51
|
Salhi O, Ez‐zine T, El Rhazi M. Hybrid Materials Based on Conducting Polymers for Nitrite Sensing: A Mini Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ouissal Salhi
- Laboratory of Materials Membranes and Environment Morocco Faculty of Sciences and Technologies University Hassan II Casablanca P.B. 146 Mohammedia 20800 Morocco
| | - Tarik Ez‐zine
- Laboratory of Materials Membranes and Environment Morocco Faculty of Sciences and Technologies University Hassan II Casablanca P.B. 146 Mohammedia 20800 Morocco
| | - Mama El Rhazi
- Laboratory of Materials Membranes and Environment Morocco Faculty of Sciences and Technologies University Hassan II Casablanca P.B. 146 Mohammedia 20800 Morocco
| |
Collapse
|
52
|
Adsorption performance of calcined copper-aluminum layered double hydroxides/CNT/PVDF composite films toward removal of carminic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
53
|
Ren Q, Ma Y, Zhang S, Ga L, Ai J. One-Step Synthesis of Water-Soluble Silver Sulfide Quantum Dots and Their Application to Bioimaging. ACS OMEGA 2021; 6:6361-6367. [PMID: 33718726 PMCID: PMC7948225 DOI: 10.1021/acsomega.0c06276] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/17/2021] [Indexed: 05/15/2023]
Abstract
This work reports a simple water-phase microwave method for the synthesis of water-soluble red emission Ag2S quantum dots at low temperatures without the need for an anaerobic process. It is worth noting that the prepared water-soluble Ag2S quantum dots enjoy positive water dispersion stability. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) results showed that the prepared Ag2S quantum dots had promising biocompatibility and low cytotoxicity. In addition, we further applied the low-toxicity near-infrared Ag2S quantum dots for cell imaging, demonstrating a promising biological probe for cell imaging.
Collapse
Affiliation(s)
- Qiaoli Ren
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
| | - Yuheng Ma
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Shumin Zhang
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
| | - Lu Ga
- College
of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, People’s Republic of China
- . Tel: +86-13404832082
| | - Jun Ai
- College
of Chemistry and Environmental Science, Inner Mongolian Key Laboratory
for Enviromental Chemistry, Inner Mongolia
Normal University, 81 Zhaowudalu, Hohhot 010022, People’s Republic of China
- . Tel: +86-15947515147
| |
Collapse
|
54
|
Sang D, Wang K, Sun X, Wang Y, Lin H, Jia R, Qu F. NIR-Driven Intracellular Photocatalytic O 2 Evolution on Z-Scheme Ni 3S 2/Cu 1.8S@HA for Hypoxic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9604-9619. [PMID: 33605733 DOI: 10.1021/acsami.0c21284] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypoxia in a tumor microenvironment (TME) has inhibited the photodynamic therapy (PDT) efficacy. Here, Ni3S2/Cu1.8S nanoheterostructures were synthesized as a new photosensitizer, which also realizes the intracellular photocatalytic O2 evolution to relieve hypoxia in TME and enhance PDT as well. With the narrow band gap (below 1.5 eV), the near infrared (NIR) (808 nm) can stimulate their separation of the electron-hole. The novel Z-scheme nanoheterostructures, testified by experimental data and density functional theory (DFT) calculation, possess a higher redox ability, endowing the photoexited holes with sufficient potential to oxide H2O into O2, directly. Meanwhile, the photostimulated electrons can capture the dissolved O2 to form a toxic reactive oxygen species (ROS). Moreover, Ni3S2/Cu1.8S nanocomposites also possess the catalase-/peroxidase-like activity to convert the endogenous H2O2 into ·OH and O2, which not only cause chemodynamic therapy (CDT) but also alleviate hypoxia to assist the PDT as well. In addition, owing to the narrow band gap, they possess a high NIR harvest and great photothermal conversion efficiency (49.5%). It is noted that the nanocomposites also exhibit novel biodegradation and can be metabolized and eliminated via feces and urine within 2 weeks. The present single electrons in Ni/Cu ions induce the magnetic resonance imaging (MRI) ability for Ni3S2/Cu1.8S. To make sure that the cancer cells were specifically targeted, hyaluronic acid (HA) was grafted outside and Ni3S2/Cu1.8S@HA integrated photodynamic therapy (PDT), chemodynamic therapy (CDT), and photothermal therapy (PTT) to exhibit the great anticancer efficiency for hypoxic tumor elimination.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University and TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Heilongjiang 150025, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University and TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Heilongjiang 150025, China
| | - Ying Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Ran Jia
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
55
|
Pomegranate fruit fleshy pericarp mediated silver nanoparticles possessing antimicrobial, antibiofilm formation, antioxidant, biocompatibility and anticancer activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102289] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Ramezani B, Hossein Shahverdizadeh G, Edjlali L, Ramezani F, Babazadeh M. Sonochemical Synthesis of Differently‐Sized Nanoparticles of a Silver(I) Compound: An Optical, Anticancer, and Thermal Activity Evaluation Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202003173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bahman Ramezani
- Department of Chemistry, Tabriz Branch Islamic Azad University Tabriz Iran
| | | | - Ladan Edjlali
- Department of Chemistry, Tabriz Branch Islamic Azad University Tabriz Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine School of Advanced Medical Sciences Tabriz Iran
| | | |
Collapse
|
57
|
Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128392] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
58
|
Sharbaf Moghadas MR, Motamedi E, Nasiri J, Naghavi MR, Sabokdast M. Proficient dye removal from water using biogenic silver nanoparticles prepared through solid-state synthetic route. Heliyon 2020; 6:e04730. [PMID: 32904200 PMCID: PMC7452412 DOI: 10.1016/j.heliyon.2020.e04730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 08/12/2020] [Indexed: 11/02/2022] Open
Abstract
An environmentally benign, one-pot and highly scalable method was presented to produce biogenic silver nanoparticles (Ag NPs) using the solid-state synthetic route. Four plant-derived candidate bio-reductants (i.e., Datura stramonium, Papaver orientale, Mentha piperita, and Cannabis sativa) were investigated to compare the efficiency of solid-state route and typical solution method. M. piperita was selected as the best plant resource to produce totally pure and uniform Ag NPs (average diameter of 15 nm) without any aggregation. The purity and size of biogenic Ag NPs, were tailored by adjusting the M. piperita leaf powder/silver nitrate weight ratio and temperature. The as-synthesized Ag NPs were effectively utilized as an eco-friendly nanoadsorbent in water remediation to remove a model dye (i.e., crystal violet). The key factors affecting on the sorption process (i.e., nanoadsorbent dosage, temperature, pH, dye initial concentration, and shaking time) were investigated. The pseudo-second-order kinetic model was well fitted to the sorption process and at the optimum sorption conditions, based on the Langmuir model, the adsorption capacity was found to be 704.7 mg/g. The current, cost effective and feasible method could be considered as an applicable strategy to produce green, reusable and proficient Ag NPs as nanoadsorbents for removal of dyes from contaminated water.
