51
|
Chen J, Zhang X, Wang Y, Ye Y, Huang Z. Differential ability of formononetin to stimulate proliferation of endothelial cells and breast cancer cells via a feedback loop involving MicroRNA-375, RASD1, and ERα. Mol Carcinog 2018; 57:817-830. [PMID: 29722068 DOI: 10.1002/mc.22531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/24/2016] [Indexed: 01/12/2023]
Abstract
For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer.
Collapse
Affiliation(s)
- Jian Chen
- School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Xing Zhang
- School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yong Wang
- School of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Yu Ye
- Department of Emergency, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoquan Huang
- Department of Pathology, Guilin Medical University, Guilin, China
| |
Collapse
|
52
|
Ceppa F, Mancini A, Tuohy K. Current evidence linking diet to gut microbiota and brain development and function. Int J Food Sci Nutr 2018; 70:1-19. [DOI: 10.1080/09637486.2018.1462309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Florencia Ceppa
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all‘Adige, Trento, Italy
| | - Andrea Mancini
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all‘Adige, Trento, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all‘Adige, Trento, Italy
| |
Collapse
|
53
|
Monteiro NE, Queirós LD, Lopes DB, Pedro AO, Macedo GA. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
54
|
Lee CC, Dudonné S, Kim JH, Kim JS, Dubé P, Kim JE, Desjardins Y, Park JHY, Lee KW, Lee CY. A major daidzin metabolite 7,8,4'-trihydroxyisoflavone found in the plasma of soybean extract-fed rats attenuates monocyte-endothelial cell adhesion. Food Chem 2018; 240:607-614. [PMID: 28946319 DOI: 10.1016/j.foodchem.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022]
Abstract
Among many functional foods and their phytochemicals, ingestion of soybean (Glycine max) is highly correlated to reduced risk of cardiovascular diseases. Validation of potential health benefits of functional foods requires information about the bioavailability and metabolism of bioactive compounds. In this context, several phase I and II metabolites of isoflavones were target-analyzed in the plasma of rats acutely supplemented with soybean embryo extract. A daidzein metabolite, 7,8,4'-trihydroxyisoflavone (7,8,4'-THI), was found to have the highest average area under curve value (574.3±112.8). Therefore, its potential prevention effect on atherosclerosis was investigated using monocyte-endothelial cell adhesion assay. Different from its precursor daidzein or daidzin, 7,8,4'-THI attenuated adhesion of THP-1 monocytes to tumor necrosis factor-alpha (TNF-α) stimulated human umbilical vein endothelial cells (HUVECs). In addition, 7,8,4'-THI significantly downregulated TNF-α stimulated the expression of vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 and phosphorylation of IκB kinase and IκBα involved in the initiation of atherosclerosis in HUVECs. Therefore, 7,8,4'-THI, a highly bioavailable hydroxylated isoflavone metabolite, has potential anti-atherosclerotic effect via inhibiting monocyte-endothelial adhesion.
Collapse
Affiliation(s)
- Charles C Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ji Seung Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Boulevard Hochelaga, Québec, QC G1V0A6, Canada.
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea.
| | - Ki Won Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Major in Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
55
|
Tanaka T, Moriyama T, Kawamura Y, Yamanouchi D. Puerarin Suppresses Macrophage Activation via Antioxidant Mechanisms in a CaPO 4-Induced Mouse Model of Aneurysm. J Nutr Sci Vitaminol (Tokyo) 2017; 62:425-431. [PMID: 28202848 DOI: 10.3177/jnsv.62.425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aneurysm is characterized by balloon-like expansion of the arterial wall and eventual rupture of the aorta. The pathogenesis of aneurysm is associated with the degradation of matrix proteins by matrix metalloproteinases (MMPs) produced by activated macrophages. Although aneurysm is associated with significant mortality and morbidity, surgical intervention is the only proven treatment strategy. Therefore, development of therapeutic agents for aneurysm is greatly anticipated. Here, we demonstrated the protective effects of the major isoflavone puerarin, which is found in kudzu roots and vines. Aneurysms were surgically induced in ten-wk-old male mice using CaPO4. Subsequently, animals were intraperitoneally injected daily with puerarin at 2.5 mg/kg body weight or with vehicle alone for 2 wk. CaPO4-induced aneurysm was significantly suppressed by puerarin administration. In subsequent macrophage activation assays using Tumor necrosis factor (TNFα) and CaPO4 crystals in vitro, puerarin decreased Mmp9 mRNA expression and secreted protein levels. Moreover, induction of IκB, ERK, and p38 phosphorylation by TNFα and CaPO4 in macrophages was suppressed by puerarin treatments. Finally, puerarin attenuated reactive oxygen species production, following induction by TNFα and CaPO4. Taken together, the present data demonstrate that puerarin suppresses macrophage activation by inhibiting IκB, ERK, and p38 activity and reactive oxygen species production in a CaPO4-induced mouse model of aneurysm.
Collapse
Affiliation(s)
- Teruyoshi Tanaka
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health
| | | | | | | |
Collapse
|
56
|
Tanaka T, Yokota Y, Tang H, Zaima N, Moriyama T, Kawamura Y. Anti-Hyperglycemic Effect of a Kudzu (Pueraria lobata) Vine Extract in Ovariectomized Mice. J Nutr Sci Vitaminol (Tokyo) 2017; 62:341-349. [PMID: 27928122 DOI: 10.3177/jnsv.62.341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Postmenopausal diabetes is exacerbated by estrogen deficiency. Ovariectomized (OVX) animal models can be used to develop strategies for preventing or treating postmenopausal symptoms. We previously found that a diet containing kudzu (Pueraria lobata) vine ethanol extract (PVEE) suppressed weight gain in OVX mice. Therefore, this study further elucidated how PVEE affected OVX mice. Ten-week-old OVX or sham-operated mice were fed diets containing either no PVEE (control) or 20 mg•kg-1•d-1 PVEE for 8 wk, 5 mg•kg-1•d-1 PVEE for 24 wk, or 20 mg•kg-1•d-1 puerarin (daidzein-8-C-glucoside), a major isoflavone present in PVEE, for 10 wk. The effects of puerarin on glucose tolerance were also tested in OVX mice. The experimental diets were not associated with any abnormalities in any mice tested in the present study. Weight gain and serum glucose levels were increased in OVX mice and these effects were significantly attenuated in OVX mice that consumed PVEE (5 or 20 mg•kg-1•d-1) or puerarin. Puerarin-treated OVX mice also showed reduced serum glucose levels following administration of 1,000 mg•kg-1 glucose. These results suggested that puerarin contributed to PVEE-mediated improvements in glucose metabolism in OVX mice. Although further studies are needed to clarify the molecular mechanism underlying these observations, PVEE and puerarin could provide effective approaches to the amelioration of postmenopausal diabetes.
Collapse
Affiliation(s)
- Teruyoshi Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University
| | | | | | | | | | | |
Collapse
|
57
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
58
|
Ramdath DD, Padhi EMT, Sarfaraz S, Renwick S, Duncan AM. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017; 9:E324. [PMID: 28338639 PMCID: PMC5409663 DOI: 10.3390/nu9040324] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that may improve cardiovascular health through independent mechanisms. This review summarizes the evidence on the cardiovascular benefits of non-protein soy components in relation to known CVD risk factors such as hypertension, hyperglycemia, inflammation, and obesity beyond cholesterol lowering. Overall, the available evidence suggests non-protein soy constituents improve markers of cardiovascular health; however, additional carefully designed studies are required to independently elucidate these effects. Further, work is also needed to clarify the role of isoflavone-metabolizing phenotype and gut microbiota composition on biological effect.
