51
|
Mei C, Yang W, Wei X, Wu K, Huang D. The Unique Microbiome and Innate Immunity During Pregnancy. Front Immunol 2019; 10:2886. [PMID: 31921149 PMCID: PMC6929482 DOI: 10.3389/fimmu.2019.02886] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
A successful pregnancy depends on not only the tolerance of the fetal immune system by the mother but also resistance against the threat of hazardous microorganisms. Infection with pathogenic microorganisms during pregnancy may lead to premature delivery, miscarriage, growth restriction, neonatal morbidity, and other adverse outcomes. Moreover, the host also has an intact immune system to avoid these adverse outcomes. It is important to note the presence of normal bacteria in the maternal reproductive tract and the principal role of the maternal-placental-fetal interaction in antimicrobial immunity. Previous studies mainly focused on maternal infection during pregnancy. However, this review summarizes the new views on the study of the maternal microbiome and expounds the innate immune defense mechanism of the maternal vagina and decidua as well as how cytotrophoblasts and syncytiotrophoblasts recognize and kill bacteria in the placenta. Fetal immune systems, thought to be weak, also exhibit an immune defense function that is indispensable for maintaining the safety of the fetus. The skin, lungs, and intestines of the fetus during pregnancy constitute the main immune barriers. These findings will provide a new understanding of the effects of normal microbial flora and how the host resists harmful microbes during pregnancy. We believe that it may also contribute to the reference on the clinical prevention and treatment of gestational infection to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wei
- Second Affiliated Hospital of Jinlin University, Changchun, China
| | - Kejia Wu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Lactobacillus iners Is Associated with Vaginal Dysbiosis in Healthy Pregnant Women: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6079734. [PMID: 31781627 PMCID: PMC6855029 DOI: 10.1155/2019/6079734] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Abstract
Vaginal dysbiosis has been identified to be associated with adverse pregnancy outcomes, such as preterm delivery and premature rupture of membranes. However, the overall structure and composition of vaginal microbiota in different trimesters of the pregnant women has not been fully elucidated. In this study, the physiological changes of the vaginal microbiota in healthy pregnant women were investigated. A total of 83 healthy pregnant participants were enrolled, who are in the first, second, or third pregnancy trimester. Quantitative real-time PCR was used to explore the abundant bacteria in the vaginal microbiota. No significant difference in the abundance of Gardnerella, Atopobium, Megasphaera, Eggerthella, Leptotrichia/Sneathia, or Prevotella was found among different trimesters, except Lactobacillus. Compared with the first pregnancy trimester, the abundance of L. iners decreased in the second and third trimester while the abundance of L. crispatus was increased in the second trimester. Moreover, we also found that vaginal cleanliness is correlated with the present of Lactobacillus, Atopobium, and Prevotella and leukocyte esterase is associated with Lactobacillus, Atopobium, Gardnerella, Eggerthella, Leptotrichia/Sneathia, and Prevotella. For those whose vaginal cleanliness raised or leukocyte esterase became positive, the richness of L. iners increased, while that of L. crispatus decreased significantly. Our present data indicated that the altered vaginal microbiota, mainly Lactobacillus, could be observed among different trimesters of pregnancy and L. iners could be considered as a potential bacterial marker for evaluating vaginal cleanliness and leukocyte esterase.
Collapse
|
53
|
Reid G. The Need to Focus on Therapy Instead of Associations. Front Cell Infect Microbiol 2019; 9:327. [PMID: 31572693 PMCID: PMC6751311 DOI: 10.3389/fcimb.2019.00327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/04/2022] Open
Abstract
Molecular analyses of the vaginal microbiota have uncovered a vast array of organisms in this niche, but not so far changed what has been known for a long time: lactobacilli are dominant in health, and the diagnosis and treatment of symptomatic bacterial vaginosis is sub-optimal, and has not changed for over 40 years. While the lowering cost of DNA sequencing has attracted more researchers to the field, and bioinformatics, and statistical tools have made it possible to produce large datasets, it is functional and actionable studies that are more urgently needed, not more microbial abundance, and health or disease-associative data. The triggers of dysbiosis remain to be identified, but ultimately treatment will require disrupting biofilms of primarily anaerobic bacteria and replacing them with the host's own lactobacilli, or health-promoting organisms. The options of using probiotic strains to displace the biofilms and for prebiotics to encourage resurgence of the indigenous lactobacilli hold great promise, but more researchers need to develop, and test these concepts in humans. The enormity of the problem of vaginal dysbiosis cannot be understated. It should not take another 40 years to offer better management options.
Collapse
Affiliation(s)
- Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada.,Departments of Microbiology and Immunology, and Surgery, Western University, London, ON, Canada
| |
Collapse
|
54
|
Ilhan ZE, Łaniewski P, Thomas N, Roe DJ, Chase DM, Herbst-Kralovetz MM. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine 2019; 44:675-690. [PMID: 31027917 PMCID: PMC6604110 DOI: 10.1016/j.ebiom.2019.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cervical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic disease, metabolic profiling of the cervicovaginal microenvironment has the potential to reveal the functional interplay between the host and microbes in HPV persistence and progression to cancer. METHODS Our study design included HPV-negative/positive controls, women with low-grade and high-grade cervical dysplasia, or cervical cancer (n = 78). Metabolic fingerprints were profiled using liquid chromatography-mass spectrometry. Vaginal microbiota and genital inflammation were analysed using 16S rRNA gene sequencing and immunoassays, respectively. We used an integrative bioinformatic pipeline to reveal host and microbe contributions to the metabolome and to comprehensively assess the link between HPV, microbiota, inflammation and cervical disease. FINDINGS Metabolic analysis yielded 475 metabolites with known identities. Unique metabolic fingerprints discriminated patient groups from healthy controls. Three-hydroxybutyrate, eicosenoate, and oleate/vaccenate discriminated (with excellent capacity) between cancer patients versus the healthy participants. Sphingolipids, plasmalogens, and linoleate positively correlated with genital inflammation. Non-Lactobacillus dominant communities, particularly in high-grade dysplasia, perturbed amino acid and nucleotide metabolisms. Adenosine and cytosine correlated positively with Lactobacillus abundance and negatively with genital inflammation. Glycochenodeoxycholate and carnitine metabolisms connected non-Lactobacillus dominance to genital inflammation. INTERPRETATION Cervicovaginal metabolic profiles were driven by cancer followed by genital inflammation, HPV infection, and vaginal microbiota. This study provides evidence for metabolite-driven complex host-microbe interactions as hallmarks of cervical cancer with future translational potential. FUND: Flinn Foundation (#1974), Banner Foundation Obstetrics/Gynecology, and NIH NCI (P30-CA023074).
