51
|
Kim W, Tokuda H, Kawabata T, Fujita K, Sakai G, Nakashima D, Tachi J, Kuroyanagi G, Matsushima-Nishiwaki R, Tanabe K, Otsuka T, Iida H, Kozawa O. Enhancement by HSP90 inhibitor of PGD2-stimulated HSP27 induction in osteoblasts: Suppression of SAPK/JNK and p38 MAP kinase. Prostaglandins Other Lipid Mediat 2019; 143:106327. [PMID: 30946899 DOI: 10.1016/j.prostaglandins.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
Heat shock protein (HSP) 90 that is ubiquitously expressed in various tissues is a major molecular chaperone. We have previously demonstrated that prostaglandin D2 (PGD2), a bone remodeling factor, elicits the expression of HSP27, a small HSP, through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of HSP90 in the PGD2-stimulated HSP27 induction and the underlying mechanism in MC3T3-E1 cells. Onalespib, an inhibitor of HSP90, significantly enhanced the PGD2-stimulated HSP27 induction. In addition, geldanamycin, another HSP90 inhibitor, potentiated the HSP27 induction. Both onalespib and geldanamycin markedly amplified the PGD2-induced phosphorylation of SAPK/JNK and p38 MAP kinase. SP600125, an inhibitor of SAPK/JNK, and SB203580, an inhibitor of p38 MAP kinase, suppressed the amplification by onalespib of the PGD2-stimulated HSP27 induction. These results strongly suggest that HSP90 plays a negative role in the HSP27 induction stimulated by PGD2 in osteoblasts, and that the inhibitory effect of HSP90 is mediated through the regulation of SAPK/JNK and p38 MAP kinase.
Collapse
Affiliation(s)
- Woo Kim
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Junko Tachi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Gen Kuroyanagi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
52
|
PG102 Upregulates IL-37 through p38, ERK, and Smad3 Pathways in HaCaT Keratinocytes. Mediators Inflamm 2019; 2019:6085801. [PMID: 30918469 PMCID: PMC6409045 DOI: 10.1155/2019/6085801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/19/2019] [Indexed: 12/25/2022] Open
Abstract
IL-37 is an immunomodulatory cytokine that suppresses inflammation in various cell types and disease models. However, its role in keratinocytes has not been clearly understood, and there has been no report on the agents that can increase the expression of IL-37 in keratinocytes. In this study, we investigated the effects of silencing IL37 in HaCaT keratinocytes and the molecular mechanisms involved in the upregulation of IL-37 by PG102, a water-soluble extract from Actinidia arguta. It was found that knockdown of IL37 resulted in the augmented expression of antimicrobial peptides (AMPs) in response to cytokine stimulation. PG102 increased the expression of IL-37 at both mRNA and protein levels presumably by enhancing the phosphorylation of Smad3, ERK, and p38. Indeed, when cells were treated with specific inhibitors for these signaling molecules, the expression level of IL-37 was reduced. PG102 also promoted colocalization of phospho-Smad3 and IL-37. Our results suggest that IL-37 inhibits the expression of AMPs and that PG102 upregulates IL-37 through p38, ERK, and Smad3 pathways in HaCaT cells.
Collapse
|
53
|
Novel Immunoregulatory Functions of IL-18, an Accomplice of TGF-β1. Cancers (Basel) 2019; 11:cancers11010075. [PMID: 30641867 PMCID: PMC6356463 DOI: 10.3390/cancers11010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 is a pleiotropic factor exerting a strong regulatory role in several cell types, including immune cells. In NK cells it profoundly alters the surface expression of crucial activating and chemokine receptors. To understand which soluble signals might better contrast these effects, we cultured human NK cells in the presence of TGF-β1 and different innate and adaptive cytokines, generally referred as “immunostimulatory”. These included IL-2, IL-15, IL-21, IL-27, and IL-18. Unexpectedly, IL-18 strengthened rather than contrasting important TGF-β1-mediated functions. In particular, IL-18 further reduced the expression of CX3CR1 and NKp30, leading to the virtual abrogation of the triggering capability of this activating receptor. Moreover, IL-18 further increased the expression of CXCR4. The IL-18-mediated additive effect on NKp30 and CXCR4 expression involved transcriptional regulation and activation of MEK/ERK and/or p38MAPK. A proteomic approach quantified both surface and intracellular proteins significantly modified in cytokine-treated NK cells, thus giving global information on the biological processes involving TGF-β1 and IL-18. Our data support the concept that IL-18 may have a different behavior depending on the type of soluble factors characterizing the microenvironment. In a TGF-β1 rich milieu such as tumors, it may contribute to the impairment of both NK cells recruitment and killing capability.
Collapse
|
54
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
55
|
Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β. Int J Mol Sci 2018; 19:ijms19113672. [PMID: 30463358 PMCID: PMC6274739 DOI: 10.3390/ijms19113672] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023] Open
Abstract
Metastasis of tumor cells from primary sites of malignancy to neighboring stromal tissue or distant localities entails in several instances, but not in every case, the epithelial-mesenchymal transition (EMT). EMT weakens the strong adhesion forces between differentiated epithelial cells so that carcinoma cells can achieve solitary or collective motility, which makes the EMT an intuitive mechanism for the initiation of tumor metastasis. EMT initiates after primary oncogenic events lead to secondary secretion of cytokines. The interaction between tumor-secreted cytokines and oncogenic stimuli facilitates EMT progression. A classic case of this mechanism is the cooperation between oncogenic Ras and the transforming growth factor β (TGFβ). The power of TGFβ to mediate EMT during metastasis depends on versatile signaling crosstalk and on the regulation of successive waves of expression of many other cytokines and the progressive remodeling of the extracellular matrix that facilitates motility through basement membranes. Since metastasis involves many organs in the body, whereas EMT affects carcinoma cell differentiation locally, it has frequently been debated whether EMT truly contributes to metastasis. Despite controversies, studies of circulating tumor cells, studies of acquired chemoresistance by metastatic cells, and several (but not all) metastatic animal models, support a link between EMT and metastasis, with TGFβ, often being a common denominator in this link. This article aims at discussing mechanistic cases where TGFβ signaling and EMT facilitate tumor cell dissemination.
Collapse
Affiliation(s)
- Yutaro Tsubakihara
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
56
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
57
|
Qian W, Li N, Cao Q, Fan J. Thrombospondin-4 critically controls transforming growth factor β1 induced hypertrophic scar formation. J Cell Physiol 2018; 234:731-739. [PMID: 30132849 DOI: 10.1002/jcp.26877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a growth factor presenting important functions during tissue remodeling and hypertrophic scar (HS) formation. However, the underlying molecular mechanisms are largely unknown. In this study, we identified thrombospondin-4 (TSP-4) as a TGF-β1 target that essentially mediates TGF-β1-induced scar formation both in vitro and in vivo. The expression of TSP-4 was compared on both mRNA and protein levels between hypertrophic scar fibroblasts (HSFs) and normal skin fibroblast (NFs) in response to TGF-β1 treatment. Two signaling molecules, Smad3 and p38, were assessed for their importance in regulating TGF-β1-mediated TSP-4 expression. The significance of TSP-4 in controlling TGF-β1-induced proliferation, invasion, migration, and fibrosis in HSFs was analyzed by knocking down endogenous TSP-4 using small hairpin RNA (shRNA) (TSP-4 shRNA). Finally, a skin HS model was established in rats and the scar formation was compared between rats treated with vehicle (saline), TGF-β1, and TGF-β1 + TSP-4 shRNA. The TSP-4 level was significantly higher in HSFs than in NFs and TGF-β1 more potently boosted TSP-4 expression in the former than in the latter. Both Smad3 and p38 essentially mediated TGF-β1-induced TSP-4 expression. TSP-4 shRNA significantly suppressed TGF-β1-stimulated proliferation, invasion, migration, or fibrosis of HSFs in vitro and drastically improved wound healing in vivo. TGF-β1, by activating both Smad3 and p38, induces TSP-4, which in turn not only presents a positive feedback regulation on the activation of Smad3 and p38, but also essentially mediates TGF-β1-induced HS formation. Targeting TSP-4 thus may benefit HS treatment.