Collapse
Affiliation(s)
- Mohsen Rahimi Sharbaf Moghadas
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jaber Nasiri
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Manije Sabokdast
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| |
Collapse
|
59
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
60
|
Aminianfar M, Parvardeh S, Soleimani M. In vitro and in vivo Assessment of Silver Nanoparticles Against Clostridium botulinum Type A Botulinum. Curr Drug Discov Technol 2020; 16:113-119. [PMID: 29623844 DOI: 10.2174/1570163815666180403163946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clostridium botulinum causes botulism, a serious paralytic illness that results from the ingestion of a botulinum toxin. Because silver nanoparticle products exhibit strong antimicrobial activity, applications for silver nanoparticles in healthcare have expanded. Therefore, the objective of the current study was to assess a therapeutic strategy for the treatment of botulism toxicity using silver nanoparticles. METHODS A preliminary test was conducted using doses that produce illness in laboratory animals to determine the absolute lethal dose (LD100) of botulinum toxin type A (BoNT/A) in mice. Next, the test animals were divided into six groups containing six mice each. Groups I, II and III were the negative control (botulinum toxin only), positive control-1 (nano-silver only) and positive control-2 (no treatment), respectively. The remaining groups were allocated to the toxin that was supplemented with three nano-silver treatments. RESULTS The mortality rates of mice caused by BoNT/A significantly reduced in the treatment groups with different doses and injection intervals of nano-silver when compared to the negative control group. BoNT/A toxicity induced by intraperitoneal injection of the toxin of Clostridium botulinum causes rapid death while when coupled with nano-osilver results in delayed death in mice. CONCLUSION These results, while open to future improvement, represent a preliminary step towards the satisfactory control of BoNT/A with the use of silver nanoparticles for human protection against this bioterrorism threat. Further study in this area can elucidate the underlying mechanism for detoxifying BoNT/A by silver nanoparticles.
Collapse
Affiliation(s)
- Mohammad Aminianfar
- Department of Infectious Diseases, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soleimani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Das TR, Sharma PK. Hydrothermal-assisted green synthesis of Ni/Ag@rGO nanocomposite using Punica granatum juice and electrochemical detection of ascorbic acid. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104850] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Schubert J, Khosrawipour T, Pigazzi A, Kulas J, Bania J, Migdal P, Arafkas M, Khosrawipour V. Evaluation of Cell-detaching Effect of EDTA in Combination with Oxaliplatin for a Possible Application in HIPEC After Cytoreductive Surgery: A Preliminary in-vitro Study. Curr Pharm Des 2020; 25:4813-4819. [PMID: 31692422 DOI: 10.2174/1381612825666191106153623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Ethylenediaminetetraacetic acid (EDTA), a commonly used compound in laboratory medicine, is known for its membrane-destabilization capacity and cell-detaching effect. This preliminary study aims to assess the potential of EDTA in removing residual tumor cell clusters. Using an in-vitro model, this effect is then compared to the cytotoxic effect of oxaliplatin which is routinely administered during HIPEC procedures. The overall cell toxicity and cell detaching effects of EDTA are compared to those of Oxaliplatin and the additive effect is quantified. METHODS HT-29 (ATCC® HTB-38™) cells were treated with A) EDTA only B) Oxaliplatin only and C) both agents using an in-vitro model. Cytotoxicity and cell detachment following EDTA application were measured via colorimetric MTS assay. Additionally, detached cell groups were visualized using light microscopy and further analyzed by means of electron microscopy. RESULTS When solely applied, EDTA does not exhibit any cell toxicity nor does it add any toxicity to oxaliplatin. However, EDTA enhances the detachment of adherent colon carcinoma cells by removing up to 65% (p<0.05) of the total initial cell amount. In comparison, the sole application of highly concentrated oxaliplatin induced cell mortality by up to 66% (p<0.05). While detached cells showed no mortality after EDTA treatment, cell clusters exhibited a decreased amount of extracellular and adhesive matrix in-between cells. When combined, Oxaliplatin and EDTA display a significant additive effect with only 30% (mean p <0.01) of residual vitality detected in the initial well. EDTA and Oxaliplatin remove up to 81% (p <0.01) of adhesive HT-29 cells from the surface either by cytotoxic effects or cell detachment. CONCLUSION Our data support EDTA's potential to remove microscopical tumor cell clusters from the peritoneum and possibly act as a supplementary agent in HIPEC procedures with chemotherapy. While adding EDTA to HIPEC procedures may significantly decrease the risk of PM recurrence, further in-vivo and clinical trials are required to evaluate this effect.
Collapse
Affiliation(s)
- Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Tanja Khosrawipour
- Department of Surgery (A), University-Hospital Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Division of Colorectal Surgery, Department of Surgery, University of California Irvine (UCI), 333 City Blvd West Suite 850, Orange, CA 92868, United States
| | - Alessio Pigazzi
- Division of Colorectal Surgery, Department of Surgery, University of California Irvine (UCI), 333 City Blvd West Suite 850, Orange, CA 92868, United States
| | - Joanna Kulas
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, ul. C.K. Norwida 31, 50-375 Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Pawel Migdal
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, ul. Chelmonskiego 38C, 51-631 Wroclaw, Poland
| | - Mohamed Arafkas
- Department of Plastic Surgery, Ortho-Klinik Dortmund, Virchowstrasse 4, 44263 Dortmund, Germany
| | - Veria Khosrawipour
- Division of Colorectal Surgery, Department of Surgery, University of California Irvine (UCI), 333 City Blvd West Suite 850, Orange, CA 92868, United States.,Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, ul. C.K. Norwida 31, 50-375 Wroclaw, Poland
| |
Collapse
|
63
|
Chen S, Ren Y, Duan P. Biomimetic nanoparticle loading obatoclax mesylate for the treatment of non-small-cell lung cancer (NSCLC) through suppressing Bcl-2 signaling. Biomed Pharmacother 2020; 129:110371. [PMID: 32563984 DOI: 10.1016/j.biopha.2020.110371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer still remains a leading cause of cancer mortality in the world. Obatoclax mesylate (OM), a B cell chronic lymphocytic leukemia/lymphoma 2 (Bcl-2) family antagonist, is a potential antitumor drug. However, its poor aqueous solubility restricts its clinical application. Although these inherent defects, nanotechnology can be used to improve the solubility and tumor target of OM, promoting its antitumor efficiency. In the present study, the poly(lactic-coglycolic acid) (PLGA) was used and combined with red blood-cell membrane (RBCm) to explore if OM-loaded RBCm nanoparticles could improve the antitumor efficacy of OM for the treatment of lung cancer with relatively lower side effects compared with the free OM. The good physicochemical stability of the prepared RBCm-OM/PLGA nanoparticles was confirmed, and the optimal size of 153 nm was screened out, along with sustained drug release behavior. We found that RBCm-OM/PLGA nanoparticles effectively reduced the proliferation of lung cancer cells. Additionally, RBCm-OM/PLGA nanoparticles considerably induced apoptosis in lung cancer cells by reducing Bcl-2 expression levels, accompanied with the improved Cyto-c releases in cytoplasm and Caspase-3 activation. Mitochondrial membrane potential was also obviously impaired in lung cancer cells incubated with RBCm-OM/PLGA nanoparticles. Compared with free OM, RBCm-OM/PLGA nanoparticles could greatly prolong the drug circulation time in vivo and upgraded the drug concentration accumulated in tumor tissue. Furthermore, RBCm-OM/PLGA nanoparticles exerted stronger antitumor efficacy in vivo against lung cancer progression with superior safety. Therefore, RBCm-OM/PLGA nanoparticles provided new potential for lung cancer therapy with the improved safety and therapeutic effect.
