51
|
Leone L, D’Alonzo D, Maglio O, Pavone V, Nastri F, Lombardi A. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
- Institute of Biostructures and Bioimages—National Research Council, Via Mezzocannone 16, Napoli 80134, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| |
Collapse
|
52
|
Lu ZQ, Zhang LL, Yan Y, Wang W. Polyelectrolytes of Inorganic Polyoxometalates: Acids, Salts, and Complexes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhuo-Qun Lu
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Lan-Lan Zhang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | - Yukun Yan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wei Wang
- Center for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
53
|
Michel H, Kroc T, McEvoy BJ, Patil D, Reppert P, Smith MA. Potential Induced Radioactivity in Materials Processed with X-ray Energy Above 5 MeV. Biomed Instrum Technol 2021; 55:17-26. [PMID: 34153999 DOI: 10.2345/0899-8205-55.s3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Section 5.1.2 of ANSI/AAMI/ISO 11137-1 states that "the potential for induced radioactivity in product shall be assessed." This article describes how compliance with this requirement may be achieved using qualified test methods. Materials of consideration are conceptually discussed, and results of testing conducted on products processed with a 7.5-MeV X-ray irradiation process are provided. As X-ray becomes more widely used in healthcare sterilization, having standard assessment protocols for activation coupled with a shared database of material test results will benefit manufacturers seeking to utilize this innovative technology.
Collapse
|
54
|
Gorshkov NI, Murko AY, Zolotova YI, Nazarova OV, Krasikov VD, Shatik SV, Panarin EF. Introduction of Re(CO) 3+/ 99mTc(CO) 3+ Organometallic Species into Vinylpyrrolidone-Allyliminodiacetate Copolymers. Polymers (Basel) 2021; 13:polym13111832. [PMID: 34205969 PMCID: PMC8198885 DOI: 10.3390/polym13111832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
N-vinylpyrrolidone-co-allylamine copolymers (VP-co-AA) containing iminodiacetic (IDA) chelation units were prepared in the range of molecular masses of the copolymers from 9000 to 30,000 Da depending on polymerization conditions. Non-radioactive organometallic species Re(CO)3+ were introduced into polymeric carriers under mild conditions; the prepared metal–polymeric complexes were characterized by IR, NMR, ESI-MS and HPLC. IR spectra data confirmed the coordination of M(CO)3+ moiety to the polymeric backbone via IDA chelation unit (appearance of characteristic fac-M(CO)3+ vibrations (2005, 1890 cm−1), as well as the appearance of group of signals in 1H NMR spectra, corresponding to those inequivalent to methylene protons CH2COO (dd, 4.2 ppm), coordinated to metal ions. The optimal conditions for labeling the PVP-co-AA-IDA copolymers with radioactive 99mTc(CO)3+ species were determined. The radiochemical yields reached 97%. The obtained radiolabeled polymers were stable in blood serum for 3 h. In vivo distribution experiments in intact animals showed the high primary accumulation of technetium-99m MPC (MM = 15,000 Da) in blood with subsequent excretion via the urinary tract.
Collapse
Affiliation(s)
- Nikolay Ivanovich Gorshkov
- Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), Russian Federation, V.O. Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (A.Y.M.); (Y.I.Z.); (O.V.N.); (V.D.K.); (E.F.P.)
- Correspondence: ; Tel.: +7-(812)-323-71-01
| | - Andrei Yur'evich Murko
- Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), Russian Federation, V.O. Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (A.Y.M.); (Y.I.Z.); (O.V.N.); (V.D.K.); (E.F.P.)
| | - Yulia Igorevna Zolotova
- Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), Russian Federation, V.O. Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (A.Y.M.); (Y.I.Z.); (O.V.N.); (V.D.K.); (E.F.P.)
| | - Olga Vladimirovna Nazarova
- Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), Russian Federation, V.O. Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (A.Y.M.); (Y.I.Z.); (O.V.N.); (V.D.K.); (E.F.P.)
| | - Valerii Dmitrievich Krasikov
- Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), Russian Federation, V.O. Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (A.Y.M.); (Y.I.Z.); (O.V.N.); (V.D.K.); (E.F.P.)