Collapse
Affiliation(s)
- Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Natalie Thomas
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Denise J Roe
- UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA
| | - Dana M Chase
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA; US Oncology, Phoenix, AZ 85016, USA; Maricopa Integrated Health Systems, Phoenix, AZ 85008, USA; Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA; UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA.
| |
Collapse
|
55
|
Abdool Karim SS, Baxter C, Passmore JS, McKinnon LR, Williams BL. The genital tract and rectal microbiomes: their role in HIV susceptibility and prevention in women. J Int AIDS Soc 2019; 22:e25300. [PMID: 31144462 PMCID: PMC6541743 DOI: 10.1002/jia2.25300] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Young women in sub-Saharan Africa are disproportionately affected by HIV, accounting for 25% of all new infections in 2017. Several behavioural and biological factors are known to impact a young woman's vulnerability for acquiring HIV. One key, but lesser understood, biological factor impacting vulnerability is the vaginal microbiome. This review describes the vaginal microbiome and examines its alterations, its influence on HIV acquisition as well as the efficacy of HIV prevention technologies, the role of the rectal microbiome in HIV acquisition, advances in technologies to study the microbiome and some future research directions. DISCUSSION Although the composition of each woman's vaginal microbiome is unique, a microbiome dominated by Lactobacillus species is generally associated with a "healthy" vagina. Disturbances in the vaginal microbiota, characterized by a shift from a low-diversity, Lactobacillus-dominant state to a high-diversity non-Lactobacillus-dominant state, have been shown to be associated with a range of adverse reproductive health outcomes, including increasing the risk of genital inflammation and HIV acquisition. Gardnerella vaginalis and Prevotella bivia have been shown to contribute to both HIV risk and genital inflammation. In addition to impacting HIV risk, the composition of the vaginal microbiome affects the vaginal concentrations of some antiretroviral drugs, particularly those administered intravaginally, and thereby their efficacy as pre-exposure prophylaxis (PrEP) for HIV prevention. Although the role of rectal microbiota in HIV acquisition in women is less well understood, the composition of this compartment's microbiome, particularly the presence of species of bacteria from the Prevotellaceae family likely contribute to HIV acquisition. Advances in technologies have facilitated the study of the genital microbiome's structure and function. While next-generation sequencing advanced knowledge of the diversity and complexity of the vaginal microbiome, the emerging field of metaproteomics, which provides important information on vaginal bacterial community structure, diversity and function, is further shedding light on functionality of the vaginal microbiome and its relationship with bacterial vaginosis (BV), as well as antiretroviral PrEP efficacy. CONCLUSIONS A better understanding of the composition, structure and function of the microbiome is needed to identify opportunities to alter the vaginal microbiome and prevent BV and reduce the risk of HIV acquisition.
Collapse
Affiliation(s)
- Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
| | - Jo‐Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- National Health Laboratory ServiceCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM)University of Cape TownCape TownSouth Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)University of KwaZulu‐NatalDurbanSouth Africa
- Department of Medical Microbiology and Infectious DiseasesUniversity of ManitobaWinnipegManitobaCanada
- Department of Medical MicrobiologyUniversity of NairobiNairobiKenya
| | - Brent L Williams
- Department of EpidemiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
56
|
Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol 2019; 220:324-335. [PMID: 30447213 DOI: 10.1016/j.ajog.2018.11.1089] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
The bacterial composition of the vaginal microbiome is thought to be related to health and disease states of women. This microbiome is particularly dynamic, with compositional changes related to pregnancy, menstruation, and disease states such as bacterial vaginosis. In order to understand these dynamics and their impact on health and disease, ecological theories have been introduced to study the complex interactions between the many taxa in the vaginal bacterial ecosystem. The goal of this review is to introduce the ecological principles that are used in the study of the vaginal microbiome and its dynamics, and to review the application of ecology to vaginal microbial communities with respect to health and disease. Although applications of vaginal microbiome analysis and modulation have not yet been introduced into the routine clinical setting, a deeper understanding of its dynamics has the potential to facilitate development of future practices, for example in the context of postmenopausal vaginal symptoms, stratifying risk for obstetric complications, and controlling sexually transmitted infections.
Collapse
Affiliation(s)
- Shirley Greenbaum
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA; Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Gili Greenbaum
- Department of Biology, Stanford University, Stanford, CA
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adi Y Weintraub
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
57
|
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 2019; 20:E340. [PMID: 30650615 PMCID: PMC6359177 DOI: 10.3390/ijms20020340] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Epidemiological data from the Center of Disease Control (CDC) and the World Health Organization (WHO) statistics in 2017 show that 10.0 million people around the world became sick with tuberculosis. Mycobacterium tuberculosis (MTB) is an intracellular parasite that mainly attacks macrophages and inhibits their apoptosis. It can become a long-term infection in humans, causing a series of pathological changes and clinical manifestations. In this review, we summarize innate immunity including the inhibition of antioxidants, the maturation and acidification of phagolysosomes and especially the apoptosis and autophagy of macrophages. Besides, we also elaborate on the adaptive immune response and the formation of granulomas. A thorough understanding of these escape mechanisms is of major importance for the prevention, diagnosis and treatment of tuberculosis.
Collapse
Affiliation(s)
- Weijie Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Fengjuan Wu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yiyuan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yurong Fu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
58
|
Afiuni-Zadeh S, Boylan KLM, Jagtap PD, Griffin TJ, Rudney JD, Peterson ML, Skubitz APN. Evaluating the potential of residual Pap test fluid as a resource for the metaproteomic analysis of the cervical-vaginal microbiome. Sci Rep 2018; 8:10868. [PMID: 30022083 PMCID: PMC6052116 DOI: 10.1038/s41598-018-29092-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/04/2018] [Indexed: 01/30/2023] Open
Abstract
The human cervical-vaginal area contains proteins derived from microorganisms that may prevent or predispose women to gynecological conditions. The liquid Pap test fixative is an unexplored resource for analysis of microbial communities and the microbe-host interaction. Previously, we showed that the residual cell-free fixative from discarded Pap tests of healthy women could be used for mass spectrometry (MS) based proteomic identification of cervical-vaginal proteins. In this study, we reprocessed these MS raw data files for metaproteomic analysis to characterize the microbial community composition and function of microbial proteins in the cervical-vaginal region. This was accomplished by developing a customized protein sequence database encompassing microbes likely present in the vagina. High-mass accuracy data were searched against the protein FASTA database using a two-step search method within the Galaxy for proteomics platform. Data was analyzed by MEGAN6 (MetaGenomeAnalyzer) for phylogenetic and functional characterization. We identified over 300 unique peptides from a variety of bacterial phyla and Candida. Peptides corresponding to proteins involved in carbohydrate metabolism, oxidation-reduction, and transport were identified. By identifying microbial peptides in Pap test supernatants it may be possible to acquire a functional signature of these microbes, as well as detect specific proteins associated with cervical health and disease.