Collapse
Affiliation(s)
- Wei Qian
- Department of Plastic and Reconstructive Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Department of Plastic and Reconstructive Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qian Cao
- Department of Plastic and Reconstructive Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jufeng Fan
- Department of Plastic and Reconstructive Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
58
|
Bhowmick S, D'Mello V, Abdul-Muneer PM. Synergistic Inhibition of ERK1/2 and JNK, Not p38, Phosphorylation Ameliorates Neuronal Damages After Traumatic Brain Injury. Mol Neurobiol 2018; 56:1124-1136. [PMID: 29873042 DOI: 10.1007/s12035-018-1132-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that play a critical role in signal transduction and are activated by phosphorylation in response to a variety of pathophysiology stimuli. While MAP kinase signaling has a significant role in the pathophysiology of several neurodegenerative diseases, the precise function of activation of MAP kinase in traumatic brain injury (TBI) is unknown. Therefore, it is important to study the role of MAP kinase signaling in TBI-associated neurological ailments. In this study, using an in vitro stretch injury model in rat embryo neuronal cultures and the in vivo fluid percussion injury (FPI) model in rats, we explored the role of MAP kinase signaling in the mechanisms of cell death in TBI. Our study demonstrated that the stretch injury in vitro and FPI in vivo upregulated the phosphorylation of MAP kinase proteins ERK1/2 and JNK, but not p38. Using ERK1/2 inhibitor U0126, JNK inhibitor SP600125, and p38 inhibitor SB203580, we validated the role of MAP kinase proteins in the activation of NF-kB and caspase-3. By immunofluorescence and western blotting, further, we demonstrated the role of ERK1/2 and JNK phosphorylation in neurodegeneration by analyzing cell death proteins annexin V and Poly-ADP-Ribose-Polymerase p85. Interestingly, combined use of ERK1/2 and JNK inhibitors further attenuated the cell death in stretch-injured neurons. In conclusion, this study could establish the significance of MAP kinase signaling in the pathophysiology of TBI and may have significant implications for developing therapeutic strategies using ERK1/2 and JNK inhibitors for TBI-associated neurological complications.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA
| | - Veera D'Mello
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA
| | - P M Abdul-Muneer
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA.
| |
Collapse
|
59
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
60
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
61
|
Effect of the monoclonal antibody TRC105 in combination with Sunitinib on renal tumor derived endothelial cells. Oncotarget 2018; 9:22680-22692. [PMID: 29854307 PMCID: PMC5978257 DOI: 10.18632/oncotarget.25206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/05/2018] [Indexed: 01/26/2023] Open
Abstract
Anti-angiogenic therapy is an important strategy to limit growth, development and expansion of solid tumors. However, resistance to VEGF-targeting agents may develop, due to activation of alternative pro-angiogenic pathways, indicating the need of multiple target strategy. Here we obtained tumor endothelial cells (TEC) either from total renal carcinomas or from renal cancer stem cells (CSC-TEC) and we tested the effect of a CD105 targeting monoclonal antibody, TRC105, alone or in association with anti-VEGF drugs. We demonstrated that TRC105 impaired the ability of TEC and CSC-TEC to organize in tubular structures, whereas it did not limit proliferation or survival. The combination of TRC105 with different anti-angiogenic drugs showed a synergistic effect of TRC105 only in combination with the tyrosine kinase inhibitor Sunitinib. In particular, TRC105 plus Sunitinib reduced tubulogenesis, proliferation and survival of CSC-TEC and tumor-derived TEC in a similar manner. At a molecular level, we showed that the combination of TRC105 and Sunitinib induced the phosphorylation of Smad 2/3 to promote endothelial cell death. Moreover, TRC105 enhanced the inhibitory effect of Sunitinib on VEGF signaling and reduced VEGFR2-Akt-Creb activation, suggesting a molecular cooperation between the two drugs. Our results highlight that the combined inhibition of VEGF and TGF-β pathway may have a potential use in renal cell carcinoma therapy.
Collapse
|
62
|
Hu X, Kan H, Boye A, Jiang Y, Wu C, Yang Y. Mitogen-activated protein kinase inhibitors reduce the nuclear accumulation of phosphorylated Smads by inhibiting Imp 7 or Imp 8 in HepG2 cells. Oncol Lett 2018; 15:4867-4872. [PMID: 29552126 PMCID: PMC5840705 DOI: 10.3892/ol.2018.7926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
The transforming growth factor (TGF)-β/Smad signaling pathway is involved in hepatocellular carcinoma development. Smad2 and Smad3 are phosphorylated following TGF-β1 stimulation and subsequently oligomerize with Smad4 to form the Smad2/3/4 complex, which translocates into the nucleus and regulates target genes, including plasminogen activator inhibitor type 1 (PAI1). Importin (Imp)7 and Imp8 are responsible for transporting phosphorylated (p)Smad2/3 and Smad4 into the nucleus. In our previous study, it was demonstrated that mitogen-activated protein kinase (MAPK) inhibitors, including inhibitors of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 could inhibit the transcription of PAI1, but ERK inhibitor had no significant effect on the phosphorylation of Smad2/3, and the formation of Smad2/3/4 complexes, which was different from the effect of JNK or p38 inhibitor. We hypothesized that MAPK inhibitors, particularly ERK inhibitor, reduced the transport of Smads into the nucleus by affecting Imp7 and Imp8. To confirm this hypothesis, HepG2 cells were incubated with different MAPK inhibitors for 5 h and subsequently stimulated with TGF-β1 for 1 h. Next, the intracellular locations of Smads (pSmad2C, pSmad2L, pSmad3C, pSmad3L and Smad4) and Imp7/8 were detected using immunofluorescence staining assays, and the expression of Imp7/8 was investigated using immunoblotting. It was revealed that JNK or p38 inhibitor decreased the phosphorylation of Smad2C, Smad2L and Smad3L, and affected their nuclear accumulation. Although only inhibiting the phosphorylation of Smad2C, ERK inhibitor affected the nuclear accumulation of pSmad2C, pSmad2L, pSmad3C and pSmad3L. The three MAPK inhibitors attenuated the nuclear distribution of Smad4, and the expression and nuclear accumulation of Imp7. ERK and JNK inhibitors attenuated the expression and nuclear accumulation of Imp8. Thus, the results of the present study suggest that MAPK inhibitors, particularly ERK inhibitor, modulate the nuclear accumulation of Smads via the inhibition of Imp 7/8.
Collapse
Affiliation(s)
- Xiangpeng Hu
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Digestive Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hongwei Kan
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Alex Boye
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yufeng Jiang
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chao Wu
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Yang
- Department of Pharmacology, Institute of Natural Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
63
|
Wang Y, Zhao Q, Lan N, Wang S. Identification of methylated genes and miRNA signatures in nasopharyngeal carcinoma by bioinformatics analysis. Mol Med Rep 2018; 17:4909-4916. [PMID: 29393436 PMCID: PMC5865950 DOI: 10.3892/mmr.2018.8487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in several regions, including. Southern China and Southeast Asia, with high mortality. The present study aimed to explore the epigenetic mechanisms of NPC and to provide novel biomarkers for prognosis. Two methylation data sets (GSE52068 and GSE62336) were downloaded from the Gene Expression Omnibus database. Following pretreatment of the raw data, differentially methylated regions (DMRs) and differentially methylated CpG islands (DMCs) were identified between the NPC samples and normal tissue controls using COHCAP software. The overlapped DMRs and DMCs in the two data sets were extracted and associated to relevant genes. Enrichment analysis and protein-protein interaction (PPI) network analyses were performed on the identified genes using Database for Annotation, Visualization and Integration Discovery and Cytoscape, respectively. MicroRNAs (miRNAs) targeting the overlapped genes were identified based on the miRWalk database. NPC-related genes were analyzed with the Comparative Toxicogenomics Database. Multiple overlapping DMRs between the two data sets were identified and were associated with 1,854 hypermethylated and 18 hypomethylated genes, which were revealed to be enriched in certain pathways, including the mitogen-activated protein kinase (MAPK) signaling pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Several nodes in the predicted PPI network were highlighted, including proto-oncogene tyrosine-protein kinase SRC, SMAD family member 3 (SMAD3), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ζ (YWHAZ) and Heat shock protein family A member 4 (HSPA4), all of which were hypomethylated. A total of 14 miRNAs were identified that correlated with the overlapped genes such as miRNA (miR)-148a-3p, which was predicted to target of HSPA4; and 17 genes were identified as related to NPC, including SMAD3 and SRC. miR129-2 was hypermethylated. Several novel methylated genes or miRNAs were suggested as biomarkers for NPC prognosis: Hypomethylation of SRC, SMAD3, YWHAZ and HSPA4, and hypermethylation of miR129-2 may be linked to poor prognosis of NPC.
