51
|
Ma X, Tan Z, Lu K, Zhang Y. 复合污染大气环境中OH自由基测量干扰的定量研究. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
52
|
Zhu Q, Laughner JL, Cohen RC. Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7362-7371. [PMID: 35302754 DOI: 10.1021/acs.est.1c05636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hydroxyl radical (OH) is the primary cleansing agent in the atmosphere. The abundance of OH in cities initiates the removal of local pollutants; therefore, it serves as the key species describing the urban chemical environment. We propose a machine learning (ML) approach as an efficient alternative to OH simulation using a computationally expensive chemical transport model. The ML model is trained on the parameters simulated from the WRF-Chem model, and it suggests that six predictive parameters are capable of explaining 76% of the OH variability. The parameters are the tropospheric NO2 column, the tropospheric HCHO column, J(O1D), H2O, temperature, and pressure. We then use observations of the tropospheric NO2 column and HCHO column from OMI as input to the ML model to enable measurement-based prediction of daily near surface OH at 1:30 pm local time across 49 North American cities over the course of 10 years between 2005 and 2014. The result is validated by comparing the OH predictions to measurements of isoprene, which has a source that is uncorrelated with OH and is removed rapidly and almost exclusively by OH in the daytime. We demonstrate that the predicted OH is, as expected, anticorrelated with isoprene. We also show that this ML model is consistent with our understanding of OH chemistry given the solely data-driven nature.
Collapse
Affiliation(s)
- Qindan Zhu
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, California 94720, United States
| | - Joshua L Laughner
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Ronald C Cohen
- Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
53
|
Li Q, Fernandez RP, Hossaini R, Iglesias-Suarez F, Cuevas CA, Apel EC, Kinnison DE, Lamarque JF, Saiz-Lopez A. Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century. Nat Commun 2022; 13:2768. [PMID: 35589794 PMCID: PMC9120080 DOI: 10.1038/s41467-022-30456-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
CH4 is the most abundant reactive greenhouse gas and a complete understanding of its atmospheric fate is needed to formulate mitigation policies. Current chemistry-climate models tend to underestimate the lifetime of CH4, suggesting uncertainties in its sources and sinks. Reactive halogens substantially perturb the budget of tropospheric OH, the main CH4 loss. However, such an effect of atmospheric halogens is not considered in existing climate projections of CH4 burden and radiative forcing. Here, we demonstrate that reactive halogen chemistry increases the global CH4 lifetime by 6-9% during the 21st century. This effect arises from significant halogen-mediated decrease, mainly by iodine and bromine, in OH-driven CH4 loss that surpasses the direct Cl-induced CH4 sink. This increase in CH4 lifetime helps to reduce the gap between models and observations and results in a greater burden and radiative forcing during this century. The increase in CH4 burden due to halogens (up to 700 Tg or 8% by 2100) is equivalent to the observed atmospheric CH4 growth during the last three to four decades. Notably, the halogen-driven enhancement in CH4 radiative forcing is 0.05 W/m2 at present and is projected to increase in the future (0.06 W/m2 by 2100); such enhancement equals ~10% of present-day CH4 radiative forcing and one-third of N2O radiative forcing, the third-largest well-mixed greenhouse gas. Both direct (Cl-driven) and indirect (via OH) impacts of halogens should be included in future CH4 projections.
Collapse
Affiliation(s)
- Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain.
| | - Rafael P Fernandez
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Ryan Hossaini
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Fernando Iglesias-Suarez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain.,Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain
| | - Eric C Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Douglas E Kinnison
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Jean-François Lamarque
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain.
| |
Collapse
|
54
|
Chen L, Huang Y, Xue Y, Jia Z, Wang W. Kinetic and Mechanistic Investigations of OH-Initiated Atmospheric Degradation of Methyl Butyl Ketone. J Phys Chem A 2022; 126:2976-2988. [PMID: 35536543 DOI: 10.1021/acs.jpca.2c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methyl butyl ketone (MBK, 2-hexanone) is a common atmospheric oxygenated volatile organic compound (OVOC) owing to broad industrial applications, but its atmospheric oxidation mechanism remains poorly understood. Herein, the detailed mechanisms and kinetic properties of MBK oxidation initiated by OH radicals and subsequent transformation of the resulting intermediates are performed by employing quantum chemical and kinetic modeling methods. The calculations show that H-abstraction at the C4 position of MBK is more favorable than those at the other positions, with the total rate coefficient of k(T) = 4.13 × 10-14 exp(1576/T) cm3 molecule-1 s-1 at 273-400 K. The dominant pathway of unimolecular degradation of the C-centered alkyl radical is 1,2-acyl group migration. For the isomerization of the peroxy radical RO2, 1,5- and 1,6-H shifts are more favorable than 1,3- and 1,4-H shifts. The multiconformer rate coefficient kMC-TST of the first H-shift of the RO2 radical is estimated to be 1.40 × 10-3 s-1 at room temperature. Compared to the H-shifts of analogous aliphatic RO2 radicals, it can be concluded that the carbonyl group enhances the H-shift rates by as much as 2-4 orders of magnitude. The rate coefficients of the RO2 radical reaction with the HO2 radical exhibit a weakly negative temperature dependence, and the pseudo-first-order rate constant k'HO2 = kHO2[HO2] is calculated to be 3.32-22.10 × 10-3 s-1 at ambient temperature. The bimolecular reaction of the RO2 radical with NO leads to the formation of 3-oxo-butanal as the main product with the formation concentration of 2.2-7.4 μg/m3 in urban areas. The predicted pseudo-first-order rate constant k'NO = kNO[NO] is 2.20-9.98 s-1 at room temperature. By comparing the kMC-TST, k'HO2, and k'NO, it can be concluded that reaction with NO is the dominant removal pathway for the RO2 radical formed from the OH-initiated oxidation of MBK. These findings are expected to deepen our understanding of the photochemical oxidation of ketones under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Long Chen
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yu Huang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Yonggang Xue
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China.,CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Zhihui Jia
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wenliang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| |
Collapse
|
55
|
Endo Y, Sakamoto Y, Kajii Y, Enami S. Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases. Phys Chem Chem Phys 2022; 24:11562-11572. [PMID: 35506905 DOI: 10.1039/d2cp00915c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of volatile organic compounds in the atmosphere produces organic hydroperoxides (ROOHs) that typically possess not only -OOH but also other functionalities such as -OH and -C(O). Because of their high hydrophilicity and low volatility, such multifunctionalized ROOHs are expected to be taken up in atmospheric condensed phases such as aerosols and fog/cloud droplets. However, the characteristics of ROOHs that control their fates and lifetimes in liquid phases are poorly understood. Here, we report a study of the liquid-phase decomposition kinetics of multifunctionalized α-alkoxyalkyl-hydroperoxides (α-AHs) that possessed an ether, a carbonyl, a hydroperoxide, and two hydroxy groups. These ROOHs were synthesized by ozonolysis of α-terpineol in water in the presence of 1,3-propanediol, 1,4-butanediol, or 1,5-pentanediol. Their decomposition products were detected as chloride anion adducts by electrospray mass spectrometry as a function of reaction time. Experiments using H218O and D2O revealed that hemiacetal species were α-AH decomposition products that further transformed into other products. The result that the rate coefficients (k) of the decomposition of C15 α-AHs increased exponentially from pH 5.0 to 3.9 was consistent with an H+-catalyzed decomposition mechanism. The temperature dependence of k and an Arrhenius plot yielded activation energies (Ea) of 15.7 ± 0.8, 15.0 ± 2.4, and 15.9 ± 0.3 kcal mol-1 for the decomposition of α-AHs derived from the reaction of α-terpineol CIs with 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, respectively. The determined Ea values were compared with those of related ROOHs. We found that alkyl chain length is not a critical factor for the decomposition mechanism, whereas the presence of additional -OH groups would modulate the reaction barriers to decomposition via the formation of hydrogen-bonding with surrounding water molecules. The derived Ea values for the decomposition of the multifunctionalized, terpenoid-derived α-AHs will facilitate atmospheric modeling by serving as representative values for ROOHs in atmospheric condensed phases.
