
Collapse
|
70
|
Dell’Agnola C, Biragyn A. Clinical utilization of chemokines to combat cancer: the double-edged sword. Expert Rev Vaccines 2007; 6:267-83. [PMID: 17408375 PMCID: PMC2262932 DOI: 10.1586/14760584.6.2.267] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemokines are a small group of related chemo-attractant peptides that play an essential role in the homeostatic maintenance of the immune system. They control the recruitment of cells needed for the induction and activation of innate and adaptive immune responses. However, tumors also utilize chemokines to actively progress and evade immunosurveillance. In fact, chemokines are involved directly or indirectly in almost every aspect of tumorigenesis. They mediate survival and metastatic spread of tumors, promote new blood vessel formation (neovascularization) and induce an immunosuppressive microenvironment via recruitment of immunosuppressive cells. As a result, a number of therapeutic strategies have been proposed to target almost every step of the chemokine/chemokine receptor involvement in tumors. Yet, despite occasional success stories, most of them appear to be ineffective or impractical, presumably due to 'nonspecific' harm of cells needed for the elimination of tumor escapees and maintenance of immunological memory. The strategy would only be effective if it also promoted antitumor adaptive immune responses capable of combating a residual disease and tumor relapse.
Collapse
Affiliation(s)
- Chiara Dell’Agnola
- Chiara Dell’Agnola, MD, Research Assistant, Department of Clinical and Experimental Medicine, Division of Oncology, University of Verona, Ospedale Policlinico GB Rossi, Piazzale Ludovico Scuro 10, 37134 Verona, Italy, Tel.: +39 045 812 8121 (office), +39 045 812 8502 (secretary), Fax: +39 045 802 7410,
| | - Arya Biragyn
- Author for correspondence National Institute on Aging, 5600 Nathan Shock Drive, Laboratory of Immunology, Gerontology Research Center National Institute on Aging, Baltimore, MD 21224, USA Tel.: +1 410 558 8680, Fax: +1 410 558 8284,
| |
Collapse
|
71
|
Mburu YK, Wang J, Wood MA, Walker WH, Ferris RL. CCR7 mediates inflammation-associated tumor progression. Immunol Res 2007; 36:61-72. [PMID: 17337767 DOI: 10.1385/ir:36:1:61] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Chemokine receptor 7 (CCR7) mediates leukocyte adhesion and chemotaxis from peripheral sites of inflammation through lymphatic channels to secondary lymphoid organs. Aberrant CCR7 expression has been identified on certain tumor types and been linked to pro-survival and invasive pathways. In metastatic squamous cell carcinoma of the head and neck (SCCHN), we have described the selective upregulation of functional CCR7. In this manuscript, we review our understanding of CCR7-mediated signaling in metastatic SCCHN and provide evidence for its involvement in tumor survival, invasion, and metastasis. Autocrine and paracrine CCR7 activation appears to propagate the response to the CCR7 ligands CCL19 and CCL21, which are expressed by the lymphatic endothelium, secondary lymphoid tissues, and CCR7-positive tumor cells. Based on our recent findings, the induction of CCR7 expression and the sustenance of the autocrine signaling pathway have been shown to be regulated by NF-kappaB, similar to several types of immune cells. While extending these observations to metastatic SCCHN tumor cells, our studies highlight the importance of downstream NF-kappaB mediated CCR7 signals in the progression of SCCHN malignancy.
Collapse
Affiliation(s)
- Yvonne K Mburu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
72
|
Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 2007; 25:333-56. [PMID: 17029028 DOI: 10.1007/s10555-006-9010-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment consists of a variable combination of tumor cells, stromal fibroblasts, endothelial cells and infiltrating leukocytes, such as macrophages, T lymphocytes, and dendritic cells. A variety of cytokines, chemokines and growth factors are produced in the local tumor environment by different cells accounting for a complex cell interaction and regulation of differentiation, activation, function and survival of multiple cell types. The interaction between cytokines, chemokines, growth factors and their receptors forms a comprehensive network at the tumor site, which is primary responsible for overall tumor progression and spreading or induction of antitumor immune responses and tumor rejection. Although the general thought is that dendritic cells are among the first cells migrating to the tumor site and recognizing tumor cells for the induction of specific antitumor immunity, the clinical relevance of dendritic cells at the site of the tumor remains a matter of debate regarding their role in the generation of successful antitumor immune responses in human cancers. While several lines of evidence suggest that intratumoral dendritic cells play an important role in antitumor immune responses, understanding the mechanisms of dendritic cell/tumor cell interaction and modulation of activity and function of different dendritic cell subtypes at the tumor site is incomplete. This review is limited to discussing the role of intratumoral cytokine network in the understanding immunobiology of tumor-associated dendritic cells, which seems to possess different regulatory functions at the tumor site.