Collapse
Affiliation(s)
- Yingli Wang
- Department of Otorhinolaryngology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qun Zhao
- Department of Otorhinolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Na Lan
- Department of Otorhinolaryngology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shuqian Wang
- Department of Otorhinolaryngology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
64
|
Xiong S, Klausen C, Cheng JC, Leung PCK. Activin B promotes endometrial cancer cell migration by down-regulating E-cadherin via SMAD-independent MEK-ERK1/2-SNAIL signaling. Oncotarget 2018; 7:40060-40072. [PMID: 27223076 PMCID: PMC5129992 DOI: 10.18632/oncotarget.9483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/24/2016] [Indexed: 01/03/2023] Open
Abstract
High-risk type II endometrial cancers account for ~30% of cases but ~75% of deaths due, in part, to their tendency to metastasize. Histopathological studies of type II endometrial cancers (non-endometrioid, mostly serous) suggest overproduction of activin B and down-regulation of E-cadherin, both of which are associated with reduced survival. Our previous studies have shown that activin B increases the migration of type II endometrial cancer cell lines. However, little is known about the relationship between activin B signaling and E-cadherin in endometrial cancer. We now demonstrate that activin B treatment significantly decreases E-cadherin expression in both a time- and concentration-dependent manner in KLE and HEC-50 cell lines. Interestingly, these effects were not inhibited by knockdown of SMAD2, SMAD3 or SMAD4. Rather, the suppressive effects of activin B on E-cadherin were mediated by MEK-ERK1/2-induced production of the transcription factor SNAIL. Importantly, activin B-induced cell migration was inhibited by forced-expression of E-cadherin or pre-treatment with the activin/TGF-β type I receptor inhibitor SB431542 or the MEK inhibitor U0126. We have identified a novel SMAD-independent pathway linking enhanced activin B signaling to reduced E-cadherin expression and increased migration in type II endometrial cancer.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
65
|
Mahid S, Minor K, Brangers B, Cobbs G, Galandiuk S. SMAD2 and the Relationship of Colorectal Cancer to Inflammatory Bowel Disease. Int J Biol Markers 2018. [DOI: 10.1177/172460080802300306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel diseases (IBDs) affecting the colon [Crohn's disease (CD) and ulcerative colitis (UC)] are associated with an increased risk of colorectal cancer (CRC). Our previous work using oligonucleotide array data indicated that SMAD2 was significantly underexpressed in UC dysplastic tissue compared to benign UC. The aim of this current study was to determine whether single nucleotide polymorphisms (SNPs) within the SMAD2 gene are associated with IBD dysplasia/cancer. We performed an SNP haplotype-based case-control association study. Leukocyte DNA was obtained from 489 unrelated Caucasians (158 UC, 175 CD, 71 CRC, 85 controls). Eleven SNPs were genotyped. All 11 SNPs were in Hardy-Weinberg equilibrium in the control population. Strong linkage disequilibrium was observed among nearly all SMAD2 SNPs. There were no significant associations between SMAD2 allele or haplotype frequencies. Power calculations indicated good power for single-marker analysis (>0.8) and reasonably good power against effects of 0.1–0.15 for haplotype analysis. SMAD2 SNPs were not associated with the development of IBD dysplasia/cancer. This incongruity between our previous microarray data and the findings from this genotype study may be attributed to mechanisms such as alternative splicing of pre-mRNA SMAD2 and/or cross talk with other cellular pathways.
Collapse
Affiliation(s)
- S.S. Mahid
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - K.S. Minor
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - B.C. Brangers
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - G.A. Cobbs
- Department of Biology, University of Louisville, Kentucky - USA
| | - S. Galandiuk
- Price Institute of Surgical Research and the Section of Colorectal Surgery, Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
66
|
Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 2018; 14:111-123. [PMID: 29483830 PMCID: PMC5821033 DOI: 10.7150/ijbs.23230] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling pathway plays important roles in many biological processes, including cell growth, differentiation, apoptosis, migration, as well as cancer initiation and progression. SMAD4, which serves as the central mediator of TGF-β signaling, is specifically inactivated in over half of pancreatic duct adenocarcinoma, and varying degrees in many other types of cancers. In the past two decades, multiple studies have revealed that SMAD4 loss on its own does not initiate tumor formation, but can promote tumor progression initiated by other genes, such as KRAS activation in pancreatic duct adenocarcinoma and APC inactivation in colorectal cancer. In other cases, such as skin cancer, loss of SMAD4 plays an important initiating role by disrupting DNA damage response and repair mechanisms and enhance genomic instability, suggesting its distinct roles in different types of tumors. This review lists SMAD4 mutations in various types of cancer and summarizes recent advances on SMAD4 with focuses on the function, signaling pathway, and the possibility of SMAD4 as a prognostic indicator.
Collapse
Affiliation(s)
- Ming Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lopa Mishra
- Center for Translational Research, Department of Surgery and GW Cancer Center, George Washington University, Washington DC, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
67
|
Wang G, Zhao F, Yang D, Wang J, Qiu L, Pang X. Human amniotic epithelial cells regulate osteoblast differentiation through the secretion of TGFβ1 and microRNA-34a-5p. Int J Mol Med 2017; 41:791-799. [PMID: 29207015 PMCID: PMC5752186 DOI: 10.3892/ijmm.2017.3261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
Since the beginning of the use of stem cells in tissue regenerative medicine, there has been a search for optimal sources of stem cells. Human amniotic epithelial cells (hAECs) are derived from human amnions, which are typically discarded as medical waste, but were recently found to include cells with trilineage differentiation potential in vitro. Previous study has focused on the osteogenic differentiation ability of hAECs as seed cells in bone regeneration; however, their paracrine effects on osteoblasts (OBs) are yet to be elucidated. In the present study, conditioned medium (CM) derived from hAECs was used to determine their paracrine effects on the human fetal OB cell line (hFOB1.19), and the potential bioactive factors involved in this process were investigated. The results suggested that hAEC-CM markedly promoted the proliferation, migration and osteogenic differentiation of hFOB1.19 cells. Expression of transforming growth factor β1 (TGFβ1) and microRNA 34a-5p (miR-34a-5p) were detected in hAECs. Furthermore, it was demonstrated that TGFβ1 and miR-34a-5p stimulated the differentiation of hFOB1.19 cells, and that TGFβ1 promoted cell migration. Moreover, the effects of hAEC-CM were downregulated following the depletion of either TGFβ1 or miR-34a-5p. These results demonstrated that hAECs promote OB differentiation through the secretion of TGFβ1 and miR-34a-5p, and that hAECs may be an optimal cell source in bone regenerative medicine.