Collapse
Affiliation(s)
- Yasuyuki Endo
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yosuke Sakamoto
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8316, Japan.,National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| |
Collapse
|
56
|
Long B, Xia Y, Bao JL, Carmona-García J, Gómez Martín JC, Plane JMC, Saiz-Lopez A, Roca-Sanjuán D, Francisco JS. Reaction of SO 3 with HONO 2 and Implications for Sulfur Partitioning in the Atmosphere. J Am Chem Soc 2022; 144:9172-9177. [PMID: 35576167 DOI: 10.1021/jacs.2c03499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur trioxide is a critical intermediate for the sulfur cycle and the formation of sulfuric acid in the atmosphere. The traditional view is that sulfur trioxide is removed by water vapor in the troposphere. However, the concentration of water vapor decreases significantly with increasing altitude, leading to longer atmospheric lifetimes of sulfur trioxide. Here, we utilize a dual-level strategy that combines transition state theory calculated at the W2X//DF-CCSD(T)-F12b/jun'-cc-pVDZ level, with variational transition state theory with small-curvature tunneling from direct dynamics calculations at the M08-HX/MG3S level. We also report the pressure-dependent rate constants calculated using the system-specific quantum Rice-Ramsperger-Kassel (SS-QRRK) theory. The present findings show that falloff effects in the SO3 + HONO2 reaction are pronounced below 1 bar. The SO3 + HONO2 reaction can be a potential removal reaction for SO3 in the stratosphere and for HONO2 in the troposphere, because the reaction can potentially compete well with the SO3 + 2H2O reaction between 25 and 35 km, as well as the OH + HONO2 reaction. The present findings also suggest an unexpected new product from the SO3 + HONO2 reaction, which, although very short-lived, would have broad implications for understanding the partitioning of sulfur in the stratosphere and the potential for the SO3 reaction with organic acids to generate organosulfates without the need for heterogeneous chemistry.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, 550025 Guiyang, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, 550025 Guiyang, China
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Javier Carmona-García
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain.,Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | | | - John M C Plane
- School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain
| | - Joseph S Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
57
|
Abstract
SignificanceOH is the critical chemical setting removal rates of local pollutants in the atmosphere. The importance of OH to tropospheric chemistry stands in stark contrast to the absence of long-term measurements. Here we synthesize a machine learning technique, satellite observations, and simulations from a state-of-the-art chemical model to estimate OH trends between 2005 and 2014 in 49 North American cities. Compared to the summertime OH in 2005, the OH in 2014 exhibits changes that range from -17 to +11% in different cities. The variation of OH over one decade can be explained by the chemical regime shifts over the years. The identification of chemical regime, in turn, sheds light on the effective policy for controlling ozone.
Collapse
|
58
|
Rashidiani M, Zahedi E, Zare K, Seif A. Theoretical investigation on the mechanism and kinetics of the OH•‒initiated atmospheric degradation of p-chloroaniline via OH•‒addition and hydrogen abstraction pathways. J Mol Graph Model 2022; 114:108198. [DOI: 10.1016/j.jmgm.2022.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
59
|
Hu M, Chen K, Qiu J, Lin YH, Tonokura K, Enami S. Decomposition mechanism of α-alkoxyalkyl-hydroperoxides in the liquid phase: temperature dependent kinetics and theoretical calculations. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:241-251. [PMID: 35419522 PMCID: PMC8929293 DOI: 10.1039/d1ea00076d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
Abstract
Organic hydroperoxides (ROOHs) play key roles in the atmosphere as a reactive intermediate species. Due to the low volatility and high hydrophilicity, ROOHs are expected to reside in atmospheric condensed phases such as aerosols, fogs, and cloud droplets. The decomposition mechanisms of ROOHs in the liquid phase are, however, still poorly understood. Here we report a temperature-dependent kinetics and theoretical calculation study of the aqueous-phase decompositions of C12 or C13 α-alkoxyalkyl-hydroperoxides (α-AHs) derived from ozonolysis of α-terpineol in the presence of 1-propanol, 2-propanol, and ethanol. We found that the temporal profiles of α-AH signals, detected as chloride-adducts by negative ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order rate coefficient k for α-AH decomposition increased as temperature increased, e.g., k(288 K) = (5.3 ± 0.2) × 10-4 s-1, k(298 K) = (1.2 ± 0.3) × 10-3 s-1, k(308 K) = (2.1 ± 1.4) × 10-3 s-1 for C13 α-AHs derived from the reaction of α-terpineol Criegee intermediates with 1-propanol in the solution at pH 4.5. Arrhenius plot analysis yielded an activation energy (E a) of 12.3 ± 0.6 kcal mol-1. E a of 18.7 ± 0.3 and 13.8 ± 0.9 kcal mol-1 were also obtained for the decomposition of α-AHs (at pH 4.5) derived from the reaction of α-terpineol Criegee intermediates with 2-propanol and with ethanol, respectively. Based on the theoretical kinetic and thermodynamic calculations, we propose that a proton-catalyzed mechanism plays a central role in the decomposition of these α-AHs in acidic aqueous organic media, while water molecules may also participate in the decomposition pathways and affect the kinetics. The decomposition of α-AHs could act as a source of H2O2 and multifunctionalized species in atmospheric condensed phases.
Collapse
Affiliation(s)
- Mingxi Hu
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8563 Japan
| | - Kunpeng Chen
- Department of Environmental Sciences, University of California Riverside California 92521 USA
| | - Junting Qiu
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8563 Japan
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California Riverside California 92521 USA
| | - Kenichi Tonokura
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha Kashiwa 277-8563 Japan
| | - Shinichi Enami
- National Institute for Environmental Studies 16-2 Onogawa Tsukuba 305-8506 Japan +81-29-850-2770
| |
Collapse
|
60
|
Liu C, Chen D, Chen X. Atmospheric Reactivity of Methoxyphenols: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2897-2916. [PMID: 35188384 DOI: 10.1021/acs.est.1c06535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| |
Collapse
|
61
|
Zhang G, Hu R, Xie P, Lou S, Wang F, Wang Y, Qin M, Li X, Liu X, Wang Y, Liu W. Observation and simulation of HOx radicals in an urban area in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152275. [PMID: 34902401 DOI: 10.1016/j.scitotenv.2021.152275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/01/2021] [Accepted: 12/05/2021] [Indexed: 05/25/2023]
Abstract
A continuous wintertime observation of ambient OH and HO2 radicals was first carried out in Shanghai, in 2019. This effort coincided with the second China International Import Expo (CIIE), during which strict emission controls were implemented in Shanghai, resulting in an average PM2.5 concentration of less than 35 μg/m3. The self-developed instrument based on the laser-induced fluorescence (LIF) technique reported that the average OH radical concentration at noontime (11:00-13:00) was 2.7 × 106 cm-3, while the HO2 concentration was 0.8 × 108 cm-3. A chemical box model utilizing the Regional Atmospheric Chemical Mechanism 2 (RACM2), which is used to simulate pollutant reactions and other processes in the troposphere and which incorporates the Leuven isoprene mechanism (LIM1), reproduced the OH concentrations on most days. The HO2 concentration was underestimated, and the observed-to-modelled ratio demonstrated poor performance by the model, especially during the elevated photochemistry period. Missing primary peroxy radical sources or unknown behaviors of RO2 for high-NOx regimes are possible reasons for the discrepancy. The daytime ROx production was controlled by various sources. HONO photolysis accounted for more than one half (0.83 ppb/h), and the contribution from formaldehyde, OVOCs and ozone photolysis was relatively similar. Active oxidation paths accelerated the rapid ozone increase in winter. The average ozone production rate was 15.1 ppb/h, which is comparable to that of a Beijing suburb (10 ppb/h for the 'BEST-ONE') but much lower than that of Beijing's center (39 ppb/h in 'PKU' and 71 ppb/h in 'APHH') in wintertime. Cumulative local ozone based on observed peroxy radicals was five times higher than the value simulated by the current model due to the underprediction of HO2 and RO2 under the high-NOx regime. This analysis provides crucial information for subsequent pollution control policies in Shanghai.
Collapse
Affiliation(s)
- Guoxian Zhang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Renzhi Hu
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China.
| | - Pinhua Xie
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China; University of Science and Technology of China, Hefei, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing, China; CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Fengyang Wang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Yihui Wang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Min Qin
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Xiaoyan Liu
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Yue Wang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Wenqing Liu
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
62
|
McCoy JC, Léger SJ, Frey CF, Vansco MF, Marchetti B, Karsili TNV. Modeling the Conformer-Dependent Electronic Absorption Spectra and Photolysis Rates of Methyl Vinyl Ketone Oxide and Methacrolein Oxide. J Phys Chem A 2022; 126:485-496. [PMID: 35049299 DOI: 10.1021/acs.jpca.1c08381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Criegee intermediates are important atmospheric oxidants, formed via the reaction of ozone with volatile alkenes emitted into the troposphere. Small Criegee intermediates (e.g., CH2OO and CH3CHOO) are highly reactive, and their removal via unimolecular decay or bimolecular chemistry dominates their atmospheric lifetimes. As the molecular complexity of Criegee intermediates increases, their electronic absorption spectra show a bathochromic shift within the solar spectrum relevant to the troposphere. In these cases, solar photolysis may become a competitive contributor to their atmospheric removal. In this article, we report the conformer-dependent simulated electronic absorption spectra of two four-carbon-centered Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). Both MVK-oxide and MACR-oxide contain four low-energy conformers, which are convoluted in the experimentally measured spectra. Here, we deconvolute each conformer and estimate contributions from each of the four conformers to the experimentally measured spectra. We also estimate the photolysis rates and predict that solar photolysis should be a more competitive removal process for MVK-oxide and MACR-oxide (cf. CH2OO and CH3CHOO).