Collapse
Affiliation(s)
- Somaieh Afiuni-Zadeh
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin L M Boylan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, MN, USA
| | - Joel D Rudney
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | | | - Amy P N Skubitz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
59
|
McMillan A, Rulisa S, Gloor GB, Macklaim JM, Sumarah M, Reid G. Pilot assessment of probiotics for pregnant women in Rwanda. PLoS One 2018; 13:e0195081. [PMID: 29912913 PMCID: PMC6005520 DOI: 10.1371/journal.pone.0195081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background While the global market for probiotics is soon to reach in excess of US$50 billion, the continent of Africa has been largely ignored, despite these products having the ability to reduce the burden of disease and death. Trial design The present randomised, blinded, placebo-controlled clinical trial was undertaken in Rwanda, a country devoid of well-documented probiotics. The primary outcome aim was to examine receptivity and compliance for orally administered probiotic capsules containing Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 in pregnant women and assess any initial side effects or changes to the vaginal microbiome. Methods Pregnant women between the ages of 18 and 55 were recruited from the Nyamata District Hospital in Rwanda and randomly assigned to receive probiotic or placebo capsules for one month. Clinicians were blinded to the treatments. Results The drop-out rate was 21%, with 13 of 18 women in the placebo group and 17 of 20 in the probiotic group completing the study. Only 13 women returned for birthing and additional sample collection. No side effects of either treatment group were reported. Microbiota and metabolomics data showed similar findings to those reported in the literature, with low bacterial diversity and Lactobacillus dominance associated with a healthy vagina, and birthing associated with high diversity. Despite the small sample size and lack of changes in the microbiota, women in the placebo arm were significantly more likely to give birth pre-term. Conclusion Overall women were receptive to the probiotic concept, but the lack of information on such products and logistical and economical challenges pose problems for wider population engagement. Trial registration ClinicalTrials.gov NCT02150655
Collapse
Affiliation(s)
- Amy McMillan
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| | - Stephen Rulisa
- Department of Obstetrics and Gynecology, University of Rwanda, Kigali, Rwanda
| | - Gregory B. Gloor
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada
- Department of Biochemistry, and Applied Mathematics, The University of Western Ontario, London, Canada
| | - Jean M. Macklaim
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada
- Department of Biochemistry, and Applied Mathematics, The University of Western Ontario, London, Canada
| | - Mark Sumarah
- Agriculture and Agri-Food Canada, London, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada
- * E-mail:
| |
Collapse
|
60
|
Watson E, Reid G. Metabolomics as a clinical testing method for the diagnosis of vaginal dysbiosis. Am J Reprod Immunol 2018; 80:e12979. [PMID: 29756665 DOI: 10.1111/aji.12979] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
Microbes play an important role in vaginal health, with lactobacilli a particularly abundant species. When dysbiosis occurs, the tools to determine whether it is a condition such as bacterial vaginosis, and whether it warrants antibiotic treatment, are currently suboptimal. We propose that standardization and implementation of an affordable metabolomics-based diagnostic technique could reduce instances of false positives, stress associated with misdiagnosis, and potentially save time and money. Basing diagnosis on the detection of pH elevated above 4.5 and specific polyamines could provide a better method to assist a physician determine whether treatment is warranted.
Collapse
Affiliation(s)
- Emiley Watson
- Department of Microbiology, Immunology, and Surgery, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Department of Microbiology, Immunology, and Surgery, The University of Western Ontario, London, ON, Canada.,Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
61
|
Pruski P, Lewis HV, Lee YS, Marchesi JR, Bennett PR, Takats Z, MacIntyre DA. Assessment of microbiota:host interactions at the vaginal mucosa interface. Methods 2018; 149:74-84. [PMID: 29705211 DOI: 10.1016/j.ymeth.2018.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/10/2018] [Accepted: 04/22/2018] [Indexed: 12/12/2022] Open
Abstract
There is increasing appreciation of the role that vaginal microbiota play in health and disease throughout a woman's lifespan. This has been driven partly by molecular techniques that enable detailed identification and characterisation of microbial community structures. However, these methods do not enable assessment of the biochemical and immunological interactions between host and vaginal microbiota involved in pathophysiology. This review examines our current knowledge of the relationships that exist between vaginal microbiota and the host at the level of the vaginal mucosal interface. We also consider methodological approaches to microbiomic, immunologic and metabolic profiling that permit assessment of these interactions. Integration of information derived from these platforms brings the potential for biomarker discovery, disease risk stratification and improved understanding of the mechanisms regulating vaginal microbial community dynamics in health and disease.
Collapse
Affiliation(s)
- Pamela Pruski
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Holly V Lewis
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; Queen Charlotte's Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London W12 0HS, UK
| | - Yun S Lee
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Julian R Marchesi
- Department of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Centre for Digestive and Gut Health, Surgery and Cancer, Imperial College London, London W2 1NY, UK
| | - Phillip R Bennett
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Zoltan Takats
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
62
|
Abstract
Sixteen years ago, when we published the first molecular characterization of the vaginal microbiota, little did we know the vast numbers of species that would be detected in this niche. As exciting as these discoveries have been, what have they and more recent advances contributed to how vaginal health and disease are managed? This review provides a brief discussion of the potential, but so far limited, applications that have arisen from microbiome research. Calls for innovation have been made before but to little avail.
Collapse
Affiliation(s)
- Gregor Reid
- Departments of Microbiology & Immunology, and Surgery (Urology), Western University, and Lawson Health Research Institute, 268 Grosvenor Street, London, ON, N6A 4V2, Canada
| |
Collapse
|
63
|
Parolin C, Foschi C, Laghi L, Zhu C, Banzola N, Gaspari V, D'Antuono A, Giordani B, Severgnini M, Consolandi C, Salvo M, Cevenini R, Vitali B, Marangoni A. Insights Into Vaginal Bacterial Communities and Metabolic Profiles of Chlamydia trachomatis Infection: Positioning Between Eubiosis and Dysbiosis. Front Microbiol 2018; 9:600. [PMID: 29643849 PMCID: PMC5883401 DOI: 10.3389/fmicb.2018.00600] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 11/26/2022] Open
Abstract
The vaginal microbiota plays a crucial role in maintaining the health and functioning of the female genital tract, preventing the colonization of urogenital pathogens and sexually transmitted infections. In this study, we characterized the vaginal bacterial communities and the metabolome associated to Chlamydia trachomatis infection (CT: 20 women), compared to healthy condition (H: 22 women) and bacterial vaginosis (BV: 19 women). A microarray-based tool (VaginArray), implemented with a real-time PCR for Gardnerella vaginalis, was used to determine the vaginal bacterial composition, whereas the metabolic profiles were assessed by a proton-based nuclear magnetic resonance (1H-NMR) spectroscopy. CT infection was characterized by bacterial and metabolic signatures similar to healthy condition, even though higher amounts of Lactobacillus iners, as well as depletion of some amino acids, biogenic amines, and succinate marked CT infection. Moreover, the frequency of Lactobacillus crispatus was higher in asymptomatic CT-positive patients than in women with CT-correlated symptoms. We also confirmed the marked differences in the microbiome and metabolome between healthy and BV-affected women. In conclusion, we highlighted microbial and metabolic peculiarities of the vaginal ecosystem in the case of CT infection, even though further studies are needed to understand if the observed alterations precede the infection onset or if the pathogen itself perturbs the vaginal environment.
Collapse
Affiliation(s)
- Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Chenglin Zhu
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | - Nicoletta Banzola
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valeria Gaspari
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Antonietta D'Antuono
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies - National Research Council, Milan, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies - National Research Council, Milan, Italy
| | - Melissa Salvo
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
64
|
Erturk-Hasdemir D, Kasper DL. Finding a needle in a haystack: Bacteroides fragilis polysaccharide A as the archetypical symbiosis factor. Ann N Y Acad Sci 2018. [PMID: 29528123 DOI: 10.1111/nyas.13660] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Starting from birth, all animals develop a symbiotic relationship with their resident microorganisms that benefits both the microbe and the host. Recent advances in technology have substantially improved our ability to direct research toward the identification of important microbial species that affect host physiology. The identification of specific commensal molecules from these microbes and their mechanisms of action is still in its early stages. Polysaccharide A (PSA) of Bacteroides fragilis is the archetypical example of a commensal molecule that can modulate the host immune system in health and disease. This zwitterionic polysaccharide has a critical impact on the development of the mammalian immune system and also on the stimulation of interleukin 10-producing CD4+ T cells; consequently, PSA confers benefits to the host with regard to experimental autoimmune, inflammatory, and infectious diseases. In this review, we summarize the current understanding of the immunomodulatory effects of B. fragilis PSA and discuss these effects as a novel immunological paradigm. In particular, we discuss recent advances in our understanding of the unique functional mechanisms of this molecule and its therapeutic potential, and we review the recent literature in the field of microbiome research aimed at discovering new commensal products and their immunomodulatory potential.