Collapse
Affiliation(s)
- Guiling Wang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Jing Wang
- Department of Anal and Intestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, Liaoning 110013, P.R. China
| |
Collapse
|
68
|
Zhang H, Caudle Y, Wheeler C, Zhou Y, Stuart C, Yao B, Yin D. TGF-β1/Smad2/3/Foxp3 signaling is required for chronic stress-induced immune suppression. J Neuroimmunol 2017; 314:30-41. [PMID: 29169800 DOI: 10.1016/j.jneuroim.2017.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Depending on the duration and severity, psychological tension and physical stress can enhance or suppress the immune system in both humans and animals. Although it has been established that chronic stress exerts a significant suppressive effect on immune function, the mechanisms by which affects immune responses remain elusive. By employing an in vivo murine system, we revealed that TGF-β1/Smad2/3/Foxp3 axis was remarkably activated following chronic stress. Furthermore, TLR9 and p38 MAPK played a critical role in the activation of TGF-β1/Smad2/3/Foxp3 signaling cascade. Moreover, inhibition of TGF-β1/Smad2/3/Foxp3 or p38 significantly attenuated chronic stress-induced lymphocyte apoptosis and apoptosis-related proteins, as well as the differentiation of T regulatory cells in spleen. Interestingly, disequilibrium of pro-inflammatory and anti-inflammatory cytokines balance caused by chronic stress was also rescued by blocking TGF-β1/Smad2/3/Foxp3 axis. These findings yield insight into a novel mechanism by which chronic stress modulates immune functions and identifies new targets for the development of novel anti-immune suppressant medications.
Collapse
Affiliation(s)
- Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430063, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Clay Wheeler
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Yu Zhou
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Charles Stuart
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430063, China
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
69
|
Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chem Biol Interact 2017; 277:146-158. [DOI: 10.1016/j.cbi.2017.09.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/15/2022]
|
70
|
Bai C, Gao Y, Zhang X, Yang W, Guan W. Melatonin promotes self-renewal of nestin-positive pancreatic stem cells through activation of the MT2/ERK/SMAD/nestin axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:62-74. [PMID: 29037070 DOI: 10.1080/21691401.2017.1389747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although melatonin has been shown to exhibit a wide variety of biological functions, its effects on promotion of self-renewal in pancreatic stem cells remain unknown. In this study, we incubated murine pancreatic stem cells (PSCs) with various concentrations of melatonin (0.01, 0.1, 1, 10 or 100 μM) to screen for the optimum culture medium for increasing cell proliferation. We found that 10 μM melatonin can significantly increase proliferation and enhance expression of a stem cell marker, nestin, in PSCs via melatonin receptor 2 (MT2). Thus, we used 10 μM melatonin to study the melatonin-mediated molecular mechanisms of cell proliferation in PSCs. We applied extracellular signal-regulated kinase (ERK) pathway inhibitor SCH772984 and transforming growth factor beta (TGF-β) pathway inhibitor SB431542, along with interfering RNAs siERK1, siERK2, siSmad2, siSmad3, siSmad4 and siNestin, to melatonin-treated PSCs to research the roles of these genes in self-renewal. The results revealed a novel molecular mechanism by which melatonin promotes self-renewal of PSCs: a chain reaction in the MT2/ERK/SMAD/nestin axis promoted the aforementioned self-renewal as well as inhibited differentiation. In addition, upregulation of nestin created a positive feedback loop in the regulation of the transforming growth factor beta 1 (TGF-β1)/SMADs pathway by promoting expression of Smad4. Conversely, knockdown of nestin significantly suppressed the proliferative effect in melatonin-treated PSCs. These are all novel mechanisms through which the ERK pathway cooperatively crosstalks with the SMAD pathway to regulate nestin expression, thereby enhancing self-renewal in PSCs.
Collapse
Affiliation(s)
- Chunyu Bai
- a Key Laboratory of Precision Oncology of Shandong Higher Education , Institute of precision medicine , Jining , Shandong Province , P. R. China.,b Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing , P. R. China
| | - Yuhua Gao
- b Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing , P. R. China.,c College of Basic Medicine , Jining Medical University , Jining , Shandong Province , P. R. China
| | - Xiangyang Zhang
- c College of Basic Medicine , Jining Medical University , Jining , Shandong Province , P. R. China
| | - Wancai Yang
- a Key Laboratory of Precision Oncology of Shandong Higher Education , Institute of precision medicine , Jining , Shandong Province , P. R. China.,d Department of Pathology , University of Illinois at Chicago , Chicago , IL , USA
| | - Weijun Guan
- b Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , Beijing , P. R. China
| |
Collapse
|
71
|
Liu T, Guo F, Zhu X, He X, Xie L. Thalidomide and its analogues: A review of the potential for immunomodulation of fibrosis diseases and opthalmopathy. Exp Ther Med 2017; 14:5251-5257. [PMID: 29285050 DOI: 10.3892/etm.2017.5209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
The US Food and Drug Administration approved thalidomide and its analogues for the treatment of erythema nodosum leprosum, in spite of the notoriety of reports of severe birth defects in the middle of the last century. As immunomodulatory drugs, thalidomide and its analogues have been used to effectively treat various diseases. In the present review, preclinical data about the effects of thalidomide and its analogues on the immune system are integrated, including the effects of cytokines on transdifferentiation, the anti-inflammatory effect, immune cell function regulation and angiogenesis. The present review also investigates the latest developments of thalidomide as a therapeutic option for the treatment of idiopathic pulmonary fibrosis, skin fibrosis, and ophthalmopathies.
Collapse
Affiliation(s)
- Ting Liu
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Feng Guo
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Xiaomin Zhu
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Xiangge He
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Lin Xie
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| |
Collapse
|
72
|
Mishchenko EL, Petrovskaya OV, Mishchenko AM, Petrovskiy ED, Ivanisenko NV, Ivanisenko VA. Integrated mathematical models for describing complex biological processes. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
73
|
Differential expression of transforming growth factor-beta1, connective tissue growth factor, phosphorylated-SMAD2/3 and phosphorylated-ERK1/2 during mouse tooth development. J Mol Histol 2017; 48:347-355. [PMID: 28825193 DOI: 10.1007/s10735-017-9733-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
Connective tissue growth factor (CTGF) is a downstream mediator of transforming growth factor-beta 1 (TGF-β1) and TGF-β1-induced CTGF expression is regulated through SMAD and mitogen-activated protein kinase (MAPK) signaling pathways. The fine modulation of TGF-β1 signaling is very important to the process of tooth development. However, little is known about the localization of CTGF, MAPK and SMAD in the context of TGF-β1 signaling during odontogenesis. Hence, we aimed to investigate the expression of TGF-β1, CTGF, phosphorylated-SMAD2/3 (p-SMAD2/3) and phosphorylated-ERK1/2 (p-ERK1/2). ICR mice heads of embryonic (E) day 13.5, E14.5, E16.5, postnatal (PN) day 0.5 and PN3.5 were processed for immunohistochemistry. Results revealed that at E13.5, TGF-β1 and CTGF were strongly expressed in dental epithelium (DE) and dental mesenchyme (DM), while p-SMAD2/3 was intensely expressed in the internal side of DE. p-ERK1/2 was not present in DE or DM. At E14.5 and E16.5, strong staining for TGF-β1 and CTGF was detected in enamel knot (EK) and dental papilla (DPL). DPL was intensely stained for p-ERK1/2 but negatively stained for p-SMAD2/3. There was no staining for p-SMAD2/3 and p-ERK1/2 in EK. At PN0.5 and PN3.5, moderate to intense staining for TGF-β1 and CTGF was evident in preameloblasts (PA), secretary ameloblasts (SA) and dental pulp (DP). p-SMAD2/3 was strongly expressed in SA and DP but sparsely localized in PA. p-ERK1/2 was intensely expressed in DP, although negative staining was observed in PA and SA. These data demonstrate that TGF-β1 and CTGF show an identical expression pattern, while p-SMAD2/3 and p-ERK1/2 exhibit differential expression, and indicate that p-SMAD2/3 and p-ERK1/2 might play a regulatory role in TGF-β1 induced CTGF expression during tooth development.
Collapse
|
74
|
Johnson MD. Transforming Growth Factor Beta Family in the Pathogenesis of Meningiomas. World Neurosurg 2017; 104:113-119. [DOI: 10.1016/j.wneu.2017.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023]
|
75
|
Crosstalk and the evolvability of intracellular communication. Nat Commun 2017; 8:16009. [PMID: 28691706 PMCID: PMC5508131 DOI: 10.1038/ncomms16009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/18/2017] [Indexed: 11/08/2022] Open
Abstract
Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is unclear what pressures drove the evolution of this architecture. We explore the hypothesis that crosstalk allows different cell types, each expressing a specific subset of signalling proteins, to activate different outputs when faced with the same inputs, responding differently to the same environment. We find that the pressure to generate diversity leads to the evolution of networks with extensive crosstalk. Using available data, we find that human tissues exhibit higher levels of diversity between cell types than networks with random expression patterns or networks with no crosstalk. We also find that crosstalk and differential expression can influence drug activity: no protein has the same impact on two tissues when inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our work indicates that consideration of cellular context will likely be crucial for targeting signalling networks. The evolutionary rationale behind the extensive crosstalk between Metazoan signalling pathways remains elusive. Here the authors provide evidence that crosstalk in the human signalling network evolves as a means to allow efficient diversification of cellular responses to the same signals between different cell types.
