51
|
Yüce M, Kurt H. How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 2017. [DOI: 10.1039/c7ra10479k] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report aims to provide the audience with a guideline for construction and characterisation of nanobiosensors that are based on widely used affinity probes including antibodies and aptamers.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University
- Nanotechnology Research and Application Centre
- Istanbul
- Turkey
| | - Hasan Kurt
- Istanbul Medipol University
- School of Engineering and Natural Sciences
- Istanbul
- Turkey
| |
Collapse
|
52
|
Defteralı Ç, Verdejo R, Majeed S, Boschetti-de-Fierro A, Méndez-Gómez HR, Díaz-Guerra E, Fierro D, Buhr K, Abetz C, Martínez-Murillo R, Vuluga D, Alexandre M, Thomassin JM, Detrembleur C, Jérôme C, Abetz V, López-Manchado MÁ, Vicario-Abejón C. In Vitro Evaluation of Biocompatibility of Uncoated Thermally Reduced Graphene and Carbon Nanotube-Loaded PVDF Membranes with Adult Neural Stem Cell-Derived Neurons and Glia. Front Bioeng Biotechnol 2016; 4:94. [PMID: 27999773 PMCID: PMC5138223 DOI: 10.3389/fbioe.2016.00094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023] Open
Abstract
Graphene, graphene-based nanomaterials (GBNs), and carbon nanotubes (CNTs) are being investigated as potential substrates for the growth of neural cells. However, in most in vitro studies, the cells were seeded on these materials coated with various proteins implying that the observed effects on the cells could not solely be attributed to the GBN and CNT properties. Here, we studied the biocompatibility of uncoated thermally reduced graphene (TRG) and poly(vinylidene fluoride) (PVDF) membranes loaded with multi-walled CNTs (MWCNTs) using neural stem cells isolated from the adult mouse olfactory bulb (termed aOBSCs). When aOBSCs were induced to differentiate on coverslips treated with TRG or control materials (polyethyleneimine-PEI and polyornithine plus fibronectin-PLO/F) in a serum-free medium, neurons, astrocytes, and oligodendrocytes were generated in all conditions, indicating that TRG permits the multi-lineage differentiation of aOBSCs. However, the total number of cells was reduced on both PEI and TRG. In a serum-containing medium, aOBSC-derived neurons and oligodendrocytes grown on TRG were more numerous than in controls; the neurons developed synaptic boutons and oligodendrocytes were more branched. In contrast, neurons growing on PVDF membranes had reduced neurite branching, and on MWCNTs-loaded membranes oligodendrocytes were lower in numbers than in controls. Overall, these findings indicate that uncoated TRG may be biocompatible with the generation, differentiation, and maturation of aOBSC-derived neurons and glial cells, implying a potential use for TRG to study functional neuronal networks.
Collapse
Affiliation(s)
- Çağla Defteralı
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
| | - Raquel Verdejo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain
| | - Shahid Majeed
- Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
| | - Adriana Boschetti-de-Fierro
- Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
| | - Héctor R. Méndez-Gómez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
| | - Daniel Fierro
- Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
| | - Kristian Buhr
- Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
| | - Clarissa Abetz
- Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
| | | | - Daniela Vuluga
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| | - Michaël Alexandre
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| | - Jean-Michel Thomassin
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| | - Christophe Detrembleur
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| | - Christine Jérôme
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Liège, Belgium
| | - Volker Abetz
- Helmholtz-Zentrum Geesthacht (HZG), Zentrum für Material- und Küstenforschung GmbH, Institut für Polymerforschung, Geesthacht, Germany
| | | | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Madrid, Spain
| |
Collapse
|
53
|
Tunable doxorubicin release from polymer-gated multiwalled carbon nanotubes. Int J Pharm 2016; 515:30-36. [DOI: 10.1016/j.ijpharm.2016.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
|
54
|
Balas M, Constanda S, Duma-Voiculet A, Prodana M, Hermenean A, Pop S, Demetrescu I, Dinischiotu A. Fabrication and toxicity characterization of a hybrid material based on oxidized and aminated MWCNT loaded with carboplatin. Toxicol In Vitro 2016; 37:189-200. [PMID: 27638054 DOI: 10.1016/j.tiv.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
This study focused on the fabrication and toxicity characterization of a hybrid material-based on the multiple functionalizations of multiwalled carbon nanotubes (MWCNTs) with carboxyl or amino groups and the anti-tumor drug carboplatin (CP). The functionalization was evidenced by Fourier transformed infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC). The amount of platinum ions released in the simulated body fluid (SBF) was assessed by inductively coupled plasma mass spectrometry (ICP-MS). Cell viability, nanotubes cellular uptake, cell proliferation, superoxide anion production, SOD activity, intracellular glutathione and protein expression of several molecules involved in breast tumor cell survival and death were investigated after 24h exposure. Exposure to the aminated carbon nanotubes loaded with carboplatin resulted in a greater decrease of viability compared to oxidized carbon nanotubes loaded with the same drug, which was in an inversely proportional relationship with the production of superoxide anions in breast cancer cells. The inhibition of Hsp60, Hsp90, p53 and Mdm2 protein expression was induced as a consequence of the cytoprotection mechanism failure. Overexpression of Beclin1 and the reduction of Bcl2 expression were also observed, suggesting that functionalized MWCNT loaded with CP trigger cell death via autophagy in breast cancer cells.