Collapse
Affiliation(s)
- Deniz Erturk-Hasdemir
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
65
|
Salinas AM, Osorio VG, Endara PF, Salazar ER, Vasco GP, Vivero SG, Machado A. Bacterial identification of the vaginal microbiota in Ecuadorian pregnant teenagers: an exploratory analysis. PeerJ 2018; 6:e4317. [PMID: 29492333 PMCID: PMC5826987 DOI: 10.7717/peerj.4317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/12/2018] [Indexed: 12/02/2022] Open
Abstract
Background Bacterial vaginosis (BV) is a microbial imbalance (i.e., dysbiosis) that can produce serious medical effects in women at childbearing age. Little is known, however, about the incidence of BV or vaginal microbiota dysbiosis in pregnant teenagers in low and middle-income countries such as Ecuador. The scope of this exploratory analysis was to study the relationship between epidemiologic and microbial risk factors. Among the microbiology risk factors this study investigated five Lactobacillus species, two of them know in preview studies as microbiology risk factors for BV development (Lactobacillus acidophilus and Lactobacillus iners), and the last three known for being associated with a healthy vaginal tract (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii). In addition, fastidious anaerobes known to be microbial risk factors for BV development in pregnant teenagers were searched as well, more exactly, Gardnerella vaginalis, Atopobium vaginae and Mobiluncus mulieris. Methods Ninety-five healthy adolescent pregnant women, visiting a secondary level hospital in Quito, Ecuador, were enrolled into the study in 2015. The enrolled patients were between 10 to 13 weeks of pregnancy. Four epidemiological risk factors were collected in a survey: age, civil status, sexual partners and condom use. Also, vaginal pH was measured as a health risk factor. DNA was extracted from endocervical and exocervical epithelia from all the patients’ samples. PCR analysis was performed in order to characterize the presence of the eight bacterial species known as risk factors for BV development, targeting three anaerobes and five Lactobacillus species. Univariate and multivariate analysis were performed to identify associated factors for the presence of anaerobic species using logistic regression. Results The 95 vaginal microflora samples of these teenagers were analyzed. Two of the bacterial species known to cause BV: A. vaginae (100%) and G. vaginalis (93.7%) were found in high prevalence. Moreover, the most predominant bacterial Lactobacillus species found in the pregnant teenagers’ vaginal tract were L. crispatus (92.6%), L. iners (89.5%) and L. acidophilus (87.4%). In addition, the average vaginal pH measured in the study population was 5.2, and high pH was associated with the presence of the three-anaerobic species (p = 0.001). Finally, L. jensenii’s presence in the study decreased in 72% the occupation of the three anaerobes. Discussion This work identified a high pH as a risk factor for BV anaerobes’ presence in adolescent pregnant women. Moreover, this study identified L. crispatus, L. iners and L. acidophilus to be the most abundant species in our study population. From all fastidious anaerobes analyzed in this study, A. vaginae was present in all pregnant teenagers. To conclude, L. jensenii could be a potential healthy vaginal microbiota candidate in pregnant teenagers and should be further analyzed in future studies.
Collapse
Affiliation(s)
- Ana María Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Verónica Gabriela Osorio
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Pablo Francisco Endara
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Gabriela Piedad Vasco
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
| | | | - Antonio Machado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
66
|
Promising Prebiotic Candidate Established by Evaluation of Lactitol, Lactulose, Raffinose, and Oligofructose for Maintenance of a Lactobacillus-Dominated Vaginal Microbiota. Appl Environ Microbiol 2018; 84:AEM.02200-17. [PMID: 29269494 PMCID: PMC5812932 DOI: 10.1128/aem.02200-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/13/2017] [Indexed: 11/20/2022] Open
Abstract
Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus, Lactobacillus vaginalis, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus jensenii, and Lactobacillus iners, in addition to BV-associated organisms and Candida albicans, were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus, and importantly, not to stimulate BV organisms or C. albicans. Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented by beneficial bacteria such as Lactobacillus spp.—can modulate the vaginal microbiota. We also report use of a novel in vitro polymicrobial model to study the impact of prebiotics on the vaginal microbiota. The identification of prebiotic lactulose as enhancing Lactobacillus growth but not that of BV organisms or Candida albicans has direct application for retention of homeostasis and prevention of vaginal dysbiosis and infection.
Collapse
|
67
|
Nelson TM, Borgogna JC, Michalek RD, Roberts DW, Rath JM, Glover ED, Ravel J, Shardell MD, Yeoman CJ, Brotman RM. Cigarette smoking is associated with an altered vaginal tract metabolomic profile. Sci Rep 2018; 8:852. [PMID: 29339821 PMCID: PMC5770521 DOI: 10.1038/s41598-017-14943-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 02/08/2023] Open
Abstract
Cigarette smoking has been associated with both the diagnosis of bacterial vaginosis (BV) and a vaginal microbiota lacking protective Lactobacillus spp. As the mechanism linking smoking with vaginal microbiota and BV is unclear, we sought to compare the vaginal metabolomes of smokers and non-smokers (17 smokers/19 non-smokers). Metabolomic profiles were determined by gas and liquid chromatography mass spectrometry in a cross-sectional study. Analysis of the 16S rRNA gene populations revealed samples clustered into three community state types (CSTs) ---- CST-I (L. crispatus-dominated), CST-III (L. iners-dominated) or CST-IV (low-Lactobacillus). We identified 607 metabolites, including 12 that differed significantly (q-value < 0.05) between smokers and non-smokers. Nicotine, and the breakdown metabolites cotinine and hydroxycotinine were substantially higher in smokers, as expected. Among women categorized to CST-IV, biogenic amines, including agmatine, cadaverine, putrescine, tryptamine and tyramine were substantially higher in smokers, while dipeptides were lower in smokers. These biogenic amines are known to affect the virulence of infective pathogens and contribute to vaginal malodor. Our data suggest that cigarette smoking is associated with differences in important vaginal metabolites, and women who smoke, and particularly women who are also depauperate for Lactobacillus spp., may have increased susceptibilities to urogenital infections and increased malodor.
Collapse
Affiliation(s)
- T M Nelson
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - J C Borgogna
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - D W Roberts
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - J M Rath
- Department of Behavioral and Community Health, University of Maryland School of Public Health, College Park, MD, USA
- Truth Initiative, Washington DC, USA
| | - E D Glover
- Department of Behavioral and Community Health, University of Maryland School of Public Health, College Park, MD, USA
| | - J Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M D Shardell
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - C J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| | - R M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
68
|
Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces. Sci Rep 2018; 8:814. [PMID: 29339831 PMCID: PMC5770469 DOI: 10.1038/s41598-017-18506-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Disc diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. This information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.