Collapse
|
76
|
Hernandez H, Medina-Ortiz WE, Luan T, Clark AF, McDowell CM. Crosstalk Between Transforming Growth Factor Beta-2 and Toll-Like Receptor 4 in the Trabecular Meshwork. Invest Ophthalmol Vis Sci 2017; 58:1811-1823. [PMID: 28346614 PMCID: PMC5374883 DOI: 10.1167/iovs.16-21331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose The trabecular meshwork (TM) is involved in the outflow of aqueous humor and intraocular pressure (IOP) regulation. Regulation of the extracellular matrix (ECM) by TGFβ2 signaling pathways in the TM has been extensively studied. Recent evidence has implicated toll-like receptor 4 (TLR4) in the regulation of ECM and fibrogenesis in liver, kidney, lung, and skin. Here, we investigated the role of TGFβ2-TLR4 signaling crosstalk in the regulation of the ECM in the TM and ocular hypertension. Methods Cross sections of human donor eyes, primary human TM cells in culture, and dissected mouse TM rings were used to determine Tlr4 expression in the TM. Trabecular meshwork cells in culture were treated with TGFβ2 (5 ng/mL), TLR4 inhibitor (TAK-242, 15 μM), and a TLR4 ligand (cellular fibronectin isoform [cFN]-EDA). A/J (n = 13), AKR/J (n = 7), BALBc/J (n = 8), C3H/HeJ (n = 20), and C3H/HeOuJ (n = 10) mice were injected intravitreally with adenovirus 5 (Ad5).hTGFβ2c226s/c228s in one eye, with the uninjected contralateral eye serving as a control. Conscious IOP measurements were taken using a TonoLab rebound tonometer. Results Toll-like receptor 4 is expressed in the human and mouse TM. Inhibition of TLR4 signaling in the presence of TGFβ2 decreases fibronectin expression. Activation of TLR4 by cFN-EDA in the presence of TGFβ2 further increases fibronectin, laminin, and collagen-1 expression, and TLR4 signaling inhibition blocks this effect. Ad5.hTGFβ2c226s/c228s induces ocular hypertension in wild-type mice but has no effect in Tlr4 mutant (C3H/HeJ) mice. Conclusions These studies identify TGFβ2-TLR4 crosstalk as a novel pathway involved in ECM regulation in the TM and ocular hypertension. These data further explain the complex mechanisms involved in the development of glaucomatous TM damage.
Collapse
Affiliation(s)
- Humberto Hernandez
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Wanda E Medina-Ortiz
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Tomi Luan
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Colleen M McDowell
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
77
|
Sinha PB, Tesfaye D, Rings F, Hossien M, Hoelker M, Held E, Neuhoff C, Tholen E, Schellander K, Salilew-Wondim D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res 2017. [PMID: 28629378 PMCID: PMC5477299 DOI: 10.1186/s13048-017-0336-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Oocyte maturation and preimplantation embryo development are controlled by array of genes that are post-transcriptionally regulated by microRNAs. With respect to this, previously, we identified altered expression of microRNA-130b (miR-130b) during oocyte maturation. Here, we aimed to investigate the role of miR-130b in bovine granulosa and cumulus cell function, oocyte maturation and preimplantation embryo development using gain- and loss-of- function approach. Methods For this study, the granulosa cells, cumulus cells and the oocytes were collected from ovaries obtained from slaughterhouse. The genes targeted by miR-130b were identified using dual-luciferase reporter assay. The role of miR-130b in granulosa and cumulus cell function was investigated by increasing and inhibiting its expression in in vitro cultured cells using miR-130b precursor and inhibitor, respectively while the role of miR-130b on oocyte development, immature oocytes were microinjected with miR-130b precursor and inhibitor and the polar body extrusion, the proportion of oocytes reaching to metaphase II stage and the mitochondrial were determined in each oocyte group 22 h after microinjection. Moreover, to investigate the role of miR-130b during preimplantation embryo development, zygote stage embryos were microinjected with miR-130b precursor or inhibitor and the cleavage rate, morula and blastocyst formation was analyzed in embryos derived from each zygote group after in vitro culture. Results The luciferase assay showed that SMAD5 and MSK1 genes were identified as the direct targets of miR-130b. Overexpression of miR-130b increased the granulosa and cumulus cell proliferation, while inhibition showed the opposite phenotype. Apart from these, modulation of miR-130b altered the lactate production and cholesterol biosynthesis in cumulus cells. Furthermore, inhibition of miR-130b expression during oocyte in vitro maturation reduced the first polar body extrusion, the proportion of oocytes reaching to metaphase II stage and the mitochondrial activity, while inhibition of miR-130b during preimplantation embryo development significantly reduced morula and blastocyst formation. Conclusion This study demonstrated that in vitro functional modulation of miR-130b affected granulosa and cumulus cell proliferation and survival, oocyte maturation, morula and blastocyst formation suggesting that miR-130b is involved in bovine oocyte maturation and preimplantation embryo development. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0336-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pritam Bala Sinha
- Present address: Department of Biotechnology, Engineering and Applied Sciences, Amity University Ranchi, Ranchi, Jharkhand, 834002, India
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115, Bonn, Germany
| | - Franca Rings
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany
| | - Munir Hossien
- Present address: Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, -2202, Bangladesh
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115, Bonn, Germany
| | - Eva Held
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany
| | - Christaine Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.,Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Frankenforsterweg 4, 53639, Königswinter, Germany.,Center of Integrated Dairy Research, University of Bonn, Meckenheimer Allee 172, 53115, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany.
