51
|
Gupta A, Venkatesh AR, Arora K, Guptasarma P. Avoidance of the use of tryptophan in buried chromosomal proteins as a mechanism for reducing photo/oxidative damage to genomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112733. [PMID: 37311303 DOI: 10.1016/j.jphotobiol.2023.112733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
In cells that are exposed to terrestrial sunlight, the indole moiety in the side chain of tryptophan (Trp) can suffer photo/oxidative damage (POD) by reactive oxygen species (ROS) and/or ultraviolet light (UV-B). Trp is oxidized to produce N-formylkynurenine (NFK), a UV-A-responsive photosensitizer that further degenerates into photosensitizers capable of generating ROS through exposure to visible light. Thus, Trp-containing proteins function as both victims, and perpetrators, of POD if they are not rapidly replaced through protein turnover. The literature indicates that protein turnover and DNA repair occur poorly in chromosomal interiors. We contend, therefore, that basic chromosomal proteins (BCPs) that are enveloped by DNA should have evolved to lack Trp residues in their amino acid sequences, since these could otherwise function as 'Trojan horse-type' DNA-damaging agents. Our global analyses of protein sequences demonstrates that BCPs consistently lack Trp residues, although DNA-binding proteins in general do not display such a lack. We employ HU-B (a wild-type, Trp-lacking bacterial BCP) and HU-B F47W (a mutant, Trp-containing form of the same bacterial BCP) to demonstrate that the possession of Trp is deleterious to BCPs and associated chromosomal DNA. Basically, we show that UV-B and UV-A (a) cause no POD in HU-B, but cause extensive POD in HU-B F47W (in vitro), as well as (b) only nominal DNA damage in bacteria expressing HU-B, but extensive DNA damage in bacteria expressing F47W HU-B (in vivo). Our results suggest that Trp-lacking BCPs could have evolved to reduce scope for protein-facilitated, sunlight-mediated damage of DNA by UV-A and visible light, within chromosomal interiors that are poorly serviced by protein turnover and DNA repair machinery.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Achuthan Raja Venkatesh
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
52
|
Vera CC, Borsarelli CD. Photo-induced protein modifications: a range of biological consequences and applications. Biophys Rev 2023; 15:569-576. [PMID: 37681095 PMCID: PMC10480124 DOI: 10.1007/s12551-023-01081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Proteins are the most abundant biomolecules in living organisms and tissues and are also present in many natural and processed foods and beverages, as well as in pharmaceuticals and therapeutics. When exposed to UV-visible light, proteins containing endogenous or exogenous chromophores can undergo direct and indirect photochemical processes, resulting in protein modifications including oxidation of residues, cross-linking, proteolysis, covalent binding to molecules and interfaces, and conformational changes. When these modifications occur in an uncontrolled manner in a physiological context, they can lead to biological dysfunctions that ultimately result in cell death. However, rational design strategies involving light-activated protein modification have proven to be a valuable tool for the modulation of protein function or even for the construction of new biomaterials. This mini-review describes the fundamentals of photochemical processes in proteins and explores some of their emerging biomedical and nanobiotechnological applications, such as photodynamic therapy (PDT), photobonding for wound healing, photobioprinting, photoimmobilization of biosensors and enzymes for sensing, and biocatalysis, among others.
Collapse
Affiliation(s)
- Claudia Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP Santiago del Estero, Argentina
| | - Claudio Darío Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET. Universidad Nacional de Santiago del Estero (UNSE), RN 9, Km 1125, G4206XCP Santiago del Estero, Argentina
| |
Collapse
|
53
|
Fitzner L, Kühl T, Hasler M, Imhof D, Schwarz K, Keppler JK. Modification and oxidative degradation of β-lactoglobulin by UVB irradiation. Food Chem 2023; 428:136698. [PMID: 37413838 DOI: 10.1016/j.foodchem.2023.136698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Ultraviolet (UV) B irradiation induces protein modification, especially the conformational rearrangement of proteins, and is therefore promising as a non-thermal and non-chemical functionalization technique. Nevertheless, UVB irradiation introduces radicals and oxidizes side chains resulting in the loss of food quality. Thus, assessing the UVB irradiation-based functionalization of β-lactoglobulin (BLG) versus its oxidative degradation is of interest. UVB irradiation of up to 8 h was successfully applied to loosen the rigid folding of BLG and increase its flexibility. Thereby, the cysteine at position 121 and hydrophobic regions became surface-exposed as indicated by the increase in accessible thiol groups and increased surface hydrophobicity. Furthermore, we demonstrated the cleavage of the "outer" disulfide bond C66-C160 by LC-MS/MS after tryptic digestion of BLG. The 2-h-irradiated BLG showed adequate conformational rearrangement for protein functionalization while being minimally oxidized.
Collapse
Affiliation(s)
- Laura Fitzner
- Institute of Human Nutrition and Food Science, Division Food Technology, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany.
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Strasse 9, 24118 Kiel, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany.
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division Food Technology, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Julia Katharina Keppler
- Laboratory of Food Process Engineering, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
54
|
Martin MI, Pham TN, Ward KN, Rice AT, Hertler PR, Yap GPA, Gilmartin PH, Rosenthal J. Mapping the influence of ligand electronics on the spectroscopic and 1O 2 sensitization characteristics of Pd(II) biladiene complexes bearing phenyl-alkynyl groups at the 2- and 18-positions. Dalton Trans 2023; 52:7512-7523. [PMID: 37199710 PMCID: PMC10263192 DOI: 10.1039/d3dt00691c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment for certain cancers that proceeds via sensitization of ground state 3O2 to generate reactive 1O2. Classic macrocyclic tetrapyrrole ligand scaffolds, such as porphyrins and phthalocyanines, have been studied in detail for their 1O2 photosensitization capabilities. Despite their compelling photophysics, these systems have been limited in PDT applications because of adverse biological side effects. Conversely, the development of non-traditional oligotetrapyrrole ligands metalated with palladium (Pd[DMBil1]) have established new candidates for PDT that display excellent biocompatibility. Herein, the synthesis, electrochemical, and photophysical characterization of a new family of 2,18-bis(phenylalkynyl)-substituted PdII 10,10-dimethyl-5,15-bis(pentafluorophenyl)-biladiene (Pd[DMBil2-R]) complexes is presented. These second generation biladienes feature extended conjugation relative to previously characterized PdII biladiene scaffolds (Pd[DMBil1]). We show that these new derivatives can be prepared in good yield and, that the electronic nature of the phenylalkynyl appendages dramatically influence the PdII biladiene photophysics. Extending the conjugation of the Pd[DMBil1] core through installation of phenylacetylene resulted in a ∼75 nm red-shift of the biladiene absorption spectrum into the phototherapeutic window (600-900 nm), while maintaining the PdII biladiene's steady-state spectroscopic 1O2 sensitization characteristics. Varying the electronics of the phenylalkyne groups via installation of electron donating or withdrawing groups dramatically influences the steady-state spectroscopic and photophysical properties of the resulting Pd[DMBil2-R] family of complexes. The most electron rich variants (Pd[DMBil2-N(CH3)2]) can absorb light as far red as ∼700 nm but suffer from significantly reduced ability to sensitize formation of 1O2. By contrast, Pd[DMBil2-R] derivatives bearing electron withdrawing functionalities (Pd[DMBil2-CN] and Pd[DMBil2-CF3]) display 1O2 quantum yields above 90%. The collection of results we report suggest that excited state charge transfer from more electron-rich phenyl-alkyne appendages to the electron deficient biladiene core circumvents triplet sensitization. The spectral and redox properties, as well as the triplet sensitization efficiency of each Pd[DMBil2-R] derivative is considered in relation to the Hammett value (σp) for each biladiene's R-group. More broadly, the results reported in this study clearly demonstrate that biladiene redox properties, spectral properties, and photophysics can be perturbed greatly by relatively minor alterations to biladiene structure.
