51
|
Prinz C, Starke L, Ramspoth TF, Kerkering J, Martos Riaño V, Paul J, Neuenschwander M, Oder A, Radetzki S, Adelhoefer S, Ramos Delgado P, Aravina M, Millward JM, Fillmer A, Paul F, Siffrin V, von Kries JP, Niendorf T, Nazaré M, Waiczies S. Pentafluorosulfanyl (SF 5) as a Superior 19F Magnetic Resonance Reporter Group: Signal Detection and Biological Activity of Teriflunomide Derivatives. ACS Sens 2021; 6:3948-3956. [PMID: 34666481 PMCID: PMC8630787 DOI: 10.1021/acssensors.1c01024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
Fluorine (19F) magnetic resonance imaging (MRI) is severely limited by a low signal-to noise ratio (SNR), and tapping it for 19F drug detection in vivo still poses a significant challenge. However, it bears the potential for label-free theranostic imaging. Recently, we detected the fluorinated dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TF) noninvasively in an animal model of multiple sclerosis (MS) using 19F MR spectroscopy (MRS). In the present study, we probed distinct modifications to the CF3 group of TF to improve its SNR. This revealed SF5 as a superior alternative to the CF3 group. The value of the SF5 bioisostere as a 19F MRI reporter group within a biological or pharmacological context is by far underexplored. Here, we compared the biological and pharmacological activities of different TF derivatives and their 19F MR properties (chemical shift and relaxation times). The 19F MR SNR efficiency of three MRI methods revealed that SF5-substituted TF has the highest 19F MR SNR efficiency in combination with an ultrashort echo-time (UTE) MRI method. Chemical modifications did not reduce pharmacological or biological activity as shown in the in vitro dihydroorotate dehydrogenase enzyme and T cell proliferation assays. Instead, SF5-substituted TF showed an improved capacity to inhibit T cell proliferation, indicating better anti-inflammatory activity and its suitability as a viable bioisostere in this context. This study proposes SF5 as a novel superior 19F MR reporter group for the MS drug teriflunomide.
Collapse
Affiliation(s)
- Christian Prinz
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ludger Starke
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Tizian-Frank Ramspoth
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Janis Kerkering
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Vera Martos Riaño
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jérôme Paul
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Martin Neuenschwander
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Andreas Oder
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Silke Radetzki
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Siegfried Adelhoefer
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Paula Ramos Delgado
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Mariya Aravina
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
| | - Jason M. Millward
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Ariane Fillmer
- Physikalisch-Technische
Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Friedemann Paul
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
- Charité
− Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Humboldt-Universität zu Berlin,
and Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Siffrin
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Jens-Peter von Kries
- Screening
Unit, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Medicinal
Chemistry, Leibniz-Institut für Molekulare
Pharmakologie (FMP), Robert Rössle Straße 10, 13125 Berlin, Germany
| | - Sonia Waiczies
- Berlin
Ultrahigh Field Facility (B.U.F.F.), Max
Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße
10, 13125 Berlin, Germany
- Experimental
and Clinical Research Center, a joint cooperation between the Charité
- Universitätsmedizin Berlin and the Max Delbrück Center
for Molecular Medicine in the Helmholtz Association, Robert Rössle Straße 10, 13125 Berlin, Germany
| |
Collapse
|
52
|
Manna S, Sontakke VA, Srivatsan SG. Incorporation and Utility of a Responsive Ribonucleoside Analogue in Probing the Conformation of a Viral RNA Motif by Fluorescence and 19 F NMR Spectroscopy. Chembiochem 2021; 23:e202100601. [PMID: 34821449 DOI: 10.1002/cbic.202100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Indexed: 11/09/2022]
Abstract
Development of versatile probes that can enable the study of different conformations and recognition properties of therapeutic nucleic acid motifs by complementing biophysical techniques can greatly aid nucleic acid analysis and therapy. Here, we report the design, synthesis and incorporation of an environment-sensitive ribonucleoside analogue, which serves as a two-channel biophysical platform to investigate RNA structure and recognition by fluorescence and 19 F NMR spectroscopy techniques. The nucleoside analogue is based on a 5-fluorobenzofuran-uracil core and its fluorescence and 19 F NMR chemical shifts are highly sensitive to changes in solvent polarity and viscosity. Notably, the modified ribonucleotide and phosphoramidite substrates can be efficiently incorporated into RNA oligonucleotides (ONs) by in vitro transcription and standard solid-phase ON synthesis protocol, respectively. Fluorescence and 19 F readouts of the nucleoside incorporated into model RNA ONs are sensitive to the neighbouring base environment. The responsiveness of the probe was aptly utilized in detecting and quantifying the metal ion-induced conformational change in an internal ribosome entry site RNA motif of hepatitis C virus, which is an important therapeutic target. Taken together, our probe is a good addition to the nucleic acid analysis toolbox with the advantage that it can be used to study nucleic acid conformation and recognition simultaneously by two biophysical techniques.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Vyankat A Sontakke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
53
|
Yuan S, Zhu Y, Dai Y, Wang Y, Jin D, Liu M, Tang L, Arnesano F, Liu Y, Natile G. 19F NMR Allows to Investigate the Fate of Platinum(IV) Prodrugs in Physiological Conditions. Angew Chem Int Ed Engl 2021; 61:e202114250. [PMID: 34800083 DOI: 10.1002/anie.202114250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/11/2022]
Abstract
Pt(IV) prodrugs can overcome resistance and side effects of conventional Pt(II) anticancer therapies. By 19 F-labeling of a Pt(IV) prodrug (Pt-FBA, FBA = p -fluorobenzoate), the activation under physiological conditions could be investigated. It is found that, unlike single-electron reductants, multi-electron agents can efficiently promote the two electrons reduction of Pt(IV) to Pt(II). Moreover, the activation of Pt-FBA in cell lysate is highly dependent upon the type of cancer cells. When administered to E. coli , Pt-FBA is reduced intracellularly and free FBA can shuttle out of the cell. Interestingly, the reduction rate greatly increases by inducing metallothionein overexpression and is lowered by addition of Zn(II) ions. Finally, when injected into mice, Pt-FBA undergoes fast reduction in the bloodstream accompanied by metabolic degradation of FBA; nevertheless, unreduced Pt-FBA can accumulate to detectable levels in liver and kidneys. The proposed 19 F-NMR approach has the advantage of avoiding the interference of all background signals.