| |
Collapse
|
78
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
79
|
Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ, Misra S. Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 2017; 292:10465-10489. [PMID: 28389562 DOI: 10.1074/jbc.m116.752451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
The appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype. Increased hyaluronan synthesis and CD44 expression have been detected in numerous fibrotic organs. Previously, we found that the TGFβ1/CD44V6 pathway is important in lung myofibroblast collagen-1 and α-smooth-muscle actin synthesis. Because increased EGR1 (early growth response-1) expression has been shown to appear very early and nearly coincident with the expression of CD44V6 found after TGFβ1 treatment, we investigated the mechanism(s) of regulation of CD44V6 expression in lung fibroblasts by TGFβ1. TGFβ1-mediated CD44V6 up-regulation was initiated through EGR1 via ERK-regulated transcriptional activation. We showed that TGFβ1-induced CD44V6 expression is through EGR1-mediated AP-1 (activator protein-1) activity and that the EGR1- and AP-1-binding sites in the CD44v6 promoter account for its responsiveness to TGFβ1 in lung fibroblasts. We also identified a positive-feedback loop in which ERK/EGR1 signaling promotes CD44V6 splicing and found that CD44V6 then sustains ERK signaling, which is important for AP-1 activity in lung fibroblasts. Furthermore, we identified that HAS2-produced hyaluronan is required for CD44V6 and TGFβRI co-localization and subsequent CD44V6/ERK1/EGR1 signaling. These results demonstrate a novel positive-feedback loop that links the myofibroblast phenotype to TGFβ1-stimulated CD44V6/ERK/EGR1 signaling.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| | - Roger R Markwald
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Vincent C Hascall
- the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - William Dowling
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425.,the College of Charleston, Charleston, South Carolina 29424
| | | | | | - Gyada Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Craig C Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Perrella
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, and the Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Victor J Thannickal
- the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Suniti Misra
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|
80
|
Wu X, Bian D, Dou Y, Gong Z, Tan Q, Xia Y, Dai Y. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Difei Bian
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Zhunan Gong
- Center for New Drug Research & Development, College of Life Science; Nanjing Normal University; Nanjing 210024 People's Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital; Medical School of Nanjing University; Nanjing 210008 People's Republic of China
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing 210009 People's Republic of China
| |
Collapse
|
81
|
Eirin A, Zhu XY, Puranik AS, Woollard JR, Tang H, Dasari S, Lerman A, van Wijnen AJ, Lerman LO. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells. PLoS One 2017; 12:e0174303. [PMID: 28333993 PMCID: PMC5363917 DOI: 10.1371/journal.pone.0174303] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. Results Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. Conclusions Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amrutesh S. Puranik
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
82
|
Xiong S, Klausen C, Cheng JC, Leung PCK. TGFβ1 induces endometrial cancer cell adhesion and migration by up-regulating integrin αvβ3 via SMAD-independent MEK-ERK1/2 signaling. Cell Signal 2017; 34:92-101. [PMID: 28336232 DOI: 10.1016/j.cellsig.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 11/26/2022]
Abstract
Endometrial cancer is the most common, and second most lethal, gynecological malignancy, and its rates of incidence and death are growing. This is likely attributable to increased numbers of high-risk type II endometrial cancers which account for ~30% of cases but ~75% of deaths due to their aggressive and metastatic behaviour. Histopathological and in vitro functional studies suggest that aberrant TGFβ1 signaling may contribute to endometrial cancer development and the acquisition of invasive/metastatic characteristics. However, little is known about the cellular and molecular mechanisms of TGFβ1 in high-risk endometrial cancers. In the present study, we examined the roles and mechanisms of TGFβ1 on cell adhesion and motility in type II endometrial cancer cell lines, KLE and HEC-1B. We show that treatment with TGFβ1 increases cell adhesion to vitronectin and transwell cell migration. We also demonstrate that TGFβ1 treatment increases integrin β3 and αv mRNA and protein levels via SMAD-independent MEK-ERK1/2 signaling. Importantly, siRNA depletion or antibody-mediated blocking of integrin αvβ3 reversed the effects of TGFβ1 on cell adhesion and migration. Our results suggest that TGFβ1-MEK-ERK1/2-integrin αvβ3 signaling could contribute to the invasive behaviour of high-risk endometrial cancer by promoting cell adhesion and migration.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
83
|
Urisman A, Levin RS, Gordan JD, Webber JT, Hernandez H, Ishihama Y, Shokat KM, Burlingame AL. An Optimized Chromatographic Strategy for Multiplexing In Parallel Reaction Monitoring Mass Spectrometry: Insights from Quantitation of Activated Kinases. Mol Cell Proteomics 2017; 16:265-277. [PMID: 27940637 PMCID: PMC5294213 DOI: 10.1074/mcp.m116.058172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Reliable quantitation of protein abundances in defined sets of cellular proteins is critical to numerous biological applications. Traditional immunodetection-based methods are limited by the quality and availability of specific antibodies, especially for site-specific post-translational modifications. Targeted proteomic methods, including the recently developed parallel reaction monitoring (PRM) mass spectrometry, have enabled accurate quantitative measurements of up to a few hundred specific target peptides. However, the degree of practical multiplexing in label-free PRM workflows remains a significant limitation for the technique. Here we present a strategy for significantly increasing multiplexing in label-free PRM that takes advantage of the superior separation characteristics and retention time stability of meter-scale monolithic silica-C18 column-based chromatography. We show the utility of the approach in quantifying kinase abundances downstream of previously developed active kinase enrichment methodology based on multidrug inhibitor beads. We examine kinase activation dynamics in response to three different MAP kinase inhibitors in colorectal carcinoma cells and demonstrate reliable quantitation of over 800 target peptides from over 150 kinases in a single label-free PRM run. The kinase activity profiles obtained from these analyses reveal compensatory activation of TGF-β family receptors as a response to MAPK blockade. The gains achieved using this label-free PRM multiplexing strategy will benefit a wide array of biological applications.
Collapse
Affiliation(s)
- Anatoly Urisman
- From the ‡Department of Pathology, University of California San Francisco, San Francisco, California;
- §Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Rebecca S Levin
- §Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
- ¶Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - John D Gordan
- ¶Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
- ‖Department of Medicine, University of California San Francisco, San Francisco, California
| | - James T Webber
- **Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Hilda Hernandez
- §Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Yasushi Ishihama
- ‡‡Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kevan M Shokat
- ¶Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
- §§Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California
| | - Alma L Burlingame
- §Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
84
|
Abstract
Transforming growth factor β (TGF-β) and structurally related factors use several intracellular signaling pathways in addition to Smad signaling to regulate a wide array of cellular functions. These non-Smad signaling pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. This review summarizes the current knowledge of the mechanisms by which non-Smad signaling pathways are directly activated in response to ligand binding, how activation of these pathways impinges on Smads and non-Smad targets, and how final cellular responses are affected in response to these noncanonical signaling modes.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
85
|
Chen PC, Tang CH, Lin LW, Tsai CH, Chu CY, Lin TH, Huang YL. Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression. J Hematol Oncol 2017; 10:33. [PMID: 28122633 PMCID: PMC5264454 DOI: 10.1186/s13045-017-0390-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/03/2017] [Indexed: 11/24/2022] Open
Abstract
Background Thrombospondin-2 (TSP-2) is a secreted matricellular glycoprotein that is found to mediate cell-to-extracellular matrix attachment and participates in many physiological and pathological processes. The expression profile of TSP-2 on tumors is controversial, and it up-regulates in some cancers, whereas it down-regulates in others, suggesting that the functional role of TSP-2 on tumors is still uncertain. Methods The expression of TSP-2 on prostate cancer progression was determined in the tissue array by the immunohistochemistry. The molecular mechanism of TSP-2 on prostate cancer (PCa) metastasis was investigated through pharmaceutical inhibitors, siRNAs, and miRNAs analyses. The role of TSP-2 on PCa metastasis in vivo was verified through xenograft in vivo imaging system. Results Based on the gene expression omnibus database and immunohistochemistry, we found that TSP-2 increased with the progression of PCa, especially in metastatic PCa and is correlated with the matrix metalloproteinase-2 (MMP-2) expression. Additionally, through binding to CD36 and integrin ανβ3, TSP-2 increased cell migration and MMP-2 expression. With inhibition of p38, ERK, and JNK, the TSP-2-induced cell migration and MMP-2 expression were abolished, indicating that the TSP-2’s effect on PCa is MAPK dependent. Moreover, the microRNA-376c (miR-376c) was significantly decreased by the TSP-2 treatment. Furthermore, the TSP-2-induced MMP-2 expression and the subsequent cell motility were suppressed upon miR-376c mimic stimulation. On the other hand, the animal studies revealed that the bone metastasis was abolished when TSP-2 was stably knocked down in PCa cells. Conclusions Taken together, our results indicate that TSP-2 enhances the migration of PCa cells by increasing MMP-2 expression through down-regulation of miR-376c expression. Therefore, TSP-2 may represent a promising new target for treating PCa. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0390-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Po-Chun Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Liang-Wei Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ying Chu
- The Ph.D. Program for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
86
|
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J Clin Med 2016; 5:E96. [PMID: 27827889 PMCID: PMC5126793 DOI: 10.3390/jcm5110096] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis. Treating metastatic osteosarcoma thus remains a challenge. One of the main characteristics of osteosarcomas is their ability to deregulate bone remodelling. The invasion of bone tissue by tumor cells indeed affects the balance between bone resorption and bone formation. This deregulation induces the release of cytokines or growth factors initially trapped in the bone matrix, such as transforming growth factor-β (TGF-β), which in turn promote tumor progression. Over the past years, there has been considerable interest in the TGF-β pathway within the cancer research community. This review discusses the involvement of the TGF-β signalling pathway in osteosarcoma development and in their metastatic progression.
