51
|
Song X, Han X, Yu F, Zhang J, Chen L, Lv C. A reversible fluorescent probe based on C[double bond, length as m-dash]N isomerization for the selective detection of formaldehyde in living cells and in vivo. Analyst 2018; 143:429-439. [PMID: 29260163 DOI: 10.1039/c7an01488k] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Formaldehyde (FA) is an endogenously produced reactive carbonyl species (RCS) through biological metabolic processes whose concentration is closely related to human health and disease. Noninvasive and real-time detection of FA concentration in organisms is very important for revealing the physiological and pathological functions of FA. Herein, we design and synthesize a reversible fluorescent probe BOD-NH2 for the detection of FA in living cells and in vivo. The probe is composed of two moieties: the BODIPY fluorophore and the primary amino group response unit. The probe undergoes an intracellular aldimine condensation reaction with FA and forms imine (C[double bond, length as m-dash]N) which will result in C[double bond, length as m-dash]N isomerization and rotation to turn-off the fluorescence of the probe. It is important that the probe can show a reversible response to FA. The probe BOD-NH2 has been successfully applied for detecting and imaging FA in the cytoplasm of living cells. BOD-NH2 is capable of detecting fluctuations in the levels of endogenous and exogenous FA in different types of living cells. The probe can be used to visualize the FA concentration in fresh hippocampus and the probe can further qualitatively evaluate the FA concentrations in ex vivo-dissected organs. Moreover, BOD-NH2 can also be used for imaging in mice. The above applications make our new probe a potential chemical tool for the study of physiological and pathological functions of FA in cells and in vivo.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China.
| | | | | | | | | | | |
Collapse
|
52
|
Nandi S, Sharma E, Trivedi V, Biswas S. Metal–Organic Framework Showing Selective and Sensitive Detection of Exogenous and Endogenous Formaldehyde. Inorg Chem 2018; 57:15149-15157. [DOI: 10.1021/acs.inorgchem.8b02411] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
53
|
Han B, Sun J, Chen K, Chen Z, Huang M, Gao Z, Hou X. A novel fluorescent probe for formaldehyde based-on monomer-excimer conversion and its imaging in live cells. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
54
|
Li P, Zhang D, Zhang Y, Lu W, Wang W, Chen T. Ultrafast and Efficient Detection of Formaldehyde in Aqueous Solutions Using Chitosan-based Fluorescent Polymers. ACS Sens 2018; 3:2394-2401. [PMID: 30346151 DOI: 10.1021/acssensors.8b00835] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Detection of a toxic formaldehyde (HCHO) pollutant in aqueous solutions is of significant importance, because HCHO is widely found in aquatic food because of illicit addition or improper storage. Many small-molecule-based fluorescent probes, which rely on HCHO-specific formaldehyde-amine condensation or the aza-Cope rearrangement reaction, have been developed in terms of facile operation and high selectivity. However, some primary challenging issues are the restricted sensitivity and long equilibrium response time caused by the slow chemical reaction between these small-molecule-based sensors and low-concentration HCHO pollutant in testing samples. Herein, a robust hydrophilic hydrazino-naphthalimide-functionalized chitosan (HN-Chitosan)-based polymeric probe is reported, which takes advantage of specific chemical reaction between HCHO and grafted hydrazino-naphthalimide groups to trigger a "turn-on" fluorescence response. Superior to its small-molecule analogs, HN-Chitosan is based on random coil polymer chains of biopolymeric chitosan, which is thus capable of employing the cooperative binding effect of multiple hydrazino-naphthalimide recognition sites and adjacent hydroxyl groups to "enrich" the low-concentration HCHO pollutant around the polymer chains via weak supramolecular interactions. Therefore, the HCHO-specific chemical reaction with grafted hydrazino-naphthalimide groups is significantly accelerated, resulting in the unprecedented ultrafast equilibrium fluorescence response (less than 1 min) and high sensitivity. Encouraged by its satisfying sensitivity, selectivity, fast response, and wide linear detection range, we successfully expand its application to real-world food and water analysis. In view of the modular design principle of our polymeric probe, the proposed strategy could be generally applicable to construct powerful polymeric probes for ultrafast detection of other important pollutants.