Collapse
Affiliation(s)
- D Dan Ramdath
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Emily M T Padhi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Sidra Sarfaraz
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Simone Renwick
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2E1, Canada.
| |
Collapse
|
59
|
Russell AL, Grimes JM, Larco DO, Cruthirds DF, Westerfield J, Wooten L, Keil M, Weiser MJ, Landauer MR, Handa RJ, Wu TJ. The interaction of dietary isoflavones and estradiol replacement on behavior and brain-derived neurotrophic factor in the ovariectomized rat. Neurosci Lett 2017; 640:53-59. [PMID: 28077306 DOI: 10.1016/j.neulet.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are plant derived, non-steroidal compounds naturally found in rodent chows that potentially have endocrine-disrupting effects. Isoflavones, the most common phytoestrogens, have a similar structure and molecular weight to 17β-estradiol (E2) and have the ability to bind and activate both isoforms of the estrogen receptor (ER). Most isoflavones have a higher affinity for ERβ, which is involved in sexually dimorphic behavioral regulation. The goal of this study was to examine the interaction of isoflavones and E2 presence in the OVX rat on anxiety- and depressive- like behavior and the related BDNF pathophysiology. E2 administration resulted in anxiogenic behaviors when isoflavones were present in the diet (p<0.05), but anxiolytic behaviors when isoflavones were not present (p<0.05). E2 resulted in antidepressive-like behaviors in animals fed an isoflavone-rich diet (p<0.05), with no effect when isoflavones were removed. Increased hippocampal BDNF expression was observed in animals fed an isoflavone-rich diet after E2 administration (p<0.05). BDNF expression in the amygdala and hypothalamus was increased after E2 treatment in animals fed an isoflavone-rich diet. Overall, these results demonstrate that the presence of dietary isoflavones can differentially regulate the effect of E2 replacement on behavior and BDNF expression.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Jamie Moran Grimes
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Darwin O Larco
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Danette F Cruthirds
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joanna Westerfield
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Lawren Wooten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Keil
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Michael J Weiser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Michael R Landauer
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
60
|
The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients 2016; 8:nu8090581. [PMID: 27657126 PMCID: PMC5037565 DOI: 10.3390/nu8090581] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer.
Collapse
|
61
|
Kujawska M, Ewertowska M, Adamska T, Ignatowicz E, Gramza-Michałowska A, Jodynis-Liebert J. Protective effect of yellow tea extract on N-nitrosodiethylamine-induced liver carcinogenesis. PHARMACEUTICAL BIOLOGY 2016; 54:1891-1900. [PMID: 26839940 DOI: 10.3109/13880209.2015.1137600] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/26/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
Context Yellow tea containing the same catechins as other types of tea but in different proportions has been suggested to possess potent anticancer activities. Objective This study investigates the chemopreventive effect of yellow tea aqueous extract against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis in rats by employing histological and biochemical methods. Materials and methods Wistar rats were divided randomly into four groups: control (I), yellow tea (II), NDEA (III), and yellow tea + NDEA (IV). Groups II and IV were exposed via a diet to yellow tea extract in a concentration of 10 g/kg feed; groups III and IV received 0.01% NDEA in drinking water. The experiment lasted for 13 weeks. Results Daily intake of yellow tea in an average dose of 800 mg/kg b.w. alleviated the carcinogenic effect of NDEA as evidenced by reversed histopathological changes towards normal hepatocellular architecture and decreased lipid peroxidation, protein carbonyl formation, and DNA degradation by 64%, 37% and 15%, respectively, as compared with values obtained in NDEA alone-treated rats. Treatment with yellow tea extract caused protection of superoxide dismutase (SOD) and catalase (CAT); their activity was recovered by 47% and 12%, respectively, as compared with the NDEA-treated rats. Moreover, the extract normalized the NDEA-induced activity of paraoxonase 1 (PON1) and glutathione peroxidase (GPx), while a further increase in the level of reduced glutathione (GSH) was noticed. Conclusions On the basis of these findings, it can be concluded that treatment with yellow tea partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and that its antioxidant activity contributed to this effect.
Collapse
MESH Headings
- Animals
- Anticarcinogenic Agents/isolation & purification
- Anticarcinogenic Agents/pharmacology
- Antioxidants/isolation & purification
- Antioxidants/pharmacology
- Biomarkers/blood
- Camellia sinensis/chemistry
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA Damage/drug effects
- Diethylnitrosamine
- Lipid Peroxidation/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms, Experimental/blood
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Male
- Oxidative Stress/drug effects
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Protein Carbonylation/drug effects
- Rats, Wistar
Collapse
Affiliation(s)
- Małgorzata Kujawska
- a Department of Toxicology , Poznan University of Medical Sciences , Poznań , Poland
| | - Małgorzata Ewertowska
- a Department of Toxicology , Poznan University of Medical Sciences , Poznań , Poland
| | - Teresa Adamska
- a Department of Toxicology , Poznan University of Medical Sciences , Poznań , Poland
| | - Ewa Ignatowicz
- b Department of Pharmaceutical Biochemistry , Poznan University of Medical Sciences , Poznań , Poland
| | - Anna Gramza-Michałowska
- c Faculty of Food Science and Nutrition , Poznań University of Life Sciences , Poznań , Poland
| | | |
Collapse
|
62
|
Molino S, Dossena M, Buonocore D, Ferrari F, Venturini L, Ricevuti G, Verri M. Polyphenols in dementia: From molecular basis to clinical trials. Life Sci 2016; 161:69-77. [PMID: 27493077 DOI: 10.1016/j.lfs.2016.07.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
Dementia is common in the elderly, but there are currently no effective therapies available to prevent or treat this syndrome. In the last decade, polyphenols (particularly curcumin, resveratrol and tea catechins) have been under very close scrutiny as potential therapeutic agents for neurodegenerative diseases, diabetes, inflammatory diseases and aging. Data were collected from Web of Science (ISI Web of Knowledge), Pubmed and Medline (from 2000 to 2015), by searching for the keywords "dementia" AND "curcumin", "resveratrol", "EGCG", "tea catechins". The same keywords were used to investigate the current state of clinical trials recorded in the NIH clinicaltrials.gov registry. Starting from the intrinsic properties of the compounds, we explain their specific action in patients with AD and the most common types of dementia. The pharmacological actions of curcumin, resveratrol and tea catechins have mainly been attributed to their antioxidant activity, interaction with cell signaling pathways, anti-inflammatory effect, chelation of metal ions, and neuroprotection. Evidence from in vitro and in vivo studies on polyphenols have demonstrated that they may play an integral role in preventing and treating diseases associated with neurodegeneration. Furthermore, we critically analyze the clinical trials that we found, which investigate the real pharmacological actions and the possible side effects of these compounds. This review highlights the potential role of polyphenols in the prevention/treatment of dementia and describes the current limitations of research in this field.
Collapse
Affiliation(s)
- Silvia Molino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Via Ferrata, 9-27100, Pavia (PV), Italy
| | - Maurizia Dossena
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Via Ferrata, 9-27100, Pavia (PV), Italy
| | - Daniela Buonocore
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Via Ferrata, 9-27100, Pavia (PV), Italy
| | - Federica Ferrari
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Via Ferrata, 9-27100, Pavia (PV), Italy
| | - Letizia Venturini
- Dipartimento di Medicina Interna e Terapia Medica, Divisione di Geriatria - ASP - IDR S. Margherita - Università degli Studi di Pavia, Via Emilia, 12-27100, Pavia, (PV), Italy
| | - Giovanni Ricevuti
- Dipartimento di Medicina Interna e Terapia Medica, Divisione di Geriatria - ASP - IDR S. Margherita - Università degli Studi di Pavia, Via Emilia, 12-27100, Pavia, (PV), Italy
| | - Manuela Verri
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, Via Ferrata, 9-27100, Pavia (PV), Italy.
| |
Collapse
|
63
|
A new biotechnological process to enhance the soymilk bioactivity. Food Sci Biotechnol 2016; 25:763-770. [PMID: 30263334 DOI: 10.1007/s10068-016-0130-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/23/2015] [Accepted: 02/05/2016] [Indexed: 10/21/2022] Open
Abstract
Equol, a daidzein metabolite produced exclusively by intestinal bacteria in some, but not all, humans, exhibits a wide range of beneficial health effects owing to its superior nutraceutical effect compared with isoflavones of soy. The aim of this work was to develop bioprocesses capable of increasing the bioactive properties of soymilk and, most importantly, increase the equol content by a biotechnological process in vitro. Biotransformation processes based on soymilk fermentation by probiotic lactic bacteria and application of the enzyme tannase caused an increase in the bioactive isoflavones and antioxidant capacity of soymilk. Furthermore, these processes approximately resulted in a 10-fold increase in the equol content of the soymilk. This is the first study to produce a significant equol concentration in soymilk using enzymatic processing only. The results suggest a new and effective biotechnological process, with major commercial potential, capable of producing a bioactive soy extract that intends to be "functional for everyone."