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center and Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Linkov F, Lisovich A, Yurkovetsky Z, Marrangoni A, Velikokhatnaya L, Nolen B, Winans M, Bigbee W, Siegfried J, Lokshin A, Ferris RL. Early Detection of Head and Neck Cancer: Development of a Novel Screening Tool Using Multiplexed Immunobead-Based Biomarker Profiling. Cancer Epidemiol Biomarkers Prev 2007; 16:102-7. [PMID: 17220337 DOI: 10.1158/1055-9965.epi-06-0602] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease that has been linked to altered immune, inflammatory, and angiogenesis responses. A better understanding of these aberrant responses might improve early detection and prognosis of SCCHN and provide novel therapeutic targets. Previous studies examined the role of multiplexed serum biomarkers in small cohorts or SCCHN sera. We hypothesized that an expanded panel comprised of multiple cytokines, chemokines, growth factors, and other tumor markers, which individually may show some promising correlation with disease status, might provide higher diagnostic power if used in combination. Thus, we evaluated a novel multianalyte LabMAP profiling technology that allows simultaneous measurement of multiple serum biomarkers. Concentrations of 60 cytokines, growth factors, and tumor antigens were measured in the sera of 116 SCCHN patients before treatment (active disease group), 103 patients who were successfully treated (no evidence of disease group), and 117 smoker controls without evidence of cancer. The multimarker panel offering the highest diagnostic power was comprised of 25 biomarkers, including epidermal growth factor, epidermal growth factor receptor, interleukin (IL)-8, tissue plasminogen activator inhibitor-1, alpha-fetoprotein, matrix metalloproteinase-2, matrix metalloproteinase-3, IFN-alpha, IFN-gamma, IFN-inducible protein-10, regulated on activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein-1alpha, IL-7, IL-17, IL-1 receptor-alpha, IL-2 receptor, granulocyte colony-stimulating factor, mesothelin, insulin-like growth factor binding protein 1, E-selectin, cytokeratin-19, vascular cell adhesion molecule, and cancer antigen-125. Statistical analysis using an ADE algorithm resulted in a sensitivity of 84.5%, specificity of 98%, and 92% of patients in the active disease group correctly classified from a cross-validation serum set. The data presented show that simultaneous testing using a multiplexed panel of serum biomarkers may present a promising new approach for the early detection of head and neck cancer.
Collapse
Affiliation(s)
- Faina Linkov
- Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Slettenaar VIF, Wilson JL. The chemokine network: a target in cancer biology? Adv Drug Deliv Rev 2006; 58:962-74. [PMID: 16996642 DOI: 10.1016/j.addr.2006.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/10/2006] [Indexed: 01/30/2023]
Abstract
Chemokine gradients are central to the movement of cells in both homeostatic and pathological processes. Most cancers express a complex array of chemokines that influence the local microenvironment through recruitment of stromal cells and by stimulating angiogenesis. Recently, the discovery of chemokine receptors on tumor cells has led to speculation that the chemokine system may be involved in cancer cell growth and survival, and possibly the development of site-specific spread. Understanding the networks of chemokines and their receptors in cancer will enable manipulation of this system. Both chemokines and their receptors represent targets for therapeutic intervention either with antibodies or small molecule antagonists. However, due to the complexity of the system, and the number of chemokines and receptors that are also expressed by normal cells, issues remain concerning whether systemic or local drug delivery are preferable and whether the redundancy of the system will compensate if one chemokine or receptor is targeted. Nevertheless, efficacy has been demonstrated in a number of experimental models. By targeting this network, it may be possible to generate anti-tumor immune responses by altering the chemokine and/or leukocyte balance in tumors; alternatively, chemokine/chemokine receptor-expressing cancer cells could be directly targeted.
Collapse
Affiliation(s)
- Violet I F Slettenaar
- Centre for Translational Oncology, Institute of Cancer and the CR-UK Clinical Centre, Barts and The London Queen Mary's School of Medicine and Dentistry, 3rd Floor, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | | |
Collapse
|
75
|
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in several epithelial malignancies, including head and neck squamous cell carcinoma (HNSCC), which exhibits EGFR overexpression in up to 90% of tumors. EGFR ligands such as transforming growth factor alpha are also overexpressed in HNSCC. EGFR plays a critical role in HNSCC growth, invasion, metastasis and angiogenesis. However, EGFR inhibitors as monotherapy have yielded only modest clinical outcomes. Potential mechanisms for lack of response to EGFR inhibition in HNSCC include constitutive activation of signaling pathways independent of EGFR, as well as genetic aberrations causing dysregulation of the cell cycle. EGFR-directed therapy may be optimized by identifying and selecting those HNSCC patients most likely to benefit from EGFR inhibition. Resistance to EGFR inhibition may be circumvented by combination therapy employing EGFR inhibitors together with other treatment modalities.
Collapse
Affiliation(s)
- Shailaja Kalyankrishna
- Department of Otolaryngology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
76
|
Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. The Multiple Personalities of the Chemokine Receptor CCR7 in Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:5153-9. [PMID: 16621978 DOI: 10.4049/jimmunol.176.9.5153] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CCR7 was described initially as a potent leukocyte chemotactic receptor that was later shown to be responsible of directing the migration of dendritic cells (DCs) to the lymph nodes where these cells play an important role in the initiation of the immune response. Recently, a variety of reports have indicated that, apart from chemotaxis, CCR7 controls the cytoarchitecture, the rate of endocytosis, the survival, the migratory speed, and the maturation of the DCs. Some of these functions of CCR7 and additional ones also have been described in other cell types. Herein we discuss how this receptor may contribute to modulate the immune response by regulating different functions in DCs. Finally, we also suggest a possible mechanism whereby CCR7 may control its multiple tasks in these cells.
Collapse
Affiliation(s)
- Noelia Sánchez-Sánchez
- Department of Immunology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|