Collapse
Affiliation(s)
- Song Chen
- Department of Radiology, XD Group Hospital, Xi'an City, Shaanxi Province, 710077, China
| | - Yujie Ren
- Department of CT Room, Dongying People's Hospital, Dongying City, Shandong Province, 257091, China
| | - Peng Duan
- Department of Oncology, The Third People's Hospital of Qingdao, Qingdao City, Shandong Province, 266041, China.
| |
Collapse
|
64
|
Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2020; 20:522-539. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including "off-target" effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| |
Collapse
|
65
|
Nikaeen G, Yousefinejad S, Rahmdel S, Samari F, Mahdavinia S. Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles using Plantago major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity. Sci Rep 2020; 10:9642. [PMID: 32541669 PMCID: PMC7295808 DOI: 10.1038/s41598-020-66357-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/19/2020] [Indexed: 11/09/2022] Open
Abstract
Central composite design (CCD) was applied to optimize the synthesis condition of silver nanoparticles (AgNPs) using the extract of Plantago major (P. major) seeds via a low cost and single-step process. The aqueous seed extract was applied as both reducing element and capping reagent for green production of AgNPs. Five empirical factors of synthesis including temperature (Temp), pH, volume of P. major extract (Vex), volume of AgNO3 solution (VAg) and synthesis time were used as independent variables of model and peak intensity of Surface Plasmon Resonance (SPR) originated from NPs as the dependent variable. The predicted optimal conditions was determined to be: Temp = 55 °C, pH = 9.9,Vex = 1.5 mL, VAg = 30 mL, time = 60 min. The characterization of the prepared AgNPs at these optimum conditions was conducted by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) to determine the surface bio-functionalities. Bio-activity of these AgNPs against bacteria and fungi were evaluated based on its assay against Micrococcus luteus, Escherichia coli and Penicillium digitatum. Furthermore, antioxidant capacity of these NPs was checked using the ferric reducing antioxidant power (FRAP) assay.
Collapse
Affiliation(s)
- Ghazal Nikaeen
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samane Rahmdel
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fayezeh Samari
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, 71961, Bandar Abbas, Iran
| | - Saeideh Mahdavinia
- Research Center for Health Sciences, Institute of Health, Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
66
|
Osonga FJ, Akgul A, Yazgan I, Akgul A, Eshun GB, Sakhaee L, Sadik OA. Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides. Molecules 2020; 25:E2682. [PMID: 32527041 PMCID: PMC7321160 DOI: 10.3390/molecules25112682] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (-) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.
Collapse
Affiliation(s)
- Francis J. Osonga
- Sensors Mechanisms Research and Technology Center (The SMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, NJ 07102, USA; (F.J.O.); (G.B.E.)
| | - Ali Akgul
- Department of Sustainable Bioproducts, College of Forest Resources, Mississippi State University, Starkville, MS 39759, USA;
| | - Idris Yazgan
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, P.O. Box 6000 Binghamton, NY 13902, USA; (I.Y.); (L.S.)
| | - Ayfer Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA;
| | - Gaddi B. Eshun
- Sensors Mechanisms Research and Technology Center (The SMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, NJ 07102, USA; (F.J.O.); (G.B.E.)
| | - Laura Sakhaee
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, P.O. Box 6000 Binghamton, NY 13902, USA; (I.Y.); (L.S.)
| | - Omowunmi A. Sadik
- Sensors Mechanisms Research and Technology Center (The SMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, NJ 07102, USA; (F.J.O.); (G.B.E.)
| |
Collapse
|
67
|
Studies on the Antibacterial and Catalytic Activities of Silver Nanoparticles Synthesized from Cyperus rotundus L. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01785-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
68
|
Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127889] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Wang T, He H, Liu S, Jia C, Fan Z, Zhong C, Yu J, Liu H, He C. Autophagy: A Promising Target for Age-related Osteoporosis. Curr Drug Targets 2020; 20:354-365. [PMID: 29943700 DOI: 10.2174/1389450119666180626120852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is a process the primary role of which is to clear up damaged cellular components such as long-lived proteins and organelles, thus participating in the conservation of different cells. Osteoporosis associated with aging is characterized by consistent changes in bone metabolism with suppression of bone formation as well as increased bone resorption. In advanced age, not only bone mass but also bone strength decrease in both sexes, resulting in an increased incidence of fractures. Clinical and animal experiments reveal that age-related bone loss is associated with many factors such as accumulation of autophagy, increased levels of reactive oxygen species, sex hormone deficiency, and high levels of endogenous glucocorticoids. Available basic and clinical studies indicate that age-associated factors can regulate autophagy. Those factors play important roles in bone remodeling and contribute to decreased bone mass and bone strength with aging. In this review, we summarize the mechanisms involved in bone metabolism related to aging and autophagy, supplying a theory for therapeutic targets to rescue bone mass and bone strength in older people.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongchen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shaxin Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyan Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Can Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiadan Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Honghong Liu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Ulasevich SA, Koshel EI, Kassirov IS, Brezhneva N, Shkodenko L, Skorb EV. Oscillating of physicochemical and biological properties of metal particles on their sonochemical treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110458. [PMID: 32228946 DOI: 10.1016/j.msec.2019.110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
Different metal particles are increasingly used to target bacteria as an alternative to antibiotics. Despite numerous data about treating bacterial infections, the utilization of metal particles in antibacterial coatings for implantable devices and medicinal materials promoting wound healing. The antibacterial mechanisms of nanoscale and microscale particles are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. Thus, investigation of the antibacterial mechanisms of nanostructured metal particles is very important for the development of more effective antimicrobial materials. However, it is very difficult to develop a proper model for revealing the antibacterial mechanisms due to difficulty to choose a method that allows obtaining materials of various properties under approximately the same conditions. In this paper, we propose a green and feasible technique to create critical conditions for modification of zinc particles at highly non-equilibrium states. We demonstrate that the sonication process can be useful for fabrication the materials with oscillating physical, chemical and antibacterial properties. We believe this method besides medical applications can be also used in natural science basic research as an experimental tool for modelling the physical and chemical processes. After the sonication, the zinc particles exhibit a different surface morphology and amount of leached Zn2+ ions compared to initial ones. It has been revealed that oscillations of the Zn2+ ions concentration lead to oscillation the antibacterial properties. Thus, the properties of the materials can be easily altered by adjusting the ultrasound energy dissipated via varying the sonication.