Collapse
Affiliation(s)
- Maxwell I Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Kaytlin N Ward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Anthony T Rice
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Philip H Gilmartin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
55
|
Morozova OB, Yurkovskaya AV. Reduction of transient carnosine radicals depends on β-alanyl amino group charge. Phys Chem Chem Phys 2023; 25:7704-7710. [PMID: 36866760 DOI: 10.1039/d2cp04933c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Reduction of transient carnosine (β-alanyl-L-histidine) radicals by L-tryptophan, N-acetyl tryptophan, and the Trp-Gly peptide in neutral and basic aqueous solutions was studied using the technique of time-resolved chemically induced dynamic nuclear polarization (TR CIDNP). Carnosine radicals were generated in the photoinduced reaction with triplet excited 3,3',4,4'-tetracarboxy benzophenone. In this reaction, carnosine radicals with their radical center at the histidine residue are formed. Modeling of CIDNP kinetic data allowed for the determination of pH-dependent rate constants of the reduction reaction. It was shown that the protonation state of the amino group of the non-reacting β-alanine residue of the carnosine radical affects the rate constant of the reduction reaction. The results were compared to those obtained previously for the reduction of histidine and N-acetyl histidine free radicals and to newly obtained results for the reduction of radicals derived from Gly-His, a homologue of carnosine. Clear differences were demonstrated.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia.
| | | |
Collapse
|
56
|
Hernández-Sánchez H. Effect of Nonthermal Processing on the Structural and Techno-Functional Properties of Bovine α-Lactalbumin. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
57
|
Ruibal P, Derksen I, van Wolfswinkel M, Voogd L, Franken KLMC, El Hebieshy AF, van Hall T, Schoufour TAW, Wijdeven RH, Ottenhoff THM, Scheeren FA, Joosten SA. Thermal-exchange HLA-E multimers reveal specificity in HLA-E and NKG2A/CD94 complex interactions. Immunology 2023; 168:526-537. [PMID: 36217755 DOI: 10.1111/imm.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela F El Hebieshy
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruud H Wijdeven
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
58
|
Zhu D, Kong M, Chen C, Luo J, Kong L. Iso-seco-tanapartholide induces p62 covalent oligomerization to activate KEAP1-NRF2 redox pathway in rheumatoid arthritis. Int Immunopharmacol 2023; 115:109689. [PMID: 36621330 DOI: 10.1016/j.intimp.2023.109689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
SQSTM1/p62 sequesters intracellular aberrant proteins and mediates their selective autophagic degradation. p62 oligomerization posttranslational modification enhances its sequestration function and positively regulates the KEAP1-NRF2 redox pathway. However, the regulation of p62 covalent oligomerization has yet been poorly characterized. Here, we identified a natural small-molecule sesquiterpene, Iso-seco-tanapartholide (IST) modified p62 cysteine residues, which induced p62 to form crosslinked oligomers between TBS and TBS or TBS and PB1 domains in a covalently non-disulfide-linked manner. Using LC-MS/MS analysis and complementary approaches, we revealed that Cys residues of p62 were necessary for IST-induced covalent oligomer. This oligomerization promoted p62 recruitment of KEAP1 for degradation by autophagosomes and released NRF2 to the nucleus to activate the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. Accordingly, IST-mediated p62/NRF2 activation conferred protection from oxidative and inflammatory destruction of rheumatoid arthritis in vitro and in vivo. In contrast, p62-knockdown cells displayed a reduced anti-oxidant response and increased pro-inflammatory cytokine secretion in response to TNF-α stimulation. Hence, our findings uncover an unrecognized role of IST in the regulation of p62 oligomerization and provide a new strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Min Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
59
|
Parodi F, Cacciari RD, Mazalu JN, Montejano HA, Reynoso E, Biasutti MA. UVB light influence on the laccase enzyme catalytic activity in reverse micelles and in homogeneous aqueous medium. Amino Acids 2023; 55:469-479. [PMID: 36695918 DOI: 10.1007/s00726-023-03237-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Laccase is a versatile enzyme widely used for the oxidation of environmental contaminants and exhibits great potential in many others applications; however, it undergoes photo-degradation when irradiated with UVB light. The photo-stability of this biomolecule can be improved by immobilization in different encapsulation media and reverse micelles have been employed with this purpose. The laccase activity using syringaldazine as substrate has been studied in the absence and in the presence of reverse micelles of 0.15 M of sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT) in isooctane at W0 ([H2O]/[AOT]) = 30, before and after irradiation of the enzyme with UVB light. The kinetic parameters, i.e., Michaelis-Menten constant (KM), catalytic constant (kCAT), and catalytic efficiency (kCAT/KM), were determined by spectroscopic measurements in the micellar system and in homogeneous aqueous medium. The distribution of the substrate in two pseudo-phases (micelle and organic solvent) was taking into account in the kinetic parameters' determinations. The results obtained indicate that the nano-aggregate system confers a solubilization media in the water core of the micelle, both for the enzyme and the substrate, in which the catalytic function of the enzyme is preserved. On the other hand, in homogeneous aqueous medium kCAT/KM value, it is reduced by ~50% after UVB irradiation of the enzyme, while in micellar medium, less than 10% of the activity was affected. This mean that the enzyme achieves a considerably photo-protection when it is irradiated with UVB light in reverse micelles as compared with the homogeneous aqueous medium. This phenomenon can be mainly due to the confinement of the biomolecule inside the micelle. Physical properties of the nano-environment could affect photochemical reactions.
Collapse
Affiliation(s)
- Facundo Parodi
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- Instituto Para El Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - R Daniel Cacciari
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET-UNLP, Diagonal 113 y 64, Casco Urbano, B1900, La Plata, Buenos Aires, Argentina
| | - Jeremías N Mazalu
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Hernán A Montejano
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
- Instituto Para El Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| | - M Alicia Biasutti
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
- Instituto Para El Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
60
|
Thomas RP, Grant EK, Dickinson ER, Zappacosta F, Edwards LJ, Hann MM, House D, Tomkinson NCO, Bush JT. Reactive fragments targeting carboxylate residues employing direct to biology, high-throughput chemistry. RSC Med Chem 2023; 14:671-679. [PMID: 37122547 PMCID: PMC10131605 DOI: 10.1039/d2md00453d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
We present a carboxylate-targeting reactive fragment screening platform using 2-aryl-5-carboxytetrazole (ACT) as the photoreactive functionality. This work will provide a simple accessible method to rapidly discover tool molecules to interrogate important biological targets.
Collapse
Affiliation(s)
- Ross P. Thomas
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Emma K. Grant
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | | | - Lee J. Edwards
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Michael M. Hann
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - David House
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Nicholas C. O. Tomkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
61
|
Baptista MS, Cadet J, Greer A, Thomas AH. Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide †. Photochem Photobiol 2022; 99:313-334. [PMID: 36575651 DOI: 10.1111/php.13774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.