Collapse
Affiliation(s)
- Julia C McCoy
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Spencer J Léger
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Conrad F Frey
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Michael F Vansco
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Barbara Marchetti
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| | - Tolga N V Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Louisiana, Louisiana 70503, United States
| |
Collapse
|
63
|
Guardado JL, Urquilla JA, Kidwell NM, Petit AS. Reactive quenching of NO (A 2Σ +) with H 2O leads to HONO: a theoretical analysis of the reactive and nonreactive electronic quenching mechanisms. Phys Chem Chem Phys 2022; 24:26717-26730. [DOI: 10.1039/d2cp04214b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study, we develop a mechanistic understanding of the pathways for nonreactive and reactive electronic quenching of NO (A2Σ+) with H2O. In doing so, we identify a photochemical mechanism for HONO production in the upper atmosphere.
Collapse
Affiliation(s)
- José L. Guardado
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| | - Justin A. Urquilla
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| | - Nathanael M. Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | - Andrew S. Petit
- Department of Chemistry and Biochemistry, California State University – Fullerton, Fullerton, CA 92834-6866, USA
| |
Collapse
|
64
|
Feng T, Zhao S, Liu L, Long X, Gao C, Wu N. Nitrous acid emission from soil bacteria and related environmental effect over the North China Plain. CHEMOSPHERE 2022; 287:132034. [PMID: 34526272 DOI: 10.1016/j.chemosphere.2021.132034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Soil bacteria could be one of the important sources for ambient HONO. However, the HONO emission from soil bacteria over North China Plain (NCP) with vast croplands has not yet been evaluated. In this study, high-resolution simulations are created to explore the HONO emission from soil bacteria over NCP and related influences on atmospheric chemistry. Ground measurements of critical air pollutants including O3, HONO, and PM2.5 compositions are incorporated to constrain the model simulations. Results show that abundant HONO is emitted from soil bacteria over NCP during summertime and the emission rate varies dramatically for different areas (about 0.2 kg km-2 d-1 - 2.0 kg km-2 d-1). The HONO emission rate presents clear diurnal cycles with peaks of 1.5 kg km-2 d-1 in the afternoon and valleys of 0.4 kg km-2 d-1 during the early morning hours. The resulting HONO concentration ranges from 0.2 μg m-3 to 1.4 μg m-3, which predominates the total HONO concentration in ambient air, particularly in western NCP. The soil bacteria source can significantly alter the diurnal cycles of ambient HONO and OH concentrations over NCP, but only slightly change O3 and PM2.5 concentrations via participating photochemistry and secondary aerosol formations. These results highlight the pressing need for the involvement of HONO emission from soil bacteria in modeling studies regarding atmospheric chemistry, particularly in rural areas.
Collapse
Affiliation(s)
- Tian Feng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, 315211, China; Institute of East China Sea, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shuyu Zhao
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China
| | - Lang Liu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China
| | - Xin Long
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Gao
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Naicheng Wu
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
65
|
Hadizadeh MH, Pan Z, Azamat J. Investigation of OH radical in the water nanodroplet during vapor freezing process: An ab initio molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Kumar V, Sinha V. Season-wise analyses of VOCs, hydroxyl radicals and ozone formation chemistry over north-west India reveal isoprene and acetaldehyde as the most potent ozone precursors throughout the year. CHEMOSPHERE 2021; 283:131184. [PMID: 34146869 DOI: 10.1016/j.chemosphere.2021.131184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The north-west Indo-Gangetic Plain is the agricultural cereal-basket of India owing to its prolific wheat and rice production. Surface ozone pollution is of growing concern over it, yet no detailed year-round in-situ measurements of its most reactive precursors, particularly the volatile organic compounds (VOCs) are available from this region. Here, using the first year-long continuous measurements of 23 major VOCs, ozone, NOx, CO and their atmospheric oxidation products from a regionally representative site in north-west India, we evaluated speciated OH reactivities (OHR), ozone formation potential (OFP) and ozone production regimes (OPR) across all seasons. The average seasonal OHR ranged from 14 s-1 (winter) to 21.5 s-1 (summer). We provide the first estimate of OH radical mixing ratios varying between 0.06 and 0.37 ppt in different seasons for the peak daytime hours in this region. Recycling via HO2+NO was the most important pathway contributing to >85% of the OH production throughout the year. Contrary to satellite derived proxies and chemical transport models which predict NOx sensitive OPR, we show it to be strongly sensitive to both VOCs and NOx (>90% days in a year). Remarkably for densely populated regions, isoprene and acetaldehyde collectively accounted for ~30-50% of the total OFP in all seasons. Biogenic emissions of isoprene (reaching 12.9 mg/m2/h) and high acetaldehyde from anthropogenic and photochemical sources were observed for all seasons. Monitoring and control of isoprene and acetaldehyde are therefore urgently required for efforts focused on mitigating surface ozone pollution in this demographically important region of the world.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India; Max Planck Institute for Chemistry, Mainz, 55128, Germany
| | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Punjab, 140306, India.
| |
Collapse
|
67
|
Murray LT, Fiore AM, Shindell DT, Naik V, Horowitz LW. Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon. Proc Natl Acad Sci U S A 2021; 118:e2115204118. [PMID: 34686608 PMCID: PMC8639338 DOI: 10.1073/pnas.2115204118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
The hydroxyl radical (OH) sets the oxidative capacity of the atmosphere and, thus, profoundly affects the removal rate of pollutants and reactive greenhouse gases. While observationally derived constraints exist for global annual mean present-day OH abundances and interannual variability, OH estimates for past and future periods rely primarily on global atmospheric chemistry models. These models disagree ± 30% in mean OH and in its changes from the preindustrial to late 21st century, even when forced with identical anthropogenic emissions. A simple steady-state relationship that accounts for ozone photolysis frequencies, water vapor, and the ratio of reactive nitrogen to carbon emissions explains temporal variability within most models, but not intermodel differences. Here, we show that departure from the expected relationship reflects the treatment of reactive oxidized nitrogen species (NO y ) and the fraction of emitted carbon that reacts within each chemical mechanism, which remain poorly known due to a lack of observational data. Our findings imply a need for additional observational constraints on NO y partitioning and lifetime, especially in the remote free troposphere, as well as the fate of carbon-containing reaction intermediates to test models, thereby reducing uncertainties in projections of OH and, hence, lifetimes of pollutants and greenhouse gases.
Collapse
Affiliation(s)
- Lee T Murray
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627;
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964
| | - Drew T Shindell
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Vaishali Naik
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ 08540
| | - Larry W Horowitz
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ 08540
| |
Collapse
|
68
|
Haque MM, Verma SK, Deshmukh DK, Kunwar B, Miyazaki Y, Kawamura K. Seasonal and temporal variations of ambient aerosols in a deciduous broadleaf forest from northern Japan: Contributions of biomass burning and biological particles. CHEMOSPHERE 2021; 279:130540. [PMID: 33895672 DOI: 10.1016/j.chemosphere.2021.130540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Total suspended particulate (TSP) samples were collected in a deciduous broadleaf forest in Sapporo, Hokkaido, Japan, from January to December 2010 to understand the molecular composition and abundance of sugar compounds (SCs) in atmospheric aerosols. We analyzed the samples for anhydrosugars, primary sugars, and sugar alcohols using a gas chromatograph-mass spectrometer. The annual mean concentrations of total SCs ranged from 16.1 to 1748 ng m-3 (avg. 311 ng m-3) with maxima in spring (avg. 484 ng m-3) and minima in winter (avg. 28.2 ng m-3). Primary sugars and sugar alcohols followed the seasonal pattern of total SCs. High levels of anhydrosugars in winter (avg. 22.9 ng m-3) suggest a contribution of biomass burning from domestic heating due to lower ambient temperature. The high levels of arabitol and mannitol in spring followed by summer and autumn denote the contribution from multiple sources, i.e., growing vegetation and fungal spores in Sapporo forest. We observed an enhanced contribution of bioaerosols emitted from plant blossoms in spring and leaf decomposition in autumn. The identical seasonal trends of glucose and trehalose implied their similar sources in forest aerosols. Conversely, the highest concentration of sucrose in spring was due to the pollen emissions by blooming plants. Positive matrix factorization (PMF) analyses of the SCs suggested that organic aerosols in the deciduous forest are associated with the emissions from multiple sources, including vegetation, microbes, pollens, and wintertime biomass burning. The PMF analysis also suggested that vegetation is the primary carbon source in the forest atmosphere. The diagnostic mass ratios of levoglucosan to mannosan demonstrated the dominance of softwood burning. We noted that the meteorological parameters substantially affect the emission sources and seasonal concentrations of SCs in the deciduous forest.