Collapse
Affiliation(s)
| | - Elena I Koshel
- ITMO University, Lomonosova st. 9, St. Petersburg 191002, Russia
| | - Ilya S Kassirov
- Saint-Petersburg Pasteur Institute, Mira st.14, St. Petersburg, 197101, Russia
| | | | - Liubov Shkodenko
- ITMO University, Lomonosova st. 9, St. Petersburg 191002, Russia
| | | |
Collapse
|
71
|
Iron and silver nanostructures: Biosynthesis, characterization and their catalytic properties. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
72
|
Efficient biosynthesis of CuO nanoparticles with potential cytotoxic activity. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01120-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
73
|
Das TK, Karmakar S, Maiti S, Kundu S, Saha A. Room temperature synthesis of NIR emitting Ag 2S nanoparticles through aqueous route and its influence on structural modulation of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117536. [PMID: 31703989 DOI: 10.1016/j.saa.2019.117536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Near infra-red (NIR) light emitting nanomaterials had shown great promise in clinical imaging in view of negligible absorption by skin or tissue of mammalian. Thus, it demands for synthesizing stable NIR emitting nanomaterials in water environment. The present work presents synthesis of biologically acceptable luminescent near-IR emitting silver sulfide nanoparticles through an aqueous route using 2-mercaptoethanol. The prepared as-synthesized Ag2S nanoparticles exhibited bright photoluminescence with quantum yield of ca. 4%. X-ray diffraction (XRD) analysis indicated that the products were monoclinic α-Ag2S. Fourier transform infrared spectral analysis revealed that the stretching vibration at 2560 cm-1 responsible for S-H bond of thiol group disappeared suggesting the conjugation of 2-mercaptoethanol with Ag2S nanoparticles. In view of investigating any possible effect on genetic materials, interactions of the synthesized particles with calf thymus DNA was investigated employing Ethidium bromide (EB) as structural probe. To understand the binding mechanism, the UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopic, as well as DNA melting studies measurements were carried out. The observed results confirm that nanoparticles interact with DNA through groove binding.
Collapse
Affiliation(s)
- Tushar Kanti Das
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata, 700106, India
| | - Sudip Karmakar
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata, 700106, India
| | - Susmita Maiti
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata, 700106, India
| | - Somashree Kundu
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata, 700106, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata, 700106, India.
| |
Collapse
|
74
|
Chen G, Zhang Y, Deng H, Tang Z, Mao J, Wang L. Pursuing for the better lung cancer therapy effect: Comparison of two different kinds of hyaluronic acid and nitroimidazole co-decorated nanomedicines. Biomed Pharmacother 2020; 125:109988. [PMID: 32059173 DOI: 10.1016/j.biopha.2020.109988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer remains the leading cause of cancer associated deaths worldwide. Compared with traditional chemotherapy for non-small cell lung cancer (NSCLC), specific targeted therapies are better choices for advanced patients to improve their survival. In this study, we attempted to fabricate Nitroimidazoles (NI) and Hyaluronic acid (HA) co-decorated, cisplatin (DDP) loaded polymeric nanoparticles (PNPs) (NI/HA-DDP-PNPs) and lipid-polymer hybrid nanoparticles (LPNs) (NI/HA-DDP-LPNs) for the facilitated drug delivery at lung tumor regions (hypoxic regions). In vitro cytotoxicity and cellular uptake; In vivo anti-tumor activity and in vivo tissue biodistribution of PNPs and LPNs were evaluated and compared in lung carcinoma cells and xenograft. Hydrodynamic size of NI/HA-DDP-LPNs was 185.6 ± 4.7 nm, which is larger than that of NI/HA-DDP-PNPs (136.7 ± 3.5 nm). The zeta potential of NI/HA-DDP-PNPs (-31.2 ± 2.7 mV) was more negative than NI/HA-DDP-LPNs (-22.3 ± 2.1 mV). The peak plasma concentration (Cmax) achieved from NI/HA-DDP-PNPs and NI/HA-DDP-LPNs was 35.2 ± 1.6 and 37.3 ± 1.7 μg/mL. The half-life (T1/2) of NI/HA-DDP-PNPs and NI/HA-DDP-LPNs was 12.03 ± 0.75 and 11.78 ± 0.89 h. Area Under Curve (AUC) of NI/HA-DDP-PNPs and NI/HA-DDP-LPNs showed no significant difference while greater than other groups. NI/HA-DDP-LPNs exhibited excellent antitumor effect against drug-resistant human lung cancer A549/DDP cells in vitro and in vivo, better than that of NI/HA-DDP-PNPs. Considering that the low toxicity of NI/HA-DDP-LPNs and NI/HA-DDP-PNPs, NI/HA-DDP-LPNs could be a more promising system for lung cancer targeted therapy.