| | - Sergei Vasilievich Shatik
- Federal State Budgetary Institution “Russian Research Center for Radiology and Surgical Technologies” of the Ministry of Health of the Russian Federation, Russian Federation, p. Pesochny, ul. Leningradskaya, 70, 197758 Saint Petersburg, Russia;
| | - Evgenii Fedorovich Panarin
- Federal State Budgetary Institution of Science Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), Russian Federation, V.O. Bolshoy pr. 31, 199004 Saint Petersburg, Russia; (A.Y.M.); (Y.I.Z.); (O.V.N.); (V.D.K.); (E.F.P.)
| |
Collapse
|
55
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
56
|
Li XL, Xiao L, Kong YZ, Xiao GQ, Chen YY, Zou HQ. Two Co(II) coordination polymers: protective activity on nephrotic syndrome by regulating intestinal flora abundance. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1897136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiao-Lei Li
- Department of Nephronology, Institute of Nephronology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lei Xiao
- Department of Internal Medicine, Foshan Women and Children hospital, Foshan, China
| | - Yao-Zhong Kong
- Department of Nephronology, The First People's Foshan Hospital, Foshan, China
| | - Guan-Qing Xiao
- Department of Nephronology, The First People's Foshan Hospital, Foshan, China
| | - You-Yuan Chen
- Department of Nephronology, The First People's Foshan Hospital, Foshan, China
| | - He-Qun Zou
- Department of Nephronology, Institute of Nephronology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
57
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
58
|
Winter T, Haider W, Schießer A, Presser V, Gallei M, Schäfer A. Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromol Rapid Commun 2021; 42:e2000738. [PMID: 33554420 DOI: 10.1002/marc.202000738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2 C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol-1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented.
Collapse
Affiliation(s)
- Tamara Winter
- Ernst-Berl-Institute of Chemical Engineering and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany.,Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany
| | - Wasim Haider
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Alexander Schießer
- Mass Spectrometry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Volker Presser
- Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken, 66123, Germany.,INM - Leibniz-Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Markus Gallei
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - André Schäfer
- Department of Chemistry, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
59
|
Usman M, Khan RA, Khan MR, Abul Farah M, BinSharfan II, Alharbi W, Shaik JP, Parine NR, Alsalme A, Tabassum S. A novel biocompatible formate bridged 1D-Cu(ii) coordination polymer induces apoptosis selectively in human lung adenocarcinoma (A549) cells. Dalton Trans 2021; 50:2253-2267. [PMID: 33506238 DOI: 10.1039/d0dt03782f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper compounds are promising candidates for next-generation metal anticancer drugs. Therefore, we synthesized and characterized a formate bridged 1D coordination polymer [Cu(L)(HCOO)2]n, (L = 2-methoxy-6-methyl-3-((quinolin-8-ylimino)methyl)chroman-4-ol), PCU1, wherein the Cu(ii) center adopts a square pyramidal coordination environment with adjacent CuCu distances of 5.28 Å. Primarily, in vitro DNA interaction studies revealed a metallopolymer which possesses high DNA binding propensity and cleaves DNA via the oxidative pathway. We further analysed its potential on cancerous cells MCF-7, HeLa, A549, and two non-tumorigenic cells HEK293 and HBE. The selective cytotoxicity potential of PCU1 against A549 cells driven us to examine the mechanistic pathways comprehensively by carrying out various assays viz, cell cycle arrest, Annexin V-FTIC/PI assay, autophagy, intercellular localization, mitochondrial membrane potential 'MMP', antiproliferative assay, and gene expression of TGF-β and MMP-2.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
He Z, Zhang Z, Asare-Yeboah K, Bi S, Chen J, Li D. Polyferrocenylsilane Semicrystalline Polymer Additive for Solution-Processed p-Channel Organic Thin Film Transistors. Polymers (Basel) 2021; 13:polym13030402. [PMID: 33513894 PMCID: PMC7865563 DOI: 10.3390/polym13030402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we demonstrated for the first time that a metal-containing semicrystalline polymer was used as an additive to mediate the thin film morphology of solution-grown, small-molecule organic semiconductors. By mixing polyferrocenylsilane (PFS) with an extensively-studied organic semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), PFS as a semicrystalline polymer independently forms nucleation and crystallization while simultaneously ameliorating diffusivity of the blend system and tuning the surface energies as a result of its partially amorphous property. We discovered that the resultant blend film exhibited a 6-fold reduction in crystal misorientation angle and a 3-fold enlargement in average grain width. Enhanced crystal orientation considerably reduces mobility variation, while minimized defects and trap centers located at grain boundaries lessen the adverse impact on the charge transport. Consequently, bottom-gate, top-contact organic thin film transistors (OTFTs) based on the TIPS pentacene/PFS mixture yielded a 40% increase in performance consistency (represented by the ratio of average mobility to the standard deviation of mobility). The PFS semicrystalline polymer-controlled crystallization can be used to regulate the thin film morphology of other high-performance organic semiconductors and shed light on applications in organic electronic devices.