Collapse
|
69
|
From RNA-seq to Biological Inference: Using Compositional Data Analysis in Meta-Transcriptomics. Methods Mol Biol 2018; 1849:193-213. [PMID: 30298256 DOI: 10.1007/978-1-4939-8728-3_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proper analysis of high-throughput sequencing datasets of mixed microbial communities (meta-transcriptomics) is substantially more complex than for datasets composed of single organisms. Adapting commonly used RNA-seq methods to the analysis of meta-transcriptome datasets can be misleading and not use all the available information in a consistent manner. However, meta-transcriptomic experiments can be investigated in a principled manner using Bayesian probabilistic modeling of the data at a functional level coupled with analysis under a compositional data analysis paradigm. We present a worked example for the differential functional evaluation of mixed-species microbial communities obtained from human clinical samples that were sequenced on an Illumina platform. We demonstrate methods to functionally map reads directly, conduct a compositionally appropriate exploratory data analysis, evaluate differential relative abundance, and finally identify compositionally associated (constant ratio) functions. Using these approaches we have found that meta-transcriptomic functional analyses are highly reproducible and convey significant information regarding the ecosystem.
Collapse
|
70
|
Abstract
The reproductive tract of females lies at the core of humanity. The immensely complex process that leads to successful reproduction is miraculous yet invariably successful. Microorganisms have always been a cause for concern for their ability to infect this region, yet it is other, nonpathogenic microbial constituents now uncovered by sequencing technologies that offer hope for improving health. The universality of Lactobacillus species being associated with health is the basis for therapeutic opportunities, including through engineered strains. The manipulation of these and other beneficial constituents of the microbiota and their functionality, as well as their metabolites, forms the basis for new diagnostics and interventions. Within 20 years, we should see significant improvements in how cervicovaginal health is restored and maintained, thus providing relief to the countless women who suffer from microbiota-associated disorders.
Collapse
|
71
|
The human female urogenital microbiome: complexity in normality. Emerg Top Life Sci 2017; 1:363-372. [PMID: 33525775 DOI: 10.1042/etls20170042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022]
Abstract
Microbial communities of the urogenital tract have long been recognised to play an important role in disease states. A revolution in methodological approaches is permitting the assessment of complex urogenital tract microbiota-host interactions and the metabolic and protein milieu of the mucosal interface. There is now great potential for significant advances in biomarker discovery and disease risk stratification, and for the elucidation of mechanisms underpinning the microbial community dynamics involved in urogenital tract pathology. Microbiota-host interactions in the female genital tract have a particular significance, because unlike in the male, there is direct communication between the external genitalia, the uterus and the peritoneal cavity. This review examines the microbial community composition at differing sites of the female urogenital tract and its relationship with health and disease. Key factors involved in the modulation of vaginal microbiome stability and structure, such as endocrine, immune and inflammatory pathways, are considered in the context of a woman's life cycle and disease pathogenesis.
Collapse
|
72
|
Reid G. Is bacterial vaginosis a disease? Appl Microbiol Biotechnol 2017; 102:553-558. [PMID: 29177936 DOI: 10.1007/s00253-017-8659-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 02/03/2023]
Abstract
Bacterial vaginosis (BV) has been described as a disease, a disorder, a vaginal inflammation, an infection, a microbial dysbiosis, a condition, and in some women, a normal situation. In order to fit the definition of a disease, BV would have to be a disorder of function that produces specific signs or symptoms or affects the vagina in an aberrant way. Yet, there is little consistency in patients reporting signs and symptoms when BV is diagnosed, nor the appearance of aberrations to the vagina. If BV is not a disease, there are implications for its management and coverage of treatment costs, and for the conclusions drawn in a multitude of previous studies. It is time for BV to be redefined and for the various subsets to be given a separate terminology with specific methods of diagnosis and appropriate treatment and preventive strategies.
Collapse
Affiliation(s)
- Gregor Reid
- Departments of Microbiology & Immunology, and Surgery (Urology), Western University, and Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada.
| |
Collapse
|
73
|
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol 2017; 8:2224. [PMID: 29187837 PMCID: PMC5695134 DOI: 10.3389/fmicb.2017.02224] [Citation(s) in RCA: 1301] [Impact Index Per Article: 185.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Datasets collected by high-throughput sequencing (HTS) of 16S rRNA gene amplimers, metagenomes or metatranscriptomes are commonplace and being used to study human disease states, ecological differences between sites, and the built environment. There is increasing awareness that microbiome datasets generated by HTS are compositional because they have an arbitrary total imposed by the instrument. However, many investigators are either unaware of this or assume specific properties of the compositional data. The purpose of this review is to alert investigators to the dangers inherent in ignoring the compositional nature of the data, and point out that HTS datasets derived from microbiome studies can and should be treated as compositions at all stages of analysis. We briefly introduce compositional data, illustrate the pathologies that occur when compositional data are analyzed inappropriately, and finally give guidance and point to resources and examples for the analysis of microbiome datasets using compositional data analysis.
Collapse
Affiliation(s)
- Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Jean M Macklaim
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Vera Pawlowsky-Glahn
- Departments of Computer Science, Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain
| | - Juan J Egozcue
- Department of Applied Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
74
|
Tao L, Wang B, Zhong Y, Pow SH, Zeng X, Qin C, Zhang P, Chen S, He W, Tan Y, Liu H, Jiang Y, Chen W, Chen YZ. Database and Bioinformatics Studies of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7599-7606. [PMID: 28727425 DOI: 10.1021/acs.jafc.7b01815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Probiotics have been widely explored for health benefits, animal cares, and agricultural applications. Recent advances in microbiome, microbiota, and microbial dark matter research have fueled greater interests in and paved ways for the study of the mechanisms of probiotics and the discovery of new probiotics from uncharacterized microbial sources. A probiotics database named PROBIO was developed to facilitate these efforts and the need for the information on the known probiotics, which provides the comprehensive information about the probiotic functions of 448 marketed, 167 clinical trial/field trial, and 382 research probiotics for use or being studied for use in humans, animals, and plants. The potential applications of the probiotics data are illustrated by several literature-reported investigations, which have used the relevant information for probing the function and mechanism of the probiotics and for discovering new probiotics. PROBIO can be accessed free of charge at http://bidd2.nus.edu.sg/probio/homepage.htm .