Collapse
Affiliation(s)
- Audrey Lamora
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
- INSERM Liliane Bettencourt School, 75014 Paris, France.
| | - Julie Talbot
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Mathilde Mullard
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Benedicte Brounais-Le Royer
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Françoise Redini
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Franck Verrecchia
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| |
Collapse
|
87
|
Salter RC, Foka P, Davies TS, Gallagher H, Michael DR, Ashlin TG, Ramji DP. The role of mitogen-activated protein kinases and sterol receptor coactivator-1 in TGF-β-regulated expression of genes implicated in macrophage cholesterol uptake. Sci Rep 2016; 6:34368. [PMID: 27687241 PMCID: PMC5043369 DOI: 10.1038/srep34368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/12/2016] [Indexed: 01/25/2023] Open
Abstract
The anti-atherogenic cytokine TGF-β inhibits macrophage foam cell formation by suppressing the expression of key genes implicated in the uptake of modified lipoproteins. We have previously shown a critical role for p38 MAPK and JNK in the TGF-β-mediated regulation of apolipoprotein E expression in human monocytes. However, the roles of these two MAPK pathways in the control of expression of key genes involved in the uptake of modified lipoproteins in human macrophages is poorly understood and formed the focus of this study. TGF-β activated both p38 MAPK and JNK, and knockdown of p38 MAPK or c-Jun, a key downstream target of JNK action, demonstrated their requirement in the TGF-β-inhibited expression of several key genes implicated in macrophage lipoprotein uptake. The potential role of c-Jun and specific co-activators in the action of TGF-β was investigated further by studies on the lipoprotein lipase gene. c-Jun did not directly interact with the minimal promoter region containing the TGF-β response elements and a combination of transient transfection and knock down assays revealed an important role for SRC-1. These studies provide novel insights into the mechanisms underlying the TGF-β-mediated inhibition of macrophage gene expression associated with the control of cholesterol homeostasis.
Collapse
Affiliation(s)
- Rebecca C Salter
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Pelagia Foka
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Thomas S Davies
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Hayley Gallagher
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Daryn R Michael
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Tim G Ashlin
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
88
|
Zhou L, Shang M, Shi M, Zhao L, Lin Z, Chen T, Wu Y, Tang Z, Sun H, Yu J, Huang Y, Yu X. Clonorchis sinensis lysophospholipase inhibits TGF-β1-induced expression of pro-fibrogenic genes through attenuating the activations of Smad3, JNK2, and ERK1/2 in hepatic stellate cell line LX-2. Parasitol Res 2016; 115:643-50. [PMID: 26486942 DOI: 10.1007/s00436-015-4782-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a wound healing response associated with chronic liver injury. Hepatic stellate cells (HSCs) activation is a key event in the development of liver fibrosis. Since helminths have the ability to live for decades in the host by establishing an adaptive relationship in the interplay with its hosts, we hypothesize that whether Clonochis sinensis LysophospholipaseA (CsLysoPLA), a component of excretory/secretory proteins, can attenuate the fibrogenic response by inhibiting activation of LX-2 cells, thereby balancing the pro-fibrotic and anti-fibrotic response during the Clonochis sinensis (C. sinensis) infection. In the present study, LX-2 cells were stimulated with CsLysoPLA in the presence of TGF-β1, and the expressions of collagen type I (COL1A1), α-smooth muscle actin (α-SMA), and matrix metalloproteinase 2 (MMP2) were decreased. In addition, CsLysoPLA significantly inhibited the proliferation and migration of LX-2 cells stimulated by TGF-β1. Pretreatment of LX-2 cells with CsLysoPLA attenuated the phosphorylation of Smad3 as well as JNK2 and ERK1/2 in response to the stimulation of TGF-β1. For the first time, our results showed an anti-fibrogenic effect of CsLysoPLA by attenuating the response of LX-2 cells to TGF-β1 through inhibiting the activations of Smad3, ERK1/2, and JNK2.
Collapse
|
89
|
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:97-131. [PMID: 27003398 DOI: 10.1007/978-3-319-27511-6_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle possesses remarkable ability to change its size and force-producing capacity in response to physiological stimuli. Impairment of the cellular processes that govern these attributes also affects muscle mass and function in pathological conditions. Myostatin, a member of the TGF-β family, has been identified as a key regulator of muscle development, and adaptation in adulthood. In muscle, myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate Smad2/3 signalling and the regulation of target genes that co-ordinate the balance between protein synthesis and degradation. Interestingly, evidence is emerging that other TGF-β proteins act in concert with myostatin to regulate the growth and remodelling of skeletal muscle. Consequently, dysregulation of TGF-β proteins and their associated signalling components is increasingly being implicated in muscle wasting associated with chronic illness, ageing, and inactivity. The growing understanding of TGF-β biology in muscle, and its potential to advance the development of therapeutics for muscle-related conditions is reviewed here.
Collapse
Affiliation(s)
- Justin L Chen
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia.,Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Timothy D Colgan
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Walton
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurology, School of Medicine, The University of Washington, Seattle, WA, USA.
| | - Craig A Harrison
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
90
|
Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 2016; 365:495-506. [PMID: 27461257 DOI: 10.1007/s00441-016-2464-0] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/24/2016] [Indexed: 12/28/2022]
Abstract
The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).
Collapse
Affiliation(s)
- Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
- The Research Residency Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Fla., USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Sophia Liu
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Karen I Garzon
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB, Room 2023A, Miami, FL 33136, USA.
| |
Collapse
|
91
|
Shi Y, Chen GB, Huang XX, Xiao CX, Wang HH, Li YS, Zhang JF, Li S, Xia Y, Ren JL, Guleng B. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth. Oncotarget 2016; 6:20540-54. [PMID: 26029998 PMCID: PMC4653024 DOI: 10.18632/oncotarget.4110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ying Shi
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Guo-Bin Chen
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Xiao Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Huan-Huan Wang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Ye-Sen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Jin-Fang Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Shao Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.,School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China.,Faculty of Clinical Medicine, Medical College, Xiamen University, Xiamen, Fujian Province, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
92
|
Tang E, Khan I, Andreana S, Arany PR. Laser-activated transforming growth factor-β1 induces human β-defensin 2: implications for laser therapies for periodontitis and peri-implantitis. J Periodontal Res 2016; 52:360-367. [PMID: 27396269 DOI: 10.1111/jre.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is increasing popularity of high-power lasers for surgical debridement and antimicrobial therapy in the management of peri-implantitis and periodontal therapy. Removal of the noxious foci would naturally promote tissue healing directly. However, there are also anecdotal reports of better healing around routine high-power laser procedures. The precise mechanisms mediating these effects remain to be fully elucidated. This work examines these low-dose laser bystander effects on oral human epithelial and fibroblasts, particularly focusing on the role of human β-defensin 2 (HBD-2 or DEFB4A), a potent factor capable of antimicrobial effects and promoting wound healing. MATERIAL AND METHODS Laser treatments were performed using a near-infrared laser (810 nm diode) at low doses. Normal human oral keratinocytes and fibroblast cells were used and HBD-2 mRNA and protein expression was assessed with real time polymerase chain reaction, western blotting and immunostaining. Role of transforming growth factor (TGF)-β1 signaling in this process was dissected using pathway-specific small molecule inhibitors. RESULTS We observed laser treatments robustly induced HBD-2 expression in an oral fibroblast cell line compared to a keratinocyte cell line. Low-dose laser treatments results in activation of the TGF-β1 pathway that mediated HBD-2 expression. The two arms of TGF-β1 signaling, Smad and non-Smad are involved in laser-mediated HBD-2 expression. CONCLUSIONS Laser-activated TGF-β1 signaling and induced expression of HBD-2, both of which are individually capable of promoting healing in tissues adjacent to high-power surgical laser applications. Moreover, the use of low-dose laser therapy itself can provide additional therapeutic benefits for effective clinical management of periodontal or peri-implant disease.