Collapse
Affiliation(s)
- Ping Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Dong Zhang
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuchong Zhang
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Lu
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wenqin Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Tao Chen
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
55
|
Bruemmer KJ, Green O, Su TA, Shabat D, Chang CJ. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice. Angew Chem Int Ed Engl 2018; 57:7508-7512. [PMID: 29635731 DOI: 10.1002/anie.201802143] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 11/08/2022]
Abstract
Formaldehyde (FA) is a common environmental toxin that is also produced naturally in the body through a wide range of metabolic and epigenetic processes, motivating the development of new technologies to monitor this reactive carbonyl species (RCS) in living systems. Herein, we report a pair of first-generation chemiluminescent probes for selective formaldehyde detection. Caging phenoxy-dioxetane scaffolds bearing different electron-withdrawing groups with a general 2-aza-Cope reactive formaldehyde trigger provides chemiluminescent formaldehyde probes 540 and 700 (CFAP540 and CFAP700) for visible and near-IR detection of FA in living cells and mice, respectively. In particular, CFAP700 is capable of visualizing FA release derived from endogenous folate metabolism, providing a starting point for the use of CFAPs and related chemical tools to probe FA physiology and pathology, as well as for the development of a broader palette of chemiluminescent activity-based sensing (ABS) probes that can be employed from in vitro biochemical to cell to animal models.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ori Green
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Timothy A Su
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| |
Collapse
|
56
|
Bruemmer KJ, Green O, Su TA, Shabat D, Chang CJ. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802143] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Ori Green
- School of Chemistry, Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Timothy A. Su
- Department of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Doron Shabat
- School of Chemistry, Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Christopher J. Chang
- Department of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
- Department of Molecular and Cell Biology; University of California, Berkeley; Berkeley CA 94720 USA
- Howard Hughes Medical Institute; Chevy Chase MD 20815 USA
| |
Collapse
|
57
|
Xie X, Tang F, Shangguan X, Che S, Niu J, Xiao Y, Wang X, Tang B. Two-photon imaging of formaldehyde in live cells and animals utilizing a lysosome-targetable and acidic pH-activatable fluorescent probe. Chem Commun (Camb) 2018; 53:6520-6523. [PMID: 28573306 DOI: 10.1039/c7cc03050a] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lyso-TPFP presents lysosomal targetability and an acidic pH-activatable response toward formaldehyde. Thus, it exclusively visualizes lysosomal formaldehyde and is immune against it in neutral cytosol and other organelles. In addition, two-photon fluorescence imaging endows Lyso-TPFP with the capability of in situ tracking formaldehyde in live cells and animals.
Collapse
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Bauer NA, Hoque E, Wolf M, Kleigrewe K, Hofmann T. Detection of the formyl radical by EPR spin-trapping and mass spectrometry. Free Radic Biol Med 2018; 116:129-133. [PMID: 29307725 DOI: 10.1016/j.freeradbiomed.2018.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022]
Abstract
For the first time we here present the unambiguous identification of the formyl radical (•CHO) by EPR (Electron Paramagnetic Resonance) spectroscopy and mass spectrometry (MS) using DMPO (5,5-dimethyl-1-pyrroline N-oxide) as spin trap at ambient temperature without using any catalyst(s). The •CHO was continuously generated by UV photolysis in closed anoxic environment from pure formaldehyde (HCHO) in aqueous solution. The isotropic hyperfine structure constants of •CHO were determined as aN = 15.72G and aH = 21.27G. The signals were deconvoluted and split by simulation in their single adduct components: DMPO-CHO, DMPO-H and DMPO-OH. We verified our results at first using MNP (2-methyl-2-nitroso-propane) as spin trap with known literature data and then mass spectrometry. Similarly the MNP adduct components MNP-CHO, MNP-H as well as its own adduct, the MNP-2-methyl-2-propyl (MNP-MP) were deconvoluted. Due to the low signal intensities, we had to accumulate single measurements for both spin traps. Using MS we got the exact mass of the reduced •CHO adduct independently confirming the result of EPR detection of formyl radical.