Collapse
Affiliation(s)
- Lin Tao
- School of Medicine, Hangzhou Normal University , Hangzhou, P. R. China 310012
| | - Bohua Wang
- College of Life and Environmental Sciences, Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science , Changde, Hunan, P. R. China 415000
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Yafen Zhong
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Siok Hoon Pow
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Xian Zeng
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Shangying Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Weidong He
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Ying Tan
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Hongxia Liu
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Yuyang Jiang
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Weiping Chen
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| |
Collapse
|
75
|
Stafford GP, Parker JL, Amabebe E, Kistler J, Reynolds S, Stern V, Paley M, Anumba DOC. Spontaneous Preterm Birth Is Associated with Differential Expression of Vaginal Metabolites by Lactobacilli-Dominated Microflora. Front Physiol 2017; 8:615. [PMID: 28878691 PMCID: PMC5572350 DOI: 10.3389/fphys.2017.00615] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
A major challenge in preventing preterm birth (PTB) is identifying women at greatest risk. This pilot study prospectively examined the differences in vaginal microbiota and metabolite profiles of women who delivered prematurely compared to their term counterparts in a cohort of asymptomatic (studied at 20–22, n = 80; and 26–28 weeks, n = 41) and symptomatic women (studied at 24–36 weeks, n = 37). Using 16S rRNA sequencing, the vaginal microbiota from cervicovaginal fluid samples was characterized into five Community State Types (CST) dominated by Lactobacillus spp.: CSTI (Lactobacillus crispatus), CSTII (Lactobacillus gasseri), CSTIII (Lactobacillus iners), CSTV (Lactobacillus jensenii); and mixed anaerobes—CSTIV. This was then related to the vaginal metabolite profile and pH determined by 1H-Nuclear Magnetic Resonance spectroscopy and pH indicator paper, respectively. At 20–22 weeks, the term-delivered women (TDW) indicated a proportion of CSTI-dominated microbiota >2-fold higher compared to the preterm-delivered women (PTDW) (40.3 vs. 16.7%, P = 0.0002), and a slightly higher proportion at 26–28 weeks (20.7 vs. 16.7%, P = 0.03). CSTV was >2-fold higher in the PTDW compared to TDW at 20–22 (22.2 vs. 9.7%, P = 0.0002) and 26–28 weeks (25.0 vs. 10.3%, P = 0.03). Furthermore, at 26–28 weeks no PTDW had a CSTII-dominated microbiome, in contrast to 28% of TDW (P < 0.0001). CSTI-dominated samples showed higher lactate levels than CSTV at 20–22 weeks (P < 0.01), and 26–28 weeks (P < 0.05), while CSTII-dominated samples indicated raised succinate levels over CSTV at 26–28 weeks (P < 0.05). These were supported by Principal coordinates analysis, which revealed strong clustering of metabolites according to CST. In addition, the CSTI-dominated samples had an average pH of 3.8, which was lower than those of CSTII—4.4, and CSTV—4.2 (P < 0.05). Elevated vaginal lactate and succinate were associated with predominance of CSTI and II over CSTV in women who delivered at term compared with their preterm counterparts. This suggests that L. jensenii-dominance and decreased lactate and/or succinate could increase the risk of PTB, while L. crispatus/gasseri may confer some protection against inflammation-associated PTB and highlight the need for further study in this area.
Collapse
Affiliation(s)
- Graham P Stafford
- Integrated BioSciences Group, School of Clinical Dentistry, University of SheffieldSheffield, United Kingdom
| | - Jennifer L Parker
- Integrated BioSciences Group, School of Clinical Dentistry, University of SheffieldSheffield, United Kingdom
| | - Emmanuel Amabebe
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of SheffieldSheffield, United Kingdom
| | - James Kistler
- Blizard Institute, Barts and The London School of Medicine and DentistryLondon, United Kingdom
| | - Steven Reynolds
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of SheffieldSheffield, United Kingdom
| | - Victoria Stern
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of SheffieldSheffield, United Kingdom
| | - Martyn Paley
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of SheffieldSheffield, United Kingdom
| | - Dilly O C Anumba
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, University of SheffieldSheffield, United Kingdom
| |
Collapse
|
76
|
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14:491-502. [PMID: 28611480 DOI: 10.1038/nrgastro.2017.75] [Citation(s) in RCA: 2796] [Impact Index Per Article: 399.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation.
Collapse
Affiliation(s)
- Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK
| | - Robert Hutkins
- Department of Food Science and Technology, 258 Food Innovation Center, University of Nebraska - Lincoln, Lincoln, Nebraska 68588-6205, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, 7119 S. Glencoe Court, Centennial, Colorado 80122, USA
| | - Susan L Prescott
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Raylene A Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, 2500 University Drive, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seppo J Salminen
- Functional Foods Forum, Faculty of Medicine, Itäinen Pitkäkatu 4A, FI-20014, University of Turku, Turku 20014, Finland
| | - Karen Scott
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, UK
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Cork, P61 C996, Ireland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W Gregory Drive, Urbana, Illinois 61801, USA
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, 73 Avenue E Mounier, WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, 1200 Brussels, Belgium
| | - Kristin Verbeke
- Translational Research in Gastrointestinal Disorders, KU Leuven, Targid - Herestraat 49, Leuven, Belgium and Leuven Food Science and Nutrition Research Centre, BE 3001, Leuven, Belgium
| | - Gregor Reid
- Lawson Health Research Institute, University of Western Ontario, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada
| |
Collapse
|
77
|
Tomita S, Saito K, Nakamura T, Sekiyama Y, Kikuchi J. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. PLoS One 2017; 12:e0182229. [PMID: 28759594 PMCID: PMC5536307 DOI: 10.1371/journal.pone.0182229] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/16/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB), which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i) the difference between homo- and hetero-lactic fermentative species and ii) strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA) clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol). Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs) approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA) for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.
Collapse
Affiliation(s)
- Satoru Tomita
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- * E-mail:
| | - Katsuichi Saito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Toshihide Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yasuyo Sekiyama
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
78
|
Abstract
The idea you could use lactic acid bacteria to treat and prevent recurrence of vaginal infections was ridiculed in the early 1980s. Bacteria were the bad guys to be eradicated by current and emerging antibiotic classes. Thirty years later, probiotic administration of microbes is widespread worldwide, including for vaginal and bladder health in women, and the scientific basis and clinical efficacy data for this and multiple other applications prove the viability of this concept. The development of this approach, the creation of a definition for probiotics, and the expansion to other areas of women’s health form the basis of this review.
Collapse
Affiliation(s)
- Gregor Reid
- Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2, Canada
- Departments of Surgery and Microbiology and Immunology, University of Western Ontario, Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
79
|
Pruski P, MacIntyre DA, Lewis HV, Inglese P, Correia GDS, Hansel TT, Bennett PR, Holmes E, Takats Z. Medical Swab Analysis Using Desorption Electrospray Ionization Mass Spectrometry: A Noninvasive Approach for Mucosal Diagnostics. Anal Chem 2017; 89:1540-1550. [PMID: 28208268 DOI: 10.1021/acs.analchem.6b03405] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Medical swabs are routinely used worldwide to sample human mucosa for microbiological screening with culture methods. These are usually time-consuming and have a narrow focus on screening for particular microorganism species. As an alternative, direct mass spectrometric profiling of the mucosal metabolome provides a broader window into the mucosal ecosystem. We present for the first time a minimal effort/minimal-disruption technique for augmenting the information obtained from clinical swab analysis with mucosal metabolome profiling using desorption electrospray ionization mass spectrometry (DESI-MS) analysis. Ionization of mucosal biomass occurs directly from a standard rayon swab mounted on a rotating device and analyzed by DESI MS using an optimized protocol considering swab-inlet geometry, tip-sample angles and distances, rotation speeds, and reproducibility. Multivariate modeling of mass spectral fingerprints obtained in this way readily discriminate between different mucosal surfaces and display the ability to characterize biochemical alterations induced by pregnancy and bacterial vaginosis (BV). The method was also applied directly to bacterial biomass to confirm the ability to detect intact bacterial species from a swab. These results highlight the potential of direct swab analysis by DESI-MS for a wide range of clinical applications including rapid mucosal diagnostics for microbiology, immune responses, and biochemistry.