Collapse
Affiliation(s)
- Siming Yuan
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yang Zhu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yi Dai
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Yu Wang
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Duo Jin
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Manman Liu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Liqin Tang
- University of Science and Technology of China, The First Affiliated Hospital of USTC, CHINA
| | - Fabio Arnesano
- University of Bari: Universita degli Studi di Bari Aldo Moro, Department of Chemistry, ITALY
| | - Yangzhong Liu
- University of Science and Technology of China, Department of Chemistry, CHINA
| | - Giovanni Natile
- University of Bari, Department of Chemistry, Via E. Orabona 4, 70125, Bari, ITALY
| |
Collapse
|
54
|
Devillers E, Chelain E, Dalvit C, Brigaud T, Pytkowicz J. (R)-α-Trifluoromethylalanine as a 19 F NMR Probe for the Monitoring of Protease Digestion of Peptides. Chembiochem 2021; 23:e202100470. [PMID: 34738292 DOI: 10.1002/cbic.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Fluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in 19 F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
Collapse
Affiliation(s)
- Emmanuelle Devillers
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Evelyne Chelain
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Claudio Dalvit
- Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.,Present address: Lavis, Trento, Italy
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Julien Pytkowicz
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
55
|
Zhang Y, Geng HQ, Wu XF. Palladium-Catalyzed Carbonylative Four-Component Synthesis of β-Perfluoroalkyl Amides. Chemistry 2021; 27:17682-17687. [PMID: 34617652 DOI: 10.1002/chem.202103391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Transition-metal-catalyzed multicomponent carbonylation is one of the most efficient strategies to construct carbonyl-containing compounds. Herein, a palladium-catalyzed four-component perfluoroalkylation/aminocarbonylation of unactivated alkenes with perfluoroalkyl halides, and amines was developed. A wide range of substrates, including anilines, alkylamines, sulfonamides, and hydrazines are all suitable reaction partners for this catalyst system, resulting in various β-perfluoroalkyl amides with good functional-group tolerance and excellent chemoselectivity. Furthermore, not only alkyl olefins, but also aliphatic alkynes, and even alkyl allenes can all be employed. Notably, several medical and bioactive related molecules are compatible here as well.
Collapse
Affiliation(s)
- Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
56
|
Chrominski M, Kowalska J, Jemielity J. Efficient Synthesis of Trifluoromethylated Purine Ribonucleosides and Ribonucleotides. ACTA ACUST UNITED AC 2021; 83:e118. [PMID: 32991077 DOI: 10.1002/cpnc.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protocols presented in this article describe highly detailed synthesis of trifluoromethylated purine nucleotides and nucleosides (G and A). The procedure involves trifluoromethylation of properly protected (acetylated) nucleosides, followed by deprotection leading to key CF3 -containing nucleosides. This gives synthetic access to 8-CF3 -substituted guanosine derivatives and three adenosine derivatives (8-CF3 , 2-CF3 , and 2,8-diCF3 ). In further steps, phosphorylation and phosphate elongation (for selected examples) result in respective trifluoromethylated nucleoside mono-, di-, and triphosphates. Support protocols are included for compound handling, purification procedures, analytical sample preparation, and analytical techniques used throughout the performance of the basic protocols. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of trifluoromethylated guanosine and adenosine derivatives Basic Protocol 2: Synthesis of trifluoromethylated guanosine and adenosine monophosphates Basic Protocol 3: Synthesis of phosphorimidazolides of 8-CF3 GMP and 8-CF3 AMP Basic Protocol 4: Synthesis of trifluoromethylated guanosine and adenosine oligophosphates Support Protocol 1: TLC sample preparation and analysis Support Protocol 2: Purification protocol for Basic Protocol 1 Support Protocol 3: HPLC analysis and preparative HPLC Support Protocol 4: Ion-exchange chromatography.
Collapse
Affiliation(s)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
57
|
Fittolani G, Shanina E, Guberman M, Seeberger PH, Rademacher C, Delbianco M. Automatisierte Glykan‐Assemblierung
19
F‐markierter Glykansonden ermöglicht Hochdurchsatz‐NMR‐Untersuchungen von Protein‐Glykan‐Interaktionen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Mónica Guberman
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Derzeitige Adresse: Medicinal Chemistry Leibniz-Forschungsinstitut für Molekulare Pharmakologie Robert-Rössle Straße 10 13125 Berlin Deutschland
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Derzeitige Adresse: Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Derzeitige Adresse: Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| | - Martina Delbianco
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
| |
Collapse
|
58
|
Fittolani G, Shanina E, Guberman M, Seeberger PH, Rademacher C, Delbianco M. Automated Glycan Assembly of 19 F-labeled Glycan Probes Enables High-Throughput NMR Studies of Protein-Glycan Interactions. Angew Chem Int Ed Engl 2021; 60:13302-13309. [PMID: 33784430 PMCID: PMC8252726 DOI: 10.1002/anie.202102690] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Indexed: 12/23/2022]
Abstract
Protein-glycan interactions mediate important biological processes, including pathogen host invasion and cellular communication. Herein, we showcase an expedite approach that integrates automated glycan assembly (AGA) of 19 F-labeled probes and high-throughput NMR methods, enabling the study of protein-glycan interactions. Synthetic Lewis type 2 antigens were screened against seven glycan binding proteins (GBPs), including DC-SIGN and BambL, respectively involved in HIV-1 and lung infections in immunocompromised patients, confirming the preference for fucosylated glycans (Lex , H type 2, Ley ). Previously unknown glycan-lectin weak interactions were detected, and thermodynamic data were obtained. Enzymatic reactions were monitored in real-time, delivering kinetic parameters. These results demonstrate the utility of AGA combined with 19 F NMR for the discovery and characterization of glycan-protein interactions, opening up new perspectives for 19 F-labeled complex glycans.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Elena Shanina
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Mónica Guberman
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Current address: Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare PharmakologieRobert-Rössle Strasse 1013125BerlinGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
- Current address: Department of Pharmaceutical ChemistryUniversity of ViennaAlthanstrasse 141080ViennaAustria
- Current address: Department of Microbiology, Immunobiology and GeneticsMax F. Perutz LabsCampus Vienna Biocenter 51030ViennaAustria
| | - Martina Delbianco
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
59
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
60
|
Gao XD, Du XZ, Shi YP. A Bisboronic Acid Sensor for Ultra-High Selective Glucose Assay by 19F NMR Spectroscopy. Anal Chem 2021; 93:7220-7225. [PMID: 33939406 DOI: 10.1021/acs.analchem.1c00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucose is a significant analyte both in biology and biomedical science, it is of great importance to selectively detect glucose both in body fluids and complex mixture. In this study, a simple 19F NMR based sensor was synthesized easily, which exhibited a high selectivity and robust anti-interference ability toward glucose detection both in a mixture containing up to 10 saccharides and human urine samples without any pretreatment. Combined with this sensor system, glucose could be well detected in human urine samples and the limit of detection was 0.41 mM by using a 400 MHz NMR spectrometer with 128 scans (ca. 4 min). This method had a potential for specific detection of glucose in complex mixture and diagnosis of diabetes mellitus related diseases in body fluid.