Collapse
Affiliation(s)
- Mihaela Balas
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, Splaiul Independentei 91-95, 50095 Bucharest, Romania
| | - Sabrina Constanda
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, Splaiul Independentei 91-95, 50095 Bucharest, Romania
| | - Adriana Duma-Voiculet
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana Prodana
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania; Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului, Arad 310396, Romania
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, Bucharest, Splaiul Independenţei 99 - 101, 050096, Romania
| | - Ioana Demetrescu
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest, Romania
| | - Anca Dinischiotu
- University of Bucharest, Faculty of Biology, Department of Biochemistry and Molecular Biology, Splaiul Independentei 91-95, 50095 Bucharest, Romania.
| |
Collapse
|
55
|
Vedhanarayanan B, Nair VS, Nair VC, Ajayaghosh A. Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral π-Gelator. Angew Chem Int Ed Engl 2016; 55:10345-9. [PMID: 27461073 DOI: 10.1002/anie.201605354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/27/2022]
Abstract
In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π-gelator (MC-OPV) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10(-4) m, MC-OPV did not exhibit a CD signal; however, the addition of 0-0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High-resolution TEM analysis and solid-state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical-cable formation has not been reported previously.
Collapse
Affiliation(s)
- Balaraman Vedhanarayanan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
| | - Vishnu S Nair
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
| | - Vijayakumar C Nair
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR), CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India.
| |
Collapse
|
56
|
Vedhanarayanan B, Nair VS, Nair VC, Ajayaghosh A. Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral π-Gelator. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Balaraman Vedhanarayanan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram 695 019 India
| | - Vishnu S. Nair
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram 695 019 India
| | - Vijayakumar C. Nair
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram 695 019 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division and Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Thiruvananthapuram 695 019 India
| |
Collapse
|
57
|
Chen X, Fang J, Cheng Y, Zheng J, Zhang J, Chen T, Ruan BH. Biomolecular interaction analysis for carbon nanotubes and for biocompatibility prediction. Anal Biochem 2016; 505:1-7. [PMID: 27108187 DOI: 10.1016/j.ab.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
The interactions between carbon nanotubes (CNTs) and biologics have been commonly studied by various microscopy and spectroscopy methods. We tried biomolecular interaction analysis to measure the kinetic interactions between proteins and CNTs. The analysis demonstrated that wheat germ agglutinin (WGA) and other proteins have high affinity toward carboxylated CNT (f-MWCNT) but essentially no binding to normal CNT (p-MWCNT). The binding of f-MWCNT-protein showed dose dependence, and the observed kinetic constants were in the range of 10(-9) to 10(-11) M with very small off-rates (10(-3) to 10(-7) s(-1)), indicating a relatively tight and stable f-MWCNT-protein complex formation. Interestingly in hemolysis assay, p-MWCNT showed good biocompatibility, f-MWCNT caused 30% hemolysis, but WGA-coated f-MWCNT did not show hemolysis. Furthermore, the f-MWCNT-WGA complex demonstrated enhanced cytotoxicity toward cancer cells, perhaps through the glycoproteins expressed on the cells' surface. Taken together, biomolecular interaction analysis is a precise method that might be useful in evaluating the binding affinity of biologics to CNTs and in predicting biological actions.