Collapse
Affiliation(s)
- Ge Chen
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Haowen Deng
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Zilong Tang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
75
|
Cytotoxic and radiosensitizing potential of silver nanoparticles against HepG-2 cells prepared by biosynthetic route using Picrasma quassioides leaf extract. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
76
|
Zada N, Khan I, Shah T, Gul T, Khan N, Saeed K. Ag–Co oxides nanoparticles supported on carbon nanotubes as an effective catalyst for the photodegradation of Congo red dye in aqueous medium. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1713159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Noor Zada
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Idrees Khan
- Department of Chemistry, Bacha Khan University, Charsadda, Pakistan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Tariq Shah
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Tamanna Gul
- Department of Chemistry, Bacha Khan University, Charsadda, Pakistan
| | - Nasib Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Khalid Saeed
- Department of Chemistry, Bacha Khan University, Charsadda, Pakistan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
77
|
Bu C, Zhang Q, Zeng J, Cao X, Hao Z, Qiao D, Cao Y, Xu H. Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1. BMC Genomics 2020; 21:29. [PMID: 31914922 PMCID: PMC6950803 DOI: 10.1186/s12864-019-6442-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation. To understand the characteristics of this strain, a transcriptomic and metabolomic comparative analysis was performed with A. sydowii H-1 from the second and eighth days of fermentation, which confer different pigment production. RESULTS We found five anthocyanins with remarkably different production in A. sydowii H-1 on the eighth day of fermentation compared to the second day of fermentation. LC-MS/MS combined with other characteristics of anthocyanins suggested that the purple pigment contained anthocyanins. A total of 28 transcripts related to the anthocyanin biosynthesis pathway was identified in A. sydowii H-1, and almost all of the identified genes displayed high correlations with the metabolome. Among them, the chalcone synthase gene (CHS) and cinnamate-4-hydroxylase gene (C4H) were only found using the de novo assembly method. Interestingly, the best hits of these two genes belonged to plant species. Finally, we also identified 530 lncRNAs in our datasets, and among them, three lncRNAs targeted the genes related to anthocyanin biosynthesis via cis-regulation, which provided clues for understanding the underlying mechanism of anthocyanin production in fungi. CONCLUSION We first reported that anthocyanin can be produced in fungus, A. sydowii H-1. Totally, 31 candidate transcripts were identified involved in anthocyanin biosynthesis, in which CHS and C4H, known as the key genes in anthocyanin biosynthesis, were only found in strain H1, which indicated that these two genes may contribute to anthocyanins producing in H-1. This discovery expanded our knowledges of the biosynthesis of anthocyanins and provided a direction for the production of anthocyanin.
Collapse
Affiliation(s)
- Congfan Bu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Qian Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Zhaonan Hao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| |
Collapse
|
78
|
Çakıcı T. Investigation of Go: Cu nanoparticles produced by green synthesization method and fabrication of Au/Go:Cu/p-Si/al diode. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
79
|
Avanzo M, Dassie A, Chandra Acharya P, Chiovati P, Pirrone G, Avigo C, Barresi L, Dang Quoc S, Fiagbedzi E, Navarria F, Palazzari E, Bertola G, De Paoli A, Stancanello J, Sartor G. Electron radiotherapy (IOERT) for applications outside of the breast: Dosimetry and influence of tissue inhomogeneities. Phys Med 2020; 69:82-89. [PMID: 31841774 DOI: 10.1016/j.ejmp.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/17/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The purpose of study is to investigate the dosimetry of electron intraoperative radiotherapy (IOERT) of the Intraop Mobetron 2000 mobile LINAC in treatments outside of the breast. After commissioning and external validation of dosimetry, we report in vivo results of measurements for treatments outside the breast in a large patient cohort, and investigate if the presence of inhomogeneities can affect in vivo measurements. METHODS AND MATERIALS Applicator factors and profile curves were measured with a stereotactic diode. The applicators factors of the 6 cm flat and beveled applicators were also confirmed with radiochromic films, parallel-plate ion chamber and by an external audit performed with ThermoLuminescent Dosimeters (TLDs). The influence of bone on dose was investigated by using radiochromic films attached to an insert equivalent to cortical bone, immersed in the water phantom. In vivo dosimetry was performed on 126 patients treated with IOERT using metal oxide-silicon semiconductor field effect transistors (MOSFETs) placed on the tumor bed. RESULTS Relatively small differences were found among different detectors for measurements of applicator factors. In the external audit, the agreement with the TLD was mostly within ±0.2%. The largest increase of dose due to the presence of cortical bone insert was +6.0% with energy 12 MeV and 3 cm applicator. On average, in vivo dose was significantly (+3.1%) larger than prescribed dose. CONCLUSION IOERT in applications outside the breast results in low discrepancies between in vivo and prescribed doses, which can be also explained with the presence of tissue inhomogeneity.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Andrea Dassie
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | | | - Paola Chiovati
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Cinzia Avigo
- Medical Physics, ULSS 1 Dolomiti- S. Martino Hospital, Medical Physics Department, Belluno, Italy
| | - Loredana Barresi
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Soai Dang Quoc
- Medicinal Supplies, Medical Physics Division, Hanoi Oncology Hospital, Hanoi, Vietnam
| | | | - Federico Navarria
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Elisa Palazzari
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giulio Bertola
- Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Antonino De Paoli
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | | | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
80
|
Akbarzadeh F, Motaghi M, Chauhan NPS, Sargazi G. A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application. Heliyon 2020; 6:e03231. [PMID: 32021929 PMCID: PMC6994313 DOI: 10.1016/j.heliyon.2020.e03231] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, the novel zinc metal-organic frameworks (MOF) nanostructure has been employed, which was developed using an affordable, environmental friendly, efficient and fast method of ultrasound-assisted reverse micelle (UARM). These nanostructures were identified with various techniques such as FT-IR, XRD, BET, SEM, TG-DSC, TEM and EDS. It was found that the Zn-MOF samples have favorable physicochemical properties. The impact of experimental parameters of the UARM method is effective on the resulting properties, such as high surface area of the products that increases the interactions between the Zn-MOF nanostructure and bacteria.Their antibacterial activities were investigated using diffusion methods in agar and also with dilutions of Zn-MOF samples. Antibiotics (tetracycline and ampicillin) and their anti-biofilm effects were evaluated using microplate method. Obtained results revealed that the Zn-MOF nanostructures have high antibacterial properties which, could be due to the nature of the applied Zn-MOF as well as the optimization process. The Zn- MOF nanostructures could be a novel antibacterial material as biocatalyst processes.
Collapse
Affiliation(s)
- Fatemeh Akbarzadeh
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mehdi Motaghi
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Ghasem Sargazi
- Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology & Environmental Science, Kerman, Iran
| |
Collapse
|
81
|
Huang L, Zhang X, Shao J, Zhou Z, Chen Y, Hu X. Nanoscale chemical and mechanical heterogeneity of human dentin characterized by AFM-IR and bimodal AFM. J Adv Res 2019; 22:163-171. [PMID: 32055426 PMCID: PMC7005426 DOI: 10.1016/j.jare.2019.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 12/27/2019] [Indexed: 12/04/2022] Open
Abstract
AFM-IR technique was used to detect the chemical heterogeneity of human dentin for the first time. The heterogeneity of mechanical properties of human dentin was explored by AFM AM-FM technique. A band at 1336 cm−1 assigned to S
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O stretching vibrations was found only in peritubular dentin. Peritubular dentin had a higher Young’s modulus (32.25 ± 4.67 GPa) than intertubular dentin. AFM-IR and AFM AM-FM are useful for understanding the mineral deposition mechanisms of dentin.