Collapse
Affiliation(s)
- Xu-Dong Gao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.,CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| | - Xin-Zhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, People's Republic of China
| |
Collapse
|
61
|
Nahari G, Hoffman RE, Tshuva EY. From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium(IV) complex by 19F NMR detection. J Inorg Biochem 2021; 221:111492. [PMID: 34051630 DOI: 10.1016/j.jinorgbio.2021.111492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Titanium(IV) complexes of diaminobis(phenolato)-bis(alkoxo) ligands are promising anticancer drugs, showing marked in-vivo efficacy with no toxic side-effects in mice, hence, it is of interest to elucidate their mechanism of action. Herein, we employed a fluoro-substituted derivative, FenolaTi, for mechanistic analysis of the active species and its cellular target by quantitative 19F NMR detection to reveal its biodistribution and reactivity in extracellular and intracellular matrices. Upon administration to the serum-containing medium, FenolaTi interacted with bovine serum albumin. 20 h post administration, the cellular accumulation of FenolaTi derivatives was estimated as 37% of the administered compound, in a concentration three orders-of-magnitude higher than the administered dose, implying that active membrane transportation facilitates cellular penetration. An additional 19% of the administered dose that was detected in the extracellular environment had originated from post-apoptotic cells. In the cell, interaction with cellular proteins was detected. Although some intact Ti(IV) complex localized in the nucleus, no signals for isolated DNA fractions were detected and no reactivity with nuclear proteins was observed. Interestingly, higher accumulation of FenolaTi-derived compounds in the endoplasmic reticulum (ER) and interaction with proteins therein were detected, supporting the role of the ER as a possible target for cytotoxic bis(phenolato)-bis(alkoxo) Ti(IV) complexes.
Collapse
Affiliation(s)
- Gilad Nahari
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roy E Hoffman
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
62
|
Williams GT, Kedge JL, Fossey JS. Molecular Boronic Acid-Based Saccharide Sensors. ACS Sens 2021; 6:1508-1528. [PMID: 33844515 PMCID: PMC8155662 DOI: 10.1021/acssensors.1c00462] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Boronic acids can reversibly bind diols, a molecular feature that is ubiquitous within saccharides, leading to their use in the design and implementation of sensors for numerous saccharide species. There is a growing understanding of the importance of saccharides in many biological processes and systems; while saccharide or carbohydrate sensing in medicine is most often associated with detection of glucose in diabetes patients, saccharides have proven to be relevant in a range of disease states. Herein the relevance of carbohydrate sensing for biomedical applications is explored, and this review seeks to outline how the complexity of saccharides presents a challenge for the development of selective sensors and describes efforts that have been made to understand the underpinning fluorescence and binding mechanisms of these systems, before outlining examples of how researchers have used this knowledge to develop ever more selective receptors.
Collapse
Affiliation(s)
- George T. Williams
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Jonathan L. Kedge
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - John S. Fossey
- School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
63
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
64
|
Abstract
AbstractOrganofluorine compounds have gained interest in the fields of pharmaceuticals, agrochemicals, diagnostics, materials, and catalysis. Suzuki–Miyaura coupling reactions of fluorinated arenes made a tremendous impact in chemical and biological research and made organofluorinated molecules more readily available. This review gives a brief summary of Suzuki–Miyaura coupling reactions of fluorinated benzene derivatives. In this context, various aspects, such as regioselectivity, efficiency, and applications, are discussed.1 Introduction2 Organofluorine Compounds3 Suzuki–Miyaura Reactions of Fluorohalobenzenes3.1 Fluorophthalates3.2 Reactions of Pentafluorohalobenzenes3.3 Tetrafluorohalobenzenes3.4 Trifluorohalobenzenes3.5 Difluorohalobenzenes3.6 Monofluorohalobenzenes3.7 Halo(trifluoromethyl)benzenes3.8 Trifluoromethyl Pyridines4 S Summary
Collapse
Affiliation(s)
- Peter Langer
- Institut für Chemie, Universität Rostock
- Leibniz-Institut für Katalyse an der Universität Rostock e. V
| | - Shoaib Iqbal
- Institut für Chemie, Universität Rostock
- Leibniz-Institut für Katalyse an der Universität Rostock e. V
- Department of Chemistry, COMSATS Institute of Information Technology
| | - Muhammad Sharif
- Institut für Chemie, Universität Rostock
- Leibniz-Institut für Katalyse an der Universität Rostock e. V
| |
Collapse
|
65
|
Vorobyeva DV, Petropavlovskikh DA, Godovikov IA, Nefedov SE, Osipov SN. Rh(III)‐Catalyzed C−H Activation/Annulation of Aryl Hydroxamates with CF
3
‐Containing
α
‐Propargyl
α
‐Amino Acid Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daria V. Vorobyeva
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Dmitry A. Petropavlovskikh
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Ivan A. Godovikov
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Sergey E. Nefedov
- Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky pr. 31 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Str. 6 117198 Moscow Russian Federation
| |
Collapse
|
66
|
Sakla R, Amilan Jose D. New fluorinated manganese carbonyl complexes for light controlled carbon monoxide (CO) release and the use of benchtop 19F-NMR spectroscopy. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
67
|
Erdoğan M, Özkınalı S, Mert H. A novel fluorinated monomer: Synthesis, characterization and ATRP of 5,6,7,8-tetrafluoronaphthalen-1-yl acrylate. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
68
|
Grayson JD, Baumgartner MP, Santos Souza CD, Dawes SJ, El Idrissi IG, Louth JC, Stimpson S, Mead E, Dunbar C, Wolak J, Sharman G, Evans D, Zhuravleva A, Roldan MS, Colabufo NA, Ning K, Garwood C, Thomas JA, Partridge BM, de la Vega de Leon A, Gillet VJ, Rauter AP, Chen B. Amyloid binding and beyond: a new approach for Alzheimer's disease drug discovery targeting Aβo-PrP C binding and downstream pathways. Chem Sci 2021; 12:3768-3785. [PMID: 34163650 PMCID: PMC8179515 DOI: 10.1039/d0sc04769d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Amyloid β oligomers (Aβo) are the main toxic species in Alzheimer's disease, which have been targeted for single drug treatment with very little success. In this work we report a new approach for identifying functional Aβo binding compounds. A tailored library of 971 fluorine containing compounds was selected by a computational method, developed to generate molecular diversity. These compounds were screened for Aβo binding by a combined 19F and STD NMR technique. Six hits were evaluated in three parallel biochemical and functional assays. Two compounds disrupted Aβo binding to its receptor PrPC in HEK293 cells. They reduced the pFyn levels triggered by Aβo treatment in neuroprogenitor cells derived from human induced pluripotent stem cells (hiPSC). Inhibitory effects on pTau production in cortical neurons derived from hiPSC were also observed. These drug-like compounds connect three of the pillars in Alzheimer's disease pathology, i.e. prion, Aβ and Tau, affecting three different pathways through specific binding to Aβo and are, indeed, promising candidates for further development.