Collapse
Affiliation(s)
- Xiaoping Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Jinzhang Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun Cheng
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jianhui Zheng
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jingjing Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tao Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Benfang Helen Ruan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
58
|
Impeded repair of abasic site damaged lesions in DNA adsorbed over functionalized multiwalled carbon nanotube and graphene oxide. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 803-804:39-46. [PMID: 27265379 DOI: 10.1016/j.mrgentox.2016.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The processing of abasic site DNA damage lesions in extracellular DNA in the presence of engineered carbon nanomaterials (CNMs) is demonstrated. The efficacy of the apurinic-apyrimidinic endonuclease 1 (APE1) in the cleavage of abasic site lesions in the presence of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) and graphene oxide (GO) are compared. The CNMs were found to perturb the incision activity of APE1. The reason for such perturbation process was anticipated to take place either by the non-specific adsorption of APE1 over the free surface of the CNMs or steric hindrance offered by the CNM-DNA complex. Accordingly, bovine serum albumin (BSA) was selectively utilized to block the free surface of the CNM-DNA hybrid material. Further treatment of the CNM-DNA-BSA complex with APE1 resulted in a marginal increase in APE1 efficiency. This indicates that APE1 in solution is unable to process the abasic sites on DNA adsorbed over the CNMs. However, the cleavage activity of APE1 was restored in the presence of non-ionic surfactant (Tween 20) that inhibits adsorption of the DNA on the surface of the CNMs. The conformational deformation of the DNA, along with steric hindrance induced by the CNMs resulted in the inhibition of abasic site DNA repair by APE1. Moreover, appreciable changes in the secondary structure of APE1 adsorbed over the CNMs were observed that contribute further to the repair refractivity of the abasic sites. From a toxicological viewpoint, these findings can be extended to the study of the effect of engineered nanoparticles in the intracellular DNA repair process.
Collapse
|
59
|
Ma J, Nan X, Larsen RM, Huang X, Yu B. Mechanical properties and biocompatibility of functionalized carbon nanotubes/polypropylene composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1003-16. [PMID: 27052820 DOI: 10.1080/09205063.2016.1175776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigates the efficiency of carbon nanotubes (CNTs) as reinforcement for polypropylene (PP) for biocompatible application as a function of different surface functionalization of CNTs. PP composites were reinforced using various CNTs: single- and multi-walled carbon nanotubes (SWCNTs, MWCNTs), SWCNTs were covalently functionalized by plasma, for comparison, the MWCNTs were functionalized noncovalently. Different CNTs were incorporated into PP by solution blending. The type of CNTs and surface functionalization affects the mechanical and biocompatibility results significantly. Differences in nanostructure and the chemical compositions, number of functional groups, and structural defects for the CNTs may be the key factors affecting the mechanical properties and biocompatibility of PP nanocomposites compared to the neat PP. Finally, suitable CNTs and surface functionalization of CNTs were selected for making the PP/CNTs composites.
Collapse
Affiliation(s)
- Jing Ma
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| | - Xi Nan
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| | - Raino Mikael Larsen
- b Department of Mechanical and Manufacturing Engineering , Aalborg University , Aalborg , Denmark
| | - Xiaobo Huang
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| | - Bowen Yu
- a School of Material Science and Engineering , Taiyuan University of Technology , Taiyuan , China
| |
Collapse
|
60
|
Oliveira SF, da Luz JMR, Kasuya MCM, Ladeira LO, Correa Junior A. Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes: Potential biocatalyst in dye decolourization. Saudi J Biol Sci 2016; 25:651-659. [PMID: 29740229 PMCID: PMC5936880 DOI: 10.1016/j.sjbs.2016.02.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
The majority of the textile dyes are harmful to the environment and potentially carcinogenic. Among strategies for their exclusion, the treatment of dye contaminated wastewater with fungal extract, containing lignin peroxidase (LiP), may be useful. Two fungi isolates, Pleurotus ostreatus (PLO9) and Ganoderma lucidum (GRM117), produced the enzymatic extract by fermentation in the lignocellulosic residue, Jatropha curcas seed cake. The extracts from PLO9 and GRM117 were immobilized on carbon nanotubes and showed an increase of 18 and 27-fold of LiP specific activity compared to the free enzyme. Also, LiP from both fungi extracts showed higher Vmax and lower Km values. Only the immobilized extracts could be efficiently reused in the dye decolourization, contrary, the carbon nanotubes became saturated and they should be discarded over time. This device may offer a final biocatalyst with higher catalytic efficiency and capability to be reused in the dye decolourization process.