Collapse
|
64
|
Tracking isoflavones in whole soy flour, soy muffins and the plasma of hypercholesterolaemic adults. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
65
|
Rigacci S, Stefani M. Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. Int J Mol Sci 2016; 17:ijms17060843. [PMID: 27258251 PMCID: PMC4926377 DOI: 10.3390/ijms17060843] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
The increasing interest in the Mediterranean diet hinges on its healthy and anti-ageing properties. The composition of fatty acids, vitamins and polyphenols in olive oil, a key component of this diet, is considered a key feature of its healthy properties. Therefore, it is of significance that the Rod of Asclepius lying on a world map surrounded by olive tree branches has been chosen by the World Health Organization as a symbol of both peace and well-being. This review travels through most of the current and past research, recapitulating the biochemical and physiological correlations of the beneficial properties of olive tree (Olea europaea) polyphenols and their derivatives found in olive oil. The factors influencing the content and beneficial properties of olive oil polyphenols will also be taken into account together with their bioavailability. Finally, the data on the clinical and epidemiological relevance of olive oil and its polyphenols for longevity and against age- and lifestyle-associated pathologies such as cancer, cardiovascular, metabolic and neurodegenerative diseases are reviewed.
Collapse
Affiliation(s)
- Stefania Rigacci
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Massimo Stefani
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
66
|
Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci Rep 2016; 6:26500. [PMID: 27216246 PMCID: PMC4877707 DOI: 10.1038/srep26500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As with human beings, dogs suffer from the consequences of cancer. We investigated the potential of a formulation comprised of resveratrol, ellagic acid, genistein, curcumin and quercetin to modulate biomarkers indicative of disease prevention. Dog biscuits were evaluated for palatability and ability to deliver the chemopreventive agents. The extent of endogenous DNA damage in peripheral blood lymphocytes from dogs given the dietary supplement or placebo showed no change. However, H2O2-inducible DNA damage was significantly decreased after consumption of the supplement. The expression of 11 of 84 genes related to oxidative stress was altered. Hematological parameters remained in the reference range. The concept of chemoprevention for the explicit benefit of the canine is compelling since dogs are an important part of our culture. Our results establish a proof-of-principle and provide a framework for improving the health and well-being of “man’s best friend”.
Collapse
|
67
|
Mehta M, Branford OA, Rolfe KJ. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring. BURNS & TRAUMA 2016; 4:15. [PMID: 27574685 PMCID: PMC4964041 DOI: 10.1186/s41038-016-0040-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair.
Collapse
Affiliation(s)
- M. Mehta
- British College of Osteopathic Medicine (BCOM), Finchley Road, London, NW3 5HR UK
| | - O. A. Branford
- The Royal Marsden Hospital, Fulham Rd, London, SW3 6JJ UK
| | - K. J. Rolfe
- British College of Osteopathic Medicine (BCOM), Finchley Road, London, NW3 5HR UK
| |
Collapse
|
68
|
Guadamuro L, Jiménez-Girón AM, Delgado S, Flórez AB, Suárez A, Martín-Álvarez PJ, Bartolomé B, Moreno-Arribas MV, Mayo B. Profiling of Phenolic Metabolites in Feces from Menopausal Women after Long-Term Isoflavone Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:210-216. [PMID: 26690567 DOI: 10.1021/acs.jafc.5b05102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phenolic compounds were screened by UPLC-ESI-MS/MS in the feces of 15 menopausal women before and after long-term isoflavone treatment. In total, 44 compounds were detected. Large intertreatment, interindividual, and intersample variations were observed in terms of the number of compounds and their concentration. Four compounds, the aglycones daidzein and genistein and the daidzein derivatives dihydrodaidzein and O-desmethylangolensin, were associated with isoflavone metabolism; these were identified only after the isoflavone treatment. In addition, 4-ethylcatechol, 3-hydroxyphenylacetic acid, and 3-phenylpropionic acid differed significantly in pre- and postintervention samples, whereas the concentration of 4-hydroxy-5-phenylvaleric acid showed a trend toward increasing over the treatment. The phenolic profiles of equol-producing and -non-producing groups were similar, with the exceptions of 3-hydroxyphenylacetic acid and 3-phenylpropionic acid, which showed higher concentrations in equol-non-producing women. These findings may help to trace isoflavone-derived metabolites in feces during isoflavone interventions and to design new studies to address their biological effects.
Collapse
Affiliation(s)
- Lucía Guadamuro
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana M Jiménez-Girón
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Susana Delgado
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Adolfo Suárez
- Servicio de Digestivo, Hospital de Cabueñes , Calle Los Prados 395, 33394 Gijón, Spain
| | - Pedro J Martín-Álvarez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI UAM+CSIC , c/Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquı́mica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC) , Paseo Rı́o Linares s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
69
|
Zhou C, Lin H, Huang Z, Wang J, Wang Y, Yu W. Effects of dietary soybean isoflavones on non-specific immune responses and hepatic antioxidant abilities and mRNA expression of two heat shock proteins (HSPs) in juvenile golden pompano Trachinotus ovatus under pH stress. FISH & SHELLFISH IMMUNOLOGY 2015; 47:1043-53. [PMID: 26518502 DOI: 10.1016/j.fsi.2015.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
This study determined the effect of dietary soybean isoflavones on non-specific immunity and on mRNA expression of two HSPs in juvenile golden pompano Trachinotus ovatus under pH stress. Six diets were formulated to contain 0, 10, 20, 40, 60 and 80 mg/kg of soybean isoflavones. Each diet was fed to triplicate groups of fish in cylindrical tanks. After 56 days of feeding, 15 fish per tank were exposed to pH stress (pH ≈ 9.2) for 24 h. Serum total protein (TP), respiratory burst activity (RBA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), lysozyme (LYZ), complement 3 (C3), complement 4 (C4), cortisol, hepatic total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and the relative mRNA expression of heat shock protein 70 (HSP70) and 90 (HSP90) were investigated. The results showed that after pH stress, serum TP, RBA, LYZ, C4, hepatic T-AOC and CAT levels were significantly reduced (P < 0.05) while serum ALT, hepatic MDA and HSP70 and HSP90 mRNA expression levels were significantly increased (P < 0.05). On the other hand, supplementation with soybean isoflavones significantly reduced levels of serum ALT (20, 40, 60 mg/kg soybean isoflavones groups) and hepatic MDA (40, 60 and 80 mg/kg soybean isoflavones groups). Supplemented groups had increased serum TP content (40 mg/kg soybean isoflavones groups), RBA (20 and 40 mg/kg soybean isoflavones groups), LYZ (40 and 60 mg/kg soybean isoflavones groups), C3(20, 40, 60 and 80 mg/kg soybean isoflavones groups), hepatic SOD activity (40, 60 and 80 mg/kg soybean isoflavones groups) as well as increased relative mRNA expression of hepatic HSP70 (40, 60 and 80 mg/kg soybean isoflavones groups) and HSP90 (40 and 60 mg/kg soybean isoflavones groups) (P < 0.05). These results indicate that ingestion of a basal diet supplemented with 40-60 mg/kg soybean isoflavones could enhance resistance against pH stress in T. Ovatus to some degree.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
70
|
Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 2015; 7:112. [PMID: 26478753 PMCID: PMC4609101 DOI: 10.1186/s13148-015-0144-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modulation of gene activity occurs in response to non-genetic factors such as body weight status, physical activity, dietary factors, and environmental toxins. In addition, each of these factors is thought to affect and be affected by the gut microbiome. A primary mechanism that links these various factors together in mediating control of gene expression is the production of metabolites that serve as critical cofactors and allosteric regulators of epigenetic processes. Here, we review the involvement of the gut microbiota and its interactions with dietary factors, many of which have known cellular bioactivity, focusing on particular epigenetic processes affected and the influence they have on human health and disease, particularly cancer and response to treatment. Advances in DNA sequencing have expanded the capacity for studying the microbiome. Combining this with rapidly improving techniques to measure the metabolome provides opportunities to understand complex relationships that may underlie the development and progression of cancer as well as treatment-related sequelae. Given broad reaching and fundamental biology, both at the cellular and organismal levels, we propose that interactive research programs, which utilize a wide range of mutually informative experimental model systems—each one optimally suited for answering particular questions—provide the best path forward for breaking ground on new knowledge and ultimately understanding the epigenetic significance of the gut microbiome and its response to dietary factors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Carolina Salvador
