51
|
Abstract
PURPOSE OF REVIEW An elevated level of pro-inflammatory cytokines in inflammatory conditions causes bone loss and disrupts vital organ function. Osteocytes comprise > 95% of the cellular component in bone tissue, produce a range of cytokines and signaling molecules, and influence bone and other organ function. In this review, we hypothesized that an elevated level of pro-inflammatory cytokines in inflammatory conditions affects osteocyte survival and function thereby possibly amplifying inflammation, and causing bone loss and non-bone clinical complications. RECENT FINDINGS Several studies have reported that the elevated level of pro-inflammatory cytokines in inflammatory conditions alters osteocyte mechanosensitivity, causes osteocyte apoptosis, and modulates osteocyte-derived production of various inflammatory cytokines and signaling molecules. Cytokines and signaling molecules released from osteocytes affect surrounding bone cells and distant organ function in a paracrine and endocrine fashion. Inflammatory diseases including diabetes, chronic kidney disease, rheumatoid arthritis, and periodontitis affect osteocyte survival and function, and upregulate osteocyte-derived expression of sclerostin, RANKL, TNFα, FGF23, DKK1, and other signaling molecules.
Collapse
Affiliation(s)
- Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510140, China
| | - Shuyi Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510140, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39, Guangzhou, 510140, China.
| |
Collapse
|
52
|
Sakamoto M, Fukunaga T, Sasaki K, Seiryu M, Yoshizawa M, Takeshita N, Takano-Yamamoto T. Vibration enhances osteoclastogenesis by inducing RANKL expression via NF-κB signaling in osteocytes. Bone 2019; 123:56-66. [PMID: 30902792 DOI: 10.1016/j.bone.2019.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
To shorten the duration of orthodontic treatment it is important not only to reduce risks such as dental caries, periodontal disease, and root resorption, but also to decrease pain and discomfort caused by a fixed appliance. Several studies have investigated the effect of vibration applied to fixed appliances to accelerate tooth movement. Although it was reported that vibration accelerates orthodontic tooth movement by enhancing alveolar bone resorption, the underlying cellular and molecular mechanisms remain unclear. In this study, we investigated the effects of vibration on osteoclastogenesis in vitro and in vivo. Vibration applied to pre-osteoclast cell line RAW264.7 cells enhanced cell proliferation but did not affect their differentiation into osteoclasts. Osteocytes in bone are known to be mechanosensitive and to act as receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL). Therefore, in the present study, vibration was applied to cells from the osteocyte-like cell line MLO-Y4. In MLO-Y4 cells, vibration induced phosphorylation of the inhibitor of NF-κB (IκB) and caused nuclear localization of NF-κB p65. Additionally, vibration increased RANKL mRNA expression, but did not affect osteoprotegerin (OPG) mRNA expression in MLO-Y4 cells, thus resulting in an increased RANKL/OPG ratio. Consistent with these findings, vibration applied during experimental tooth movement increased NF-κB activation and RANKL expression in osteocytes on the compression side of alveolar bone in vivo, whereas vibration had no such effects on the tension side. Furthermore, in a co-culture of MLO-Y4 cells and RAW264.7 cells, vibration applied to MLO-Y4 cells enhanced osteoclastogenesis. These findings suggest that vibration could accelerate orthodontic tooth movement by enhancing osteoclastogenesis through increasing the number of pre-osteoclasts and up-regulating RANKL expression in osteocytes on the compression side of alveolar bone via NF-κB activation.
Collapse
Affiliation(s)
- Mayuri Sakamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Masahiro Seiryu
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Mitsuhiro Yoshizawa
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586, Japan.