Collapse
Affiliation(s)
- Norbert A Bauer
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Enamul Hoque
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Manfred Wolf
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany.
| | - Thomas Hofmann
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany.
| |
Collapse
|
59
|
Rong RX, Wang SS, Liu X, Li RF, Wang KR, Cao ZR, Li XL. Lysosomes-targeting imaging and anticancer properties of novel bis-naphthalimide derivatives. Bioorg Med Chem Lett 2018; 28:742-747. [DOI: 10.1016/j.bmcl.2018.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 12/27/2022]
|
60
|
Biotin conjugated organic molecules and proteins for cancer therapy: A review. Eur J Med Chem 2018; 145:206-223. [PMID: 29324341 DOI: 10.1016/j.ejmech.2018.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023]
Abstract
The main transporter for biotin is sodium dependent multivitamin transporter (SMVT), which is overexpressed in various aggressive cancer cell lines such as ovarian (OV 2008, ID8), leukemia (L1210FR), mastocytoma (P815), colon (Colo-26), breast (4T1, JC, MMT06056), renal (RENCA, RD0995), and lung (M109) cancer cell lines. Furthermore, its overexpression was found higher to that of folate receptor. Therefore, biotin demand in the rapidly growing tumors is higher than normal tissues. Several biotin conjugated organic molecules has been reported here for selective delivery of the drug in cancer cell. Biotin conjugated molecules are showing higher fold of cytotoxicity in biotin positive cancer cell lines than the normal cell. Nanoparticles and polymer surface modified drugs and biotin mediated cancer theranostic strategy was highlighted in this review. The cytotoxicity and selectivity of the drug in cancer cells has enhanced after biotin conjugation.
Collapse
|
61
|
Wang Y, Liu C, Yang W, Zou G, Zhang X, Wu F, Yu S, Luo X, Zhou X. Naphthalimide derivatives as multifunctional molecules for detecting 5-formylpyrimidine by both PAGE analysis and dot-blot assays. Chem Commun (Camb) 2018; 54:1497-1500. [DOI: 10.1039/c7cc08715b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An azide and hydrazine tethered to a naphthalimide analogue was created to selectively react with 5-formyluracil in one system and fluorogenically label 5-formylcytosine in another system.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Shuyi Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Xiaomeng Luo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
62
|
Yang L, Li J, Pan W, Wang H, Li N, Tang B. Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chem Commun (Camb) 2018; 54:3656-3659. [DOI: 10.1039/c8cc01335g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorescence and photoacoustic dual-mode DNA nanoprobe based on covalent linkage was developed for detecting tumor-associated mRNA.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jia Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Hongyu Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
63
|
Xu Z, Chen J, Hu LL, Tan Y, Liu SH, Yin J. Recent advances in formaldehyde-responsive fluorescent probes. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
64
|
Dou K, Chen G, Yu F, Liu Y, Chen L, Cao Z, Chen T, Li Y, You J. Bright and sensitive ratiometric fluorescent probe enabling endogenous FA imaging and mechanistic exploration of indirect oxidative damage due to FA in various living systems. Chem Sci 2017; 8:7851-7861. [PMID: 29163922 PMCID: PMC5674201 DOI: 10.1039/c7sc03719h] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