- Division of Medical Oncology/Hematology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA
| | - Christine Skibola
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
71
|
Kim M, Lee J, Han J. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1925-31. [PMID: 25199800 DOI: 10.1002/jsfa.6900] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 09/03/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant isoflavones are mostly present in the glycoside form. Isoflavone aglycones produced by intestinal microflora are reported to be more bioactive than the glycoside form. However, the deglycosylation of isoflavone C-glycosides is known to be rare, and is less studied. RESULTS Three new bacteria were isolated from human faecal samples, two of which hydrolysed the C-glycosidic bond of puerarin, daidzein-8-C-glucoside. They were identified as two Lactococcus species, herein designated as MRG-IFC-1 and MRG-IFC-3, and an Enterococcus species, herein designated MRG-IFC-2, based on their 16S rDNA sequences. From a reactivity study, it was found that Lactococcus sp. MRG-IFC-1 and Enterococcus sp. MRG-IFC-2 hydrolysed isoflavone C- and O-glycosides, as well as the flavone O-glycoside apigetrin, but could not hydrolyse the flavone C-glycosidic bond of vitexin. The other Lactococcus sp., MRG-IF-3, could not hydrolyse the C-glycosidic linkage of puerarin, while it showed a broad substrate spectrum of O-glycosidase activity similar to the other two bacteria. Puerarin was completely converted to daidzein within 100 min by Lactococcus sp. MRG-IFC-1 and Enterococcus sp. MRG-IFC-2, which is the fastest conversion among the reported human intestinal bacteria. CONCLUSION Two new puerarin-metabolising human intestinal bacteria were isolated and identified, and the deglycosylation activity for various flavonoid glycosides was investigated. The results could facilitate the study of C-glycosidase reaction mechanisms, as well as the pharmacokinetics of bioactive C-glycoside natural products.
Collapse
Affiliation(s)
- Mihyang Kim
- Metalloenzyme Research Group and Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Jaekwan Lee
- Metalloenzyme Research Group and Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Jaehong Han
- Metalloenzyme Research Group and Department of Systems Biotechnology, Chung-Ang University, Anseong, 456-756, Republic of Korea
| |
Collapse
|
72
|
Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells. Arch Pharm Res 2015; 38:2042-8. [PMID: 26100136 DOI: 10.1007/s12272-015-0624-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.
Collapse
|
73
|
Gray SL, Lackey BR, Boone WR. Impact of kudzu and puerarin on sperm function. Reprod Toxicol 2015; 53:54-62. [PMID: 25828059 DOI: 10.1016/j.reprotox.2015.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/06/2015] [Accepted: 03/20/2015] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the impact of kudzu (Pueraria mirifica) and the isoflavone puerarin in functional toxicological tests on spermatozoa and to assess the affinity of extracts and pure isoflavones for estrogen receptor (ER)-alpha and -beta (ERα, ERβ) in receptor binding assays. Capacitation, acrosome reaction and chromatin decondensation in spermatozoa were analyzed using microscopic analysis. Kudzu, but not puerarin, reduced motility of sperm. Puerarin reduced the percent spontaneous acrosome reaction in spermatozoa. The pathways used by kudzu that affect sperm function are not fully mirrored by puerarin. Puerarin, kudzu and its other phytoestrogenic components displayed preferential affinity for ERβ, however the diverse effects of kudzu and puerarin on sperm function implicate the involvement of multiple signaling systems.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States.
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States
| | - William R Boone
- ART Laboratories, Department of Obstetrics & Gynecology, Greenville Health System University Medical Group, Greenville, SC 29605, United States
| |
Collapse
|
74
|
Zhou C, Lin H, Ge X, Niu J, Wang J, Wang Y, Chen L, Huang Z, Yu W, Tan X. The effects of dietary soybean isoflavones on growth, innate immune responses, hepatic antioxidant abilities and disease resistance of juvenile golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2015; 43:158-66. [PMID: 25541076 DOI: 10.1016/j.fsi.2014.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The present study was conducted to investigate the effects of dietary soybean isoflavones (SI) supplementation on growth performance, innate immune responses, hepatic antioxidant abilities, heat shock protein 70 (HSP70) gene expression and resistance to the pathogen Vibrio harveyi in Trachinotus ovatus. A basal diet was supplemented with SI at 0, 10, 20, 40, 60, 80 mg kg(-1) feed for 8 weeks. Significantly maximum weight gain (WG) and specific growth rate (SGR) were observed in treatment with 40 mg kg(-1) SI supplement (P < 0.05). Feed conversion ratio (FCR), feeding rate (FR) and survival rate were not significantly different among treatments. Fish fed a diet with 40 mg kg(-1) SI showed significant increase in plasma total protein content, complement 3 content, lysozyme activity as well as respiratory burst activity, but decrease in alanine aminotransferase and aspartate aminotransferase activities (P < 0.05). Increased plasma alkaline phosphatase activity, hepatic total antioxidative capacity, catalase activity and superoxide dismutase activity were also noticed in fish fed SI at 40 or 60 mg kg(-1) (P < 0.05). On the contrary, the lowest hepatic malondialdehyde (MDA) content was observed in fish fed SI at 40 mg kg(-1) (P < 0.05). Compared with the control, the relative level of HSP70 mRNA in fish fed SI at 40-80 mg kg(-1) were significantly increased, respectively (P < 0.05). After challenge with V. harveyi, significant higher post-challenge survival was observed in fish fed diets with 40-80 mg kg(-1) SI supplement than that in control group (P < 0.05). These results indicated that dietary intake containing SI could enhance the immune ability of fish and improve its resistance to infection by V. harveyi. Especially supplementation with 40 mg kg(-1) SI to the fish for 8 weeks showed remarkable improvement in the growth, non-specific immune responses, hepatic antioxidant abilities and HSP70 gene expression.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Jin Niu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Lixiong Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Xiaohong Tan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, The South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
75
|
Grosso G, Stepaniak U, Micek A, Topor-Mądry R, Pikhart H, Szafraniec K, Pająk A. Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr 2014; 54:1129-37. [PMID: 25367317 PMCID: PMC4575379 DOI: 10.1007/s00394-014-0789-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/30/2014] [Indexed: 01/11/2023]
Abstract
Purpose The aim of this study was to evaluate whether daily consumption of coffee and tea was associated with components and prevalence of metabolic syndrome (MetS) in the Polish arm of the Health, Alcohol and Psychosocial factors In Eastern Europe cohort study. Methods A cross-sectional population-based survey including 8,821 adults (51.4 % female) was conducted in Krakow, Poland. Coffee and tea consumption was evaluated using food frequency questionnaires. MetS was defined according to the International Diabetes Federation definition. Linear and logistic regression models were performed to estimate odds ratios and confidence intervals. Results Among high coffee and tea consumers (3 or more cups/day), high prevalence of female gender, young age, medium–high educational and occupational level, high total energy intake, and smoking habit were found. High coffee drinkers had lower BMI, waist circumference, systolic and diastolic blood pressure, triglycerides, and higher HDL cholesterol than those drinking less than 1 cup/day. In contrast, high tea consumers had lower BMI, waist circumference, but not diastolic blood pressure, which was higher than low drinkers. After adjusting for potential confounding factors, both higher coffee and tea consumption were negatively associated with MetS (OR 0.75, 95 % CI 0.66, 0.86 and OR 0.79, 95 % CI 0.67, 0.92, respectively). Among specific components of MetS, high coffee consumption was negatively associated with waist circumference, hypertension, and triglycerides, whereas tea consumption with central obesity and fasting plasma glucose in women, but not in men. Conclusions Coffee and tea consumption was negatively associated with MetS and some of its components.