Collapse
Affiliation(s)
- Md Mozammel Haque
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Santosh Kumar Verma
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; State Forensic Science Laboratory, Home Department, Government of Chhattisgarh, Raipur, 491001, India
| | - Dhananjay K Deshmukh
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Yuzo Miyazaki
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan.
| |
Collapse
|
69
|
Koyun AN, Büchner J, Wistuba MP, Grothe H. Laboratory and field ageing of SBS modified bitumen: Chemical properties and microstructural characterization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
70
|
Zhou S, Kowal SF, Cregan AR, Kahan TF. Factors affecting wavelength-resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry. INDOOR AIR 2021; 31:1187-1198. [PMID: 33373097 DOI: 10.1111/ina.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 05/25/2023]
Abstract
We measured wavelength-resolved ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects of variables such as light source, solar angles, cloud cover, window type, and electric light color temperature on indoor photon fluxes. The majority of the 77 windows and window samples investigated completely attenuated sunlight at wavelengths shorter than 320 nm; despite variations among individual windows leading to differences in indoor HONO photolysis rate constants (JHONO ) and local hydroxyl radical (OH) concentrations of up to a factor of 50, wavelength-resolved transmittance was similar between windows in residential and non-residential buildings. We report mathematical relationships that predict indoor solar UV irradiance as a function of solar zenith angle, incident angle of sunlight on windows, and distance from windows and surfaces for direct and diffuse sunlight. Using these relationships, we predict elevated indoor steady-state OH concentrations (0.80-7.4 × 106 molec cm-3 ) under illumination by direct and diffuse sunlight and fluorescent tubes near windows or light sources. However, elevated OH concentrations at 1 m from the source are only predicted under direct sunlight. We predict that reflections from indoor surfaces will have minor contributions to room-averaged indoor UV irradiance. These results may improve parameterization of indoor chemistry models.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Alyssa R Cregan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
71
|
Yang X, Lu K, Ma X, Liu Y, Wang H, Hu R, Li X, Lou S, Chen S, Dong H, Wang F, Wang Y, Zhang G, Li S, Yang S, Yang Y, Kuang C, Tan Z, Chen X, Qiu P, Zeng L, Xie P, Zhang Y. Observations and modeling of OH and HO 2 radicals in Chengdu, China in summer 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144829. [PMID: 33578154 DOI: 10.1016/j.scitotenv.2020.144829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This study reports on the first continuous measurements of ambient OH and HO2 radicals at a suburban site in Chengdu, Southwest China, which were collected during 2019 as part of a comprehensive field campaign 'CompreHensive field experiment to explOre the photochemical Ozone formation mechaniSm in summEr - 2019 (CHOOSE-2019)'. The mean concentrations (11:00-15:00) of the observed OH and HO2 radicals were 9.5 × 106 and 9.0 × 108 cm-3, respectively. To investigate the state-of-the-art chemical mechanism of radical, closure experiments were conducted with a box model, in which the RACM2 mechanism updated with the latest isoprene chemistry (RACM2-LIM1) was used. In the base run, OH radicals were underestimated by the model for the low-NO regime, which was likely due to the missing OH recycling. However, good agreement between the observed and modeled OH concentrations was achieved when an additional species X (equivalent to 0.25 ppb of NO mixing ratio) from one new OH regeneration cycle (RO2 + X → HO2, HO2 + X → OH) was added into the model. Additionally, in the base run, the model could reproduce the observed HO2 concentrations. Discrepancies in the observed and modeled HO2 concentrations were found in the sensitivity runs with HO2 heterogeneous uptake, indicating that the impact of the uptake may be less significant in Chengdu because of the relatively low aerosol concentrations. The ROx (= OH + HO2 + RO2) primary source was dominated by photolysis reactions, in which HONO, O3, and HCHO photolysis accounted for 34%, 19%, and 23% during the daytime, respectively. The efficiency of radical cycling was quantified by the radical chain length, which was determined by the NO to NO2 ratio successfully. The parameterization of the radical chain length may be very useful for the further determinations of radical recycling.
Collapse
Affiliation(s)
- Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China.
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yanhui Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China.
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Fengyang Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yihui Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Guoxian Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Shule Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Suding Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Yiming Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Cailing Kuang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Zhaofeng Tan
- International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Juelich GmbH, Juelich, Germany
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Peipei Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China
| | - Pinhua Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; International Joint laboratory for Regional pollution Control (IJRC), Peking University, Beijing, China; Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen, China.
| |
Collapse
|
72
|
Abstract
The fates of organic hydroperoxides (ROOHs) in atmospheric condensed phases are key to understanding the oxidative and toxicological potentials of particulate matter. Recently, mass spectrometric detection of ROOHs as chloride anion adducts has revealed that liquid-phase α-hydroxyalkyl hydroperoxides, derived from hydration of carbonyl oxides (Criegee intermediates), decompose to geminal diols and H2O2 over a time frame that is sensitively dependent on the water content, pH, and temperature of the reaction solution. Based on these findings, it has been proposed that H+-catalyzed conversion of ROOHs to ROHs + H2O2 is a key process for the decomposition of ROOHs that bypasses radical formation. In this perspective, we discuss our current understanding of the aqueous-phase decomposition of atmospherically relevant ROOHs, including ROOHs derived from reaction between Criegee intermediates and alcohols or carboxylic acids, and of highly oxygenated molecules (HOMs). Implications and future challenges are also discussed.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
73
|
Long B, Wang Y, Xia Y, He X, Bao JL, Truhlar DG. Atmospheric Kinetics: Bimolecular Reactions of Carbonyl Oxide by a Triple-Level Strategy. J Am Chem Soc 2021; 143:8402-8413. [PMID: 34029069 DOI: 10.1021/jacs.1c02029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Criegee intermediates in the atmosphere serve as oxidizing agents to initiate aerosol formation, which are particularly important for atmospheric modeling, and understanding their kinetics is one of the current outstanding challenges in climate change modeling. Because experimental kinetics are still limited, we must rely on theory for the complete picture, but obtaining absolute rates from theory is a formidable task. Here, we report the bimolecular reaction kinetics of carbonyl oxide with ammonia, hydrogen sulfide, formaldehyde, and water dimer by designing a triple-level strategy that combines (i) benchmark results close to the complete-basis limit of coupled-cluster theory with the single, double, triple, and quadruple excitations (CCSDTQ/CBS), (ii) a new hybrid meta density functional (M06CR) specifically optimized for reactions of Criegee intermediates, and (iii) variational transition-state theory with both variable rection coordinates and optimized reaction paths, with multidimensional tunneling, and with pressure effects. For (i) we have found that quadruple excitations are required to obtain quantitative reaction barriers, and we designed new composite methods and strategies to reach CCSDTQ/CBS accuracy. The present findings show that (i) the CH2OO + HCHO reaction can make an important contribution to the sink of HCHO under wide atmospheric conditions in the gas phase and that (ii) CH2OO + (H2O)2 dominates over the CH2OO + H2O reaction below 10 km.
Collapse
Affiliation(s)
- Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China.,Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Ying Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
74
|
Brune WH, McFarland PJ, Bruning E, Waugh S, MacGorman D, Miller DO, Jenkins JM, Ren X, Mao J, Peischl J. Extreme oxidant amounts produced by lightning in storm clouds. Science 2021; 372:711-715. [PMID: 33927054 DOI: 10.1126/science.abg0492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/02/2022]
Abstract
Lightning increases the atmosphere's ability to cleanse itself by producing nitric oxide (NO), leading to atmospheric chemistry that forms ozone (O3) and the atmosphere's primary oxidant, the hydroxyl radical (OH). Our analysis of a 2012 airborne study of deep convection and chemistry demonstrates that lightning also directly generates the oxidants OH and the hydroperoxyl radical (HO2). Extreme amounts of OH and HO2 were discovered and linked to visible flashes occurring in front of the aircraft and to subvisible discharges in electrified anvil regions. This enhanced OH and HO2 is orders of magnitude greater than any previous atmospheric observation. Lightning-generated OH in all storms happening at the same time globally can be responsible for a highly uncertain, but substantial, 2 to 16% of global atmospheric OH oxidation.