Collapse
Affiliation(s)
- Sabrina Feliciano Oliveira
- Department of Microbiology, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - José Maria Rodrigues da Luz
- Department of Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n° - Campus Universitário, Viçosa, Minas Gerais, Brazil
| | - Maria Catarina Megumi Kasuya
- Department of Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n° - Campus Universitário, Viçosa, Minas Gerais, Brazil
| | - Luiz Orlando Ladeira
- Department of Microbiology, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ary Correa Junior
- Department of Microbiology, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
61
|
Vilhena JG, Rubio-Pereda P, Vellosillo P, Serena PA, Pérez R. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1742-1755. [PMID: 26799950 DOI: 10.1021/acs.langmuir.5b03170] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.
Collapse
Affiliation(s)
- J G Vilhena
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Ines de la Cruz 3, E-28049 Madrid, Spain
| | - Pamela Rubio-Pereda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Ines de la Cruz 3, E-28049 Madrid, Spain
- Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Postal Code 22860, Ensenada, Baja California, Mexico
| | - Perceval Vellosillo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Ines de la Cruz 3, E-28049 Madrid, Spain
| | - P A Serena
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, c/Sor Juana Ines de la Cruz 3, E-28049 Madrid, Spain
| | | |
Collapse
|
62
|
Allegri M, Perivoliotis DK, Bianchi MG, Chiu M, Pagliaro A, Koklioti MA, Trompeta AFA, Bergamaschi E, Bussolati O, Charitidis CA. Toxicity determinants of multi-walled carbon nanotubes: The relationship between functionalization and agglomeration. Toxicol Rep 2016; 3:230-243. [PMID: 28959543 PMCID: PMC5615827 DOI: 10.1016/j.toxrep.2016.01.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
The elucidation of toxicity determinants of multi-walled carbon nanotubes (MWCNT) is still incomplete. Functionalization with carboxyl groups is, however, commonly used to mitigate MWCNT toxicity, although the rationale for the mitigating effect has not been fully clarified yet. In this work, two optimized chemical vapor deposition methods were employed to obtain MWCNT of comparable length but different diameter, which were subsequently functionalized. For MWCNT of diameter larger than 40 nm, no detrimental effects on cell viability of macrophages were observed, while mild cytotoxicity was recorded for diameters between 15 and 40 nm, with a mitigating effect of functionalization. To investigate the factors responsible for the mitigation, we used the thinnest MWCNT preparation on different cell models, evaluating several endpoints, such as viability, production of nitric oxide (NO), expression of pro-inflammatory markers, the Trans-Epithelial Electrical Resistance (TEER), and clonogenic activity. Substantial mitigation of the changes caused by pristine MWCNT was observed not only with carboxyl- but also with amino-functionalized MWCNT, suggesting that negative or positive surface charge was not the main factor responsible for the effect. Instead, either functionalized preparation exhibited a stronger tendency to agglomerate that was strictly dependent on the presence of proteins. Moreover, we found that either carboxyl- or amino-functionalized MWCNT adsorbed a larger amount of serum proteins than pristine counterparts, with a distinctive pattern for each type of MWCNT. We propose, therefore, that the formation of larger agglomerates, dependent upon different protein coronae, contributes to mitigate the biological effects of functionalized MWCNT in protein-rich biological media.