Collapse
Affiliation(s)
- James D Grayson
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Matthew P Baumgartner
- Computational Chemistry and Cheminformatics, Eli Lilly and Company, Lilly Biotechnology Center San Diego CA 92121 USA
| | | | - Samuel J Dawes
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
- Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | | | - Jennifer C Louth
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Sasha Stimpson
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Emma Mead
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Charlotte Dunbar
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Joanna Wolak
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Gary Sharman
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - David Evans
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | | | | | - Nicola Antonio Colabufo
- Univ Bari, Biofordrug Via Edoardo Orabona 4 I-70125 Bari Italy
- Univ Bari, Dipartimento Farm Sci Farmaco Via Edoardo Orabona 4 I-70125 Bari Italy
| | - Ke Ning
- Sheffield Institute of Translational Neuroscience, University of Sheffield Sheffield S10 2HQ UK
| | - Claire Garwood
- Sheffield Institute of Translational Neuroscience, University of Sheffield Sheffield S10 2HQ UK
| | - James A Thomas
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | | | | | | | - Amélia P Rauter
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa ED C8, 5 piso 1749-016 Lisboa Portugal
| | - Beining Chen
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| |
Collapse
|
69
|
Wu T, Li A, Chen K, Peng X, Zhang J, Jiang M, Chen S, Zheng X, Zhou X, Jiang ZX. Perfluoro- tert-butanol: a cornerstone for high performance fluorine-19 magnetic resonance imaging. Chem Commun (Camb) 2021; 57:7743-7757. [PMID: 34286714 DOI: 10.1039/d1cc02133h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a versatile quantification and tracking technology, 19F magnetic resonance imaging (19F MRI) provides quantitative "hot-spot" images without ionizing radiation, tissue depth limit, and background interference. However, the lack of suitable imaging agents severely hampers its clinical application. First, because the 19F signals are solely originated from imaging agents, the relatively low sensitivity of MRI technology requires high local 19F concentrations to generate images, which are often beyond the reach of many 19F MRI agents. Second, the peculiar physicochemical properties of many fluorinated compounds usually lead to low 19F signal intensity, tedious formulation, severe organ retention, etc. Therefore, the development of 19F MRI agents with high sensitivity and with suitable physicochemical and biological properties is of great importance. To this end, perfluoro-tert-butanol (PFTB), containing nine equivalent 19F and a modifiable hydroxyl group, has outperformed most perfluorocarbons as a valuable building block for high performance 19F MRI agents. Herein, we summarize the development and application of PFTB-based 19F MRI agents and analyze the strategies to improve their sensitivity and physicochemical and biological properties. In the context of PFC-based 19F MRI agents, we also discuss the challenges and prospects of PFTB-based 19F MRI agents.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China. and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
70
|
Miller MA, Sletten EM. Perfluorocarbons in Chemical Biology. Chembiochem 2020; 21:3451-3462. [PMID: 32628804 PMCID: PMC7736518 DOI: 10.1002/cbic.202000297] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Indexed: 01/10/2023]
Abstract
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19 F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.
Collapse
Affiliation(s)
- Margeaux A Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| |
Collapse
|
71
|
Sasaki S, Ma Y, Ishizuka T, Bao HL, Hirokawa T, Xu Y, Tera M, Nagasawa K. Linear consecutive hexaoxazoles as G4 ligands inducing chair-type anti-parallel topology of a telomeric G-quadruplex. RSC Adv 2020; 10:43319-43323. [PMID: 35519695 PMCID: PMC9058415 DOI: 10.1039/d0ra09413g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
G-quadruplex structures (G4s) in guanine-rich regions of DNA play critical roles in various biological phenomena, including replication, translation, and gene expression. There are three types of G4 topology, i.e., parallel, anti-parallel, and hybrid, and ligands that selectively interact with or stabilize a specific topology have been extensively explored to enable studies of topology-related functions. Here, we describe the synthesis of a new series of G4 ligands based on 6LCOs (6-linear consecutive oxazoles), i.e., L2H2-2M2EA-6LCO (2), L2A2-2M2EAc-6LCO (3), and L2G2-2M2EG-6LCO (4), which bear four aminoalkyl, acetamidealkyl, and guanidinylalkyl side chains, respectively. Among them, ligand 2 stabilized telomeric G4 and induced anti-parallel topology independently of the presence of cations. The anti-parallel topology induced by 2 was identified as chair-type by means of 19F NMR spectroscopy and fluorescence experiments with 2-aminopurine-labeled DNA.
Collapse
Affiliation(s)
- Shogo Sasaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazak 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazak 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Division of Biomedical Science, University of Tsukuba 1-1-1 Tennodai Tsukuba, 305-8575 Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ward Tokyo 135-0064 Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazak 5200 Kihara, Kiyotake Miyazaki 889-1692 Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| |
Collapse
|
72
|
Jourdain de Muizon C, Ramanoudjame SM, Esteoulle L, Ling C, Brou G, Anton N, Vandamme T, Delsuc MA, Bonnet D, Kieffer B. Self-organization Properties of a GPCR-Binding Peptide with a Fluorinated Tail Studied by Fluorine NMR Spectroscopy. Chembiochem 2020; 22:657-661. [PMID: 32986915 DOI: 10.1002/cbic.202000601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Indexed: 12/31/2022]
Abstract
Conjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.
Collapse
Affiliation(s)
| | - Sridévi M Ramanoudjame
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Lucie Esteoulle
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Claude Ling
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France
| | - Germain Brou
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Nicolas Anton
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Marc-André Delsuc
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France.,CASC4DE Le Lodge 20, Avenue du Neuhof, 67100, Strasbourg, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Bruno Kieffer
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France
| |
Collapse
|
73
|
Dalvit C, Veronesi M, Vulpetti A. Fluorine NMR functional screening: from purified enzymes to human intact living cells. JOURNAL OF BIOMOLECULAR NMR 2020; 74:613-631. [PMID: 32347447 DOI: 10.1007/s10858-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.
Collapse
Affiliation(s)
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| |
Collapse
|
74
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
75
|
Dal Poggetto G, Soares JV, Tormena CF. Selective Nuclear Magnetic Resonance Experiments for Sign-Sensitive Determination of Heteronuclear Couplings: Expanding the Analysis of Crude Reaction Mixtures. Anal Chem 2020; 92:14047-14053. [PMID: 32924438 PMCID: PMC7660590 DOI: 10.1021/acs.analchem.0c02976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
State-of-the-art nuclear magnetic resonance (NMR) selective experiments are capable of directly analyzing crude reaction mixtures. A new experiment named HD-HAPPY-FESTA yields ultrahigh-resolution total correlation subspectra, which are suitable for sign-sensitive determination of heteronuclear couplings, as demonstrated here by measuring the sign and magnitude for proton-fluorine couplings (JHF) from major and minor isomer products of a two-step reaction without any purification. Proton-fluorine couplings ranging from 51.5 to -2.6 Hz could be measured using HD-HAPPY-FESTA, with the smallest measured magnitude of 0.8 Hz. Experimental JHF values were used to identify the two fluoroketone intermediates and the four fluoroalcohol products. Results were rationalized and compared with the density functional theory (DFT) calculations. Experimental data were further compared with the couplings reported in the literature, where pure samples were analyzed.