Collapse
Affiliation(s)
- W H Brune
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA.
| | - P J McFarland
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - E Bruning
- Department of Geosciences, Texas Tech University, Lubbock, TX, USA
| | - S Waugh
- National Severe Storms Laboratory, National Oceanic and Atmospheric Administration, Norman, OK, USA
| | - D MacGorman
- National Severe Storms Laboratory, National Oceanic and Atmospheric Administration, Norman, OK, USA.,Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK, USA.,School of Meteorology, University of Oklahoma, Norman, OK, USA
| | - D O Miller
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - J M Jenkins
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - X Ren
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.,Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - J Mao
- Department of Chemistry and Biochemistry and Geophysical Institute, University of Alaska, Fairbanks, Fairbanks, AK, USA
| | - J Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.,NOAA Chemical Sciences Laboratory, Boulder, CO, USA
| |
Collapse
|
75
|
Wang L, Wang L. The oxidation mechanism of gas-phase ozonolysis of limonene in the atmosphere. Phys Chem Chem Phys 2021; 23:9294-9303. [PMID: 33885076 DOI: 10.1039/d0cp05803c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limonene with endo- and exo-double bonds is a significant monoterpene in the atmosphere and has high reactivity towards O3. We investigated the atmospheric oxidation mechanism of limonene ozonolysis using a high level quantum chemistry calculation coupled with RRKM-ME kinetic simulation. The additions of O3 can take place at both the endo- and exo-double bonds with a branching ratio of 0.87 : 0.13, forming four major highly energized CIs* (named Syn-2a*, Syn-2b*, Anti-2b* and Anti-2c*) with the relative higher fractions of 0.21 : 0.35 : 0.27 : 0.11. A yield of 4% for Limona-ketone was obtained as well. For the unimolecular isomerization pathways of limonene + O3 → POZs → CIs* → SOZ, VHP, or dioxirane, five, one, or none of the internal rotations are treated as hindered internal rotors for CIs*. We obtained percentages of 0.59 : 0.18 : 0.14 in total for separate isomerization routes in the formation of VHPs, dioxirane and SOZs from CIs* using the fourth-order Runge-Kutta method. Additionally, a yield of ∼5% was acquired for stabilized CIs compiling the fractions of different addition routes. About ∼10% of stabilized Anti-2b would isomerize to VHP and 90% would isomerize to SOZs. Isomerization to VHPs dominates the fate of stabilized Syn-2a, Syn-2b and Anti-2c. The overall yield of OH radicals was 0.61. Our study suggested a yield of 0.17 for stabilized SOZs and 0.18 for dioxirane, although both their fates are ambiguous.
Collapse
Affiliation(s)
- Lingyu Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, 381 Wushan Rd., Guangzhou, 510640, China.
| | | |
Collapse
|
76
|
Ding J, Dai Q, Zhang Y, Xu J, Huangfu Y, Feng Y. Air humidity affects secondary aerosol formation in different pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143540. [PMID: 33199014 DOI: 10.1016/j.scitotenv.2020.143540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 05/25/2023]
Abstract
Haze pollution characteristics and PM2.5 chemical composition were distinctive in different air humidity-dependent haze episodes in winter of North China Plain (NCP). The impact of air humidity on particulate chemical composition was investigated based on the in situ observation in winter of 2017-2018 in Tianjin. Relative humidity (RH) and absolute humidity affect the secondary aerosol generation in different ways. Particularly, nitrate changes more obviously with absolute humidity, while sulfate changes more obviously with RH. In the daytime, at certain conditions, high water vapor content, O3 concentration and stronger solar radiation may promote the gas-phase oxidation of NOx by the addition of OH formed though O3 photolysis, especially during the transition periods between winter and autumn or spring. Whereas in the nighttime, temperature drop generated the high RH, which was favorable for the gas-particle portioning of HNO3 and the occurrence of the N2O5 heterogeneous hydrolysis reaction. At lower temperature and higher RH (T < 0 °C, RH > 80%) condition, SO42- mass fraction was relatively higher. Lower temperature can result in more SO2 dissolved in equilibrium and the relatively higher initial aerosol pH, which both generate faster aqueous oxidation rate. Given the currently low SO2 concentration in the regional scale, the meteorological condition in which the occurrence of sulfate formation through aqueous reaction may be more stringent.
Collapse
Affiliation(s)
- Jing Ding
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300000, China; Meteorological and Environmental Center of Tianjin, Tianjin 300074, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300000, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300000, China.
| | - Jiao Xu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300000, China
| | - Yanqi Huangfu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300000, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300000, China
| |
Collapse
|
77
|
Liao S, Zhang J, Yu F, Zhu M, Liu J, Ou J, Dong H, Sha Q, Zhong Z, Xie Y, Luo H, Zhang L, Zheng J. High Gaseous Nitrous Acid (HONO) Emissions from Light-Duty Diesel Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:200-208. [PMID: 33290056 DOI: 10.1021/acs.est.0c05599] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrous acid (HONO) plays an important role in the budget of hydroxyl radical (•OH) in the atmosphere. Vehicular emissions are a crucial primary source of atmospheric HONO, yet remain poorly investigated, especially for diesel trucks. In this study, we developed a novel portable online vehicular HONO exhaust measurement system featuring an innovative dilution technique. Using this system coupled with a chassis dynamometer, we for the first time investigated the HONO emission characteristics of 17 light-duty diesel trucks (LDDTs) and 16 light-duty gasoline vehicles in China. Emissions of HONO from LDDTs were found to be significantly higher than previous studies and gasoline vehicles tested in this study. The HONO emission factors of LDDTs decrease significantly with stringent control standards: 1.85 ± 1.17, 0.59 ± 0.25, and 0.15 ± 0.14 g/kg for China III, China IV, and China V, respectively. In addition, we found poor correlations between HONO and NOx emissions, which indicate that using the ratio of HONO to NOx emissions to infer HONO emissions might lead to high uncertainty of HONO source budget in previous studies. Lastly, the HONO emissions are found to be influenced by driving conditions, highlighting the importance of conducting on-road measurements of HONO emissions under real-world driving conditions. More direct measurements of the HONO emissions are needed to improve the understanding of the HONO emissions from mobile and other primary sources.
Collapse
Affiliation(s)
- Songdi Liao
- College of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Jiachen Zhang
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Fei Yu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Manni Zhu
- College of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Junwen Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Jiamin Ou
- Department of Sociology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Huabin Dong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinge Sha
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Zhuangmin Zhong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Yan Xie
- College of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Haoming Luo
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| | - Lihang Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510641, China
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 510632, China
| |
Collapse
|
78
|
Wang G, Iradukunda Y, Shi G, Sanga P, Niu X, Wu Z. Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere. J Environ Sci (China) 2021; 99:324-335. [PMID: 33183711 DOI: 10.1016/j.jes.2020.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The hydroxyl radical (•OH) has a crucial function in the oxidation and removal of many atmospheric compounds that are harmful to health. Nevertheless, high reactivity, low atmospheric abundance, determination of hydroxyl, and hydroperoxyl radical's quantity is very difficult. In the atmosphere and troposphere, hydroperoxyl radicals (HO2) are closely demanded in the chemical oxidation of the troposphere. But advances in technology have allowed researchers to improve the determination methods on the research of free radicals through some spectroscopic techniques. So far, several methods such as laser-induced fluorescence (LIF), high-performance liquid chromatography (HPLC), and chemical ionization mass spectroscopy have been identified and mostly used in determining the quantity of hydroxyl and hydroperoxyl radicals. In this systematic review, we have advised the use of scavenger as an advance for further researchers to circumvent some of these problems caused by free radicals. The primary goal of this review is to deepen our understanding of the functions of the most critical free radical (•OH, HO2) and also understand the currently used methods to quantify them in the atmosphere and troposphere.
Collapse
Affiliation(s)
- Guoying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yves Iradukunda
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Gaofeng Shi
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Pascaline Sanga
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiuli Niu
- Gansu Food Inspection and Research Institute, Lanzhou 730050, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
79
|
Hadizadeh MH, Yang L, Fang G, Qiu Z, Li Z. The mobility and solvation structure of a hydroxyl radical in a water nanodroplet: a Born-Oppenheimer molecular dynamics study. Phys Chem Chem Phys 2021; 23:14628-14635. [PMID: 34196637 DOI: 10.1039/d1cp01830b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyl radicals (OH*) play a crucial role in atmospheric chemistry and biological processes. In this study, Born-Oppenheimer molecular dynamics simulations are performed under ambient conditions for a hydroxyl radical in a water nanodroplet containing 191 water molecules. Density functional theory calculations are performed at the BLYP-D3 level with some test calculations at the B3LYP-D3 level. In two 150 ps trajectories, either with OH* initially located in the interior region or at the surface of the water nanodroplet, the OH* radical ends up in the subsurface layer of the nanodroplet, which is different from the "surface preference" predicted from previous empirical force field simulations. The solvation structure of OH* contains fluctuating hydrogen bonds, as well as a two-center three-electron hemibond in some cases. The mobility of OH* is enhanced by hydrogen transfer, which has a free energy barrier of ∼4.6 kcal mol-1. The results presented in this study deepen our understanding of the structure and dynamics of OH* in aqueous solutions, especially around the air-water interface.