| |
Collapse
|
53
|
Park OJ, Kim J, Kim HY, Kwon Y, Yun CH, Han SH. Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation. Microb Pathog 2018; 126:218-223. [PMID: 30414445 DOI: 10.1016/j.micpath.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 01/18/2023]
Abstract
Streptococcus gordonii is commonly found in the periapical endodontic lesions of patients with apical periodontitis, a condition characterized by inflammation and periapical bone loss. Since bone metabolism is controlled by osteoclastic bone resorption and osteoblastic bone formation, we investigated the effects of S. gordonii on the differentiation and function of osteoclasts and osteoblasts. For the determination of bone resorption activity in vivo, collagen sheets soaked with heat-killed S. gordonii were implanted on mouse calvaria, and the calvarial bones were scanned by micro-computed tomography. Mouse bone marrow-derived macrophages (BMMs) were stimulated with M-CSF and RANKL for 2 days and then differentiated into osteoclasts in the presence or absence of heat-killed S. gordonii. Tartrate-resistant acid phosphatase staining was performed to determine osteoclast differentiation. Primary osteoblast precursors were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the presence or absence of heat-killed S. gordonii. Alkaline phosphatase staining and alizarin red S staining were conducted to determine osteoblast differentiation. Western blotting was performed to examine the expression of transcription factors including c-Fos, NFATc1, and Runx2. Heat-killed S. gordonii induced bone destruction in a mouse calvarial implantation model. The differentiation of RANKL-primed BMMs into osteoclasts was enhanced in the presence of heat-killed S. gordonii. Heat-killed S. gordonii increased the expression of c-Fos and NFATc1, which are essential transcription factors for osteoclast differentiation. On the other hand, heat-killed S. gordonii inhibited osteoblast differentiation and reduced the expression of Runx2, an essential transcription factor for osteoblast differentiation. S. gordonii exerts bone resorptive activity by increasing osteoclast differentiation and reducing osteoblast differentiation, which may be involved in periapical bone resorption.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
54
|
Zhu S, Ehnert S, Rouß M, Häussling V, Aspera-Werz RH, Chen T, Nussler AK. From the Clinical Problem to the Basic Research-Co-Culture Models of Osteoblasts and Osteoclasts. Int J Mol Sci 2018; 19:ijms19082284. [PMID: 30081523 PMCID: PMC6121694 DOI: 10.3390/ijms19082284] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bone tissue undergoes constant remodeling and healing when fracture happens, in order to ensure its structural integrity. In order to better understand open biological and clinical questions linked to various bone diseases, bone cell co-culture technology is believed to shed some light into the dark. Osteoblasts/osteocytes and osteoclasts dominate the metabolism of bone by a multitude of connections. Therefore, it is widely accepted that a constant improvement of co-culture models with both cell types cultured on a 3D scaffold, is aimed to mimic an in vivo environment as closely as possible. Although in recent years a considerable knowledge of bone co-culture models has been accumulated, there are still many open questions. We here try to summarize the actual knowledge and address open questions.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Marc Rouß
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Victor Häussling
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Tao Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
55
|
Zhou W, Su L, Duan X, Chen X, Hays A, Upadhyayula S, Shivde J, Wang H, Li Y, Huang D, Liang S. MicroRNA-21 down-regulates inflammation and inhibits periodontitis. Mol Immunol 2018; 101:608-614. [PMID: 29884447 DOI: 10.1016/j.molimm.2018.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023]
Abstract
Periodontitis is one of the most prevalent inflammatory diseases, characterized by gingival inflammation and alveolar bone loss. MicroRNAs (MiRNAs) are important regulators of inflammation and involved in periodontitis pathogenesis. In this work, we studied the roles of microRNA-21 (miR-21) in periodontitis. MiR-21 is up-regulated in both periodontitis patients and the mice that induced with periodontitis. We tested the roles of miR-21 in the macrophages challenged by periodontitis pathogen Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). MiR-21 expression is up-regulated in P. gingivalis LPS-stimulated macrophages. MiR-21 mimic inhibits the pro-inflammatory cytokine production by macrophages, while miR-21 deficiency elevates the production of pro-inflammatory cytokines. Moreover, absence of miR-21 promotes activation of nuclear factor-κB (NF-κB) in P. gingivalis LPS- stimulated cells. In a murine periodontitis model, ligation induced exacerbated gingival inflammation and alveolar bone loss in miR-21 deficient mice than their wild-type littermates. These results demonstrated the anti-inflammatory function of miR-21 in vitro and in vivo, indicating miR-21 could be an interventional target for the control of periodontitis.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Su