Collapse
Affiliation(s)
- Guilherme Dal Poggetto
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - João Vitor Soares
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas (UNICAMP), PO BOX 6154, Campinas, São Paulo CEP 13083-970, Brazil
| |
Collapse
|
76
|
Zhang X, Gao Y, Hu X, Ji C, Liu Y, Yu J. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Jiangxi 334001 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University Haikou 571158 People's Republic of China
| |
Collapse
|
77
|
Feng Z, Li Q, Wang W, Ni Q, Wang Y, Song H, Zhang C, Kong D, Liang XJ, Huang P. Superhydrophilic fluorinated polymer and nanogel for high-performance 19F magnetic resonance imaging. Biomaterials 2020; 256:120184. [DOI: 10.1016/j.biomaterials.2020.120184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022]
|
78
|
Xie D, Yu M, Xie Z, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination‐Induced Spin‐State Switches for
19
F Magnetic Resonance‐Based Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Da Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Meng Yu
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Zhu‐Lin Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Rahul T. Kadakia
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Chris Chung
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Lauren E. Ohman
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Emily L. Que
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| |
Collapse
|
79
|
Xie D, Yu M, Xie ZL, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination-Induced Spin-State Switches for 19 F Magnetic Resonance-Based Detection. Angew Chem Int Ed Engl 2020; 59:22523-22530. [PMID: 32790890 DOI: 10.1002/anie.202010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/15/2022]
Abstract
19 F magnetic resonance (MR) based detection coupled with well-designed inorganic systems shows promise in biological investigations. Two proof-of-concept inorganic probes that exploit a novel mechanism for 19 F MR sensing based on converting from low-spin (S=0) to high-spin (S=1) Ni2+ are reported. Activation of diamagnetic NiL1 and NiL2 by light or β-galactosidase, respectively, converts them into paramagnetic NiL0 , which displays a single 19 F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin-state switch is effective for sensing light or enzyme expression in live cells using 19 F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for 19 F MR based biosensing.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Zhu-Lin Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Chris Chung
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Lauren E Ohman
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| |
Collapse
|
80
|
Bao HL, Masuzawa T, Oyoshi T, Xu Y. Oligonucleotides DNA containing 8-trifluoromethyl-2'-deoxyguanosine for observing Z-DNA structure. Nucleic Acids Res 2020; 48:7041-7051. [PMID: 32678885 PMCID: PMC7367190 DOI: 10.1093/nar/gkaa505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Z-DNA is known to be a left-handed alternative form of DNA and has important biological roles as well as being related to cancer and other genetic diseases. It is therefore important to investigate Z-DNA structure and related biological events in living cells. However, the development of molecular probes for the observation of Z-DNA structures inside living cells has not yet been realized. Here, we have succeeded in developing site-specific trifluoromethyl oligonucleotide DNA by incorporation of 8-trifluoromethyl-2′-deoxyguanosine (FG). 2D NMR strongly suggested that FG adopted a syn conformation. Trifluoromethyl oligonucleotides dramatically stabilized Z-DNA, even under physiological salt concentrations. Furthermore, the trifluoromethyl DNA can be used to directly observe Z-form DNA structure and interaction of DNA with proteins in vitro, as well as in living human cells by19F NMR spectroscopy for the first time. These results provide valuable information to allow understanding of the structure and function of Z-DNA.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuki Masuzawa
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Faculty of Science, Department of Chemistry, Shizuoka University, 836 Ohya Suruga Shizuoka 422-8529, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
81
|
Soulieman A, Ibrahim R, Barakat Z, Gouault N, Roisnel T, Boustie J, Grée R, Hachem A. Synthesis of Novel Cyclic Nitrones with
gem
‐Difluoroalkyl Side Chains Through Cascade Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ali Soulieman
- Faculty of Sciences (I) Laboratory for Medicinal Chemistry and Natural Products, and PRASE‐EDST Lebanese University Hadath Lebanon
- CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 Univ Rennes 35000 Rennes France
| | - Rima Ibrahim
- Faculty of Sciences (I) Laboratory for Medicinal Chemistry and Natural Products, and PRASE‐EDST Lebanese University Hadath Lebanon
| | - Zeinab Barakat
- Faculty of Sciences (I) Laboratory for Medicinal Chemistry and Natural Products, and PRASE‐EDST Lebanese University Hadath Lebanon
| | - Nicolas Gouault
- CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 Univ Rennes 35000 Rennes France
| | - Thierry Roisnel
- CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 Univ Rennes 35000 Rennes France
| | - Joel Boustie
- CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 Univ Rennes 35000 Rennes France
| | - René Grée
- CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 Univ Rennes 35000 Rennes France
| | - Ali Hachem
- Faculty of Sciences (I) Laboratory for Medicinal Chemistry and Natural Products, and PRASE‐EDST Lebanese University Hadath Lebanon
| |
Collapse
|
82
|
Orlandi S, Cavazzini M, Capuani S, Ciardello A, Pozzi G. Synthesis and 19F NMR parameters of a perfluoro-tert-butoxy tagged L-DOPA analogue. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
83
|
Escorihuela J, Sedgwick DM, Llobat A, Medio-Simón M, Barrio P, Fustero S. Pauson-Khand reaction of fluorinated compounds. Beilstein J Org Chem 2020; 16:1662-1682. [PMID: 32733610 PMCID: PMC7372243 DOI: 10.3762/bjoc.16.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is one of the key methods for the construction of cyclopentenone derivatives, which can in turn undergo diverse chemical transformations to yield more complex biologically active molecules. Despite the increasing availability of fluorinated building blocks and methodologies to incorporate fluorine in compounds with biological interest, there have been few significant advances focused on the fluoro-Pauson-Khand reaction, both in the inter- and intramolecular versions. Furthermore, the use of vinyl fluorides as olefinic counterparts had been completely overlooked. In this review, we collect the advances both on the stoichiometric and catalytic intermolecular and intramolecular fluoro-Pauson-Khand reaction, with special attention to the PKR of enynes containing a fluoride moiety.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Daniel M Sedgwick
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Alberto Llobat
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Pablo Barrio
- Departmento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, Campus Universitario de El Cristo, 33006 Oviedo, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
84
|
Bao HL, Xu Y. Telomeric DNA-RNA-hybrid G-quadruplex exists in environmental conditions of HeLa cells. Chem Commun (Camb) 2020; 56:6547-6550. [PMID: 32396161 DOI: 10.1039/d0cc02053b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, we employed a 19F NMR approach to study the association of telomere RNA and DNA in vitro and in living human cells. We successfully characterized the DNA-RNA hybrid G-quadruplex (HQ) structure formed by telomeric DNA and RNA. We further demonstrated for the first time that an HQ conformation can exist in the environmental conditions of HeLa cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | |
Collapse
|
85
|
Han J, Butler G, Moriwaki H, Konno H, Soloshonok VA, Kitamura T. Kitamura Electrophilic Fluorination Using HF as a Source of Fluorine. Molecules 2020; 25:E2116. [PMID: 32366048 PMCID: PMC7248860 DOI: 10.3390/molecules25092116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022] Open
Abstract
This review article focused on the innovative procedure for electrophilic fluorination using HF and in situ generation of the required electrophilic species derived from hypervalent iodine compounds. The areas of synthetic application of this approach include fluorination of 1,3-dicarbonyl compounds, aryl-alkyl ketones, styrene derivatives, α,β-unsaturated ketones and alcohols, homoallyl amine and homoallyl alcohol derivatives, 3-butenoic acids and alkynes.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Greg Butler