Collapse
Affiliation(s)
- Mohammad Hassan Hadizadeh
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Lewen Yang
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Guoyong Fang
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Zongyang Qiu
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhenyu Li
- Hefei National Laboratory of Physical Sciences at the Microscale, School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
80
|
Zhou S, Liu Z, Wang Z, Young CJ, VandenBoer TC, Guo BB, Zhang J, Carslaw N, Kahan TF. Hydrogen Peroxide Emission and Fate Indoors during Non-bleach Cleaning: A Chamber and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15643-15651. [PMID: 33258369 DOI: 10.1021/acs.est.0c04702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Activities such as household cleaning can greatly alter the composition of air in indoor environments. We continuously monitored hydrogen peroxide (H2O2) from household non-bleach surface cleaning in a chamber designed to simulate a residential room. Mixing ratios of up to 610 ppbv gaseous H2O2 were observed following cleaning, orders of magnitude higher than background levels (sub-ppbv). Gaseous H2O2 levels decreased rapidly and irreversibly, with removal rate constants (kH2O2) 17-73 times larger than air change rate (ACR). Increasing the surface-area-to-volume ratio within the room caused peak H2O2 mixing ratios to decrease and kH2O2 to increase, suggesting that surface uptake dominated H2O2 loss. Volatile organic compound (VOC) levels increased rapidly after cleaning and then decreased with removal rate constants 1.2-7.2 times larger than ACR, indicating loss due to surface partitioning and/or chemical reactions. We predicted photochemical radical production rates and steady-state concentrations in the simulated room using a detailed chemical model for indoor air (the INDCM). Model results suggest that, following cleaning, H2O2 photolysis increased OH concentrations by 10-40% to 9.7 × 105 molec cm-3 and hydroperoxy radical (HO2) concentrations by 50-70% to 2.3 × 107 molec cm-3 depending on the cleaning method and lighting conditions.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhenlei Liu
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Zixu Wang
- Department of Environment and Geography, University of York, York YO10 5DD, U.K
| | - Cora J Young
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - B Beverly Guo
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York YO10 5DD, U.K
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
81
|
Feng T, Zhao S, Zhang X, Wang Q, Liu L, Li G, Tie X. Increasing wintertime ozone levels and secondary aerosol formation in the Guanzhong basin, central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140961. [PMID: 32721619 DOI: 10.1016/j.scitotenv.2020.140961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 05/16/2023]
Abstract
The observed near-surface ozone (O3) concentration has been remarkably increasing during recent years in winter in the Guanzhong basin, central China, showing a continuous enhancement of the atmospheric oxidizing capacity (AOC). The impact of such a change in the AOC on secondary aerosol formation, however, has not yet been assessed. In this study, we simulate the formation of O3 and airborne particles in the atmosphere using the WRF-Chem model, in which the AOC is calculated quantitatively, to understand the responses of secondary aerosols to the AOC increase. Meteorological observations, air pollutants including O3, NO2, SO2, CO, and PM2.5 concentrations at ambient monitoring sites, and the main compositions of submicron particulates measured using ACSM are used to constrain the model simulation. The model result shows that the population hourly and postmeridian Ox (=O3 + NO2) concentrations are good indicators for the wintertime AOC in the basin, suggested by the significantly positive correlations between them. Sensitivity experiments present that the AOC changes may exert important influences on fine particle (PM2.5) concentration with an average rate of 1.94 (μg m-3)/(106 cm-3 s-1) for Δ(PM2.5)/Δ(AOC), which is mostly caused by the mass changes in secondary organic aerosol (43%) and nitrate aerosol (40%) and less attributed to the ammonium (11%) and sulfate (6%) components.
Collapse
Affiliation(s)
- Tian Feng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang 315211, China; Institute of East China Sea, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shuyu Zhao
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xiu Zhang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Lang Liu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Guohui Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xuexi Tie
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| |
Collapse
|
82
|
Wang Z, Kowal SF, Carslaw N, Kahan TF. Photolysis-driven indoor air chemistry following cleaning of hospital wards. INDOOR AIR 2020; 30:1241-1255. [PMID: 32485006 DOI: 10.1111/ina.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 05/25/2023]
Abstract
Effective cleaning techniques are essential for the sterilization of rooms in hospitals and industry. No-touch devices (NTDs) that use fumigants such as hydrogen peroxide (H2 O2 ), formaldehyde (HCHO), ozone (O3 ), and chlorine dioxide (OClO) are a recent innovation. This paper reports a previously unconsidered potential consequence of such cleaning technologies: the photochemical formation of high concentrations of hydroxyl radicals (OH), hydroperoxy radicals (HO2 ), organic peroxy radicals (RO2 ), and chlorine radicals (Cl) which can form harmful reaction products when exposed to chemicals commonly found in indoor air. This risk was evaluated by calculating radical production rates and concentrations based on measured indoor photon fluxes and typical fumigant concentrations during and after cleaning events. Sunlight and fluorescent tubes without covers initiated photolysis of all fumigants, and plastic-covered fluorescent tubes initiated photolysis of only some fumigants. Radical formation was often dominated by photolysis of fumigants during and after decontamination processes. Radical concentrations were predicted to be orders of magnitude greater than background levels during and immediately following cleaning events with each fumigant under one or more illumination condition. Maximum predicted radical concentrations (1.3 × 107 molecule cm-3 OH, 2.4 ppb HO2 , 6.8 ppb RO2 and 2.2 × 108 molecule cm-3 Cl) were much higher than baseline concentrations. Maximum OH concentrations occurred with O3 photolysis, HO2 with HCHO photolysis, and RO2 and Cl with OClO photolysis. Elevated concentrations may persist for hours after NTD use, depending on the air change rate and air composition. Products from reactions involving radicals could significantly decrease air quality when disinfectants are used, leading to adverse health effects for occupants.
Collapse
Affiliation(s)
- Zixu Wang
- Department of Environment and Geography, University of York, York, UK
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
83
|
Liu C, Wang H, Ma Q, Ma J, Wang Z, Liang L, Xu W, Zhang G, Zhang X, Wang T, He H. Efficient Conversion of NO to NO 2 on SO 2-Aged MgO under Atmospheric Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11848-11856. [PMID: 32885975 DOI: 10.1021/acs.est.0c05071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The NO-NO2 cycle determines the formation of O3 and hence plays a critical role in the oxidizing capacity of troposphere. Traditional view concluded that the heterogeneous oxidation of NO to NO2 was negligible due to the weak reactivity of NO on aerosols, compared to the homogeneous oxidation process. However, the results here reported for the first time that SO2 can greatly promote the heterogeneous transformation of NO into NO2 and HONO on MgO particles under ambient conditions. The uptake coefficients of NO were increased by 2-3 orders of magnitudes on SO2-aged MgO, compared to the fresh sample. Based on spectroscopic characterization and density functional theory (DFT) calculations, the active sites for the adsorption and oxidation of NO were determined to be sulfates, where an intermediate [SO4-NO] complex was formed during the adsorption. The decomposition of this species led to the formation of NO2 and the change of sulfate configuration. The formed NO2 could further react with surface sulfite to form HONO and sulfate. The conversion of NO to NO2 and HONO on the SO2-aged MgO surface under ambient conditions contributes a new formation pathway of NO2 and HONO and could be quite helpful for understanding the source of atmospheric oxidizing capacity as well as the formation of air pollution complexes in polluted regions such as the northern China.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Honghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingxin Ma
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
84
|
Liu Y, Wang T, Qu G, Jia H. High-efficient decomplexation of Cu-HA by discharge plasma: Process and mechanisms. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
Wang G, Jia S, Li R, Ma S, Chen X, Wu Z, Shi G, Niu X. Seasonal variation characteristics of hydroxyl radical pollution and its potential formation mechanism during the daytime in Lanzhou. J Environ Sci (China) 2020; 95:58-64. [PMID: 32653193 DOI: 10.1016/j.jes.2020.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/18/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Hydroxyl free radicals (OH radicals) play the main role in atmospheric chemistry and their involving reactions are the dominant rate determining step in the formation of secondary fine particulate matter and in the removal of air pollutants from the atmosphere. In this paper, we studied the seasonal variation characteristics of OH radicals during the daytime in Lanzhou and explored the potential formation mechanism of high concentration OH radicals. We found that the OH radicals in four seasons was 2.7 × 106, 2.6 × 106, 3.1 × 106, and 2.2 × 106 cm-3, respectively. Since the rainfall was concentrated in summer, the wet deposition had a significant effect on removing OH radicals. Among the four pollutants (including ozone (O3), volatile organic compounds (VOCs), nitrogen dioxide (NO2) and fine particulate matter (PM2.5)), the variation of OH radicals were closely related to ozone concentration especially in spring and summer. In autumn, the correlation between PM2.5 and OH radicals were the closest among the observing pollutants and its formation mechanism was different conventional regeneration pathway. In Event 1, high concentration of ozone was the main source of OH radicals; under the high humidity condition, except for ozone, the multiple factors including VOCs, NO2 and PM2.5 interplayed and leaded to the Event 2.