Human dentin, as an important calcified tissue in the body, plays significant roles in withstanding masticatory forces and has a complex hierarchical organization. Understanding the composition and ultrastructure of dentin is critical for elucidating mechanisms of biomineralization under healthy and pathological states. Here, atomic force microscope infrared spectroscopy (AFM-IR) and AFM-based amplitude modulation-frequency modulation (AM-FM) techniques were utilized to detect the heterogeneity in chemical composition and mechanical properties between peritubular and intertubular dentin at the nanoscale. AFM-IR spectra collected from peritubular and intertubular dentin contained similar vibrational bands in the amide regions (I, II and III), suggesting that collagen may exist in both structures. A distinctive band at 1336 cm−1 indicative of SO stretching vibrations was detected only in peritubular dentin. AFM-IR imaging showed an uneven distribution of chemical components at different locations, confirming the heterogeneity of dentin. The Young’s modulus of peritubular dentin was higher, and was associated to a higher mineral content. This study demonstrated distinctive chemical and mechanical properties of peritubular dentin, implying the different development and mineralization processes between peritubular and intertubular dentin. AFM-IR is useful to provide compositional information on the heterogeneity of human dentin, helping to understand the mineral deposition mechanisms of dentin.
Collapse
Affiliation(s)
- Lijia Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaoyue Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.,Micro and Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Ziyu Zhou
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China
| | - Yanan Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China
| | - Xiaoli Hu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, SunYat-sen University, Guangzhou 510000, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
82
|
Deng H, He H, Sun S, Zhu X, Zhou D, Han F, Huang B, Pan X. Photocatalytic degradation of dye by Ag/TiO 2 nanoparticles prepared with different sol-gel crystallization in the presence of effluent organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35900-35912. [PMID: 31707612 DOI: 10.1007/s11356-019-06728-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
TiO2 nanoparticle-doped Ag (Ag/TNPs) have good photocatalytic properties based on localized surface plasmon resonance (LSPR) effect. The effluent organic matter (EfOM) can be easily activated by photo-excitation to promote pollutant photodegradation, but excessive EfOM has an inactive effect. Herein, the purpose of this paper is to investigate the changes of photocatalytic performance by Ag/TNPs in the presence of EfOM. Three Ag/TNPs made by condensation crystallization or rotary evaporation crystallization using the sol-gel method were conducted in photocatalytic degradation of methyl orange (MO). The Ag/TNPs crystallized by condensation had greater separation rate of photogenerated electron-hole pairs and photocatalytic degradation of MO with high load rates of binding Ag and TiO2 than those formed by rotary evaporation crystallization. Indeed, EfOM could be excited to produce the active substances under illumination resulting in the promotion of MO degradation. However, contrary to previous speculation, no additive effect of MO photodegradation was observed with the addition both of EfOM and Ag/TNPs at different pH values (5~9) and ion strength (0~0.4 mol L-1). It can be explained that the EfOM changed the morphology and active sites in Ag/TNPs' surface. Meanwhile, EfOM could be consumed and degraded by Ag/TNP photocatalysis leading to the concentration of free radicals to decrease. This study revealed a nonsynergistic effect between nanomaterial and EfOM for photocatalysis. EfOM would have a negative effect on photocatalytic degradation of organic compounds by Ag/TNPs in the aquatic environment. Graphical abstract .
Collapse
Affiliation(s)
- Hongyu Deng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Shijie Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xintong Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dongxu Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Fengxia Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, People's Republic of China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, People's Republic of China
| |
Collapse
|
83
|
Liu G, Lu Z, Zhu X, Du X, Hu J, Chang S, Li X, Liu Y. Facile in-situ growth of Ag/TiO 2 nanoparticles on polydopamine modified bamboo with excellent mildew-proofing. Sci Rep 2019; 9:16496. [PMID: 31712585 PMCID: PMC6848128 DOI: 10.1038/s41598-019-53001-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022] Open
Abstract
Bamboo with the outstanding properties, such as good mechanical strength, fast growth rate and low growth cost, is considered as one of utilitarian structural nature materials. But bamboo is easy to get mildewed resulting in disfiguration and fungi corrosion. In this work, a facile method was developed to improve the mildew-proofing capability of bamboo. Mussel-inspired polydopamine (PDA) with biomimetic adhesion function and highly active functional groups was employed to immobilize highly-dispersed Ag and TiO2 nanoparticles on the surface of bamboo via an in-situ growth method. Integrating the uniform PDA coating, photocatalytic function of TiO2 nanoparticles and bactericidal role of Ag nanoparticles, the mildew-proofing capability of bamboo is enhanced significantly. The results show a non-covalent interaction is more likely to account for the binding mechanism of PDA to bamboo. And the prepared bamboo samples show good photocatalytic performance and have excellent resistance leachability. Meanwhile, the mildew-proofing property of prepared bamboo sample was greatly improved.
Collapse
Affiliation(s)
- Gonggang Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China
| | - Zhou Lu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China
| | - Xiu Zhu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China
| | - Xiaoqing Du
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528300, China
| | - Jinbo Hu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China.
| | - Shanshan Chang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China.
| | - Xianjun Li
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China
| | - Yuan Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, No. 498, Changsha, 410004, China
| |
Collapse
|
84
|
Mathivanan K, Selva R, Chandirika JU, Govindarajan R, Srinivasan R, Annadurai G, Duc PA. Biologically synthesized silver nanoparticles against pathogenic bacteria: Synthesis, calcination and characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
85
|
Non-covalent self-assembly of multi-target polystyrene composite adsorbent with highly efficient Cu(II) ion removal capability. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials 2019; 221:119418. [PMID: 31419655 DOI: 10.1016/j.biomaterials.2019.119418] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/28/2022]
Abstract
Recently, natural killer (NK)-based immunotherapy has attracted attention as a next-generation cell-based cancer treatment strategy due to its mild side effects and excellent therapeutic efficacy. Here, we describe multifunctional nanoparticles (MF-NPs) capable of genetically manipulating NK cells and tracking them in vivo through non-invasive magnetic resonance (MR) and fluorescence optical imaging. The MF-NPs were synthesized with a core-shell structure by conjugation of a cationic polymer labeled with a near-infrared (NIR) fluorescent molecule, with the aid of a polydopamine (PDA) coating layer. When administered to NKs, the MF-NPs exhibited excellent cytocompatibility, efficiently delivered genetic materials into the immune cells, and induced target protein expression. In particular, the MF-NPs could induce the expression of EGFR targeting chimeric antigen receptors (EGFR-CARs) on the NK cell surface, which improved the cells' anti-cancer cytotoxic effect both in vitro and in vivo. Finally, when NK cells labeled with MF-NPs were injected into live mice, MF-NP-labeled NK cells could be successfully imaged using fluorescence and MR imaging devices. Our findings indicate that MF-NPs have great potential for application of NK cells, as well as other types of cell therapies involving genetic engineering and in vivo monitoring of cell trafficking.