Collapse
Affiliation(s)
- Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
62
|
Photo-tuneable protein nitration by sensitiser tris(bipyridine)-Ruthenium(II) chloride complex. Nitric Oxide 2022; 129:63-73. [DOI: 10.1016/j.niox.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022]
|
63
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
64
|
Akbarian M, Chen SH. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022; 14:2533. [PMID: 36432723 PMCID: PMC9699111 DOI: 10.3390/pharmaceutics14112533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Maintaining the structure of protein and peptide drugs has become one of the most important goals of scientists in recent decades. Cold and thermal denaturation conditions, lyophilization and freeze drying, different pH conditions, concentrations, ionic strength, environmental agitation, the interaction between the surface of liquid and air as well as liquid and solid, and even the architectural structure of storage containers are among the factors that affect the stability of these therapeutic biomacromolecules. The use of genetic engineering, side-directed mutagenesis, fusion strategies, solvent engineering, the addition of various preservatives, surfactants, and additives are some of the solutions to overcome these problems. This article will discuss the types of stress that lead to instabilities of different proteins used in pharmaceutics including regulatory proteins, antibodies, and antibody-drug conjugates, and then all the methods for fighting these stresses will be reviewed. New and existing analytical methods that are used to detect the instabilities, mainly changes in their primary and higher order structures, are briefly summarized.
Collapse
Affiliation(s)
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
65
|
Pérez Medina Martínez V, Robles MC, Juárez-Bayardo LC, Espinosa-de la Garza CE, Meneses A, Pérez NO. Photodegradation of Rituximab and Critical Evaluation of Its Sensibility to Electromagnetic Radiation. AAPS PharmSciTech 2022; 23:271. [DOI: 10.1208/s12249-022-02412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
|
66
|
Harir M, Cawley KM, Hertkorn N, Schmitt-Kopplin P, Jaffé R. Molecular and spectroscopic changes of peat-derived organic matter following photo-exposure: Effects on heteroatom composition of DOM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155790. [PMID: 35550890 DOI: 10.1016/j.scitotenv.2022.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The temporal evolution of molecular compositions and changes in structural features of Hillsboro Canal (Florida, USA) dissolved organic matter (DOM) was studied with an emphasis on nitrogen and sulfur containing molecules, after a 13 day time-series exposure to simulated sunlight. The Hillsboro Canal drains from the ridge and slough wetland environment underlain by peat soils from the northern extent of the Greater Everglades Ecosystem. The Hillsboro Canal-DOM was characterized by combining ultrahigh-resolution mass spectrometry (FT-ICR-MS), high-field nuclear magnetic resonance spectroscopy (1H NMR), size exclusion chromatography (SEC) with UV detection, and ultraviolet/visible (UV/vis) absorbance and excitation emission matrix (EEM) fluorescence spectroscopy. Size exclusion chromatography (SEC) demonstrated progressive depletion of higher mass molecules and a concomitant decrease of absorbance during photo-irradiation. NMR and FT-ICR-MS revealed nonlinear temporal evolution of DOM. In fact, FT-ICR-MS showed an initial depletion of supposedly chromophoric molecules often carrying major unsaturation accompanied by an uneven evolution of numbers of CHO, CHOS and CHNO compounds. While CHNO compounds continually increased throughout the entire photo-exposure time, CHO and CHOS compounds temporarily increased but declined after further light exposure. Progressive loss of highly unsaturated compounds was accompanied by production of low mass CHO and CHNO compounds with high O/C ratios. Area-normalized 1H NMR spectra of DOM in water and of the water insoluble fraction (~5%) in methanol revealed clear distinctions between irradiated and non-irradiated samples and congruent evolution of DOM structural features during irradiation, with more uniform trends in methanolic-DOM. Photoirradiation caused initial photoproduction of oxygenated aliphatic compounds, continued depletion of phenols and oxygenated aromatics, substantial change from initial natural product derived olefins to photoproduced olefins, and uneven evolution of carboxylated and alkylated benzene derivatives. This study demonstrates longer-term heteroatom-dependent photochemistry of DOM, which will affect the speciation of N and S heteroatoms, their connections to inorganic nutrients, and potentially their bioavailability.
Collapse
Affiliation(s)
- Mourad Harir
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Neuherberg, Germany; Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising-Weihenstephan, Germany.
| | - Kaelin M Cawley
- Southeast Environmental Research Center and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; Battelle, National Ecological Observatory Network (NEON) Project, Boulder, CO, USA
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Neuherberg, Germany; Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising-Weihenstephan, Germany
| | - Rudolf Jaffé
- Southeast Environmental Research Center and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
67
|
Abyar F, Novak I. Investigation on the electronic structures of thiamine and related compounds: Free base or salt? J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
68
|
Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat Commun 2022; 13:4906. [PMID: 35987950 PMCID: PMC9392063 DOI: 10.1038/s41467-022-32689-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractEnzymatic-based proximity labeling approaches based on activated esters or phenoxy radicals have been widely used for mapping subcellular proteome and protein interactors in living cells. However, activated esters are poorly reactive which leads to a wide labeling radius and phenoxy radicals generated by peroxide treatment may disturb redox-sensitive pathways. Herein, we report a photoactivation-dependent proximity labeling (PDPL) method designed by genetically attaching photosensitizer protein miniSOG to a protein of interest. Triggered by blue light and tunned by irradiation time, singlet oxygen is generated, thereafter enabling spatiotemporally-resolved aniline probe labeling of histidine residues. We demonstrate its high-fidelity through mapping of organelle-specific proteomes. Side-by-side comparison of PDPL with TurboID reveals more specific and deeper proteomic coverage by PDPL. We further apply PDPL to the disease-related transcriptional coactivator BRD4 and E3 ligase Parkin, and discover previously unknown interactors. Through over-expression screening, two unreported substrates Ssu72 and SNW1 are identified for Parkin, whose degradation processes are mediated by the ubiquitination-proteosome pathway.