Collapse
Affiliation(s)
- Guoying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Shiming Jia
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ruihong Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shangrong Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xuefu Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Gaofeng Shi
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiuli Niu
- Gansu Food Inspection and Research Institute, Lanzhou 730030, China
| |
Collapse
|
86
|
An Z, Sun J, Han D, Mei Q, Wei B, Wang X, Xie J, Zhan J, He M. Effect of pH on ·OH-induced degradation progress of syringol/syringaldehyde and health effect. CHEMOSPHERE 2020; 255:126893. [PMID: 32402872 DOI: 10.1016/j.chemosphere.2020.126893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Syringol and syringaldehyde are widely present pollutants in atmosphere and wastewater due to lignin pyrolysis and draining of pulp mill effluents. The hydroxylation degradation mechanisms and kinetics and health effect assessment of them under high and low-NOx regimes in atmosphere and wastewater have been studied theoretically. The effect of pH on reaction mechanisms and rate constants in their ·OH-initiated degradation processes has been fully investigated. Results have suggested that aqueous solution played a positive role in the ·OH-initiated degradation reactions by decreasing the energy barriers of most reactions and changing the reactivity order of initial reactions. For Sy- and Sya- (anionic species of syringol and syringaldehyde), most initial reaction routes were more likely to occur than that of HSy and Hsya (neutral species of syringol and syringaldehyde). As the pH increased from 1 to 14, the overall rate constants (at 298 K) of syringol and syringaldehyde with ·OH in wastewater increased from 5.43 × 1010 to 9.87 × 1010 M-1 s-1 and from 3.70 × 1010 to 1.14 × 1011 M-1 s-1, respectively. In the NOx-rich environment, 4-nitrosyringol was the most favorable product, while ring-opening oxygenated chemicals were the most favorable products in the NOx-poor environment. On the whole, the NOx-poor environment could decrease the toxicities during the hydroxylation processes of syringol and syringaldehyde, which was the opposite in a NOx-rich environment. ·OH played an important role in the methoxyphenols degradation and its conversion into harmless compounds in the NOx-poor environment.
Collapse
Affiliation(s)
- Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jianfei Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze, 274015, PR China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xueyu Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
87
|
Luo PL, Horng EC. Simultaneous determination of transient free radicals and reaction kinetics by high-resolution time-resolved dual-comb spectroscopy. Commun Chem 2020; 3:95. [PMID: 36703338 PMCID: PMC9814257 DOI: 10.1038/s42004-020-00353-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/10/2020] [Indexed: 01/29/2023] Open
Abstract
Quantitative determination of multiple transient species is critical in investigating reaction mechanisms and kinetics under various conditions. Dual-comb spectroscopy, a comb-laser-based multi-heterodyne interferometric technique that enables simultaneous achievement of broadband, high-resolution, and rapid spectral acquisition, opens a new era of time-resolved spectroscopic measurements. Employing an electro-optic dual-comb spectrometer with central wavelength near 3 µm coupled with a Herriott multipass absorption cell, here we demonstrate simultaneous determination of multiple species, including methanol, formaldehyde, HO2 and OH radicals, and investigate the reaction kinetics. In addition to quantitative spectral analyses of high-resolution and tens of microsecond time-resolved spectra recorded upon flash photolysis of precursor mixtures, we determine a rate coefficient of the HO2 + NO reaction by directly detecting both HO2 and OH radicals. Our approach exhibits potential in discovering reactive intermediates and exploring complex reaction mechanisms, especially those of radical-radical reactions.
Collapse
Affiliation(s)
- Pei-Ling Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| | - Er-Chien Horng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| |
Collapse
|
88
|
Li H, Troya D, Suits AG. Multichannel dynamics in the OH+ n-butane reaction revealed by crossed-beam slice imaging and quasiclassical trajectory calculations. J Chem Phys 2020; 153:014302. [PMID: 32640816 DOI: 10.1063/5.0013585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multidimensional reactions present various channels that can exhibit very different dynamics and give products of varying subsequent reactivity. Here, we present a combination of experiment and theory to reveal the dynamics of hydrogen abstraction by OH radical at primary and secondary sites in n-butane at a collision energy of 8 kcal/mol. Crossed molecular beam slice imaging experiments unequivocally probe the secondary abstraction channel showing backward angular distributions with mild energy release to product translation, which are accurately captured by trajectory calculations using a specific-reaction-parameter Hamiltonian. Experiments containing both reaction channels indicate a less marked backward character in the angular distribution, whose origin is shown by trajectory calculations to appear as an evolution toward more sideways scattering from the secondary to primary channel. While the two channels have markedly different angular distributions, their energy release is largely comparable, showing ample energy release into the water product. The synergistic combination of crossed-beam imaging and trajectories opens the door to detailed reaction-dynamics studies of chemical reactions with ever-increasing complexity.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
89
|
Wang S, Newland MJ, Deng W, Rickard AR, Hamilton JF, Muñoz A, Ródenas M, Vázquez MM, Wang L, Wang X. Aromatic Photo-oxidation, A New Source of Atmospheric Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7798-7806. [PMID: 32479720 DOI: 10.1021/acs.est.0c00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Formic acid (HCOOH), one of the most important and ubiquitous organic acids in the Earth's atmosphere, contributes substantially to atmospheric acidity and affects pH-dependent reactions in the aqueous phase. However, based on the current mechanistic understanding, even the most advanced chemical models significantly underestimate the HCOOH concentrations when compared to ambient observations at both ground-level and high altitude, thus underrating its atmospheric impact. Here we reveal new chemical pathways to HCOOH formation from reactions of both O3 and OH with ketene-enols, which are important and to date undiscovered intermediates produced in the photo-oxidation of aromatics and furans. We highlight that the estimated yields of HCOOH from ketene-enol oxidation are up to 60% in polluted urban areas and greater than 30% even in the continental background. Our theoretical calculations are further supported by a chamber experiment evaluation. Considering that aromatic compounds are highly reactive and contribute ca. 10% to global nonmethane hydrocarbon emissions and 20% in urban areas, the new oxidation pathways presented here should help to narrow the budget gap of HCOOH and other small organic acids and can be relevant in any environment with high aromatic emissions, including urban areas and biomass burning plumes.
Collapse
Affiliation(s)
- Sainan Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Mike J Newland
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Wei Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Andrew R Rickard
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
- National Centre for Atmospheric Science, Wolfson Atmospheric Chemistry Laboratories, University of York, York YO10 5DD, U.K
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Amalia Muñoz
- Fundación CEAM, EUPHORE Laboratories, Avda. Charles R. Darwin. Parque Tecnológico, Paterna, Valencia, Spain
| | - Milagros Ródenas
- Fundación CEAM, EUPHORE Laboratories, Avda. Charles R. Darwin. Parque Tecnológico, Paterna, Valencia, Spain
| | - Monica M Vázquez
- Fundación CEAM, EUPHORE Laboratories, Avda. Charles R. Darwin. Parque Tecnológico, Paterna, Valencia, Spain
| | - Liming Wang
- School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
90
|
Zhang T, Bi X, Wen M, Liu S, Chai G, Zeng Z, Wang R, Wang W, Long B. The HO 4H → O 3 + H 2O reaction catalysed by acidic, neutral and basic catalysts in the troposphere. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1673912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tianlei Zhang
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People’s Republic of China
| | - Xiujuan Bi
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Mingjie Wen
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People’s Republic of China
| | - Shuai Liu
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Guang Chai
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Zhaopeng Zeng
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Rui Wang
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, People’s Republic of China
| |
Collapse
|
91
|
Song J, Zhang Y, Zhang Y, Yuan Q, Zhao Y, Wang X, Zou S, Xu W, Lai S. A case study on the characterization of non-methane hydrocarbons over the South China Sea: Implication of land-sea air exchange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:134754. [PMID: 31837869 DOI: 10.1016/j.scitotenv.2019.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
We present the characteristics of non-methane hydrocarbons (NMHCs) over the northern South China Sea (SCS) during a cruise campaign from September to October 2013. The mixing ratios of the total NMHCs ranged from 1.45 to 7.13 ppbv with an average of 3.54 ± 1.81 ppbv. Among the measured NMHCs, alkanes and aromatics were the major groups, accounting for 45.8 ± 8.7% and 28.7 ± 12.3% of the total NMHCs, respectively. Correlations of NMHCs with typical source tracers suggest that light alkanes and benzene were largely contributed by vehicular exhaust via long-range transport, while the other aromatics might be related to industrial sources and marine ship emissions. The spatial variations of NMHCs were observed with higher mixing ratios of NMHCs in the samples collected in the offshore areas than those in the coastal areas. Air mass back-trajectory analysis and diagnostic ratios of NMHCs show that the elevations of the total NMHCs were caused by the regional pollution transport from the southeast coast of China and/or southern China. The ozone formation potentials (OFPs) of NMHCs were calculated and the results show that the aromatics associated with marine ship emissions were the important contributors to the total OFP. This study provides useful information on the interaction between continental outflow and marine atmosphere.