Collapse
Affiliation(s)
- Giuseppe Grosso
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, V.le A. Doria 6, 95125, Catania, Italy. .,Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland.
| | - Urszula Stepaniak
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Micek
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| | - Roman Topor-Mądry
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| | - Hynek Pikhart
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Krystyna Szafraniec
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| | - Andrzej Pająk
- Department of Epidemiology and Population Studies, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
76
|
Pérez-Areales FJ, Di Pietro O, Espargaró A, Vallverdú-Queralt A, Galdeano C, Ragusa IM, Viayna E, Guillou C, Clos MV, Pérez B, Sabaté R, Lamuela-Raventós RM, Luque FJ, Muñoz-Torrero D. Shogaol–huprine hybrids: Dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties. Bioorg Med Chem 2014; 22:5298-307. [DOI: 10.1016/j.bmc.2014.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
|
77
|
Organic anion transporting polypeptides and organic cation transporter 1 contribute to the cellular uptake of the flavonoid quercetin. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:883-91. [PMID: 24947867 DOI: 10.1007/s00210-014-1000-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/01/2014] [Indexed: 01/15/2023]
Abstract
Flavonoids such as quercetin and kaempferol mediate several health protective effects, e.g., anticancer effects. They are inhibitors of organic anion transporting polypeptides (OATP) and organic cation transporters (e.g., OCT2). However, little is known whether such transporters contribute to the cellular uptake of flavonoids. Therefore, we investigated the cellular uptake of kaempferol and quercetin using HEK293 cell lines stably expressing different human OATPs or OCT1. Kaempferol was not a substrate of any of the investigated transporters (OATP1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP5A1, and OCT1). Quercetin showed a significantly higher uptake into the HEK293-OATP1A2, HEK293-OATP2A1, HEK293-OATP2B1, and HEK293-OCT1 cells compared to control cells. The OATP1A2-, OATP2B1-, and OCT1-mediated quercetin uptake was inhibited by known inhibitors such as naringin, cyclosporin A, and quinidine, respectively. The cellular accumulation of quercetin into HEK293-OATP2A1 cells was not inhibited by prostaglandin E2 and diclofenac. The ionophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) reduced the net uptake of quercetin by increasing the uptake in the HEK293-control cells and causing no significant change in the HEK293-OATP2B1 cells indicating that quercetin follows the FCCP-driven proton flux through the plasma membrane. In addition to passive diffusion, the SLC transporters OATP1A2, OATP2B1, and OCT1 contribute to cellular accumulation of quercetin.
Collapse
|
78
|
Biasi F, Deiana M, Guina T, Gamba P, Leonarduzzi G, Poli G. Wine consumption and intestinal redox homeostasis. Redox Biol 2014; 2:795-802. [PMID: 25009781 PMCID: PMC4085343 DOI: 10.1016/j.redox.2014.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine's beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.
Collapse
Key Words
- AKT, serine/threonine protein kinase (v-akt murine thimoma viral oncogene homolog1)
- Antioxidants
- CD, Crohns disease
- COX-2, cyclooxygenase-2
- Cys, cysteine
- DSS, dextran sodium sulfate
- ERK, extracellular signal-regulated kinase
- GRP, grape reaction product
- GSH, reduced glutathione
- Gut
- IBD, inflammatory bowel disease
- IFN, interferon
- IKB, inhibitor of NF-κB
- IL, interleukin
- Inflammation
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinase
- NADPH, nicotinamide adenine dinucleotide phosphate reduced
- NF-κB, nuclear factor-κB
- Nrf2, nuclear factor erythroid-2-related factor 2
- Oxidative stress
- PGE-2, prostaglandin E-2
- Polyphenols
- ROS, reactive oxygen species
- SIRT-1, silent mating type information regulation-1
- TNF-α, tumor necrosis factor alpha
- UC, Ulcerative Colitis
- Wine
- apoB48, apolipoprotein B48
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Tina Guina
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| |
Collapse
|
79
|
Ulbricht C, Costa D, Dam C, D'Auria D, Giese N, Isaac R, LeBlanc Y, Rusie E, Weissner W, Windsor RC. An evidence-based systematic review of kudzu (Pueraria lobata) by the Natural Standard Research Collaboration. J Diet Suppl 2014; 12:36-104. [PMID: 24848872 DOI: 10.3109/19390211.2014.904123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An evidence-based systematic review of kudzu (Pueraria lobata) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
|
80
|
Chang TS. Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int J Mol Sci 2014; 15:5699-716. [PMID: 24705463 PMCID: PMC4013590 DOI: 10.3390/ijms15045699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 12/18/2022] Open
Abstract
Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD) and ortho-hydroxygenistein (OHG), including 6-hydroxydaidzein (6-OHD), 8-hydroxydaidzein (8-OHD), 3'-hydroxydaidzein (3'-OHD), 6-hydroxygenistein (6-OHG), 8-hydroxygenistein (8-OHG), and 3'-hydroxygenistein (3'-OHG), are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP) enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Science and Technology, National University of Tainan, 33 Sec. 2 Su-Lin St., Tainan 702, Taiwan.
| |
Collapse
|
81
|
Giuliani C, Bucci I, Di Santo S, Rossi C, Grassadonia A, Piantelli M, Monaco F, Napolitano G. The flavonoid quercetin inhibits thyroid-restricted genes expression and thyroid function. Food Chem Toxicol 2014; 66:23-9. [DOI: 10.1016/j.fct.2014.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 01/10/2023]
|
82
|
Quadri S, Stratford RE, Boué SM, Cole RB. Identification of glyceollin metabolites derived from conjugation with glutathione and glucuronic acid in male ZDSD rats by online liquid chromatography-electrospray ionization tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2692-700. [PMID: 24617284 PMCID: PMC3983382 DOI: 10.1021/jf403498f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 02/08/2014] [Accepted: 02/18/2014] [Indexed: 05/24/2023]
Abstract
Glyceollin-related metabolites produced in rats following oral glyceollin administration were screened in plasma, feces, and urine, and these metabolites were identified by precursor and product ion scanning using liquid chromatography coupled online with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Precursor ion scanning in the negative ion (NI) mode was used to identify all glyceollin metabolites based on production of a diagnostic radical product ion (m/z 148) upon decomposition. Using this approach, precursor peaks of interest were found at m/z 474 and 531. Tandem mass spectra of these two peaks allowed us to characterize them as byproducts of glutathione conjugation. The peak at m/z 474 was identified as the deprotonated cysteinyl conjugate of glyceollins with an addition of an oxygen atom, whereas m/z 531 was identified as the deprotonated cysteinylglyceine glyceollin conjugate plus an oxygen. These results were confirmed by positive ion (PI) mode analyses. Mercapturic acid conjugates of glyceollins were also identified in NI mode. In addition, glucuronidation of glyceollins was observed, giving a peak at m/z 513 corresponding to the deprotonated conjugate. Production of glucuronic acid conjugates of glyceollins was confirmed in vitro in rat liver microsomes. Neither glutathione conjugation byproducts nor glucuronic acid conjugates of glyceollins have been previously reported.