Collapse
Key Words
- Agglomeration
- Airway epithelium
- BET, Brunauer, Emmett and Teller
- BSA, Bovine Serum Albumin
- CFE, colony forming efficiency
- CNT, carbon nanotubes
- CVD, carbon vapor deposition
- Carbon nanotubes
- DMEM, Dulbecco’s modified Eagle’s medium
- DTT, dithiothreitol
- EDS, energy dispersive X-ray spectrometry
- FBS, Fetal Bovine Serum
- FT-IR, Fourier transform infrared spectroscopy
- Functionalization
- Inflammation
- MWCNT, multi-walled carbon nanotubes
- Macrophages
- NO, nitric oxide
- Protein corona
- SDS, sodium dodecyl sulphate
- SDS-PAGE, SDS polyacrylamide gel electrophoresis
- SSA, specific surface area
- SWCNT, single-walled carbon nanotubes
- TEER, Trans-Epithelial Electrical Resistance
- TGA, thermogravimetric analysis
- XRD, X-ray diffraction
Collapse
Affiliation(s)
- Manfredi Allegri
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, 43125 Parma, Italy
| | - Dimitrios K Perivoliotis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, GR-157 80 Athens, Greece
| | - Massimiliano G Bianchi
- Unit of Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, University of Parma, 4312 Parma, Italy
| | - Martina Chiu
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, 43125 Parma, Italy
| | - Alessandra Pagliaro
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, 43125 Parma, Italy
| | - Malamatenia A Koklioti
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, GR-157 80 Athens, Greece
| | - Aikaterini-Flora A Trompeta
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, GR-157 80 Athens, Greece
| | - Enrico Bergamaschi
- Unit of Occupational and Environmental Medicine, Department of Clinical and Experimental Medicine, University of Parma, 4312 Parma, Italy
| | - Ovidio Bussolati
- Unit of General Pathology, Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, 43125 Parma, Italy
| | - Constantinos A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, Department of Materials Science and Engineering, School of Chemical Engineering, National Technical University of Athens, GR-157 80 Athens, Greece
| |
Collapse
|
63
|
Jana AK, Tiwari MK, Vanka K, Sengupta N. Unraveling origins of the heterogeneous curvature dependence of polypeptide interactions with carbon nanostructures. Phys Chem Chem Phys 2016; 18:5910-24. [DOI: 10.1039/c5cp04675k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Underlying causes of the differential polypeptide interactions on carbon nanosurfaces of varying curvatures emerge from a synchronized computational study.
Collapse
Affiliation(s)
- Asis K. Jana
- Physical Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | | | - Kumar Vanka
- Physical Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Neelanjana Sengupta
- Physical Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
64
|
Zhang B, Ni H, Chen R, Zhang T, Li X, Zhan W, Wang Z, Xu Y. Cytotoxicity effects of three-dimensional graphene in NIH-3T3 fibroblasts. RSC Adv 2016. [DOI: 10.1039/c6ra04018g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present an evaluation of the in vitro cytotoxicity of 3D graphene sheets fabricated by carbonization of polydopamine (PDA) films on a template of aligned nanopore arrays (NPAs) on a stainless steel surface.
Collapse
Affiliation(s)
- Bowei Zhang
- The State Key Laboratory of Refractories and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Hongwei Ni
- The State Key Laboratory of Refractories and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Rongsheng Chen
- School of Chemical Engineering and Technology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Tongcun Zhang
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| | - Xi Li
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| | - Weiting Zhan
- The State Key Laboratory of Refractories and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Zhenyu Wang
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| | - Yao Xu
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| |
Collapse
|
65
|
Bhattacharya S, Sasmal M. Immobilization of Bovine Serum Albumin Upon Multiwall Carbon Nanotube for High Speed Humidity Sensing Application. IEEE Trans Nanobioscience 2016; 15:27-33. [DOI: 10.1109/tnb.2015.2511622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
66
|
Fedeli S, Brandi A, Venturini L, Chiarugi P, Giannoni E, Paoli P, Corti D, Giambastiani G, Tuci G, Cicchi S. The “click-on-tube” approach for the production of efficient drug carriers based on oxidized multi-walled carbon nanotubes. J Mater Chem B 2016; 4:3823-3831. [DOI: 10.1039/c6tb00304d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.
Collapse
Affiliation(s)
- Stefano Fedeli
- Chemistry Department “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino (Fi)
- Italy
| | - Alberto Brandi
- Chemistry Department “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino (Fi)
- Italy
| | - Lorenzo Venturini
- Chemistry Department “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino (Fi)
- Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences
- 50134 Firenze
- Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences
- 50134 Firenze
- Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences
- 50134 Firenze
- Italy
| | - Denise Corti
- Department of Experimental and Clinical Biomedical Sciences
- 50134 Firenze
- Italy
| | | | | | - Stefano Cicchi
- Chemistry Department “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino (Fi)
- Italy
| |
Collapse
|
67
|
Mahyad B, Janfaza S, Hosseini ES. Bio-nano hybrid materials based on bacteriorhodopsin: Potential applications and future strategies. Adv Colloid Interface Sci 2015; 225:194-202. [PMID: 26506028 DOI: 10.1016/j.cis.2015.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
Abstract
This review presents an overview of recent progress in the development of bio-nano hybrid materials based on the photoactive protein bacteriorhodopsin (bR). The interfacing of bR with various nanostructures including colloidal nanoparticles (such as quantum dots and Ag NPs) and nanoparticulate thin films (such as TiO2 NPs and ZnO NPs,) has developed novel functional materials. Applications of these materials are comprehensively reviewed in two parts: bioelectronics and solar energy conversion. Finally, some perspectives on possible future strategies in bR-based nanostructured devices are presented.