Collapse
Affiliation(s)
- Pamela Pruski
- Computational and Systems Medicine, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London , London, W12 0NN, United Kingdom
| | - Holly V Lewis
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London , London, W12 0NN, United Kingdom
| | - Paolo Inglese
- Computational and Systems Medicine, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Gonçalo D S Correia
- Computational and Systems Medicine, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Trevor T Hansel
- Imperial Clinical Respiratory Research Unit (ICRRU), St Mary's Hospital, Mint Wing, Imperial College London , London, W2 INY, United Kingdom
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London , London, W12 0NN, United Kingdom
| | - Elaine Holmes
- Computational and Systems Medicine, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Zoltan Takats
- Computational and Systems Medicine, Imperial College London , South Kensington Campus, London, SW7 2AZ, United Kingdom
| |
Collapse
|
80
|
Dunn AB, Dunlop AL, Hogue CJ, Miller A, Corwin EJ. The Microbiome and Complement Activation: A Mechanistic Model for Preterm Birth. Biol Res Nurs 2017; 19:295-307. [PMID: 28073296 DOI: 10.1177/1099800416687648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB, <37 completed weeks' gestation) is one of the leading obstetrical problems in the United States, affecting approximately one of every nine births. Even more concerning are the persistent racial disparities in PTB, with particularly high rates among African Americans. There are several recognized pathophysiologic pathways to PTB, including infection and/or exaggerated systemic or local inflammation. Intrauterine infection is a causal factor linked to PTB thought to result most commonly from inflammatory processes triggered by microbial invasion of bacteria ascending from the vaginal microbiome. Trials to treat various infections have shown limited efficacy in reducing PTB risk, suggesting that other complex mechanisms, including those associated with inflammation, may be involved in the relationship between microbes, infection, and PTB. The complement system, a key mediator of the inflammatory response, is an innate defense mechanism involved in both normal physiologic processes that occur during pregnancy implantation and processes that promote the elimination of pathogenic microbes. Recent research has demonstrated an association between this system and PTB. The purpose of this article is to present a mechanistic model of inflammation-associated PTB, which hypothesizes a relationship between the microbiome and dysregulation of the complement system. Exploring the relationships between the microbial environment and complement biomarkers may elucidate a potentially modifiable biological pathway to PTB.
Collapse
Affiliation(s)
- Alexis B Dunn
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Carol J Hogue
- 2 Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Andrew Miller
- 3 School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Elizabeth J Corwin
- 1 Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| |
Collapse
|
81
|
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol 2017. [PMID: 29187837 DOI: 10.1080/01904168209363016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Datasets collected by high-throughput sequencing (HTS) of 16S rRNA gene amplimers, metagenomes or metatranscriptomes are commonplace and being used to study human disease states, ecological differences between sites, and the built environment. There is increasing awareness that microbiome datasets generated by HTS are compositional because they have an arbitrary total imposed by the instrument. However, many investigators are either unaware of this or assume specific properties of the compositional data. The purpose of this review is to alert investigators to the dangers inherent in ignoring the compositional nature of the data, and point out that HTS datasets derived from microbiome studies can and should be treated as compositions at all stages of analysis. We briefly introduce compositional data, illustrate the pathologies that occur when compositional data are analyzed inappropriately, and finally give guidance and point to resources and examples for the analysis of microbiome datasets using compositional data analysis.
Collapse
Affiliation(s)
- Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Jean M Macklaim
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Vera Pawlowsky-Glahn
- Departments of Computer Science, Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain
| | - Juan J Egozcue
- Department of Applied Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
82
|
Xu J, Chen Y, Zhang R, He J, Song Y, Wang J, Wang H, Wang L, Zhan Q, Abliz Z. Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging. Sci Rep 2016; 6:35010. [PMID: 27725730 PMCID: PMC5057114 DOI: 10.1038/srep35010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
We performed a metabolomics study using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis (MVDA) to discriminate global urine profiles in urine samples from esophageal squamous cell carcinoma (ESCC) patients and healthy controls (NC). Our work evaluated the feasibility of employing urine metabolomics for the diagnosis and staging of ESCC. The satisfactory classification between the healthy controls and ESCC patients was obtained using the MVDA model, and obvious classification of early-stage and advanced-stage patients was also observed. The results suggest that the combination of LC-MS analysis and MVDA may have potential applications for ESCC diagnosis and staging. We then conducted LC-MS/MS experiments to identify the potential biomarkers with large contributions to the discrimination. A total of 83 potential diagnostic biomarkers for ESCC were screened out, and 19 potential biomarkers were identified; the variations between the differences in staging using these potential biomarkers were further analyzed. These biomarkers may not be unique to ESCCs, but instead result from any malignant disease. To further elucidate the pathophysiology of ESCC, we studied related metabolic pathways and found that ESCC is associated with perturbations of fatty acid β-oxidation and the metabolism of amino acids, purines, and pyrimidines.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Jingbo Wang
- Department of Radiation Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Huiqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Luhua Wang
- Department of Radiation Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
- Centre for Bioimaging & Systems Biology, Minzu university of China, Beijing 100081, P. R. China
| |
Collapse
|
83
|
Reid G, Burton JP. Urinary incontinence: Making sense of the urinary microbiota in clinical urology. Nat Rev Urol 2016; 13:567-8. [PMID: 27644934 DOI: 10.1038/nrurol.2016.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gregor Reid
- Departments of Microbiology &Immunology, and Surgery (Urology), Western University and Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Jeremy P Burton
- Departments of Microbiology &Immunology, and Surgery (Urology), Western University and Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| |
Collapse
|
84
|
Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci 2016; 107:1173-8. [PMID: 27297561 PMCID: PMC5021036 DOI: 10.1111/cas.12987] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease. Over the past decade, increasing attention has been given to the characterization of components of ascites and their role in the progression of ovarian cancer, the most malignant gynecologic cancer in women. This review will discuss the role of ascites in disease progression, in terms of modulating cancer cell behavior and contributing to tumor heterogeneity.
Collapse
Affiliation(s)
- Soochi Kim
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Nano System Institute, Seoul National University, Seoul, Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea. .,Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
85
|
Reid G. Cervicovaginal Microbiomes-Threats and Possibilities. Trends Endocrinol Metab 2016; 27:446-454. [PMID: 27129670 DOI: 10.1016/j.tem.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/26/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022]
Abstract
The microbiome of the vagina has universal traits that override race, diet, lifestyle, and socioeconomic status. While five community state types have been proposed, the actual number is likely closer to ten. Nevertheless, while lactobacilli dominate in health for most women, a highly diverse community or single pathogens are associated with morbidity. The fact that four or five Lactobacillus species are dominant in healthy women worldwide, raises questions of why they evolved in this niche, what they are doing, and how their apparent protective properties can be harnessed? This opinion article explores this universality, elements of lactobacilli that may imprint women's health and that of their offspring, and proposes key areas for future study.