Collapse
Affiliation(s)
- Syeda
S. Quadri
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, Louisiana 70148, United States
| | - Robert E. Stratford
- College
of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Stephen M. Boué
- Southern Regional
Research Center, U.S.D.A., 1100 Robert
E. Lee Blvd. New Orleans, Louisiana 70124, United States
| | - Richard B. Cole
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, Louisiana 70148, United States
- Institut
Parisien de Chimie Moléculaire (UMR 8232), Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
83
|
Virk-Baker MK, Barnes S, Krontiras H, Nagy TR. S-(-)equol producing status not associated with breast cancer risk among low isoflavone-consuming US postmenopausal women undergoing a physician-recommended breast biopsy. Nutr Res 2014; 34:116-25. [PMID: 24461312 PMCID: PMC4028846 DOI: 10.1016/j.nutres.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/31/2022]
Abstract
Soy foods are the richest sources of isoflavones, mainly daidzein and genistein. Soy isoflavones are structurally similar to the steroid hormone 17β-estradiol and may protect against breast cancer. S-(-)equol, a metabolite of the soy isoflavone daidzein, has a higher bioavailability and greater affinity for estrogen receptor β than daidzein. Approximately one-third of the Western population is able to produce S-(-)equol, and the ability is linked to certain gut microbes. We hypothesized that the prevalence of breast cancer, ductal hyperplasia, and overall breast pathology will be lower among S-(-)equol producing, as compared with nonproducing, postmenopausal women undergoing a breast biopsy. We tested our hypothesis using a cross-sectional study design. Usual diets of the participants were supplemented with 1 soy bar per day for 3 consecutive days. Liquid chromatography-multiple reaction ion monitoring mass spectrometry analysis of urine from 143 subjects revealed 25 (17.5%) as S-(-)equol producers. We found no statistically significant associations between S-(-)equol producing status and overall breast pathology (odds ratio [OR], 0.68; 95% confidence interval [CI], 0.23-1.89), ductal hyperplasia (OR, 0.84; 95% CI, 0.20-3.41), or breast cancer (OR, 0.56; 95% CI, 0.16-1.87). However, the mean dietary isoflavone intake was much lower (0.3 mg/d) than in previous reports. Given that the amount of S-(-)equol produced in the gut depends on the amount of daidzein exposure, the low soy intake coupled with lower prevalence of S-(-)equol producing status in the study population favors toward null associations. Findings from our study could be used for further investigations on S-(-)equol producing status and disease risk.
Collapse
Affiliation(s)
- Mandeep K Virk-Baker
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; The UAB Comprehensive Cancer Center, Birmingham, AL, USA.
| | - Helen Krontiras
- The UAB Comprehensive Cancer Center, Birmingham, AL, USA; Department of Surgery, Surgical Oncology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Tim R Nagy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; The UAB Comprehensive Cancer Center, Birmingham, AL, USA.
| |
Collapse
|
84
|
Fritz H, Seely D, Flower G, Skidmore B, Fernandes R, Vadeboncoeur S, Kennedy D, Cooley K, Wong R, Sagar S, Sabri E, Fergusson D. Soy, red clover, and isoflavones and breast cancer: a systematic review. PLoS One 2013; 8:e81968. [PMID: 24312387 PMCID: PMC3842968 DOI: 10.1371/journal.pone.0081968] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Soy and red clover isoflavones are controversial due to purported estrogenic activity and possible effects on breast cancer. We conducted a systematic review of soy and red clover for efficacy in improving menopausal symptoms in women with breast cancer, and for potential impact on risk of breast cancer incidence or recurrence. METHODS We searched MEDLINE, Embase, the Cochrane Library, and AMED from inception to March 2013 for human interventional or observational data pertaining to the safety and efficacy of soy and red clover isoflavones in patients with or at risk of breast cancer. RESULTS Of 4179 records, we included a total of 131 articles: 40 RCTs, 11 uncontrolled trials, and 80 observational studies. Five RCTs reported on the efficacy of soy for hot flashes, showing no significant reductions in hot flashes compared to placebo. There is lack of evidence showing harm from use of soy with respect to risk of breast cancer or recurrence, based on long term observational data. Soy intake consistent with that of a traditional Japanese diet (2-3 servings daily, containing 25-50mg isoflavones) may be protective against breast cancer and recurrence. Human trials show that soy does not increase circulating estradiol or affect estrogen-responsive target tissues. Prospective data of soy use in women taking tamoxifen does not indicate increased risk of recurrence. Evidence on red clover is limited, however existing studies suggest that it may not possess breast cancer-promoting effects. CONCLUSION Soy consumption may be associated with reduced risk of breast cancer incidence, recurrence, and mortality. Soy does not have estrogenic effects in humans. Soy intake consistent with a traditional Japanese diet appears safe for breast cancer survivors. While there is no clear evidence of harm, better evidence confirming safety is required before use of high dose (≥ 100 mg) isoflavones can be recommended for breast cancer patients.
Collapse
Affiliation(s)
- Heidi Fritz
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Dugald Seely
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Integrative Cancer Center, Ottawa, Ontario, Canada
| | - Gillian Flower
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Becky Skidmore
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Rochelle Fernandes
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, Ontario, Canada
| | - Sarah Vadeboncoeur
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Deborah Kennedy
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kieran Cooley
- Department of Research & Clinical Epidemiology, Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Raimond Wong
- Juravinski Cancer Centre and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Sagar
- Juravinski Cancer Centre and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elham Sabri
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean Fergusson
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
85
|
|
86
|
Abstract
The selection of foods to eat is a complex interplay of vision, taste, smell, and texture. In addition to micro- and macronutrients, plant-based foods also contain several classes of phytochemicals. In many cases, the phytochemicals account for the various colors of foods. Although aesthetically pleasing, the color of foods may mislead consumers as to their phytochemical content, which is particularly true with regard to polyphenols. Polyphenols are a broad class of compounds with antioxidant and other health benefits. Human vision is limited to a small window (390-765 nm) of the electromagnetic spectrum. Many important phytochemicals (e.g., vitamin C) have no absorbance in this range. Therefore, the human eye cannot directly judge the vitamin C content of foods. Being able to see in the ultraviolet range allows bees to locate the pollen-rich region of flowers, whereas pit vipers locate their prey by being able to "see" them in the infrared range. Assessing the impact of phytochemicals on human health depends on several factors. Colorless phytochemicals in unprocessed foods may be lost during the cooking process because no visual guide exists to ensure their retention. The molecular structures of phytochemicals influence the extent to which they are altered by cooking processes and the methods by which they are absorbed from the gastrointestinal tract. Extensive metabolism by phase I/II enzymes and by the gut microbiome may also create compounds that the eye is never allowed to appreciate.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | |
Collapse
|
87
|
Romo Vaquero M, García Villalba R, Larrosa M, Yáñez-Gascón MJ, Fromentin E, Flanagan J, Roller M, Tomás-Barberán FA, Espín JC, García-Conesa MT. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol Nutr Food Res 2013; 57:1834-46. [DOI: 10.1002/mnfr.201300052] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 11/10/2022]
Affiliation(s)
- María Romo Vaquero
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| | - Rocío García Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| | - Mar Larrosa
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| | - María J. Yáñez-Gascón
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| | | | - John Flanagan
- Naturex SL; Camino de Torrent; Quart de Poblet Valencia Spain
| | | | - Francisco A. Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| | - Juan C. Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods; Department of Food Science and Technology; Campus de Espinardo Murcia Spain
| |
Collapse
|
88
|
Lochmann RT, Islam S, Phillips H, Adam Z, Everette J. Effects of dietary sweet potato leaf meal on the growth, non-specific immune responses, total phenols and antioxidant capacity in channel catfish (Ictalurus punctatus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1365-1369. [PMID: 23027661 DOI: 10.1002/jsfa.5898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/20/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. RESULTS SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. CONCLUSION SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival.