As a notorious toxin, formaldehyde (FA) poses an immense threat to human health. Aberrantly elevated FA levels lead to serious pathologies, including organ damage, neurodegeneration, and cancer. Unfortunately, current techniques limit FA imaging to general comparative studies, instead of a mechanistic exploration of its biological role, and this is presumably due to the lack of robust molecular tools for reporting FA in living systems. More importantly, despite being reductive, FA, however, can induce oxidative damage to organisms, thus providing a challenge to the mechanistic study of FA using fluorescence imaging. Herein, we presented the design and multi-application of a bright sensitive ratiometric fluorescent probe 1-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl) but-3-en-1-amine (PIPBA). With a π-extended phenylphenanthroimidazole fluorophore and an allylamine group, PIPBA exhibited high quantum yield (φ = 0.62) in blue fluorescent emission and selective reactivity toward FA. When sensing FA, PIPBA transformed to PIBE, which is a product capable of releasing bright green fluorescence (φ = 0.51) with its enhanced intramolecular charge transfer (ICT). Transformation of PIPBA to PIBE contributed to 80 nm of red shift in emission wavelength and a highly sensitive ratiometric response (92.2-fold), as well as a quite low detection limit (0.84 μM). PIPBA was successfully applied to various living systems, realizing, for the first time, ratiometric quantification (in cells), in vivo imaging (zebrafish), and living tissue imaging (vivisectional mouse under anaesthetic) of endogenous FA that was spontaneously generated by biological systems. Furthermore, with the aid of PIPBA, we obtained visual evidence for the oxidative damage of FA in both HeLa cells and renal tissue of a living mouse. The results demonstrated that FA exerted indirect oxidative damage by interacting with free radicals, thus producing more oxidizing species, which eventually caused aggravated oxidative damage to the organism. The indirect oxidative damage due to FA could be alleviated by an exogenous or endogenous antioxidant. The excellent behaviors of PIPBA demonstrate that a chemical probe can detect endogenous FA in cells/tissue/vivo, promising to be an effective tool for further exploration of the biological mechanism of FA in living systems.
Collapse
Affiliation(s)
- Kun Dou
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ;
| | - Guang Chen
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ; .,Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China.,Key Laboratory of Tibetan Medicine Research , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Northwest Institute of Plateau Biology , Chinese Academy of Science , Xining 810001 , Qinghai , PR China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ;
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Ziping Cao
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ;
| | - Tao Chen
- Key Laboratory of Tibetan Medicine Research , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Northwest Institute of Plateau Biology , Chinese Academy of Science , Xining 810001 , Qinghai , PR China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Northwest Institute of Plateau Biology , Chinese Academy of Science , Xining 810001 , Qinghai , PR China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ; .,Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| |
Collapse
|
65
|
Biotinylated platinum(IV) complexes designed to target cancer cells. J Inorg Biochem 2017; 176:175-180. [PMID: 28917640 DOI: 10.1016/j.jinorgbio.2017.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
Three biotinylated platinum(IV) complexes (1-3) were designed and synthesized. The resulting platinum(IV) complexes exhibited effective cytotoxicity against the tested cancer cell lines, especially complex 1, which was 2.0-9.6-fold more potent than cisplatin. These complexes were found to be rapidly reduced to their activated platinum(II) counterparts by glutathione or ascorbic acid under biologically relevant condition. Additional molecular docking studies revealed that the biotin moieties of all Pt(IV) complexes can effectively bind with the streptavidin through the noncovalent interactions. Besides, introduction of the biotin group can obviously promote the cancer cell uptake of platinum when treated with complex 1, particularly in cisplatin-resistant SGC-7901/Cis cancer cells. Further mechanistic studies on complex 1 indicated that it activated the expression of Bax, and induced cytochrome c release from the mitochondria, and finally activated caspase-3.