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA; School of Public Health, Lanzhou University, Lanzhou, China
| | - Xingyu Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aislinn Hays
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Satya Upadhyayula
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Juili Shivde
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
56
|
Zheng J, Chen S, Albiero M, Vieira G, Wang J, Feng J, Graves D. Diabetes Activates Periodontal Ligament Fibroblasts via NF-κB In Vivo. J Dent Res 2018; 97:580-588. [PMID: 29439598 PMCID: PMC5958371 DOI: 10.1177/0022034518755697] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus increases periodontitis and pathogenicity of the oral microbiome. To further understand mechanisms through which diabetes affects periodontitis, we examined its impact on periodontal ligament fibroblasts in vivo and in vitro. Periodontitis was induced by inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in normoglycemic and diabetic mice. Diabetes, induced by multiple low-dose injections of streptozotocin increased osteoclast numbers and recruitment of neutrophils to the periodontal ligament, which could be accounted for by increased CXC motif chemokine 2 (CXCL2) and receptor activator of nuclear factor kappa B ligand (RANKL) expression by these cells. Diabetes also stimulated a significant increase in nuclear factor kappa B (NF-κB) expression and activation in periodontal ligament (PDL) fibroblasts. Surprisingly, we found that PDL fibroblasts express a 2.3-kb regulatory unit of Col1α1 (collagen type 1, alpha 1) promoter typical of osteoblasts. Diabetes-enhanced CXCL2 and RANKL expression in PDL fibroblasts was rescued in transgenic mice with lineage-specific NF-κB inhibition controlled by this regulatory element. In vitro, high glucose increased NF-κB transcriptional activity, NF-κB nuclear localization, and RANKL expression in PDL fibroblasts, which was reduced by NF-κB inhibition. Thus, diabetes induces changes in PDL fibroblast gene expression that can enhance neutrophil recruitment and bone resorption, which may be explained by high glucose-induced NF-κB activation. Furthermore, PDL fibroblasts express a regulatory element in vivo that is typical of committed osteoblasts.
Collapse
Affiliation(s)
- J. Zheng
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S. Chen
- Department of Periodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Stomatology, Beijing
Anzhen Hospital, Capital Medical University, Beijing, China
| | - M.L. Albiero
- Department of Prosthodontics and
Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba,
Brazil
| | - G.H.A. Vieira
- Department of Oral Surgery and
Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo,
Ribeirão Preto, Brazil
| | - J. Wang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences,
College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - J.Q. Feng
- Department of Biomedical Sciences,
College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - D.T. Graves
- Department of Periodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
57
|
Wang T, Li S, Yi D, Zhou GQ, Chang Z, Ma PX, Xiao G, Chen D. CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells. Bone Res 2018; 6:10. [PMID: 29619270 PMCID: PMC5874245 DOI: 10.1038/s41413-018-0010-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip-/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip-deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip-/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 200011 Shanghai, China
| | - Shan Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Guang-Qian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, 518060 Shenzhen, China
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University School of Medicine, 100084 Beijing, China
| | - Peter X. Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Guozhi Xiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
58
|
Xiao E, Mattos M, Vieira GHA, Chen S, Corrêa JD, Wu Y, Albiero ML, Bittinger K, Graves DT. Diabetes Enhances IL-17 Expression and Alters the Oral Microbiome to Increase Its Pathogenicity. Cell Host Microbe 2018; 22:120-128.e4. [PMID: 28704648 DOI: 10.1016/j.chom.2017.06.014] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/13/2017] [Accepted: 06/23/2017] [Indexed: 02/06/2023]
Abstract
Diabetes is a risk factor for periodontitis, an inflammatory bone disorder and the greatest cause of tooth loss in adults. Diabetes has a significant impact on the gut microbiota; however, studies in the oral cavity have been inconclusive. By 16S rRNA sequencing, we show here that diabetes causes a shift in oral bacterial composition and, by transfer to germ-free mice, that the oral microbiota of diabetic mice is more pathogenic. Furthermore, treatment with IL-17 antibody decreases the pathogenicity of the oral microbiota in diabetic mice; when transferred to recipient germ-free mice, oral microbiota from IL-17-treated donors induced reduced neutrophil recruitment, reduced IL-6 and RANKL, and less bone resorption. Thus, diabetes-enhanced IL-17 alters the oral microbiota and renders it more pathogenic. Our findings provide a mechanistic basis to better understand how diabetes can increase the risk and severity of tooth loss.