Collapse
Affiliation(s)
- Rebecca T Lochmann
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA.
| | | | | | | | | |
Collapse
|
89
|
Corcoran MP, McKay DL, Blumberg JB. Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr 2012; 31:176-89. [PMID: 22888837 DOI: 10.1080/21551197.2012.698219] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In our efforts to understand how various dietary factors can influence the risk and progression of chronic disease, much recent research has focused on phytochemicals. Phytochemicals are defined as nonessential nutrients found in plant-based food, many of which have been established as bioactive and thus may affect human health. The largest group of phytochemicals is the polyphenols, comprised principally of the flavonoids, which are characterized chemically by two benzene rings joined by a linear carbon chain. Evidence from observational studies indicates that regular consumption of foods containing flavonoids may reduce the risk several chronic conditions, including neurodegenerative diseases, atherosclerosis, and certain forms of cancer. These results have generated considerable interest in flavonoids, although much basic information about their nutrient characteristics in humans remains limited, e.g., their bioavailability and metabolism, interactions with other dietary factors, mechanisms of action, and intakes associated with specific health outcomes. Although flavonoids are commonly defined as dietary antioxidants and their putative health benefits commonly attributed to this mechanism, it now appears their principal actions are mediated in vivo via other biochemical and molecular pathways.
Collapse
Affiliation(s)
- Michael P Corcoran
- John Hancock Research Center on Physical Activity, Nutrition, and Obesity Prevention, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
90
|
Abstract
Soybeans are rich in immuno-modulatory isoflavones such as genistein, daidzein, and glycitein. These isoflavones are well-known antioxidants, chemopreventive and anti-inflammatory agents. Several epidemiological studies suggest that consumption of traditional soy food containing isoflavones is associated with reduced prevalence of chronic health disorders. Isoflavones are considered to be phytoestrogens because of their ability to bind to estrogen receptors. The literature is extensive on the chemistry, bio-availability, and bio-activity of isoflavones. However, their effects on immune response are yet to be fully understood, but are beginning to be appreciated. We review the role of isoflavones in regulation of the immune response and their potential clinical applications in immune-dysfunction. Special emphasis will be made regarding in vivo studies including humans and animal model systems.
Collapse
Affiliation(s)
- Madhan Masilamani
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Anbg 17-40G, Mount Sinai School of Medicine, The Jaffe Food Allergy Institute, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
91
|
Abstract
This paper presents a revision on the instrumental analytical techniques and methods used in food analysis together with their main applications in food science research. The present paper includes a brief historical perspective on food analysis, together with a deep revision on the current state of the art of modern analytical instruments, methodologies, and applications in food analysis with a special emphasis on the works published on this topic in the last three years (2009–2011). The article also discusses the present and future challenges in food analysis, the application of “omics” in food analysis (including epigenomics, genomics, transcriptomics, proteomics, and metabolomics), and provides an overview on the new discipline of Foodomics.
Collapse
Affiliation(s)
- Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
92
|
Shipley LA, Davis EM, Felicetti LA, McLean S, Forbey JS. Mechanisms for eliminating monoterpenes of sagebrush by specialist and generalist rabbits. J Chem Ecol 2012; 38:1178-89. [PMID: 23053918 DOI: 10.1007/s10886-012-0192-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/25/2012] [Accepted: 09/18/2012] [Indexed: 11/26/2022]
Abstract
Pygmy rabbits (Brachylagus idahoensis) are one of only three vertebrates that subsist virtually exclusively on sagebrush (Artemisia spp.), which contains high levels of monoterpenes that can be toxic. We examined the mechanisms used by specialist pygmy rabbits to eliminate 1,8-cineole, a monoterpene of sagebrush, and compared them with those of cottontail rabbits (Sylvilagus nuttalli), a generalist herbivore. Rabbits were offered food pellets with increasing concentrations of cineole, and we measured voluntary intake and excretion of cineole metabolites in feces and urine. We expected pygmy rabbits to consume more, but excrete cineole more rapidly by using less-energetically expensive methods of detoxification than cottontails. Pygmy rabbits consumed 3-5 times more cineole than cottontails relative to their metabolic body mass, and excreted up to 2 times more cineole metabolites in their urine than did cottontails. Urinary metabolites excreted by pygmy rabbits were 20 % more highly-oxidized and 6 times less-conjugated than those of cottontails. Twenty percent of all cineole metabolites recovered from pygmy rabbits were in feces, whereas cottontails did not excrete fecal metabolites. When compared to other mammals that consume cineole, pygmy rabbits voluntarily consumed more, and excreted more cineole metabolites in feces, but they excreted less oxidized and more conjugated cineole metabolites in urine. Pygmy rabbits seem to have a greater capacity to minimize systemic exposure to cineole than do cottontails, and other cineole-consumers, by minimizing absorption and maximizing detoxification of ingested cineole. However, mechanisms that lower systemic exposure to cineole may come with a higher energetic cost in pygmy rabbits than in other mammalian herbivores.
Collapse
Affiliation(s)
- Lisa A Shipley
- School of the Environment, Washington State University, Pullman, WA 99164-6410, USA.
| | | | | | | | | |
Collapse
|
93
|
Marchionatti AM, Pacciaroni A, Tolosa de Talamoni NG. Effects of quercetin and menadione on intestinal calcium absorption and the underlying mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:215-20. [PMID: 23000882 DOI: 10.1016/j.cbpa.2012.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
Quercetin (QT) could be considered as a potential therapeutic agent for different diseases due to its antioxidant, anti-inflammatory, antiviral and anticancer properties. This study was designed to investigate the ability of QT to protect the chick intestine against menadione (MEN) induced injury in vivo and in vitro. Four-week old chicks (Gallus gallus) were treated i.p. with 2.5μmol of MEN/kg b.w. or with i.l. 50μM QT or both. QT protected the intestinal Ca(2+) absorption against the inhibition caused by MEN, but QT alone did not modify. Glutathione (GSH) depletion provoked by MEN in chick enterocytes was abolished by QT treatment, whereas QT alone did not modify the intestinal GSH content. The enhancement of GSH peroxidase activity produced by MEN was blocked by QT treatment. In contrast, superoxide dismutase activity remained high after simultaneous treatment of enterocytes with MEN and QT. The flavonol also avoided changes in the mitochondrial membrane permeability (swelling) produced by MEN. The FasL/Fas/caspase-3 pathway was activated by MEN, effect that was abrogated by QT. In conclusion, QT may be useful in preventing inhibition of chick intestinal Ca(2+) absorption caused by MEN or other substances that deplete GSH, by blocking the oxidative stress and the FasL/Fas/caspase-3 pathway activation.