Collapse
|
69
|
Sabino CP, Ribeiro MS, Wainwright M, Dos Anjos C, Sellera FP, Dropa M, Nunes NB, Brancini GTP, Braga GUL, Arana-Chavez VE, Freitas RO, Lincopan N, Baptista MS. The Biochemical Mechanisms of Antimicrobial Photodynamic Therapy. Photochem Photobiol 2022; 99:742-750. [PMID: 35913428 DOI: 10.1111/php.13685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Abstract
The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological, and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by 3 different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community towards the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Caetano P Sabino
- BioLambda, Scientific and Commercial Ltd., São Paulo, SP, Brazil, 05595-000.,Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000
| | - Martha S Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo, SP, Brazil, 05508-000
| | - Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Carolina Dos Anjos
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil, 05508-270.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil, 05508-270.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, SP, Brazil, 11080-300
| | - Milena Dropa
- Public Health Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Nathalia B Nunes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Guilherme T P Brancini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto U L Braga
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Victor E Arana-Chavez
- Department of Biomaterials and Oral Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raul O Freitas
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, SP, Brazil, 13083-970
| | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000.,Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil, 05513-970
| |
Collapse
|
70
|
Jiang S, Fuentes-Lemus E, Davies MJ. Oxidant-mediated modification and cross-linking of beta-2-microglobulin. Free Radic Biol Med 2022; 187:59-71. [PMID: 35609861 DOI: 10.1016/j.freeradbiomed.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Beta-2-microglobulin (B2M) is synthesized by all nucleated cells and forms part of the major histocompatibility complex (MHC) class-1 present on cell surfaces, which presents peptide fragments to cytotoxic CD8+ T-lymphocytes, or by association with CD1, antigenic lipids to natural killer T-cells. Knockout of B2M results in loss of these functions and severe combined immunodeficiency. Plasma levels of this protein are low in healthy serum, but are elevated up to 50-fold in some pathologies including chronic kidney disease and multiple myeloma, where it has both diagnostic and prognostic value. High levels of the protein are associated with amyloid formation, with such deposits containing significant levels of modified or truncated protein. In the current study we examine the chemical and structural changes induced of B2M generated by both inflammatory oxidants (HOCl and ONOOH), and photo-oxidation (1O2) which is linked with immunosuppression. Oxidation results in oligomer formation, with this occurring most readily with HOCl and 1O2, and a loss of native protein conformation. LC-MS analysis provided evidence for nitrated (from ONOOH), chlorinated (from HOCl) and oxidized residues (all oxidants) with damage detected at Tyr, Trp, and Met residues, together with cleavage of the disulfide (cystine) bond. An intermolecular di-tyrosine crosslink is also formed between Tyr10 and Tyr63. The pattern of these modifications is oxidant specific, with ONOOH inducing a greater range of modifications than HOCl. Comparison of the sites of modification with regions identified as amyloidogenic indicate significant co-localization, consistent with the hypothesis that oxidation may contribute, and predispose B2M, to amyloid formation.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
71
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
72
|
Figueiredo BS, Ferreira JNDS, Vasconcelos VVV, Ribeiro JN, Guimarães MCC, Gonçalves ADS, da Silva AR. Interaction effects between macromolecules and photosensitizer on the ability of AlPc and InPc-loaded PHB magnetic nanoparticles in photooxidatizing simple biomolecules. Int J Biol Macromol 2022; 212:579-593. [PMID: 35618092 DOI: 10.1016/j.ijbiomac.2022.05.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
The parameters used in the preparation of polymeric nanoparticles can influence its ability to photooxidate biomolecules. This work evaluated the effects of four parameter to prepare Poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with aluminum and indium phthalocyanine (AlPc and InPc), together with iron oxide nanoparticles, assessing their influence on the size, the entrapment efficiency, and the nanoparticles recovery efficacy. The capability of free, and encapsulated, AlPc and InPc in photooxidating the bovine serum albumin (BSA) and tryptophan (Trp) was monitored by fluorescence. The AlPc-loaded nanoparticles had a larger size and a greater entrapment efficiency than that obtained by InPc-loaded nanoparticles. The free InPc was more efficient than the free AlPc to photooxidize the BSA and Trp; whereas the encapsulated AlPc was more efficient than encapsulated InPc to photooxidize the biomolecules. The higher hydrophobicity of the AlPc, combined with the greater aggregation state and the major interaction with the BSA, quenching the capacity of the free AlPc to photooxidate the biomolecules; whereas the greater interaction of the AlPc with PHB reduce the aggregation effect on the free molecules in the aqueous phase and increase the entrapment efficiency, resulting in an improving of the photodynamic efficiency and an increase of the photooxidation rate constant.
Collapse
Affiliation(s)
- Barbara Silva Figueiredo
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Julyana Noval de Souza Ferreira
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | | | - Joselito Nardy Ribeiro
- Health Science Center, Federal University of Espírito Santo, 29043-910 Vitória, ES, Brazil
| | - Marco Cesar Cunegundes Guimarães
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Arlan da Silva Gonçalves
- Federal Institute of Espírito Santo, Campus Vila Velha, 29106-010 Vila Velha, ES, Brazil; Graduate Program in Chemistry, Federal University of Espírito Santo, unit Goiabeiras, 29075-910 Vitória, ES, Brazil
| | - André Romero da Silva
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil; Federal Institute of Espírito Santo, Campus Aracruz, 29192-733 Aracruz, ES, Brazil.
| |
Collapse
|
73
|
Di Gianvincenzo F, Peggie D, Mackie M, Granzotto C, Higgitt C, Cappellini E. Palaeoproteomics guidelines to identify proteinaceous binders in artworks following the study of a 15th-century painting by Sandro Botticelli's workshop. Sci Rep 2022; 12:10638. [PMID: 35739140 PMCID: PMC9226190 DOI: 10.1038/s41598-022-14109-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Undertaking the conservation of artworks informed by the results of molecular analyses has gained growing importance over the last decades, and today it can take advantage of state-of-the-art analytical techniques, such as mass spectrometry-based proteomics. Protein-based binders are among the most common organic materials used in artworks, having been used in their production for centuries. However, the applications of proteomics to these materials are still limited. In this work, a palaeoproteomic workflow was successfully tested on paint reconstructions, and subsequently applied to micro-samples from a 15th-century panel painting, attributed to the workshop of Sandro Botticelli. This method allowed the confident identification of the protein-based binders and their biological origin, as well as the discrimination of the binder used in the ground and paint layers of the painting. These results show that the approach is accurate, highly sensitive, and broadly applicable in the cultural heritage field, due to the limited amount of starting material required. Accordingly, a set of guidelines are suggested, covering the main steps of the data analysis and interpretation of protein sequencing results, optimised for artworks.
Collapse
Affiliation(s)
| | - D Peggie
- National Gallery Scientific Department, London, UK
| | - M Mackie
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - C Granzotto
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation and Science, Art Institute of Chicago, Chicago, IL, USA
| | - C Higgitt
- National Gallery Scientific Department, London, UK
| | - E Cappellini
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
74
|
Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
75
|
Panichsillaphakit E, Kwanbunbumpen T, Chomtho S, Visuthranukul C. Copper-histidine therapy in an infant with novel splice-site variant in the ATP7A gene of Menkes disease: the first experience in South East Asia and literature review. BMJ Case Rep 2022; 15:e247937. [PMID: 35393273 PMCID: PMC8991052 DOI: 10.1136/bcr-2021-247937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
Menkes disease (MD) is an X linked recessive multi-systemic disorder of copper metabolism, resulting from an ATP7A gene mutation. We report a male infant aged 4 months who presented with kinky hair, hypopigmented skin, epilepsy and delayed development. Magnetic resonance imaging (MRI) of brain demonstrated multiple tortuosities of intracranial vessels and brain atrophy. Investigation had showed markedly decreased serum copper and ceruloplasmin. The novel c.2172+1G>T splice-site mutation in the ATP7A gene confirmed MD. He was treated with subcutaneous administration of locally prepared copper-histidine (Cu-His). Following the therapy, hair manifestation was restored and serum ceruloplasmin was normalised 1 month later. Despite the treatment, epilepsy, neurodevelopment and osteoporosis still progressed. He died from severe respiratory tract infection at the age of 9.5 months. These findings suggest that the benefit of Cu-His in our case is limited which might be related to severe presentations and degree of ATP7A mutation.