- Oakwood Chemical, Inc. 730 Columbia Hwy. N, Estill, SC 29918, USA;
| | - Hiroki Moriwaki
- Hamari Chemical Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan;
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan;
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Tsugio Kitamura
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo-machi, Saga 840-8502, Japan;
| |
Collapse
|
86
|
Tressler CM, Zondlo NJ. Perfluoro- tert-Butyl Hydroxyprolines as Sensitive, Conformationally Responsive Molecular Probes: Detection of Protein Kinase Activity by 19F NMR. ACS Chem Biol 2020; 15:1096-1103. [PMID: 32125821 DOI: 10.1021/acschembio.0c00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
19F NMR spectroscopy provides the ability to quantitatively analyze single species in complex solutions but is often limited by the modest sensitivity inherent to NMR. 4R- and 4S-Perfluoro-tert-buyl hydroxyproline contain 9 equivalent fluorines, in amino acids with strong conformational preferences. In order to test the ability to use these amino acids as sensitive probes of protein modifications, the perfluoro-tert-buyl hydroxyprolines were incorporated into substrate peptides of the protein kinases PKA and Akt. Peptides containing each diastereomeric proline were rapidly phosphorylated by each protein kinase and exhibited 19F chemical shift changes as a result of phosphorylation. The sensitivity of the perfluoro-tert-butyl group allowed quantitative analysis of the kinetics of phosphorylation over three half-lives at single-digit micromolar concentrations of each species. The distinct conformational preferences of these amino acids allowed the optimization of the substrate with a conformationally matched amino acid, in order to maximize the rate of phosphorylation. PKA preferred the 4R-amino acid at the -1 position, whereas the closely related AGC kinase Akt preferred the 4S-amino acid. These data, combined with analysis of structures of the Michaelis complexes of these kinases in the PDB, suggest that PKA recognizes the PPII conformation at the P-1 position relative to the phosphorylation site, while Akt/PKB recognizes an extended conformation at this position. These results suggest that conformational targeting may be employed to increase specificity in recognition by protein kinases. Perfluoro-tert-butyl hydroxyprolines were applied to the real-time detection and quantification of PKA activity and inhibition of PKA activity in HeLa cell extracts via 19F NMR spectroscopy. The coupling of proline ring pucker with main chain conformation suggests broad application of perfluoro-tert-butyl hydroxyprolines in molecular sensing and imaging.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
87
|
Hayashi T, Axer A, Kehr G, Bergander K, Gilmour R. Halogen-directed chemical sialylation: pseudo-stereodivergent access to marine ganglioside epitopes. Chem Sci 2020; 11:6527-6531. [PMID: 34094118 PMCID: PMC8152791 DOI: 10.1039/d0sc01219j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sialic acids are conspicuous structural components of the complex gangliosides that regulate cellular processes. Their importance in molecular recognition manifests itself in drug design (e.g. Tamiflu®) and continues to stimulate the development of effective chemical sialylation strategies to complement chemoenzymatic technologies. Stereodivergent approaches that enable the α- or β-anomer to be generated at will are particularly powerful to attenuate hydrogen bond networks and interrogate function. Herein, we demonstrate that site-selective halogenation (F and Br) at C3 of the N-glycolyl units common to marine Neu2,6Glu epitopes enables pseudo-stereodivergent sialylation. α-Selective sialylation results from fluorination, whereas traceless bromine-guided sialylation generates the β-adduct. This concept is validated in the synthesis of HLG-1 and Hp-s1 analogues. Sialic acids are conspicuous structural components of the complex gangliosides that regulate cellular processes.![]()
Collapse
Affiliation(s)
- Taiki Hayashi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Alexander Axer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| |
Collapse
|
88
|
Abstract
3′,5′-O-Bis(tert-butyldimethylsilyl)-8-fluoro-N-2-isobutyryl-2′-deoxyguanosine was synthesized from 3′,5′-O-bis(tert-butyldimethylsilyl)-N-2-isobutyryl-2′-deoxyguanosine by the treatment with N-fluorobenzenesulfonimide. A similar fluorination reaction with 3′,5′-O-bis(tert-butyldimethylsilyl)-N-2-(N,N-dimethylformamidine)-2′-deoxyguanosine, however, failed to give the corresponding fluorinated product. It was found that 8-fluoro-N-2-isobutyryl-2′-deoxyguanosine is labile under acidic conditions, but sufficiently stable in dichloroacetic acid used in solid phase synthesis. Incorporation of 8-fluoro-N-2-isobutyryl-2′-deoxyguanosine into oligonucleotides through the phosphoramidite chemistry-based solid phase synthesis failed to give the desired products. Furthermore, treatment of 8-fluoro-N-2-isobutyryl-2′-deoxyguanosine with aqueous ammonium hydroxide did not give 8-fluoro-2′-deoxyguanosine, but led to the formation of a mixture consisting of 8-amino-N-2-isobutyryl-2′-deoxyguanosine and C8:5′-O-cyclo-2′-deoxyguanosine. Taken together, an alternative N-protecting group and possibly modified solid phase synthetic cycle conditions will be required for the incorporation of 8-fluoro-2′-deoxyguanosine into oligonucleotides through the phosphoramidite chemistry-based solid phase synthesis.
Collapse
|
89
|
Rydzik AM, Brem J, Chandler SA, Benesch JLP, Claridge TDW, Schofield CJ. Monitoring protein-metal binding by 19F NMR - a case study with the New Delhi metallo-β-lactamase 1. RSC Med Chem 2020; 11:387-391. [PMID: 33479644 PMCID: PMC7484990 DOI: 10.1039/c9md00416e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
19F NMR protein observed spectroscopy is evaluated as a method for analysing protein metal binding using the New Delhi metallo-β-lactamase 1. The results imply 19F NMR is useful for analysis of different metallated protein states and investigations on equilibrium states in the presence of inhibitors. One limitation is that 19F labelling may affect metal ion binding. The sensitive readout of changes in protein behaviour observed by 19F NMR spectra coupled with the broad scope of tolerated conditions (e.g. buffer variations) means 19F NMR should be further investigated for studying metal ion interactions and the inhibition of metallo-enzymes during drug discovery.
Collapse
Affiliation(s)
- Anna M Rydzik
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Jürgen Brem
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Shane A Chandler
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Justin L P Benesch
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Timothy D W Claridge
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| | - Christopher J Schofield
- The Department of Chemistry , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK .
| |
Collapse
|
90
|
Chrominski M, Baranowski MR, Chmielinski S, Kowalska J, Jemielity J. Synthesis of Trifluoromethylated Purine Ribonucleotides and Their Evaluation as 19F NMR Probes. J Org Chem 2020; 85:3440-3453. [PMID: 31994393 PMCID: PMC7497640 DOI: 10.1021/acs.joc.9b03198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protected guanosine and adenosine ribonucleosides and guanine nucleotides are readily functionalized with CF3 substituents within the nucleobase. Protected guanosine is trifluoromethylated at the C8 position under radical-generating conditions in up to 95% yield and guanosine 5'-oligophosphates in up to 35% yield. In the case of adenosine, the selectivity of trifluoromethylation depends heavily on the functional group protection strategy and leads to a set of CF3-modified nucleosides with different substitution patterns (C8, C2, or both) in up to 37% yield. Further transformations based on phosphorimidazolide chemistry afford various CF3-substituted mono- and dinucleoside oligophosphates in good yields. The utility of the trifluoromethylated nucleotides as probes for 19F NMR-based real-time enzymatic reaction monitoring is demonstrated with three different human nucleotide hydrolases (Fhit, DcpS, and cNIIIB). Substrate and product(s) resonances were sufficiently separated to enable effective tracking of each enzymatic activity of interest.