Collapse
Affiliation(s)
- Ana M Marchionatti
- Laboratorio Dr. Fernando Cañas, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
94
|
Lies B, Martens S, Schmidt S, Boll M, Wenzel U. Flavone potently stimulates an apical transporter for flavonoids in human intestinal Caco-2 cells. Mol Nutr Food Res 2012; 56:1627-35. [DOI: 10.1002/mnfr.201200370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/25/2012] [Accepted: 08/06/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Barbara Lies
- Molecular Nutrition Research; Interdisciplinary Research Center; Justus-Liebig-University of Giessen; Giessen Germany
| | - Stefan Martens
- Fondazione Edmund Mach; Centro Ricerca e Innovazione; Department of Food Quality and Nutrition; Istituto Agrario San Michele all'Adige-IASMA; San Michele all'Adige TN Italy
| | - Sabine Schmidt
- Institute for Pharmaceutical Biology; Philipps-University of Marburg; Marburg/Lahn Germany
| | - Michael Boll
- Molecular Nutrition Research; Interdisciplinary Research Center; Justus-Liebig-University of Giessen; Giessen Germany
| | - Uwe Wenzel
- Molecular Nutrition Research; Interdisciplinary Research Center; Justus-Liebig-University of Giessen; Giessen Germany
| |
Collapse
|
95
|
Feng D, Qiu F, Tong Z, Xie C. Oral Pharmacokinetic Comparison of Different Genistein Tablets in Beagle Dogs. J Chromatogr Sci 2012; 51:335-40. [DOI: 10.1093/chromsci/bms145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
96
|
Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 2012; 17:327-39. [PMID: 22404530 PMCID: PMC3353820 DOI: 10.1089/ars.2012.4600] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED In living systems, the mechanisms of inheritance involving gene expression are operated by (i) the traditional model of genetics where the deoxyribonucleic acid (DNA) transcription and messenger ribonucleic acid stability are influenced by the DNA sequences and any aberrations in the primary DNA sequences and (ii) the epigenetic (above genetics) model in which the gene expression is regulated by mechanisms other than the changes in DNA sequences. The widely studied epigenetic alterations include DNA methylation, covalent modification of chromatin structure, state of histone acetylation, and involvement of microribonucleic acids. SIGNIFICANCE Currently, the role of cellular epigenome in health and disease is rapidly emerging. Several factors are known to modulate the epigenome-regulated gene expression that is crucial in several pathophysiological states and diseases in animals and humans. Phytochemicals have occupied prominent roles in human diet and nutrition as protective antioxidants in prevention/protection against several disorders and diseases in humans. RECENT ADVANCES However, it is beginning to surface that the phytochemical phenolic antioxidants such as polyphenols, flavonoids, and nonflavonoid phenols function as potent modulators of the mammalian epigenome-regulated gene expression through regulation of DNA methylation, histone acetylation, and histone deacetylation in experimental models. CRITICAL ISSUES AND FUTURE DIRECTIONS The antioxidant or pro-oxidant actions and their involvement in the epigenome regulation by the phytochemical phenolic antioxidants should be at least established in the cellular models under normal and pathophysiological states. The current review discusses the mechanisms of modulation of the mammalian cellular epigenome by the phytochemical phenolic antioxidants with implications in human diseases.
Collapse
Affiliation(s)
- Smitha Malireddy
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sainath R. Kotha
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jordan D. Secor
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Travis O. Gurney
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jamie L. Abbott
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Gautam Maulik
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Krishna R. Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
97
|
Schaffer S, Asseburg H, Kuntz S, Muller WE, Eckert GP. Effects of polyphenols on brain ageing and Alzheimer's disease: focus on mitochondria. Mol Neurobiol 2012; 46:161-78. [PMID: 22706880 DOI: 10.1007/s12035-012-8282-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/24/2012] [Indexed: 02/07/2023]
Abstract
The global trend of the phenomenon of population ageing has dramatic consequences on public health and the incidence of neurodegenerative diseases. Physiological changes that occur during normal ageing of the brain may exacerbate and initiate pathological processes that may lead to neurodegenerative disorders, especially Alzheimer's disease (AD). Hence, the risk of AD rises exponentially with age. While there is no cure currently available, sufficient intake of certain micronutrients and secondary plant metabolites may prevent disease onset. Polyphenols are highly abundant in the human diet, and several experimental and epidemiological evidences indicate that these secondary plant products have beneficial effects on AD risks. This study reviews current knowledge on the potential of polyphenols and selected polyphenol-rich diets on memory and cognition in human subjects, focusing on recent data showing in vivo efficacy of polyphenols in preventing neurodegenerative events during brain ageing and in dementia. Concentrations of polyphenols in animal brains following oral administration have been consistently reported to be very low, thus eliciting controversial discussion on their neuroprotective effects and potential mechanisms. Whether polyphenols exert any direct antioxidant effects in the brain or rather act by evoking alterations in regulatory systems of the brain or even the body periphery is still unclear. To understand the mechanisms behind the protective abilities of polyphenol-rich foods, an overall understanding of the biotransformation of polyphenols and identification of the various metabolites arising in the human body is also urgently needed.
Collapse
Affiliation(s)
- Sebastian Schaffer
- Department of Biochemistry, Centre for Life Sciences, National University of Singapore, 22 Medical Drive, Singapore 117456, Singapore
| | | | | | | | | |
Collapse
|
98
|
Simons R, Gruppen H, Bovee TFH, Verbruggen MA, Vincken JP. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct 2012; 3:810-27. [PMID: 22684228 DOI: 10.1039/c2fo10290k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Isoflavonoids are a class of secondary metabolites, which comprise amongst others the subclasses of isoflavones, isoflavans, pterocarpans and coumestans. Isoflavonoids are abundant in Leguminosae, and many of them can bind to the human estrogen receptor (hER) with affinities similar to or lower than that of estradiol. Dietary intake of these so-called phytoestrogens has been associated with positive effects on menopausal complaints, hormone-related cancers, and osteoporosis. Therefore, phytoestrogens are used as nutraceuticals in functional foods or food supplements. Most of the isoflavonoids show agonistic activity towards both hERα and hERβ, the extent of which is modulated by the substitution pattern of their skeleton (i.e.-OH, -OCH(3)). Interestingly, substitutions consisting of a five-carbon prenyl group often seem to result in an antiestrogenic activity. There is growing evidence that the action of some of these prenylated isoflavonoids is tissue-specific, suggesting that they act like selective estrogen receptor modulators (SERMs), such as the well-known chemically synthesized raloxifene and tamoxifen. These so-called phytoSERMS might have high potential for realizing new food and pharma applications. In this review, the structural features of isoflavonoids (i.e. the kind of skeleton and prenylation (e.g. chain or pyran), position of the prenyl group on the skeleton, and the extent of prenylation (single, double)) are discussed in relation to their estrogenic activity. Anti-estrogenic and SERM activity of isoflavonoids was always associated with prenylation, but these activities did not seem to be confined to one particular kind/position of prenylation or isoflavonoid subclass. Few estrogens with agonistic activity were prenylated, but these were not tested for antagonistic activity; possibly, these molecules will turn out to be phytoSERMs as well. Furthermore, the data on the dietary occurrence, bioavailability and metabolism of prenylated isoflavonoids are discussed.
Collapse
Affiliation(s)
- Rudy Simons
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
99
|
Galindo P, González-Manzano S, Zarzuelo MJ, Gómez-Guzmán M, Quintela AM, González-Paramás A, Santos-Buelga C, Pérez-Vizcaíno F, Duarte J, Jiménez R. Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats. Food Funct 2012; 3:643-50. [DOI: 10.1039/c2fo10268d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
100
|
Tanaka T, Tang H, Yu F, Michihara S, Uzawa Y, Zaima N, Moriyama T, Kawamura Y. Kudzu (Pueraria lobata) vine ethanol extracts improve ovariectomy-induced bone loss in female mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13230-13237. [PMID: 22053809 DOI: 10.1021/jf2031617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bone-loss-improving action of kudzu vine ethanol extracts (PVEE) was clarified. PVEE was composed roughly of 80% fiber, 10% puerarin, 3.6% daidzin, 2.5% 6″-O-malonyldaidzin, and the other minor isoflavones. Ten-week-old ovariectomized (OVX) mice were fed diets containing PVEE (20 mg/kg body weight/day) for 8 weeks. The bone resorption markers (urinary deoxypyridinoline and tartrate-resistant acid phosphatase activity) was elevated in OVX mice and was significantly decreased in OVX mice that consumed PVEE for 8 weeks. Consistent with the decrease in the markers, the number of matured osteoclasts in the distal femur was diminished in OVX mice fed PVEE diets. PVEE diets also suppressed the decrease in femoral bone mineral density (BMD) by OVX. PVEE showed the affinity for estrogen receptor α and β nearly 1/10000 weaker than 17β-estradiol. No hypertrophy in the uterus by the PVEE diet was observed. These results suggest that PVEE could be a promising resource for a functional food that improves osteoporosis.
Collapse
Affiliation(s)
- Teruyoshi Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kinki University, 3327-204 Naka-machi, Nara 631-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|