Collapse
Affiliation(s)
- Ekkarit Panichsillaphakit
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Tanisa Kwanbunbumpen
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| | - Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
76
|
Fanni AM, Okoye D, Monge FA, Hammond J, Maghsoodi F, Martin TD, Brinkley G, Phipps ML, Evans DG, Martinez JS, Whitten DG, Chi EY. Controlled and Selective Photo-oxidation of Amyloid-β Fibrils by Oligomeric p-Phenylene Ethynylenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14871-14886. [PMID: 35344326 PMCID: PMC10452927 DOI: 10.1021/acsami.1c22869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-β (Aβ) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aβ fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aβ40, OPE oxidized only Aβ40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic β-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Adeline M. Fanni
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Daniel Okoye
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Florencia A. Monge
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Julia Hammond
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Rose-Hulman Institute of Technology, Terre Haute, IN 47803
| | - Fahimeh Maghsoodi
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131
| | - Tye D. Martin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM. 87131
| | - Gabriella Brinkley
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
- Chemical Engineering Department, University of Minnesota, Duluth, MN 55812
| | - M. Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Deborah G. Evans
- Department of Chemistry and Chemical Biology, University of New Mexico, NM 87131
| | - Jennifer S. Martinez
- Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, AZ 86011
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011
| | - David G. Whitten
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| | - Eva Y. Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131
| |
Collapse
|
77
|
Hoopes CR, Garcia FJ, Sarkar AM, Kuehl NJ, Barkan DT, Collins NL, Meister GE, Bramhall TR, Hsu CH, Jones MD, Schirle M, Taylor MT. Donor-Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light. J Am Chem Soc 2022; 144:6227-6236. [PMID: 35364811 PMCID: PMC10124759 DOI: 10.1021/jacs.1c10536] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tryptophan (Trp) plays a variety of critical functional roles in protein biochemistry; however, owing to its low natural frequency and poor nucleophilicity, the design of effective methods for both single protein bioconjugation at Trp as well as for in situ chemoproteomic profiling remains a challenge. Here, we report a method for covalent Trp modification that is suitable for both scenarios by invoking photo-induced electron transfer (PET) as a means of driving efficient reactivity. We have engineered biaryl N-carbamoyl pyridinium salts that possess a donor-acceptor relationship that enables optical triggering with visible light whilst simultaneously attenuating the probe's photo-oxidation potential in order to prevent photodegradation. This probe was assayed against a small bank of eight peptides and proteins, where it was found that micromolar concentrations of the probe and short irradiation times (10-60 min) with violet light enabled efficient reactivity toward surface exposed Trp residues. The carbamate transferring group can be used to transfer useful functional groups to proteins including affinity tags and click handles. DFT calculations and other mechanistic analyses reveal correlations between excited state lifetimes, relative fluorescence quantum yields, and chemical reactivity. Biotinylated and azide-functionalized pyridinium salts were used for Trp profiling in HEK293T lysates and in situ in HEK293T cells using 440 nm LED irradiation. Peptide-level enrichment from live cell labeling experiments identified 290 Trp modifications, with 82% selectivity for Trp modification over other π-amino acids, demonstrating the ability of this method to identify and quantify reactive Trp residues from live cells.
Collapse
Affiliation(s)
- Caleb R Hoopes
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Francisco J Garcia
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Akash M Sarkar
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Nicholas J Kuehl
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - David T Barkan
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Nicole L Collins
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Glenna E Meister
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Taylor R Bramhall
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Chien-Hsiang Hsu
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Michael D Jones
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Michael T Taylor
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
78
|
Zhou H, Yang Y, Shang W, Rao Y, Chen J, Peng H, Huang J, Hu Z, Zhang R, Rao X. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microb Biotechnol 2022; 15:1910-1921. [PMID: 35290715 PMCID: PMC9151332 DOI: 10.1111/1751-7915.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, which raises a worldwide concern for its increasing resistance. Nonthermal plasma, which is also called cold atmospheric plasma (CAP), is an alternative therapeutic approach for clinical infectious diseases. However, the bacterial factors that affect CAP treatment remain unclear. The sterilization effect of a portable CAP device on different P. aeruginosa strains was investigated in this study. Results revealed that CAP can directly or indirectly kill P. aeruginosa in a time‐dependent manner. Scanning electron microscopy and transmission electron microscope showed negligible surface changes between CAP‐treated and untreated P. aeruginosa cells. However, cell leakage occurred during the CAP process with increased bacterial lactate dehydrogenase release. More importantly, pigmentation of the P. aeruginosa culture was remarkably reduced after CAP treatment. Further mechanical exploration was performed by utilizing mutants with loss of functional genes involved in pyocyanin biosynthesis, including P. aeruginosa PAO1 strain‐derived phzA1::Tn, phzA2::Tn, ΔphzA1/ΔphzA2, phzM::Tn and phzS::Tn, as well as corresponding gene deletion mutants based on clinical PA1 isolate. The results indicated that pyocyanin and its intermediate 5‐methyl phenazine‐1‐carboxylic acid (5‐Me‐PCA) play important roles in P. aeruginosa resistance to CAP treatment. The unique enzymes, such as PhzM in the pyocyanin biosynthetic pathway, could be novel targets for the therapeutic strategy design to control the growing P. aeruginosa infections.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Yifan Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
79
|
Thorning F, Jensen F, Ogilby PR. The oxygen-organic molecule photosystem: revisiting the past, recalibrating the present, and redefining the future. Photochem Photobiol Sci 2022; 21:1133-1141. [PMID: 35284990 DOI: 10.1007/s43630-022-00196-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022]
Abstract
Perturbation by a neighboring molecule M appreciably alters the properties of both the ground and excited states of molecular oxygen, as reflected in a variety of photophysical phenomena. In this article, we build upon the ~ 100 year history of work in this field, illustrating how the M-O2 system continues to challenge the scientific community, facilitating better insight into fundamental tenets of chemistry and physics.
Collapse
Affiliation(s)
| | - Frank Jensen
- Chemistry Department, Aarhus University, 8000, Aarhus, Denmark
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
80
|
Rossi C, Fuentes-Lemus E, Davies MJ. Reaction of cysteine residues with oxidized tyrosine residues mediates cross-linking of photo-oxidized casein proteins. Food Chem 2022; 385:132667. [PMID: 35299016 DOI: 10.1016/j.foodchem.2022.132667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Photo-oxidation of casein proteins is commonplace during milk processing and storage. A major consequence of such light exposure is protein cross-linking and aggregation. Although caseins are key milk components, the nature of the cross-links and the mechanisms involved are poorly characterized, with most previous work having been focused on detecting and quantifying di-tyrosine formed on dimerization of two tyrosine-derived phenoxyl radicals. However, this is only one of a large number of possible cross-links that might be formed. In this study, we have investigated the potential involvement of secondary reactions between oxidized protein side-chains and the thiol group of cysteine (Cys) residues in casein cross-linking. Casein proteins were subjected to photo-oxidation using visible light in the presence of a sensitizer (riboflavin or rose Bengal) and O2, then incubated with a Cys-containing peptide (glutathione, GSH) or protein (κ-casein), and subsequently analyzed by SDS-PAGE, immunoblotting and LC-MS. Our data indicate that that photo-oxidized (but not parent) caseins react efficiently with the Cys-containing species, likely via Michael addition to quinones formed from tyrosine residues to give glutathionylated species or protein adducts. Thus, oxidized α-casein reacts with native κ-casein to give high molecular mass aggregates. This adduct formation was prevented by alkylation of the Cys thiol group. The cross-link site and the residues involved have been confirmed by liquid chromatography-mass spectrometry (LC-MS) proteomic analysis. Together, these data extend our knowledge of the mechanisms involved in casein oxidation and aggregation.