Collapse
Affiliation(s)
- Mikolaj Chrominski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Sebastian Chmielinski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
91
|
Edgar M, Hayward D, Zeinali F, Riaz S, Weaver GW. NMR spectral analysis of strongly second-order 6-, 8-, 9- and 10- spin-systems ( 1 H─ 19 F, 19 F─ 19 F, and 13 C─ 19 F) in perfluorotoluyl- and tetrafluoro-pyridyl-aromatics using the lineshape method ANATOLIA. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:170-185. [PMID: 31660627 DOI: 10.1002/mrc.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A simple to use nuclear magnetic resonance analysis method has been tested on complex 1 H, 19 F, and 13 C multiplets. This open-source line-shape analysis method analysis of total lineshape (ANATOLIA)1 provides some significant advantages over traditional assign-iterate methods of NMR spectral analysis by avoiding false minima and progressing optimisation to the global minimum. The target molecules are 1-perfluorotol-4-yl-2-perfluorotol-4-yl-oxymethyl-1H-benzimidazole (molecule-I) and 1-tetrafluoropyrid-4-yl-2-tetrafluoropyrid-4-yl-thio-1H-benzimidazole (molecule-II) which were produced as part of a family of fluorinated drug scaffolds prepared for anticancer and antiparasitic screening. Spectra display significant second-order effects with 1 H Δδ = 3.68 and 4.67 Hz for the aromatic hydrogen "triplets", with 19 F 4 JAA' , 4 JBB' , 4 JXX' , and 4 JYY' coupling constants range from +4.8 to -14.0 Hz and for 13 C-isotopomers 19 F Δδ of up to 111.56 Hz. A spin-system of six coupling nuclei (Ha Hb Hc Hd FY FY' ) was analysed in 12 s, a spin-system of nine coupling fluorine nuclei (AA'BB'CCC-YY') was analysed within 2 min, and 10 coupling nuclei (XX'YY'ZZZ-BB'-Hd ) was optimised in 6 min using a laptop computer. ANATOLIA was also robust enough to be able to yield accurate spectral values from inaccurate input values. In both compounds, a fluorine-fluorine coupling constant was identified between the two fluoro-aromatic rings (FBB' and FYY' ) of +4.05 and +4.67 Hz and attributed to a through-space interaction. Ab initio structure optimisations and coupling constant calculations provided useful input data for spectral analysis. A modern 19 F nuclear magnetic resonance spectrum of perfluorotoluene (octafluorotoluene) and analysis from 1975 was used as a test data set to assess ANATOLIA.
Collapse
Affiliation(s)
- Mark Edgar
- Department of Chemistry, School of Science, Loughborough University, Loughborough, UK
| | - Dee Hayward
- Department of Chemistry, School of Science, Loughborough University, Loughborough, UK
| | - Fatemeh Zeinali
- Department of Chemistry, School of Science, Loughborough University, Loughborough, UK
| | - Shahzad Riaz
- Department of Chemistry, School of Science, Loughborough University, Loughborough, UK
| | - George W Weaver
- Department of Chemistry, School of Science, Loughborough University, Loughborough, UK
| |
Collapse
|
92
|
Drouin M, Wadhwani P, Grage SL, Bürck J, Reichert J, Tremblay S, Mayer MS, Diel C, Staub A, Paquin JF, Ulrich AS. Monofluoroalkene-Isostere as a 19 F NMR Label for the Peptide Backbone: Synthesis and Evaluation in Membrane-Bound PGLa and (KIGAKI) 3. Chemistry 2020; 26:1511-1517. [PMID: 31867761 DOI: 10.1002/chem.201905054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Solid-state 19 F NMR is a powerful method to study the interactions of biologically active peptides with membranes. So far, in labelled peptides, the 19 F-reporter group has always been installed on the side chain of an amino acid. Given the fact that monofluoroalkenes are non-hydrolyzable peptide bond mimics, we have synthesized a monofluoroalkene-based dipeptide isostere, Val-Ψ[(Z)-CF=CH]-Gly, and inserted it in the sequence of two well-studied antimicrobial peptides: PGLa and (KIGAKI)3 are representatives of an α-helix and a β-sheet. The conformations and biological activities of these labeled peptides were studied to assess the suitability of monofluoroalkenes for 19 F NMR structure analysis.
Collapse
Affiliation(s)
- Myriam Drouin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Sébastien Tremblay
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Marie Sabine Mayer
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Christian Diel
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Alexander Staub
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, P. O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
93
|
Xie D, Yu M, Kadakia RT, Que EL. 19F Magnetic Resonance Activity-Based Sensing Using Paramagnetic Metals. Acc Chem Res 2020; 53:2-10. [PMID: 31809009 DOI: 10.1021/acs.accounts.9b00352] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorine magnetic resonance imaging (19F MRI) is a promising bioimaging technique due to the favorable magnetic resonance properties of the 19F nucleus and the lack of detectable biological background signal. A range of imaging agents have been developed for this imaging modality including small molecule perfluorocarbons, fluorine-rich macromolecules and nanoparticles, and paramagnetic metal-containing agents. Incorporation of paramagnetic metals into fluorinated agents provides a unique opportunity to manipulate relaxation and chemical shift properties of 19F nuclei. Paramagnetic centers will enhance relaxation rates of nearby 19F nuclei through paramagnetic relaxation enhancement (PRE). Further, metals with anisotropic unpaired electrons can induce changes in 19F chemical shift through pseudocontact shift (PCS) effects. PRE and PCS are dependent on the nature of the metal center itself, the molecular scaffold surrounding it, and the position of the 19F nucleus relative to the metal center. One intriguing prospect in 19F magnetic resonance molecular imaging is to design responsive agents that can serve to provide a read out biological activity, including the activity of enzymes, redox activity, the activity of ions, etc. Paramagnetic agents are well suited for this activity-based sensing as metal complexes can be designed to respond to specific biological activities and give a corresponding 19F response that results from changes in the metal complex structure and subsequently PRE/PCS. Broadly speaking, when designing paramagnetic 19F MR biosensors, one can envision that in response to changes in analyte activity, the number of unpaired electrons of the metal changes or the ligand conformation/chemical composition changes. This Account highlights activity-based probes from the Que lab that harness paramagnetic metals to modulate 19F signal. We discuss probes that use conversion from Cu2+ to Cu+ in response to reducing environments to dequench the 19F MR signal. Probes in which oxidants convert Co2+ to Co3+, resulting in chemical shift responses, are also described. Finally, we explore our foray into using Ni2+ coordination switching to furnish probes with different 19F signals when they are converted between 4-coordinate square planar and higher coordination numbers. A major barrier for 19F MR molecular imaging is in vivo application, as signal sensitivity is relatively low, requiring long imaging times to detect imaging agents. Nanoparticle and macromolecular agents show promise due to their higher fluorine density and longer circulation times; however, their analyte scope is limited to analytes that induce cleavage events. A grand challenge for researchers in this area is adapting lessons learned from small molecule paramagnetic probes with promising in vitro activities for the development of probes with enhanced in vivo utility for basic biological and clinical applications.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Meng Yu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Rahul T. Kadakia
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
94
|
Mahesh S, Adebomi V, Muneeswaran ZP, Raj M. Bioinspired Nitroalkylation for Selective Protein Modification and Peptide Stapling. Angew Chem Int Ed Engl 2020; 59:2793-2801. [DOI: 10.1002/anie.201908593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Sriram Mahesh
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Victor Adebomi
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Zilma P. Muneeswaran
- Department of Chemistry and Biochemistry Seton Hall University South Orange NJ USA
| | - Monika Raj
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| |
Collapse
|
95
|
Mahesh S, Adebomi V, Muneeswaran ZP, Raj M. Bioinspired Nitroalkylation for Selective Protein Modification and Peptide Stapling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201908593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sriram Mahesh
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Victor Adebomi
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| | - Zilma P. Muneeswaran
- Department of Chemistry and Biochemistry Seton Hall University South Orange NJ USA
| | - Monika Raj
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36830 USA
| |
Collapse
|
96
|
Hidalgo FJ, Lorentz NA, Luu TB, Tran JD, Wickremasinghe PD, Martini O, Iovine PM, Schellinger JG. Synthesis, Characterization, and Dynamic Behavior of Well-defined Dithiomaleimide-functionalized Maltodextrins. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190212124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Maltodextrins have an increasing number of biomedical and industrial applications due to
their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we
describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin
conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the
exchange dynamics of the dithiomaleimide-functionalized sugar end groups.