Collapse
|
66
|
Li Z, Xu Y, Zhu H, Qian Y. Imaging of formaldehyde in plants with a ratiometric fluorescent probe. Chem Sci 2017; 8:5616-5621. [PMID: 28989598 PMCID: PMC5621015 DOI: 10.1039/c7sc00373k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
The fluorescence monitoring of formaldehyde in real environmental samples and live plant tissues is of great importance for physiological and pathological studies. However, there is a lack of suitable chemical tools to directly trace and measure the formaldehyde activity in bio-systems, and developing effective and, in particular, selective sensors for mapping formaldehyde in live tissues still remains a great challenge. Here, we demonstrate for the first time that the ratiometric fluorescence monitoring of formaldehyde in live plant tissues is achieved with a newly developed ratiometric fluorescent probe, FAP, which effectively eliminated interference from other comparative analytes. Live tissue analyses reveal that FAP can potentially detect exogenous and endogenous formaldehyde in live Arabidopsis thaliana tissues, exposing a potential application for biological and pathological studies of formaldehyde.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
| | - Yuqing Xu
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , No. 163 Xianlin Road , Nanjing 210023 , China .
- College of Chemistry and Materials Science , Nanjing Normal University , No. 1 Wenyuan Road , Nanjing , 210046 , China .
| |
Collapse
|
67
|
Wang C, Dong B, Kong X, Song X, Zhang N, Lin W. A cancer cell-specific fluorescent probe for imaging Cu 2+ in living cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:32-36. [PMID: 28390250 DOI: 10.1016/j.saa.2017.03.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2+ in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2+, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581nm in response to Cu2+. The probe exhibited excellent sensitivity and high selectivity for Cu2+ over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2+ in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Xuezhen Song
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Nan Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, PR China.
| |
Collapse
|
68
|
Liang XG, Chen B, Shao LX, Cheng J, Huang MZ, Chen Y, Hu YZ, Han YF, Han F, Li X. A Fluorogenic Probe for Ultrafast and Reversible Detection of Formaldehyde in Neurovascular Tissues. Am J Cancer Res 2017; 7:2305-2313. [PMID: 28740553 PMCID: PMC5505062 DOI: 10.7150/thno.19554] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022] Open
Abstract
Formaldehyde (FA) is endogenously produced in live systems and has been implicated in a diverse array of pathophysiological processes. To disentangle the detailed molecular mechanisms of FA biology, a reliable method for monitoring FA changes in live cells would be indispensable. Although there have been several fluorescent probes reported to detect FA, most are limited by the slow detection kinetics and the intrinsic disadvantage of detecting FA in an irreversible manner which may disturb endogenous FA homeostasis. Herein we developed a coumarin-hydrazonate based fluorogenic probe (PFM) based on a finely-tailored stereoelectronic effect. PFM could respond to FA swiftly and reversibly. This, together with its desirable specificity and sensitivity, endows us to track endogenous FA in live neurovascular cells with excellent temporal and spatial resolution. Further study in the brain tissue imaging showed the first direct observation of aberrant FA accumulation in cortex and hippocampus of Alzheimer's mouse model, indicating the potential of PFM as a diagnostic tool.