Collapse
Affiliation(s)
- Chiara Rossi
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | | | - Michael J Davies
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark.
| |
Collapse
|
81
|
Dogra V, Singh RM, Li M, Li M, Singh S, Kim C. EXECUTER2 modulates the EXECUTER1 signalosome through its singlet oxygen-dependent oxidation. MOLECULAR PLANT 2022; 15:438-453. [PMID: 34968736 DOI: 10.1016/j.molp.2021.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/29/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Oxidative post-translational modifications of specific chloroplast proteins contribute to the initiation of retrograde signaling. The Arabidopsis thaliana EXECUTER1 (EX1) protein, a chloroplast-localized singlet oxygen (1O2) sensor, undergoes tryptophan (Trp) 643 oxidation by 1O2, a chloroplast-derived and light-dependent reactive oxygen species. The indole side chain of Trp is vulnerable to 1O2, leading to the generation of oxidized Trp variants and priming EX1 for degradation by a membrane-bound FtsH protease. The perception of 1O2 via Trp643 oxidation and subsequent EX1 proteolysis facilitate chloroplast-to-nucleus retrograde signaling. In this study, we discovered that the EX1-like protein EX2 also undergoes 1O2-dependent Trp530 oxidation and FtsH-dependent turnover, which attenuates 1O2 signaling by decelerating EX1-Trp643 oxidation and subsequent EX1 degradation. Consistent with this finding, the loss of EX2 function reinforces EX1-dependent retrograde signaling by accelerating EX1-Trp643 oxidation and subsequent EX1 proteolysis, whereas overexpression of EX2 produces molecular phenotypes opposite to those observed in the loss-of- function mutants of EX2. Intriguingly, phylogenetic analysis suggests that EX2 may have emerged evolutionarily to attenuate the sensitivity of EX1 toward 1O2. Collectively, these results suggest that EX2 functions as a negative regulator of the EX1 signalosome through its own 1O2-dependent oxidation, providing a new mechanistic insight into the regulation of EX1-mediated 1O2 signaling.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Somesh Singh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
82
|
Mogensen DJ, Etzerodt M, Ogilby PR. Photoinduced Bleaching in an Efficient Singlet Oxygen Photosensitizing Protein: Identifying a Culprit in the Flavin-Binding LOV-Based Protein SOPP3. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
83
|
Zhang Z, Chow SY, De Guzman R, Joh NH, Joubert MK, Richardson J, Shah B, Wikström M, Zhou ZS, Wypych J. A Mass Spectrometric Characterization of Light-Induced Modifications in Therapeutic Proteins. J Pharm Sci 2022; 111:1556-1564. [DOI: 10.1016/j.xphs.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
|
84
|
Tamarit L, El Ouardi M, Lence E, Andreu I, González-Bello C, Vayá I, Miranda MA. Switching from ultrafast electron transfer to proton transfer in excited drug–protein complexes upon biotransformation. Chem Sci 2022; 13:9644-9654. [PMID: 36091919 PMCID: PMC9400592 DOI: 10.1039/d2sc03257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Photosensitization by drugs is directly related with the excited species and the photoinduced processes arising from interaction with UVA light. In this context, the ability of gefitinib (GFT), a tyrosine kinase inhibitor (TKI) used for the treatment of a variety of cancers, to induce phototoxicity and photooxidation of proteins has recently been demonstrated. In principle, photodamage can be generated not only by a given drug but also by its photoactive metabolites that maintain the relevant chromophore. In the present work, a complete study of O-desmorpholinopropyl gefitinib (GFT-MB) has been performed by means of fluorescence and ultrafast transient absorption spectroscopies, in addition to molecular dynamics (MD) simulations. The photobehavior of the GFT-MB metabolite in solution is similar to that of GFT. However, when the drug or its metabolite are in a constrained environment, i.e. within a protein, their behavior and the photoinduced processes that arise from their interaction with UVA light are completely different. For GFT in complex with human serum albumin (HSA), locally excited (LE) singlet states are mainly formed; these species undergo photoinduced electron transfer with Tyr and Trp. By contrast, since GFT-MB is a phenol, excited state proton transfer (ESPT) to form phenolate-like excited species might become an alternative deactivation pathway. As a matter of fact, the protein-bound metabolite exhibits higher fluorescence yields and longer emission wavelengths and lifetimes than GFT@HSA. Ultrafast transient absorption measurements support direct ESPT deprotonation of LE states (rather than ICT), to form phenolate-like species. This is explained by MD simulations, which reveal a close interaction between the phenolic OH group of GFT-MB and Val116 within site 3 (subdomain IB) of HSA. The reported findings are relevant to understand the photosensitizing properties of TKIs and the role of biotransformation in this type of adverse side effects. The photoinduced processes from the protein-bound GFT result in electron transfer, while those related with the photoactive metabolite GFT-MB induce excited state proton transfer to form phenolate-like excited species.![]()
Collapse
Affiliation(s)
- Lorena Tamarit
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Meryem El Ouardi
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
85
|
Meta-proteomic analysis of two mammoth's trunks by EVA technology and high-resolution mass spectrometry for an indirect picture of their habitat and the characterization of the collagen type I, alpha-1 and alpha-2 sequence. Amino Acids 2022; 54:935-954. [PMID: 35434776 PMCID: PMC9213349 DOI: 10.1007/s00726-022-03160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/27/2022] [Indexed: 12/30/2022]
Abstract
The recent paleoproteomic studies, including paleo-metaproteomic analyses, improved our understanding of the dietary of ancient populations, the characterization of past human diseases, the reconstruction of the habitat of ancient species, but also provided new insights into the phylogenetic relationships between extant and extinct species. In this respect, the present work reports the results of the metaproteomic analysis performed on the middle part of a trunk, and on the portion of a trunk tip tissue of two different woolly mammoths some 30,000 years old. In particular, proteins were extracted by applying EVA (Ethylene-Vinyl Acetate studded with hydrophilic and hydrophobic resins) films to the surface of these tissues belonging to two Mammuthus primigenus specimens, discovered in two regions located in the Russian Far East, and then investigated via a shotgun MS-based approach. This approach allowed to obtain two interesting results: (i) an indirect description of the habitat of these two mammoths, and (ii) an improved characterization of the collagen type I, alpha-1 and alpha-2 chains (col1a1 and col1a2). Sequence characterization of the col1a1 and col1a2 highlighted some differences between M. primigenius and other Proboscidea together with the identification of three (two for col1a1, and one for col1a2) potentially diagnostic amino acidic mutations that could be used to reliably distinguish the Mammuthus primigenius with respect to the other two genera of elephantids (i.e., Elephas and Loxodonta), and the extinct American mastodon (i.e., Mammut americanum). The results were validated through the level of deamidation and other diagenetic chemical modifications of the sample peptides, which were used to discriminate the "original" endogenous peptides from contaminant ones. The data have been deposited to the ProteomeXchange with identifier < PXD029558 > .