Collapse
Affiliation(s)
- Francisco J. Hidalgo
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Nathan A.P. Lorentz
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - TinTin B. Luu
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Jonathan D. Tran
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Praveen D. Wickremasinghe
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Olnita Martini
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Peter M. Iovine
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| | - Joan G. Schellinger
- Department of Chemistry and Biochemistry University of San Diego, 5998 Alcala Park, San Diego, CA 92110, United States
| |
Collapse
|
97
|
Urbanek A, Elena-Real CA, Popovic M, Morató A, Fournet A, Allemand F, Delbecq S, Sibille N, Bernadó P. Site-Specific Isotopic Labeling (SSIL): Access to High-Resolution Structural and Dynamic Information in Low-Complexity Proteins. Chembiochem 2019; 21:769-775. [PMID: 31697025 DOI: 10.1002/cbic.201900583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Remarkable technical progress in the area of structural biology has paved the way to study previously inaccessible targets. For example, large protein complexes can now be easily investigated by cryo-electron microscopy, and modern high-field NMR magnets have challenged the limits of high-resolution characterization of proteins in solution. However, the structural and dynamic characteristics of certain proteins with important functions still cannot be probed by conventional methods. These proteins in question contain low-complexity regions (LCRs), compositionally biased sequences where only a limited number of amino acids is repeated multiple times, which hamper their characterization. This Concept article describes a site-specific isotopic labeling (SSIL) strategy, which combines nonsense suppression and cell-free protein synthesis to overcome these limitations. An overview on how poly-glutamine tracts were made amenable to high-resolution structural studies is used to illustrate the usefulness of SSIL. Furthermore, we discuss the potential of this methodology to give further insights into the roles of LCRs in human pathologies and liquid-liquid phase separation, as well as the challenges that must be addressed in the future for the popularization of SSIL.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire, (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 15, Av. Charles Flahault, BP 14491, 34000, Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
98
|
Zheng S, Lingyue G, Ong MJH, Jacquemin D, Romieu A, Richard JA, Srinivasan R. Divergent synthesis of 5',7'-difluorinated dihydroxanthene-hemicyanine fused near-infrared fluorophores. Org Biomol Chem 2019; 17:4291-4300. [PMID: 30969301 DOI: 10.1039/c9ob00568d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe an expedient access to a 5',6',7'-trifluoro dihydroxanthene-hemicyanine fused scaffold in 2 steps and 54% overall yield from the corresponding salicylic aldehyde. A 6'-regioselective nucleophilic aromatic substitution (SNAr) reaction with a wide range of nitrogen, sulfur or selenium nucleophiles then gives access to 16 near-infrared (NIR) fluorophores emitting in the 710-750 nm range. We also report the experimental and theoretical photophysical investigations of these unique optical agents that include the first series of 6'-heavy atom substituted dihydroxanthenes, extending the pool of polyfluorinated markers for biomedical and material applications.
Collapse
Affiliation(s)
- Shasha Zheng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
99
|
Dewis L, Crouch R, Russell D, Butts C. Improving the accuracy of 1 H- 19 F internuclear distance measurement using 2D 1 H- 19 F HOESY. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:1143-1149. [PMID: 31237710 DOI: 10.1002/mrc.4904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
With the rise in fluorinated pharmaceuticals, it is becoming increasingly important to develop new 19 F NMR-based methods to assist in their analysis. Crucially, obtaining information regarding the conformational dynamics of a molecule in solution can aid the design of strongly binding therapeutics. Herein, we report the development of a 2D 1 H-19 F Heteronuclear Overhauser Spectroscopy (HOESY) experiment to measure 1 H-19 F internuclear distances, with accuracies of ~5% when compared with 1 H-19 F internuclear distances calculated by quantum chemical methods. We demonstrate that correcting for cross-relaxation of 1 H, using the diagonal peaks from the 2D 1 H-1 H Nuclear Overhauser Enhancement Spectroscopy (NOESY), is critical in obtaining accurate values for 1 H-19 F internuclear distances. Finally, we show that by using the proposed method to measure 1 H-19 F internuclear distances, we are able to determine the relative stereochemistry of two fluorinated pharmaceuticals.
Collapse
Affiliation(s)
- Lydia Dewis
- Genentech Inc, South San Francisco, CA, USA
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Craig Butts
- School of Chemistry, University of Bristol, Bristol, UK
| |
Collapse
|
100
|
Solodinin A, Gautrais A, Ollivier S, Yan H. 5-Fluoro-2'-deoxycytidine as a Probe for the Study of B/Z-DNA Transition by 19F NMR Spectroscopy. ACS OMEGA 2019; 4:19716-19722. [PMID: 31788603 PMCID: PMC6881825 DOI: 10.1021/acsomega.9b02461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
5-Fluoro-2'-deoxycytidine was synthesized by treating 5-fluoro-2'-deoxyuridine with 2,4,6-trimethylphenol in the presence of 1-methylpyrrolidine and trifluoroacetic anhydride, followed by aminolysis. Among N-acetyl, pivaloyl, and benzoyl, N-acetyl was found to be suitable for the protection of the exocyclic amine of 5-fluoro-2'-deoxycytidine because of the stability of the N 4-protected nucleoside under acidic conditions and its ease of removal after solid-phase synthesis. This modified nucleoside was incorporated into d(CG)6 sequences through the phosphoramidite chemistry-based solid-phase synthesis. Circular dichroism experiments suggest that replacement of 2'-deoxycytidine with 5-fluoro-2'-deoxycytidine does not lead to detectable conformational changes, either in the B- or Z-form. 19F NMR spectroscopy of d(CG)6 containing 5-fluoro-2'-deoxycytidine revealed that B/Z-DNA transition induced by sodium chloride is likely initiated at terminal ends, leading to unwinding at the middle of duplexes, and eventual switch of handedness when sodium chloride concentration reaches a threshold value.
Collapse
|