Collapse
Affiliation(s)
- Baharak Mahyad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Sajjad Janfaza
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran.
| | - Elaheh Sadat Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
68
|
Marchesan S, Melchionna M, Prato M. Wire Up on Carbon Nanostructures! How To Play a Winning Game. ACS NANO 2015; 9:9441-50. [PMID: 26390071 DOI: 10.1021/acsnano.5b04956] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon nanotubes and graphene possess a unique extended π-system that makes them stand out among carbon nanostructures. The resulting electronic properties enable electron or charge flow along one or two directions, respectively, thus offering the opportunity to connect electronically different entities that come into contact, be they living cells or catalytic systems. Using these carbon nanostructures thus holds great promise in providing innovative solutions to address key challenges in the fields of medicine and energy. Here, we discuss how chemical functionalization of these carbon nanostructures is a crucial tool to master their properties and deliver innovation.
Collapse
Affiliation(s)
- Silvia Marchesan
- Center of Excellence for Nanostructured Materials, INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste , Piazzale Europa 1, 34127 Trieste, Italy
| | - Michele Melchionna
- Center of Excellence for Nanostructured Materials, INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste , Piazzale Europa 1, 34127 Trieste, Italy
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials, INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste , Piazzale Europa 1, 34127 Trieste, Italy
| |
Collapse
|
69
|
Sawosz E, Jaworski S, Kutwin M, Vadalasetty KP, Grodzik M, Wierzbicki M, Kurantowicz N, Strojny B, Hotowy A, Lipińska L, Jagiełło J, Chwalibog A. Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. Int J Mol Sci 2015; 16:25214-33. [PMID: 26512645 PMCID: PMC4632799 DOI: 10.3390/ijms161025214] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/02/2015] [Accepted: 10/10/2015] [Indexed: 01/03/2023] Open
Abstract
Our previous studies revealed that graphene had anticancer properties in experiments in vitro with glioblastoma multiforme (GBM) cells and in tumors cultured in vivo. We hypothesized that the addition of arginine or proline to graphene solutions might counteract graphene agglomeration and increase the activity of graphene. Experiments were performed in vitro with GBM U87 cells and in vivo with GBM tumors cultured on chicken embryo chorioallantoic membranes. The measurements included cell morphology, mortality, viability, tumor morphology, histology, and gene expression. The cells and tumors were treated with reduced graphene oxide (rGO) and rGO functionalized with arginine (rGO + Arg) or proline (rGO + Pro). The results confirmed the anticancer effect of graphene on GBM cells and tumor tissue. After functionalization with amino acids, nanoparticles were distributed more specifically, and the flakes of graphene were less agglomerated. The molecule of rGO + Arg did not increase the expression of TP53 in comparison to rGO, but did not increase the expression of MDM2 or the MDM2/TP53 ratio in the tumor, suggesting that arginine may block MDM2 expression. The expression of NQO1, known to be a strong protector of p53 protein in tumor tissue, was greatly increased. The results indicate that the complex of rGO + Arg has potential in GBM therapy.
Collapse
Affiliation(s)
- Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Krishna Prasad Vadalasetty
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Natalia Kurantowicz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Anna Hotowy
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw 02-787, Poland.
| | - Ludwika Lipińska
- Institute of Electronic Materials Technology, Warsaw 02-787, Poland.
| | - Joanna Jagiełło
- Institute of Electronic Materials Technology, Warsaw 02-787, Poland.
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark.
| |
Collapse
|
70
|
Cavuslar O, Unal H. Self-assembly of DNA wrapped carbon nanotubes and asymmetrical cyanine dyes into fluorescent nanohybrids. RSC Adv 2015. [DOI: 10.1039/c5ra00236b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Carbon nanotubes, asymmetrical cyanine dyes and single stranded DNA self-assemble into light absorbing hybrid nanostructures that are highly fluorescent.
Collapse
Affiliation(s)
- O. Cavuslar
- Sabanci University
- Faculty of Engineering and Natural Sciences
- Turkey
| | - H. Unal
- Sabanci University, Nanotechnology Research and Application Center
- Turkey
| |
Collapse
|