Collapse
Affiliation(s)
- E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University, School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Shanshan Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jôice Dias Corrêa
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yingying Wu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | | | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Graves DT, Alshabab A, Albiero ML, Mattos M, Correa JD, Chen S, Yang Y. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol 2018; 45:285-292. [PMID: 29220094 PMCID: PMC5811370 DOI: 10.1111/jcpe.12851] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 02/05/2023]
Abstract
AIM Periodontitis results from bacteria-induced inflammation. A key cytokine, RANKL, is produced by a number of cell types. The cellular source of RANKL critical for periodontitis has not been established. METHODS We induced periodontal bone loss by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in both normoglycaemic and streptozotocin-induced type 1 diabetic mice. Experimental transgenic mice had osteocyte-specific deletion of floxed receptor activator of nuclear factor kappa-B ligand (RANKL) mediated by DMP-1-driven Cre recombinase. Outcomes were assessed by micro-CT, histomorphometric analysis, immunofluorescent analysis of RANKL and tartrate-resistant acid phosphatase staining for osteoclasts and osteoclast activity. RESULTS Oral infection stimulated RANKL expression in osteocytes of wild-type mice, which was increased by diabetes and blocked in transgenic mice. Infected wild-type mice had significant bone loss and increased osteoclast numbers and activity, which were further enhanced by diabetes. No bone loss or increase in osteoclastogenesis or activity was detected in transgenic mice with RANKL deletion in osteocytes that were normoglycaemic or diabetic. CONCLUSIONS This study demonstrates for the first time the essential role of osteocytes in bacteria-induced periodontal bone loss and in diabetes-enhanced periodontitis.
Collapse
Affiliation(s)
- Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Alshabab
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontics, Faculty of Dentistry, Najran University, Saudi Arabia
| | - Mayra Laino Albiero
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Periodontics, State University of Campinas, Piracicaba, Brazil
| | - Marcelo Mattos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joice Dias Correa
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Shanshan Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
60
|
Kim JH, Kim AR, Choi YH, Jang S, Woo GH, Cha JH, Bak EJ, Yoo YJ. Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis. PLoS One 2017; 12:e0189702. [PMID: 29240821 PMCID: PMC5730195 DOI: 10.1371/journal.pone.0189702] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
Type 1 diabetes with periodontitis shows elevated TNF-α expression. Tumor necrosis factor (TNF)-α stimulates the expression of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin. The objective of this study was to determine the effect of TNF-α expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis using infliximab (IFX), a TNF-α antagonist. Rats were divided into two timepoint groups: day 3 and day 20. Each timepoint group was then divided into four subgroups: 1) control (C, n = 6 for each time point); 2) periodontitis (P, n = 6 for each time point); 3) diabetes with periodontitis (DP, n = 8 for each time point); and 4) diabetes with periodontitis treated with IFX (DP+IFX, n = 8 for each time point). To induce type 1 diabetes, rats were injected with streptozotocin (50 mg/kg dissolved in 0.1 M citrate buffer). Periodontitis was then induced by ligature of the mandibular first molars at day 7 after STZ injection (day 0). IFX was administered once for the 3 day group (on day 0) and twice for the 20 day group (on days 7 and 14). The DP group showed greater alveolar bone loss than the P group on day 20 (P = 0.020). On day 3, higher osteoclast formation and RANKL-positive osteocytes in P group (P = 0.000 and P = 0.011, respectively) and DP group (P = 0.006 and P = 0.017, respectively) than those in C group were observed. However, there was no significant difference in osteoclast formation or RANKL-positive osteocytes between P and DP groups. The DP+IFX group exhibited lower alveolar bone loss (P = 0.041), osteoclast formation (P = 0.019), and RANKL-positive osteocytes (P = 0.009) than that of the DP group. On day 20, DP group showed a lower osteoid area (P = 0.001) and more sclerostin-positive osteocytes (P = 0.000) than P group. On days 3 and 20, the DP+IFX group showed more osteoid area (P = 0.048 and 0.040, respectively) but lower sclerostin-positive osteocytes (both P = 0.000) than DP group. Taken together, these results suggest that TNF-α antagonist can diminish osteocytic RANKL/sclerostin expression and osteoclast formation, eventually recovering osteoid formation. Therefore, TNF-α might mediate alveolar bone loss via inducing expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yun Hui Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sungil Jang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gye-Hyeong Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- * E-mail: (YJY); (EJB)
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- * E-mail: (YJY); (EJB)
| |
Collapse
|
61
|
de Vries TJ, Andreotta S, Loos BG, Nicu EA. Genes Critical for Developing Periodontitis: Lessons from Mouse Models. Front Immunol 2017; 8:1395. [PMID: 29163477 PMCID: PMC5663718 DOI: 10.3389/fimmu.2017.01395] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Stefano Andreotta
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands.,Opris Dent SRL, Sibiu, Sibiu, Romania
| |
Collapse
|
62
|
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences. Int J Mol Sci 2017; 18:ijms18061166. [PMID: 28561779 PMCID: PMC5485990 DOI: 10.3390/ijms18061166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
Collapse
|
63
|
Luan X, Zhou X, Trombetta-eSilva J, Francis M, Gaharwar A, Atsawasuwan P, Diekwisch T. MicroRNAs and Periodontal Homeostasis. J Dent Res 2017; 96:491-500. [PMID: 28068481 PMCID: PMC5453493 DOI: 10.1177/0022034516685711] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic effort toward harnessing the enormous therapeutic potential of these small molecules will greatly benefit the future of periodontal patient care.