Collapse
|
69
|
Bruemmer KJ, Brewer TF, Chang CJ. Fluorescent probes for imaging formaldehyde in biological systems. Curr Opin Chem Biol 2017; 39:17-23. [PMID: 28527906 DOI: 10.1016/j.cbpa.2017.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022]
Abstract
Formaldehyde (FA) is a common environmental toxin but is also endogenously produced through a diverse array of essential biological processes, including mitochondrial one-carbon metabolism, metabolite oxidation, and nuclear epigenetic modifications. Its high electrophilicity enables reactivity with a wide variety of biological nucleophiles, which can be beneficial or detrimental to cellular function depending on the context. New methods that enable detection of FA in living systems can help disentangle the signal/stress dichotomy of this simplest reactive carbonyl species (RCS), and fluorescent probes for FA with high selectivity and sensitivity have emerged as promising chemical tools in this regard.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Thomas F Brewer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
70
|
Brewer TF, Burgos-Barragan G, Wit N, Patel KJ, Chang CJ. A 2-aza-Cope reactivity-based platform for ratiometric fluorescence imaging of formaldehyde in living cells. Chem Sci 2017; 8:4073-4081. [PMID: 28580121 PMCID: PMC5434806 DOI: 10.1039/c7sc00748e] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Formaldehyde (FA) is a major reactive carbonyl species (RCS) that is naturally produced in living systems through a diverse array of cellular pathways that span from epigenetic regulation to the metabolic processing of endogenous metabolites. At the same time, however, aberrant elevations in FA levels contribute to pathologies ranging from cancer and diabetes to heart, liver, and neurodegenerative diseases. Disentangling the complex interplay between FA physiology and pathology motivates the development of chemical tools that can enable the selective detection of this RCS in biological environments with spatial and temporal fidelity. We report the design, synthesis, and biological evaluation of ratiometric formaldehyde probe (RFAP) indicators for the excitation-ratiometric fluorescence imaging of formaldehyde production in living systems. RFAP-1 and RFAP-2 utilize FA-dependent aza-Cope reactivity to convert an alkylamine-functionalized coumarin platform into its aldehyde congener with a ca. 50 nm shift in the excitation wavelength. The probes exhibit visible excitation and emission profiles, and high selectivity for FA over a variety of RCS and related reactive biological analytes, including acetaldehyde, with up to a 6-fold change in the fluorescence ratio. The RFAP indicators can be used to monitor changes in FA levels in biological samples by live-cell imaging and/or flow cytometry. Moreover, RFAP-2 is capable of visualizing differences in the resting FA levels between wild-type cells and models with a gene knockout of ADH5, a major FA-metabolizing enzyme, establishing the utility of this ratiometric detection platform for identifying and probing sources of FA fluxes in biology.
Collapse
Affiliation(s)
- Thomas F Brewer
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - Guillermo Burgos-Barragan
- MRC Laboratory of Molecular Biology , University of Cambridge , Francis Crick Avenue , Cambridge CB2 0QH , UK
| | - Niek Wit
- MRC Laboratory of Molecular Biology , University of Cambridge , Francis Crick Avenue , Cambridge CB2 0QH , UK
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology , University of Cambridge , Francis Crick Avenue , Cambridge CB2 0QH , UK
- Department of Medicine , University of Cambridge , Addenbrooke's Hospital , Cambridge CB2 2QQ , UK
| | - Christopher J Chang
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , USA
- Howard Hughes Medical Institute , University of California , Berkeley , California 94720 , USA
| |
Collapse
|
71
|
Tang Y, Ma Y, Xu A, Xu G, Lin W. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells. Methods Appl Fluoresc 2017; 5:024005. [PMID: 28430668 DOI: 10.1088/2050-6120/aa6773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.
Collapse
Affiliation(s)
- Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People's Republic of China
| | | | | | | | | |
Collapse
|
72
|
Bruemmer K, Walvoord RR, Brewer TF, Burgos-Barragan G, Wit N, Pontel LB, Patel KJ, Chang CJ. Development of a General Aza-Cope Reaction Trigger Applied to Fluorescence Imaging of Formaldehyde in Living Cells. J Am Chem Soc 2017; 139:5338-5350. [PMID: 28375637 PMCID: PMC5501373 DOI: 10.1021/jacs.6b12460] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 12/22/2022]
Abstract
Formaldehyde (FA) is a reactive signaling molecule that is continuously produced through a number of central biological pathways spanning epigenetics to one-carbon metabolism. On the other hand, aberrant, elevated levels of FA are implicated in disease states ranging from asthma to neurodegenerative disorders. In this context, fluorescence-based probes for FA imaging are emerging as potentially powerful chemical tools to help disentangle the complexities of FA homeostasis and its physiological and pathological contributions. Currently available FA indicators require direct modification of the fluorophore backbone through complex synthetic considerations to enable FA detection, often limiting the generalization of designs to other fluorophore classes. To address this challenge, we now present the rational, iterative development of a general reaction-based trigger utilizing 2-aza-Cope reactivity for selective and sensitive detection of FA in living systems. Specifically, we developed a homoallylamine functionality that can undergo a subsequent self-immolative β-elimination, creating a FA-responsive trigger that is capable of masking a phenol on a fluorophore or any other potential chemical scaffold for related imaging and/or therapeutic applications. We demonstrate the utility of this trigger by creating a series of fluorescent probes for FA with excitation and emission wavelengths that span the UV to visible spectral regions through caging of a variety of dye units. In particular, Formaldehyde Probe 573 (FAP573), based on a resorufin scaffold, is the most red-shifted and FA sensitive in this series in terms of signal-to-noise responses and enables identification of alcohol dehydrogenase 5 (ADH5) as an enzyme that regulates FA metabolism in living cells. The results provide a starting point for the broader use of 2-aza-Cope reactivity for probing and manipulating FA biology.