Collapse
|
87
|
Gavamukulya Y, Maina EN, Meroka AM, Madivoli ES, El-Shemy HA, Wamunyokoli F, Magoma G. Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01262-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Li X, Wei D, Ye L, Li Z. Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Ye F, Ju S, Liu Y, Jiang Y, Chen H, Ge L, Yan C, Yuan A. Ag-CuO Nanocomposites: Surface-Enhanced Raman Scattering Substrate and Photocatalytic Performance. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201800257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fen Ye
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Suxiao Ju
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Yuanjun Liu
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Yuerong Jiang
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Hui Chen
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Lihong Ge
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Chao Yan
- School of Materials Science and Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; Zhenjiang 212003 China
| |
Collapse
|
90
|
Vinay SP, Udayabhanu, Nagaraju G, Chandrappa CP, Chandrasekhar N. Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01598-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
91
|
Facile preparation, spectral property and application of Ag/ZnO nanocomposites. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03854-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
92
|
Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol. Indian J Microbiol 2019; 59:147-153. [PMID: 31031428 DOI: 10.1007/s12088-019-00797-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/11/2019] [Indexed: 01/22/2023] Open
Abstract
Nanocomposites containing antimicrobial agents and calcium phosphates have been developed. Thus, this study assessed the effects of two compounds containing silver nanoparticles (AgNPs) and β-calcium glycerophosphate (CaGP), associated or not with tyrosol (TYR), against planktonic cells and biofilms of Candida albicans and Streptococcus mutans. The nanocompounds were synthesized through chemical and 'green' processes and characterized by scanning electron microscopy. The minimum and fractional inhibitory concentrations of each compound were determined for planktonic cells. Next, 24-h single biofilms of C. albicans and S. mutans were treated for 24 h with the nanocompounds alone or in combination with TYR, and the antibiofilm effect was assessed through enumeration of colony forming units. Biofilm data were statistically examined using one-way ANOVA and the Kruskal-Wallis test (α = 0.05). The chemically synthesized nanocompound in combination with TYR demonstrated a synergistic effect against planktonic cells of C. albicans and S. mutans. For the nanocompound obtained through the 'green' route associated with TYR, a synergistic effect was observed only against C. albicans. For biofilms, only the combination obtained through the 'green' route + TYR demonstrated a synergistic effect against C. albicans. Our results may contribute to the development of oral care products containing AgNPs-CaGP and TYR to combat oral infections.
Collapse
|
93
|
Vinay SP, Udayabhanu, Nagarju G, Chandrappa CP, Chandrasekhar N. Enhanced photocatalysis, photoluminescence, and anti-bacterial activities of nanosize Ag: green synthesized via Rauvolfia tetraphylla (devil pepper). SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
94
|
Muflikhun MA, Frommelt MC, Farman M, Chua AY, Santos GNC. Structures, mechanical properties and antibacterial activity of Ag/TiO 2 nanocomposite materials synthesized via HVPG technique for coating application. Heliyon 2019; 5:e01475. [PMID: 31008403 PMCID: PMC6453804 DOI: 10.1016/j.heliyon.2019.e01475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022] Open
Abstract
In this study, the structures and mechanical properties of the silver-titanium dioxide nanocomposite material were investigated using Atomic Force Microscopy (AFM). These properties include surface roughness, hardness, and reduced Young's modulus. The nanocomposite material was successfully synthesized using the Horizontal Vapor Phase Growth (HVPG) technique which yielded shapes such as nanoparticles, nanospheres, nanorods, triangular nanocomposites, and nanocrystals. Characterization of nanocomposite materials was done through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy to elucidate material shape, diameter, and composition. The pour plate technique combined with McFarland standards was used to evaluate the antibacterial activity of the nanocomposite material against Staphylococcus aureus. The nanocomposite material was able to eradicate bacteria and was suitable for coating applications effectively.
Collapse
Affiliation(s)
- Muhammad Akhsin Muflikhun
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
| | | | - Madiha Farman
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Alvin Y Chua
- Mechanical Engineering Department, De La Salle University, 2401, Taft Avenue, Manila, Philippines
| | - Gil Nonato C Santos
- Physics Department, De La Salle University, 2401, Taft Avenue, Manila, Philippines
| |
Collapse
|
95
|
Saber H, Alwaleed EA, Ebnalwaled K, Sayed A, Salem W. Efficacy of silver nanoparticles mediated by Jania rubens and Sargassum dentifolium macroalgae; Characterization and biomedical applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hani Saber
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Eman A. Alwaleed
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - K.A. Ebnalwaled
- Electronics & Nano Devices Laboratory, Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
- Egypt Nanotechnology Center (EGNC), Cairo University Sheikh Zayed Campus, 12588 Giza, Egypt
| | - Asmaa Sayed
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Wesam Salem
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
96
|
Borase HP, Patil SV, Singhal RS. Moina macrocopa as a non-target aquatic organism for assessment of ecotoxicity of silver nanoparticles: Effect of size. CHEMOSPHERE 2019; 219:713-723. [PMID: 30557728 DOI: 10.1016/j.chemosphere.2018.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The release of nanomaterials in water reservoirs is hazardous. Very few reports are available on the interaction of different sized nanoparticles with aquatic organisms and aquatic environment. In the present study, silver nanoparticles (AgNPs) having an average particle size of 20.80 ± 2.31 and 40.04 ± 4.72 nm were synthesized using polyvinylpyrrolidone and l-tyrosine. Ecotoxicological effects of AgNPs were evaluated on less explored crustacean species, Moina macrocopa. The 48 h lethal values (48 h LC50) of 20 and 40 nm AgNPs were 0.11 ± 0.02 and 0.12 ± 0.03 mg/L, respectively. Further, a size dependent inhibition of AgNPs on acetyl cholinesterase and digestive enzymes (trypsin, amylase, β-galactosidase) was observed, while that of the antioxidant enzymes (catalase, superoxide dismutase, glutathione-S-transferase) and alkaline phosphatase were enhanced as compared to control group. These results strengthen the potential of enzymes as biomarker in environmental risk assessment of AgNPs. AgNPs accumulated in the gut of M. macrocopa which could not be completely eliminated, thereby resulting in an increased metal body burden. The accumulation of AgNPs of 20 nm was lower than that of 40 nm indicating the influence of size of nanoparticles on uptake and toxicity. AgNPs agglomerated in moderately hard water medium (MHWM) and this agglomeration influenced the exposure the organism thereto. The size of AgNPs influenced the toxicity to M. macrocopa through interplay between uptake, accumulation, aggregation, and excretion in the organism and environment.