Collapse
|
86
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
87
|
Domínguez R, Pateiro M, Munekata PES, Zhang W, Garcia-Oliveira P, Carpena M, Prieto MA, Bohrer B, Lorenzo JM. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants (Basel) 2021; 11:60. [PMID: 35052564 PMCID: PMC8773412 DOI: 10.3390/antiox11010060] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Muscle foods and their products are a fundamental part of the human diet. The high protein content found in muscle foods, as well as the high content of essential amino acids, provides an appropriate composition to complete the nutritional requirements of humans. However, due to their special composition, they are susceptible to oxidative degradation. In this sense, proteins are highly susceptible to oxidative reactions. However, in contrast to lipid oxidation, which has been studied in depth for decades, protein oxidation of muscle foods has been investigated much less. Moreover, these reactions have an important influence on the quality of muscle foods, from physico-chemical, techno-functional, and nutritional perspectives. In this regard, the loss of essential nutrients, the impairment of texture, water-holding capacity, color and flavor, and the formation of toxic substances are some of the direct consequences of protein oxidation. The loss of quality for muscle foods results in consumer rejection and substantial levels of economic losses, and thus the control of oxidative processes is of vital importance for the food industry. Nonetheless, the complexity of the reactions involved in protein oxidation and the many different factors that influence these reactions make the mechanisms of protein oxidation difficult to fully understand. Therefore, the present manuscript reviews the fundamental mechanisms of protein oxidation, the most important oxidative reactions, the main factors that influence protein oxidation, and the currently available analytical methods to quantify compounds derived from protein oxidation reactions. Finally, the main effects of protein oxidation on the quality of muscle foods, both from physico-chemical and nutritional points of view, are also discussed.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, 32004 Ourense, Spain; (P.G.-O.); (M.C.); (M.A.P.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Benjamin Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Vinas, Spain; (R.D.); (M.P.); (P.E.S.M.)
- Facultade de Ciencias, Área de Tecnoloxía dos Alimentos, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
88
|
Poojary MM, Lund MN. Chemical Stability of Proteins in Foods: Oxidation and the Maillard Reaction. Annu Rev Food Sci Technol 2021; 13:35-58. [PMID: 34941384 DOI: 10.1146/annurev-food-052720-104513] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein is a major nutrient present in foods along with carbohydrates and lipids. Food proteins undergo a wide range of modifications during food production, processing, and storage. In this review, we discuss two major reactions, oxidation and the Maillard reaction, involved in chemical modifications of food proteins. Protein oxidation in foods is initiated by metal-, enzyme-, or light-induced processes. Food protein oxidation results in the loss of thiol groups and the formation of protein carbonyls and specific oxidation products of cysteine, tyrosine, tryptophan, phenylalanine, and methionine residues, such as disulfides, dityrosine, kynurenine, m-tyrosine, and methionine sulfoxide. The Maillard reaction involves the reaction of nucleophilic amino acid residues with reducing sugars, which yields numerous heterogeneous compounds such as α-dicarbonyls, furans, Strecker aldehydes, advanced glycation end-products, and melanoidins. Both protein oxidation and the Maillard reaction result in the loss of essential amino acids but may positively or negatively impact food structure and flavor. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark;
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
89
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
90
|
Rey V, Abatedaga I, Vera C, Vieyra FEM, Borsarelli CD. Photosensitized Formation of Soluble Bionanoparticles of Lysozyme. ChemistrySelect 2021. [DOI: 10.1002/slct.202103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| |
Collapse
|
91
|
Liberato MS, Cavalcante NGS, Sindu PA, Rodrigues-Jesus MJ, Zelenovskii P, Carreira ACO, Baptista MS, Sogayar MC, Ferreira LCS, Catalani LH. Histidine-based hydrogels via singlet-oxygen photooxidation. SOFT MATTER 2021; 17:10926-10934. [PMID: 34811564 DOI: 10.1039/d1sm01023a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.
Collapse
Affiliation(s)
- Michelle S Liberato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Nayara G S Cavalcante
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - P Abinaya Sindu
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Mônica J Rodrigues-Jesus
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana C O Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Mari C Sogayar
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Luís C S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Luiz H Catalani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
92
|
Wang Y, He S, Zhou F, Sun H, Cao X, Ye Y, Li J. Detection of Lectin Protein Allergen of Kidney Beans ( Phaseolus vulgaris L.) and Desensitization Food Processing Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14723-14741. [PMID: 34251800 DOI: 10.1021/acs.jafc.1c02801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increase of food allergy events related to not properly cooked kidney beans (Phaseolus vulgaris L.), more and more researchers are paying attention to the sensitization potential of lectin, one of the major storage and defensive proteins with the specific carbohydrate-binding activity. The immunoglobulin E (IgE), non-IgE, and mixed allergic reactions induced by the lectins were inducted in the current paper, and the detection methods of kidney bean lectin, including the purification strategies, hemagglutination activity, specific polysaccharide or glycoprotein interactions, antibody combinations, mass spectrometry methods, and allergomics strategies, were summarized, while various food processing aspects, such as the physical thermal processing, physical non-thermal processing, chemical modifications, and biological treatments, were reviewed in the potential of sensitization reduction. It might be the first comprehensive review on lectin allergen detection from kidney bean and the desensitization strategy in food processing and will provide a basis for food safety control.
Collapse
Affiliation(s)
- Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xiaodong Cao
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongkang Ye
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jing Li
- College of Biological and Environmental Engineering, Hefei University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
93
|
Fuentes-Lemus E, Jiang S, Hägglund P, Davies MJ. High concentrations of casein proteins exacerbate radical chain reactions and increase the extent of oxidative damage. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Isor A, O'Dea AT, Grady SF, Petroff JT, Skubic KN, Aziz B, Arnatt CK, McCulla RD. Effects of photodeoxygenation on cell biology using dibenzothiophene S-oxide derivatives as O( 3P)-precursors. Photochem Photobiol Sci 2021; 20:1621-1633. [PMID: 34822125 DOI: 10.1007/s43630-021-00136-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Photodeoxygenation of dibenzothiophene S-oxide and its derivatives have been used to generate atomic oxygen [O(3P)] to examine its effect on proteins, nucleic acids, and lipids. The unique reactivity and selectivity of O(3P) have shown distinct oxidation products and outcomes in biomolecules and cell-based studies. To understand the scope of its global impact on the cell, we treated MDA-MB-231 cells with 2,8-diacetoxymethyldibenzothiophene S-oxide and UV-A light to produce O(3P) without targeting a specific cell organelle. Cellular responses to O(3P)-release were analyzed using cell viability and cell cycle phase determination assays. Cell death was observed when cells were treated with higher concentrations of sulfoxides and UV-A light. However, significant differences in cell cycle phases due to UV-A irradiation of the sulfoxide were not observed. We further performed RNA-Seq analysis to study the underlying biological processes at play, and while UV-irradiation itself influenced gene expression, there were 9 upregulated and 8 downregulated genes that could be attributed to photodeoxygenation.