Collapse
Affiliation(s)
- E Tang
- Cell Regulation and Control Unit, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - I Khan
- Cell Regulation and Control Unit, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - S Andreana
- Restorative and Implant Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - P R Arany
- Cell Regulation and Control Unit, NIDCR, National Institutes of Health, Bethesda, MD, USA.,Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
93
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
94
|
Jung ES, Lee J, Heo NJ, Kim S, Kim DK, Joo KW, Han JS. Low-dose paclitaxel ameliorates renal fibrosis by suppressing transforming growth factor-β1-induced plasminogen activator inhibitor-1 signaling. Nephrology (Carlton) 2016; 21:574-82. [DOI: 10.1111/nep.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/11/2016] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Eun Sook Jung
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Jeonghwan Lee
- Department of Internal Medicine; Hallym University Hangang Sacred Heart Hospital; Seoul Korea
| | - Nam Ju Heo
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Sejoong Kim
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Dong Ki Kim
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Kwon Wook Joo
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| | - Jin Suk Han
- Department of Internal Medicine; College of Medicine, Seoul National University; Seoul Korea
| |
Collapse
|
95
|
Cao YL, Duan Y, Zhu LX, Zhan YN, Min SX, Jin AM. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway. Int J Mol Med 2016; 38:391-8. [PMID: 27279555 PMCID: PMC4935458 DOI: 10.3892/ijmm.2016.2631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/26/2016] [Indexed: 01/15/2023] Open
Abstract
Hypertrophy of the ligamentum flavum (LF) is one of the key pathomechanisms of lumbar spinal stenosis (LSS). Transforming growth factor (TGF)-β1 is abundantly expressed in hypertrophied degenerative LF tissues from LSS. However, the molecular mechanisms underling the association between TGF-β1 and LF hypertrophy have not yet been fully elucidated. In this study, we investigated the important role of the mitogen-activated protein kinase (MAPK) pathway in the pathogenesis of LSS by analyzing the expression of connective tissue growth factor (CTGF) and extracellular matrix (ECM) components (collagen I and collagen III) in TGF-β1-treated LF cells. Cell growth assay revealed that TGF-β1, in association with CTGF, enhanced the the proliferation of LF cells, and we found that TGF-β1 also elevated CTGF expression and subsequently enhanced the mRNA expression of collagen I and collagen III. The increased mRNA expression levels of CTGF, collagen I and collagen III were abolished by p38 inhibitors. Both immunofluorescence imaging and western blot analysis of p38 and p-p38 revealed the increased expression and phosphorylation of p38. Silencing the expression of p38 by siRNA in LF cells decreased the protein expression of p38, p-p38 and CTGF, as well as the mRNA expression of CTGF, collagen I and collagen III. Taken together, our findings indicate that TGF-β1, in association with the increased expression of CTGF, contribute to the homeostasis of the ECM and to the hypertrophy of LF through the p38 MAPK pathway.
Collapse
Affiliation(s)
- Yan-Lin Cao
- Department of Orthopaedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Yang Duan
- Department of Orthopaedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Li-Xin Zhu
- Department of Orthopaedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Ye-Nan Zhan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shao-Xiong Min
- Department of Orthopaedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - An-Min Jin
- Department of Orthopaedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
96
|
Chen W, Zhou S, Mao L, Zhang H, Sun D, Zhang J, Li JI, Tang JH. Crosstalk between TGF-β signaling and miRNAs in breast cancer metastasis. Tumour Biol 2016; 37:10011-9. [DOI: 10.1007/s13277-016-5060-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/01/2016] [Indexed: 12/12/2022] Open
|
97
|
Mazza T, Mazzoccoli G, Fusilli C, Capocefalo D, Panza A, Biagini T, Castellana S, Gentile A, De Cata A, Palumbo O, Stallone R, Rubino R, Carella M, Piepoli A. Multifaceted enrichment analysis of RNA-RNA crosstalk reveals cooperating micro-societies in human colorectal cancer. Nucleic Acids Res 2016; 44:4025-36. [PMID: 27067546 PMCID: PMC4872111 DOI: 10.1093/nar/gkw245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
Alterations in the balance of mRNA and microRNA (miRNA) expression profiles contribute to the onset and development of colorectal cancer. The regulatory functions of individual miRNA-gene pairs are widely acknowledged, but group effects are largely unexplored. We performed an integrative analysis of mRNA–miRNA and miRNA–miRNA interactions using high-throughput mRNA and miRNA expression profiles obtained from matched specimens of human colorectal cancer tissue and adjacent non-tumorous mucosa. This investigation resulted in a hypernetwork-based model, whose functional backbone was fulfilled by tight micro-societies of miRNAs. These proved to modulate several genes that are known to control a set of significantly enriched cancer-enhancer and cancer-protection biological processes, and that an array of upstream regulatory analyses demonstrated to be dependent on miR-145, a cell cycle and MAPK signaling cascade master regulator. In conclusion, we reveal miRNA-gene clusters and gene families with close functional relationships and highlight the role of miR-145 as potent upstream regulator of a complex RNA–RNA crosstalk, which mechanistically modulates several signaling pathways and regulatory circuits that when deranged are relevant to the changes occurring in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Tommaso Mazza
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Caterina Fusilli
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Daniele Capocefalo
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Anna Panza
- Department of Medical Sciences, Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Annamaria Gentile
- Department of Medical Sciences, Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Angelo De Cata
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Orazio Palumbo
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Raffaella Stallone
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Rosa Rubino
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| | - Ada Piepoli
- Division of Epidemiology and Health Statistics, IRCCS Scientific Institute and Regional General Hospital 'Casa Sollievo della Sofferenza', San Giovanni Rotondo (FG), Italy
| |
Collapse
|
98
|
Xie F, Liu J, Li C, Zhao Y. Simvastatin blocks TGF-β1-induced epithelial-mesenchymal transition in human prostate cancer cells. Oncol Lett 2016; 11:3377-3383. [PMID: 27123120 DOI: 10.3892/ol.2016.4404] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
In recent years, the use of statins has been reported to be associated with a reduced risk of prostate cancer (PCa), particularly metastatic PCa. The mechanisms underlying these epidemiological observations are poorly understood. Epithelial-mesenchymal transition (EMT) is a critical initial step and a hallmark for cancer metastasis. In the present study, the relationship between simvastatin and EMT in PCa and the mechanism involved was investigated. It was demonstrated that simvastatin inhibited the EMT as assessed by reduced expression of N-cadherin and vimentin, and increased E-cadherin in TGF-β1 treated DU145 PCa cells. Furthermore, simvastatin inhibited TGF-β1-induced migration and invasion of DU145 cells. The TGF-β1/Smad pathway and non-Smad pathway were investigated in simvastatin-treated DU145 cells. Simvastatin had no effect on TGF-β1-induced phosphorylation of Smad2 and Smad3. In the non-Smad pathway, simvastatin reduced TGF-β1-induced p38 MAPK phosphorylation, but had no effect on TGF-β1-induced Erk1/2 phosphorylation. Simvastatin attenuated TGF-β1-induced EMT, cell migration and invasion in DU145 cells. These effects may have been mediated by the inhibition of p38 MAPK phosphorylation, not through the canonical Smad pathway. Therefore simvastatin may be a promising therapeutic agent for treating PCa.
Collapse
Affiliation(s)
- Feng Xie
- Department of Urology, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Jie Liu
- Department of Urology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Chengwen Li
- Department of Urology, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| | - Yaorui Zhao
- Department of Urology, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, P.R. China
| |
Collapse
|
99
|
Majumder S, Bhowal A, Basu S, Mukherjee P, Chatterji U, Sengupta S. Deregulated E2F5/p38/SMAD3 Circuitry Reinforces the Pro-Tumorigenic Switch of TGFβ Signaling in Prostate Cancer. J Cell Physiol 2016; 231:2482-92. [PMID: 26919443 DOI: 10.1002/jcp.25361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Subhadipa Majumder
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Ankur Bhowal
- Department of Zoology; University of Calcutta; Kolkata West Bengal India
| | - Sanmitra Basu
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Pritha Mukherjee
- Department of Zoology; University of Calcutta; Kolkata West Bengal India
| | - Urmi Chatterji
- Department of Zoology; University of Calcutta; Kolkata West Bengal India
| | | |
Collapse
|
100
|
Kopanja D, Raychaudhuri P. TGFβ signaling: a friend or a foe to hepatic fibrosis and tumorigenesis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:122. [PMID: 27127775 PMCID: PMC4828751 DOI: 10.21037/atm.2016.03.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/09/2016] [Indexed: 08/12/2024]
|