Collapse
Affiliation(s)
- Hemant P Borase
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India.
| | - Satish V Patil
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
97
|
Deveci İ, Mercimek B. Performance of SiO 2/Ag Core/Shell particles in sonocatalalytic degradation of Rhodamine B. ULTRASONICS SONOCHEMISTRY 2019; 51:197-205. [PMID: 30377083 DOI: 10.1016/j.ultsonch.2018.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 05/19/2023]
Abstract
In this study, SiO2/Ag Core/Shell nanoparticles was prepared and sonocatalytic activity of prepared catalyst was investigated by using Rhodamine B as model contaminant, at 35 kHz using ultrasonic power of 160 W within 90 min. The change in efficiency in the sonocatalytic degradation of Rhodamine B catalyzed by SiO2/Ag Core/Shell nanoparticles with respect to the initial concentration of dye, catalyst amount and temperature were firstly investigated. Optimal conditions were found as follows: catalyst amount = 15 mg/L, Temperature = 25 °C and initial concentration of dye = 10 ppm. Influence factors such as pH of solution, O2 saturation of solution and the concentration of H2O2 added to the solution, on degradation efficiency in presence of catalyst, were investigated. SiO2/Ag Core/Shell nanoparticles showed higher sonocatalytic activity at pH = 7 with respect to acidic and alkaline conditions. Degradation efficiency was reached up to 67% in experiments which air pumped (0.6 L/min) through the solution with in 90 min. It was observed that the dye removal increased via increase while H2O2 concentration lower than 10 mM. Higher concentration of H2O2 than the optimal concentration had adverse effect on degradation efficiency. Our results showed that the SiO2/Ag Core/Shell nanoparticles were active catalyst for sonocatalytic degradation of dyes. Reusability of the catalyst was investigated.
Collapse
Affiliation(s)
- İlyas Deveci
- Konya Technical University, Vocational School of Technical Sciences, Chemistry and Chemical Processing Technologies, Konya, Turkey.
| | - Bedrettin Mercimek
- Necmettin Erbakan University, Ahmet Kelesoglu Faculty of Educational Sciences, Department of Mathematics and Science Education, Konya, Turkey.
| |
Collapse
|
98
|
Basera P, Lavania M, Agnihotri A, Lal B. Analytical Investigation of Cymbopogon citratus and Exploiting the Potential of Developed Silver Nanoparticle Against the Dominating Species of Pathogenic Bacteria. Front Microbiol 2019; 10:282. [PMID: 30873133 PMCID: PMC6400849 DOI: 10.3389/fmicb.2019.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Indian biodiversity is a hub for medicinal plants. Extensive research has been carried out to select plants with numerous properties which can be used for human welfare. Present research is about Cymbopogon citratus, an economically valuable medicinal plant. In this study Cymbopogon citratus was elected as a subject plant over the five selected plants (Azadirachta indica, Plumeria obtuse, Sapindus mukorossi, Capsicum annuum and Phyllanthus emblica) on the basis of antibacterial effect against dominating pathogenic species of gram positive (Bacillus cereus, Bacillus licheniformis) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. Further, bioactive agents behind antibacterial potential of Cymbopogon citratus was analyzed using analytical method (Phyto-chemical, FTIR, NMR and GC-MS). Due to the broad antimicrobial spectrum, silver nanoparticles have turned into a noteworthy decision for the improvement of new medication. Therefore, this investigation further elaborated in the development of Cymbopogon citratus silver nano-particles (CNPs). Antibacterial potential of CNPs examine in a range of C25–C150 (μg/ml) through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) where, C25 (μg/ml) concentration of CNPs were recorded as the MIC for all bacterial species and C25 (μg/ml) and C50 (μg/ml) noted as the MBC for Pseudomonas aeruginosa, Escherichia coli and Bacillus cereus, Bacillus licheniformis, respectively. In agar disk diffusion assay of CNPs, maximum diameter of zone of inhibition was observed for C150 (μg/ml) concentration Bacillus cereus (20.12 ± 0.42), Bacillus licheniformis (22.34 ± 0.4), Pseudomonas aeruginosa (35.23 ± 0.46) and Escherichia coli (31.87 ± 0.24). Involvement of bioactive component as a reducing and capping agent can be confirmed through FTIR spectrum of CNPs. Moreover XRD, EDXRF and SEM showed crystalline and cuboidal nature of CNPs with ∼35 nm sizes. Prominently, cytotoxic analysis was conducted to understand the toxic effect of CNPs. This research highlights the potential of CNPs due to the bioactive components present in Cymbopogon citratus extract: Polyphenols (phenol; 1584.56 ± 16.32 mg/L, Flavanoids) and mixture of terpenoids (Citral, Myrcene, Farnesol, β-myrcene and β –Pinene)
Collapse
Affiliation(s)
| | - Meeta Lavania
- The Energy and Resources Institute, New Delhi, India
| | | | - Banwari Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
99
|
Zaheer Z. Eco-friendly walnut shell powder based facile fabrication of biogenic Ag-nanodisks, and their interaction with bovine serum albumin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:8-17. [PMID: 30798152 DOI: 10.1016/j.jphotobiol.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/20/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Walnut shell biomass was used for the extraction of juglone by water as a solvent at room temperature. Upon addition of AgNO3 to a dye solution, prefect transparent pale brown color develops within the reaction time. UV-visible spectroscopy revealed the appearance of surface plasmon absorption (SRP) peak at 410 nm for spherical silver nanoparticles (AgNPs). Transmission electron microscopy suggested the formation of spherical and truncated triangular nano-plate geometry of AgNPs with average diameter 25 nm. Juglone-surfactant interactions (micellization and incorporation) have been studied spectrophotometrically by using cationic cetyltrimethylammonium bromide (CTAB). The presence of CTAB has significant impacts on size, shape and the size distribution of AgNPs. The nucleation, growth, and adsorption processes depend on the [CTAB]. It also catalyzes the Ag+ ions reduction by juglone with a rate enhancement of ca. 100-fold. Activation parameters (activation energy, enthalpy of activation and entropy of activation) were evaluated to the synthesis of silver nano-disks. Antioxidant activity of juglone was accessed by the scavenging effect on DPPH radical. Silver nanoparticles was also used as quencher to determine their interaction with bovine serum albumin (BSA). The quenching constant were found to be 1.4 × 103 M-1 L s-1 and 4.8 × 103 M-1 L s-1 for two BSA concentrations.
Collapse
Affiliation(s)
- Zoya Zaheer
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
100
|
Wang K, Su P, Li H, Wu Y, Zhang D, Feng H, Fan H. Synthesis, characterization and antimicrobial activity of hybrid-structured Ag@CeO2 nanoparticles. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|