Collapse
Affiliation(s)
- Ankita Isor
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - Austin T O'Dea
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - Scott F Grady
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - John T Petroff
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - Kristin N Skubic
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - Bashar Aziz
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - Christopher K Arnatt
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA
| | - Ryan D McCulla
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA.
| |
Collapse
|
95
|
Dántola ML, Neyra Recky JR, Lorente C, Thomas AH. Photosensitized Dimerization of Tyrosine: The Oxygen Paradox †. Photochem Photobiol 2021; 98:687-695. [PMID: 34738644 DOI: 10.1111/php.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023]
Abstract
In electron-transfer initiated photosensitization processes, molecular oxygen (O2 ) is not involved in the first bimolecular event, but almost always participates in subsequent steps giving rise to oxygenated products. An exception to this general behavior is the photosensitized dimerization of tyrosine (Tyr), where O2 does not participate as a reactant in any step of the pathway yielding Tyr dimers (Tyr2 ). In the pterin (Ptr) photosensitized oxidation of Tyr, O2 does not directly participate in the formation of Tyr2 and quenches the triplet excited state of Ptr, the reactive species that initiates the process. However, O2 is necessary for the dimerization, phenomenon that we have named as the oxygen paradox. Here, we review the literature on the photosensitized formation of Tyr2 and present results of steady-state and time resolved experiments, in search of a mechanistic model to explain the contradictory role of O2 in this photochemical reaction system.
Collapse
Affiliation(s)
- M Laura Dántola
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Jael R Neyra Recky
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Carolina Lorente
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
96
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
97
|
Fu X, Yin X, Ji C, Cheng H, Liang L. Effects of Folic Acid and Caffeic Acid on Indirect Photo-oxidation of Proteins and Their Costabilization under Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12505-12516. [PMID: 34519206 DOI: 10.1021/acs.jafc.1c02209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins, vitamins, and phenols are often present together in foods, but they are sensitive to environmental factors. Folic acid (FA), a synthetic form of folate, decomposes under light, leading to protein oxidation. Caffeic acid (CA), a phenolic acid, exhibits remarkable activity for scavenging reactive molecules. The exploitation of their interactions offers opportunities for designing the stabilizing system. In this study, FA-photodecomposition-induced protein (β-lactoglobulin, α-lactalbumin, bovine serum albumin, and β-casein) damage and its inhibition by CA were investigated in terms of protein composition and structural change. The results indicated that FA photoproducts oxidized the proteins via the electron transfer pathway, leading to degradation, aggregation, and unfolding. At the same time, photostability of FA, CA, and proteins in the tertiary mixture was better than that of any individual components. The antioxidant activity of the proteins contributed to their protection for FA. CA and its products inhibited FA photodecomposition and the photodecomposition-induced protein oxidation by trapping excited states.
Collapse
Affiliation(s)
- Xiaojun Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuye Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
98
|
Cho KH, Kang DJ, Nam HS, Kim JH, Kim SY, Lee JO, Kim BJ. Ozonated Sunflower Oil Exerted Protective Effect for Embryo and Cell Survival via Potent Reduction Power and Antioxidant Activity in HDL with Strong Antimicrobial Activity. Antioxidants (Basel) 2021; 10:antiox10111651. [PMID: 34829522 PMCID: PMC8614758 DOI: 10.3390/antiox10111651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/23/2023] Open
Abstract
Ozonated sunflower oil (OSO) has potent antimicrobial effects, making it useful for topical applications to treat various skin diseases. On the other hand, regarding mechanistic insight, the antioxidant activity and cytoprotective effects of OSO are relatively less known. The current study compared the antioxidant ability and protective ability of OSO on cells and embryos against oxidative stress, such as H2O2 and oxidized low-density lipoproteins (oxLDL), to investigate its potential applications for wound-healing and anti-infection. OSO showed potent radical scavenging activity and ferric ion reduction ability that was up to 35% and 42% stronger than sunflower oil (SO) as a control in a dose-dependent manner. Measurement of the wavelength-maximum fluorescence (WMF) of high-density lipoproteins (HDL) revealed different behavior between OSO and SO treatment (final 1–16%). The OSO treatment caused a 12 nm red shift of Trp movement from 345 nm (at 0%) to 357 nm (at 16%), while SO caused a 12 nm blue shift of Trp movement from 345 nm (at 0%) to 333 nm (at 16%). The fluorescence intensity of HDL3 was diminished remarkably by the OSO treatment by up to 80% from the initial level, while SO-treated HDL did not. OSO-treated HDL3 showed slower electromobility with stronger band intensity and bigger HDL particle sizes than those of SO-treated HDL3. The paraoxonase-1 (PON-1) activity of HDL3 was enhanced by a co-treatment of OSO that was up to 2.3 times higher than HDL3 alone in a dose-dependent manner, whereas the co-treatment of SO even inhibited the PON activity. The cell viability of RAW264.7 by the OSO treatment was 3.3 times higher than the SO treatment at a high dose range (from 10% to 50%, final). The OSO also exhibited more cytoprotective effects than SO in brain microglial cells in the presence of H2O2 (final 0.03%); treatment with OSO impeded apoptosis and reduced ROS production more than an SO treatment did. In the presence of H2O2 alone, 86 ± 5% of the embryos were killed by cell explosion after 24 h, but a co-treatment of OSO (final 4%) resulted in almost no embryo death (98% survivability). Injection of oxLDL (15 ng of protein) into zebrafish embryos caused acute death, while the co-injection of OSO (final 2%) resulted in 2.8 times higher survivability than oxLDL alone. These results suggest new effects of ozonated oil, such as enhanced antioxidant activity, more cytoprotective ability, and higher embryo protection against oxidative stress. These results may be useful in developing new methods for the quality control of ozonated oil and an assessment of its efficacy.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
- Correspondence: ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
| | - Dae-Jin Kang
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
| | - Hyo-Seon Nam
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
| | - Ju-Hyun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (S.-Y.K.); (J.-O.L.); (B.-J.K.)
| | - Jung-Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (S.-Y.K.); (J.-O.L.); (B.-J.K.)
| | - Beom-Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (S.-Y.K.); (J.-O.L.); (B.-J.K.)
| |
Collapse
|
99
|
Ruzza P, Honisch C, Hussain R, Siligardi G. Free Radical Generation in Far-UV Synchrotron Radiation Circular Dichroism Assays-Protein and Buffer Composition Contribution. Int J Mol Sci 2021; 22:11325. [PMID: 34768758 PMCID: PMC8583428 DOI: 10.3390/ijms222111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
A useful tool to analyze the ligands and/or environmental contribution to protein stability is represented by the Synchrotron Radiation Circular Dichroism UV-denaturation assay that consists in the acquisition of several consecutive repeated far-UV SRCD spectra. Recently we demonstrated that the prevailing mechanism of this denaturation involves the generation of free radicals and reactive oxygen species (ROS). In this work, we analyzed the effect of buffering agents commonly used in spectroscopic measurements, including MOPS (3-(N-morpholino) propanesulfonic acid), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), TRIS-HCl (tris-hydroxymethil aminomethane hydrochloride), and phosphate, on the efficiency of protein denaturation caused by exposure to UV radiation. Fluorescence experiments confirmed the presence of ROS and were used to determine the rate of ROS generation. Our results indicate that the efficiency of the denaturation process is strongly influenced by the buffer composition with MOPS and HEPES acting also as scavengers and that the presence of proteins itself influenced the ROS formation rate.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo, 1, 35131 Padova, Italy;
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo, 1, 35131 Padova, Italy;
- Department of Chemical Sciences, University of Padua, via Marzolo, 1, 35131 Padova, Italy
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| |
Collapse
|
100
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|