Collapse
Affiliation(s)
- Junwei Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Yuan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhao
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Environmental Monitoring Center, Guangzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Weihai Xu
- Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
92
|
Yeoman AM, Shaw M, Carslaw N, Murrells T, Passant N, Lewis AC. Simplified speciation and atmospheric volatile organic compound emission rates from non-aerosol personal care products. INDOOR AIR 2020; 30:459-472. [PMID: 32034823 PMCID: PMC7217173 DOI: 10.1111/ina.12652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 05/22/2023]
Abstract
Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person-1 yr-1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr-1 and limonene 0.15 ktonne yr-1 ) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.
Collapse
Affiliation(s)
- Amber M. Yeoman
- Wolfson Atmospheric Chemistry LaboratoriesUniversity of YorkYorkUK
| | - Marvin Shaw
- Wolfson Atmospheric Chemistry LaboratoriesUniversity of YorkYorkUK
- National Centre for Atmospheric ScienceUniversity of YorkYorkUK
| | - Nicola Carslaw
- Department of Environment and GeographyUniversity of YorkYorkUK
| | - Tim Murrells
- Ricardo Energy & Environment Gemini BuildingHarwellUK
| | - Neil Passant
- Ricardo Energy & Environment Gemini BuildingHarwellUK
| | - Alastair C. Lewis
- Wolfson Atmospheric Chemistry LaboratoriesUniversity of YorkYorkUK
- National Centre for Atmospheric ScienceUniversity of YorkYorkUK
| |
Collapse
|
93
|
Zhang T, Zhai K, Zhang Y, Geng L, Geng Z, Zhou M, Lu Y, Shao X, Lily M. Effect of water and ammonia on the HO + NH3 → NH2 + H2O reaction in troposphere: Competition between single and double hydrogen atom transfer pathways. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
94
|
Liu Y, Song H, Xie D, Li J, Guo H. Mode Specificity in the OH + HO2 → H2O + O2 Reaction: Enhancement of Reactivity by Exciting a Spectator Mode. J Am Chem Soc 2020; 142:3331-3335. [DOI: 10.1021/jacs.9b12467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
95
|
Masoumpour MS, Mousavipour SH. A theoretical study on the kinetics of multichannel Multiwell reaction of H 2S( 1A1) with HO 2( 2A′′). Mol Phys 2020. [DOI: 10.1080/00268976.2019.1583387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Seyed Hosein Mousavipour
- Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
96
|
Mir ZS, Lewis TR, Onel L, Blitz MA, Seakins PW, Stone D. CH2OO Criegee intermediate UV absorption cross-sections and kinetics of CH2OO + CH2OO and CH2OO + I as a function of pressure. Phys Chem Chem Phys 2020; 22:9448-9459. [DOI: 10.1039/d0cp00988a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UV absorption cross-sections of the Criegee intermediate CH2OO, and kinetics of the CH2OO self-reaction and the reaction of CH2OO with I are reported as a function of pressure at 298 K.
Collapse
Affiliation(s)
- Zara S. Mir
- School of Chemistry, University of Leeds, University of Leeds
- UK
| | - Thomas R. Lewis
- School of Chemistry, University of Leeds, University of Leeds
- UK
| | - Lavinia Onel
- School of Chemistry, University of Leeds, University of Leeds
- UK
| | - Mark A. Blitz
- School of Chemistry, University of Leeds, University of Leeds
- UK
- National Centre for Atmospheric Science, University of Leeds
- UK
| | - Paul W. Seakins
- School of Chemistry, University of Leeds, University of Leeds
- UK
| | - Daniel Stone
- School of Chemistry, University of Leeds, University of Leeds
- UK
| |
Collapse
|
97
|
Peng Z, Jimenez JL. Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chem Soc Rev 2020; 49:2570-2616. [DOI: 10.1039/c9cs00766k] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We summarize the studies on the chemistry in oxidation flow reactor and discuss its atmospheric relevance.
Collapse
Affiliation(s)
- Zhe Peng
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences and Department of Chemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|
98
|
Christiansen AE, Carlton AG, Henderson BH. Differences in fine particle chemical composition on clear and cloudy days. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:10.5194/acp-20-11607-2020. [PMID: 34381496 PMCID: PMC8353954 DOI: 10.5194/acp-20-11607-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Clouds are prevalent and alter PM2.5 mass and chemical composition. Cloud-affected satellite retrievals are often removed from data products, hindering estimates of tropospheric chemical composition during cloudy times. We examine surface fine particulate matter (PM2.5) chemical constituent concentrations in the Interagency Monitoring of PROtected Visual Environments network during Cloudy and Clear Sky times defined using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud flags from 2010-2014 with a focus on differences in particle hygroscopicity and aerosol liquid water (ALW). Cloudy and Clear Sky periods exhibit significant differences in PM2.5 and chemical composition that vary regionally and seasonally. In the eastern US, relative humidity alone cannot explain differences in ALW, suggesting emissions and in situ chemistry exert determining impacts. An implicit clear sky bias may hinder efforts to quantitatively to understand and improve model representation of aerosol-cloud interactions.
Collapse
Affiliation(s)
- A E Christiansen
- Department of Chemistry, University of California, Irvine, CA 92697
| | - A G Carlton
- Department of Chemistry, University of California, Irvine, CA 92697
| | - B H Henderson
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709
| |
Collapse
|
99
|
Li K, Liggio J, Han C, Liu Q, Moussa SG, Lee P, Li SM. Understanding the Impact of High-NO x Conditions on the Formation of Secondary Organic Aerosol in the Photooxidation of Oil Sand-Related Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14420-14429. [PMID: 31751130 DOI: 10.1021/acs.est.9b05404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oil sands (OS) are an important type of heavy oil deposit, for which operations in Alberta, Canada, were recently found to be a large source of secondary organic aerosol (SOA). However, SOA formation from the OS mining, processing, and subsequent tailings, especially in the presence of NOx, remains unclear. Here, photooxidation experiments for OS-related precursors under high-NOx conditions were performed using an oxidation flow reactor, in which ∼95% of peroxy radicals (RO2) react with NO. The SOA yields under high-NOx conditions were found to be lower than yields under low-NOx conditions for all precursors, which is likely due to the higher volatilities of the products from the RO2 + NO pathway compared with RO2 + HO2. The SOA yields under high-NOx conditions show a strong dependence on pre-existing surface area (not observed in previous low-NOx experiments), again attributed to the higher product volatilities. Comparing the mass spectra of SOA formed from different precursors, we conclude that the fraction of m/z > 80 (F80) can be used as a parameter to separate different types of SOA in the region. In addition, particle-phase organic nitrate was found to be an important component (9-23%) of OS SOA formed under high-NOx conditions. These results have implications for better understanding the atmospheric processing of OS emissions.
Collapse
Affiliation(s)
- Kun Li
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - John Liggio
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Chong Han
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Qifan Liu
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Samar G Moussa
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Patrick Lee
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Shao-Meng Li
- Air Quality Process Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| |
Collapse
|
100
|
Won Y, Waring M, Rim D. Understanding the Spatial Heterogeneity of Indoor OH and HO 2 due to Photolysis of HONO Using Computational Fluid Dynamics Simulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14470-14478. [PMID: 31693359 DOI: 10.1021/acs.est.9b06315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Indoor photolysis of nitrous acid (HONO) generates hydroxyl radicals (OH), and since OH is fast reacting, it may be confined within the HONO-photolyzing indoor volume of light. This study investigated the HONO-photolysis-induced formation of indoor OH, the transformation of OH to hydroperoxy radicals (HO2), and resulting spatial distributions of those radicals and their oxidation products. To do so, a computational fluid dynamics (CFD) model framework was established to simulate HONO photolysis in a room and subsequent reactions associated with OH and HO2 under a typical range of indoor lighting and ventilation conditions. The results showed that OH and HO2 were essentially confined in the volume of HONO-photolyzing light, but oxidation products were relatively well distributed throughout the room. As the light volume increased, more total in-room OH was produced, thereby increasing oxidation product concentrations. Spatial distributions of OH and HO2 varied by the type of artificial light (e.g., fluorescent versus incandescent), due to differences in photon flux as a function of light source and the distance from the source. The HO2 generation rate and air change rate made notable impacts on product concentrations.
Collapse
Affiliation(s)
- Youngbo Won
- Department of Architectural Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Michael Waring
- Department of Civil, Architectural and Environmental Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Donghyun Rim
- Department of Architectural Engineering , Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|