Collapse
Affiliation(s)
- X. Luan
- Department of Oral Biology, UIC College of Dentistry, Chicago, IL, USA
| | - X. Zhou
- Department of Periodontics, UIC College of Dentistry, Chicago, IL, USA
| | - J. Trombetta-eSilva
- Texas A&M University College of Dentistry, Center for Craniofacial Research and Diagnosis and Department of Periodontics, Dallas, TX, USA
| | - M. Francis
- Department of Oral Biology, UIC College of Dentistry, Chicago, IL, USA
| | - A.K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, USA
| | - P. Atsawasuwan
- Department of Orthodontics, UIC College of Dentistry, Chicago, IL, USA
| | - T.G.H. Diekwisch
- Texas A&M University College of Dentistry, Center for Craniofacial Research and Diagnosis and Department of Periodontics, Dallas, TX, USA
| |
Collapse
|
64
|
Yu K, Ma Y, Li X, Wu X, Liu W, Li X, Shen J, Wang H. Lipopolysaccharide increases IL-6 secretion via activation of the ERK1/2 signaling pathway to up-regulate RANKL gene expression in MLO-Y4 cells. Cell Biol Int 2016; 41:84-92. [PMID: 27778412 DOI: 10.1002/cbin.10696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022]
Abstract
Lipopolysaccharide (LPS) plays an important role in bone resorption, which involves numerous cytokines through various signaling pathways. RANKL and interleukin (IL)-6 are two important cytokines that are involved in bone remodeling. The aim of this study was to evaluate the effect of LPS on RANKL and IL-6 gene expression, the relationship of RANKL and IL-6, and the role of extracellular signal-regulated kinases 1/2 (ERK1/2) on IL-6 secretion induced by LPS in MLO-Y4 cells. The cells were stimulated by LPS at different concentrations (1, 10, 100, 500, and 1000 ng/mL) for different durations (0.5, 1, 2, 4, and 8 h and 0.5, 1, 1.5, 2, and 4 h), and the mRNA expressions of RANKL and IL-6 were determined by PCR. In the presence of 100 ng/mL LPS at different time points (0.5, 1, 1.5, 2, and 4 h), IL-6 secretion and ERK1/2 phosphorylation in the cells were determined by ELISA and western blotting, respectively. STAT3 phosphorylation in cells simulated by 100 ng/mL LPS at different time points (0.5, 1, 2, 4, and 8 h) was assessed by western blotting. We found that LPS significantly up-regulated RANKL expression and activated the ERK1/2 pathway to induce IL-6 mRNA expression and protein synthesis in MLO-Y4 cells. However, the increased IL-6 was blocked by pre-treatment of MLO-Y4 cells with the ERK1/2 inhibitor U0126 (10 µM), and the enhanced RANKL was blocked by the STAT3 inhibitor S3I-201 (100 µM). Our results indicate that LPS up-regulates osteocyte expression of RANKL and IL-6, and the increased RANKL is associated with the up-regulation of IL-6, which involves the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ke Yu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China.,College of Stomatology, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xianxian Li
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610041, China
| | - Xiangnan Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenjia Liu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|