Collapse
Affiliation(s)
- Kevin
J. Bruemmer
- Department
of Chemistry, Department of Molecular and Cell Biology, and Howard Hughes
Medical Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Ryan R. Walvoord
- Department
of Chemistry, Department of Molecular and Cell Biology, and Howard Hughes
Medical Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Thomas F. Brewer
- Department
of Chemistry, Department of Molecular and Cell Biology, and Howard Hughes
Medical Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| | | | - Niek Wit
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Lucas B. Pontel
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Ketan J. Patel
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Department
of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | - Christopher J. Chang
- Department
of Chemistry, Department of Molecular and Cell Biology, and Howard Hughes
Medical Institute, University of California,
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
73
|
Singha S, Jun YW, Bae J, Ahn KH. Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts. Anal Chem 2017; 89:3724-3731. [DOI: 10.1021/acs.analchem.7b00044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Subhankar Singha
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Yong Woong Jun
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Juryang Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| |
Collapse
|
74
|
Bi A, Yang S, Liu M, Wang X, Liao W, Zeng W. Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra05651f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Formaldehyde (FA), as a vital industrial chemical, is widely used in building materials and numerous living products.
Collapse
Affiliation(s)
- Anyao Bi
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Shuqi Yang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Min Liu
- Department of Pharmacy
- Xiangya Hospital
- Central South University
- Changsha 410008
- China
| | - Xiaobo Wang
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| | - Weihua Liao
- Molecular Imaging Research Center
- Central South University
- Changsha
- China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- China
- Molecular Imaging Research Center
| |
Collapse
|
75
|
Song X, Dong B, Kong X, Wang C, Zhang N, Lin W. A cancer cell-specific two-photon fluorescent probe for imaging hydrogen sulfide in living cells. RSC Adv 2017. [DOI: 10.1039/c7ra01479a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydrogen sulfide (H2S) could induce the proliferation of cancer cells in a concentration-dependent manner, and has close relation with the tumor growth.
Collapse
Affiliation(s)
- Xuezhen Song
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Chao Wang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Nan Zhang
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
76
|
Zhang B, Qin F, Niu H, Liu Y, Zhang D, Ye Y. A highly sensitive and fast responsive naphthalimide-based fluorescent probe for Cu2+ and its application. NEW J CHEM 2017. [DOI: 10.1039/c7nj02813j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The response of the probe L to Cu2+ is reversible and very fast (20 s). L has a low detection limit of 49 nM and was used for imaging of Cu2+ in MCF-7 cells with satisfying results. The sensor L can be analyzed with a molecular logic gate.
Collapse
Affiliation(s)
- Beibei Zhang
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Fengyun Qin
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Huawei Niu
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Yao Liu
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences
- Zhengzhou
- China
| | - Yong Ye
- Phosphorus Chemical Engineering Research Center of Henan Province
- The College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou
- China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University
| |
Collapse
|