Collapse
Affiliation(s)
- Gregor Reid
- Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada; University of Western Ontario, Richmond Street, London, Canada.
| |
Collapse
|
86
|
Dols JAM, Molenaar D, van der Helm JJ, Caspers MPM, de Kat Angelino-Bart A, Schuren FHJ, Speksnijder AGCL, Westerhoff HV, Richardus JH, Boon ME, Reid G, de Vries HJC, Kort R. Molecular assessment of bacterial vaginosis by Lactobacillus abundance and species diversity. BMC Infect Dis 2016; 16:180. [PMID: 27107961 PMCID: PMC4841971 DOI: 10.1186/s12879-016-1513-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background To date, women are most often diagnosed with bacterial vaginosis (BV) using microscopy based Nugent scoring or Amsel criteria. However, the accuracy is less than optimal. The aim of the present study was to confirm the identity of known BV-associated composition profiles and evaluate indicators for BV using three molecular methods. Methods Evaluation of indicators for BV was carried out by 16S rRNA amplicon sequencing of the V5-V7 region, a tailor-made 16S rRNA oligonucleotide-based microarray, and a PCR-based profiling technique termed IS-profiling, which is based on fragment variability of the 16S-23S rRNA intergenic spacer region. An inventory of vaginal bacterial species was obtained from 40 females attending a Dutch sexually transmitted infection outpatient clinic, of which 20 diagnosed with BV (Nugent score 7–10), and 20 BV negative (Nugent score 0–3). Results Analysis of the bacterial communities by 16S rRNA amplicon sequencing revealed two clusters in the BV negative women, dominated by either Lactobacillus iners or Lactobacillus crispatus and three distinct clusters in the BV positive women. In the former, there was a virtually complete, negative correlation between L. crispatus and L. iners. BV positive subjects showed cluster profiles that were relatively high in bacterial species diversity and dominated by anaerobic species, including Gardnerella vaginalis, and those belonging to the Families of Lachnospiraceae and Leptotrichiaceae. Accordingly, the Gini-Simpson index of species diversity, and the relative abundance Lactobacillus species appeared consistent indicators for BV. Under the conditions used, only the 16S rRNA amplicon sequencing method was suitable to assess species diversity, while all three molecular composition profiling methods were able to indicate Lactobacillus abundance in the vaginal microbiota. Conclusion An affordable and simple molecular test showing a depletion of the genus Lactobacillus in combination with an increased species diversity of vaginal microbiota could serve as an alternative and practical diagnostic method for the assessment of BV. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1513-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joke A M Dols
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands.,Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Douwe Molenaar
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | - Jannie J van der Helm
- STI Outpatient Clinic, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, The Netherlands
| | - Martien P M Caspers
- Netherlands Organisation for Applied Scientific Research (TNO), Microbiology and Systems Biology, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Alie de Kat Angelino-Bart
- Netherlands Organisation for Applied Scientific Research (TNO), Microbiology and Systems Biology, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Frank H J Schuren
- Netherlands Organisation for Applied Scientific Research (TNO), Microbiology and Systems Biology, Utrechtseweg 48, 3704HE, Zeist, The Netherlands
| | - Adrianus G C L Speksnijder
- STI Outpatient Clinic, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, The Netherlands.,Naturalis Biodiversity Center, Darwinweg 2, Leiden, The Netherlands
| | - Hans V Westerhoff
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands.,Synthetic Systems Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester, UK
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mathilde E Boon
- Leiden Cytology and Pathology Laboratory, Leiden, The Netherlands.,, Present address: Achter de Hor 2, 9304 TN, Lieveren, The Netherlands
| | - Gregor Reid
- Canadian Center for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontorio, Canada; Department of Microbiology and Immunology, Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Henry J C de Vries
- STI Outpatient Clinic, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, The Netherlands.,Amsterdam Centre for Infection and Immunity (CINIMA), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Dermatology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Remco Kort
- Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands. .,Netherlands Organisation for Applied Scientific Research (TNO), Microbiology and Systems Biology, Utrechtseweg 48, 3704HE, Zeist, The Netherlands. .,Micropia, Natura Artis Magistra, Plantage Kerklaan 38-40, 1018 CZ, Amsterdam, The Netherlands.
| |
Collapse
|
87
|
Reid G. Probiotics: definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol 2016; 30:17-25. [PMID: 27048893 DOI: 10.1016/j.bpg.2015.12.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/19/2015] [Accepted: 12/11/2015] [Indexed: 01/31/2023]
Abstract
For a subject area of science, medicine and commerce to be so recently defined and investigated, few can compare to probiotics for the controversy they have incited. Barely a paper is published without the use of a different definition, or challenging the most used one, or proposing a different nuance of it. The situation has become even more surreal with the European Food and Safety Authority banning the word probiotic for use on labels. The reiteration of the FAO/WHO definition by the world's leading group of probiotic experts, should provide relative consistency in the near future, but what are the causes of these aberrations? This review will discuss the rationale for the definition, and the scope of the subject area and why alternatives emerge. While mechanisms of action are not widely proven, in vitro and some in vivo experiments support several. Ultimately, the goal of any field or product is to be understood by lay people and experts alike. Probiotics have come a long way in 100 years since Metchnikoff and 10 years since their globalization, but their evolution is far from over.
Collapse
Affiliation(s)
- Gregor Reid
- Canadian Center for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Microbiology and Immunology, Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
88
|
McMillan A, Rulisa S, Sumarah M, Macklaim JM, Renaud J, Bisanz JE, Gloor GB, Reid G. A multi-platform metabolomics approach identifies highly specific biomarkers of bacterial diversity in the vagina of pregnant and non-pregnant women. Sci Rep 2015; 5:14174. [PMID: 26387596 PMCID: PMC4585667 DOI: 10.1038/srep14174] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial vaginosis (BV) increases transmission of HIV, enhances the risk of preterm labour, and is associated with malodour. Clinical diagnosis often relies on microscopy, which may not reflect the microbiota composition accurately. We use an untargeted metabolomics approach, whereby we normalize the weight of samples prior to analysis, to obtained precise measurements of metabolites in vaginal fluid. We identify biomarkers for BV with high sensitivity and specificity (AUC = 0.99) in a cohort of 131 pregnant and non-pregnant Rwandan women, and demonstrate that the vaginal metabolome is strongly associated with bacterial diversity. Metabolites associated with high diversity and clinical BV include 2-hydroxyisovalerate and γ-hydroxybutyrate (GHB), but not succinate, which is produced by both Lactobacillus crispatus and BV-associated anaerobes in vitro. Biomarkers associated with high diversity and clinical BV are independent of pregnancy status, and were validated in a blinded replication cohort from Tanzania (n = 45), where we predicted clinical BV with 91% accuracy. Correlations between the metabolome and microbiota identified Gardnerella vaginalis as a putative producer of GHB, and we demonstrate production by this species in vitro. This work illustrates how changes in community structure alter the chemical composition of the vagina, and identifies highly specific biomarkers for a common condition.
Collapse
Affiliation(s)
- Amy McMillan
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Stephen Rulisa
- University of Rwanda, and University Teaching Hospital of Kigali, Kigali, Rwanda
| | - Mark Sumarah
- Agriculture and Agri-food Canada, London, Ontario, Canada
| | - Jean M. Macklaim
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Justin Renaud
- Agriculture and Agri-food Canada, London, Ontario, Canada
| | - Jordan E. Bisanz
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Gregory B. Gloor
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
- Department of Surgery, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|