Collapse
Affiliation(s)
- Zhengran He
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Ziyang Zhang
- Department of Electrical Engineering, Columbia University, New York City, NY 10027, USA;
| | - Kyeiwaa Asare-Yeboah
- Department of Electrical and Computer Engineering, Penn State Behrend, Erie, PA 16563, USA;
| | - Sheng Bi
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of Education, Dalian University of Technology, Dalian 116024, China;
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (J.C.); (D.L.); Tel.: +1-(865)576-3385 (J.C.); +1-(205)348-9930 (D.L.)
| | - Dawen Li
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
- Correspondence: (J.C.); (D.L.); Tel.: +1-(865)576-3385 (J.C.); +1-(205)348-9930 (D.L.)
| |
Collapse
|
61
|
Carter OWL, Xu Y, Sadler PJ. Minerals in biology and medicine. RSC Adv 2021; 11:1939-1951. [PMID: 35424161 PMCID: PMC8693805 DOI: 10.1039/d0ra09992a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Natural minerals ('stone drugs') have been used in traditional Chinese medicines for over 2000 years, but there is potential for modern-day use of inorganic minerals to combat viral infections, antimicrobial resistance, and for other areas in need of new therapies and diagnostic aids. Metal and mineral surfaces on scales from milli-to nanometres, either natural or synthetic, are patterned or can be modified with hydrophilic/hydrophobic and ionic/covalent target-recognition sites. They introduce new strategies for medical applications. Such surfaces have novel properties compared to single metal centres. Moreover, 3D mineral particles (including hybrid organo-minerals) can have reactive cavities, and some minerals have dynamic movement of metal ions, anions, and other molecules within their structures. Minerals have a unique ability to interact with viruses, microbes and macro-biomolecules through multipoint ionic and/or non-covalent contacts, with potential for novel applications in therapy and biotechnology. Investigations of mineral deposits in biology, with their often inherent heterogeneity and tendency to become chemically-modified on isolation, are highly challenging, but new methods for their study, including in intact tissues, hold promise for future advances.
Collapse
Affiliation(s)
- Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- MAS CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Yingjian Xu
- GoldenKeys High-Tech Materials Co., Ltd, Building B, Innovation & Entrepreneurship Park Guian New Area Guizhou Province 550025 China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
62
|
Bhattacharjee A, Das S, Das B, Roy P. Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
63
|
Liu B, Zhou C, Zhang Z, Roland JD, Lee BP. Antimicrobial Property of Halogenated Catechols. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 403:126340. [PMID: 32848507 PMCID: PMC7444726 DOI: 10.1016/j.cej.2020.126340] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial infection associated with multidrug resistance (MDR) bacteria is increasingly becoming a significant public health risk. Herein, we synthesized a series of halogenated dopamine methacrylamide (DMA), which contains a catechol side chain modified with either chloro-, bromo-, or iodo-functional group. Catechol is a widely used adhesive moiety for designing bioadhesives and coating. However, the intrinsic antimicrobial property of catechol has not been demonstrated before. These halogenated DMA were incorporated into hydrogels, copolymers, and coatings and exhibited more than 99% killing efficiencies against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. More importantly, hydrogel containing chlorinated DMA demonstrated broad-spectrum antimicrobial activities towards multiple MDR bacteria, which included methicillin resistant S. aureus (MRSA), vancomycin resistant enterococci (VRE), multi antibiotics resistant Pseudomonas aeruginosa (PAER), multi antibiotics resistant Acinetobacter baumannii (AB) and carbapenem resistant Klebsiella pneumoniae (CRKP). These hydrogels also demonstrated the ability to kill bacteria in a biofilm while exhibiting low cytotoxic. Based on molecular docking and molecular dynamics simulation, Cl-functionalized catechol can potentially inhibit bacterial fatty acid synthesis at the enoyl-acyl carrier protein reductase (FabI) step. The combination of moisture-resistant adhesive property, inherent antimicrobial property, and the versatility of incorporating halogenated DMA into different polymeric materials greatly enhanced the potential for using these monomers for designing multifunctional bioadhesives and coatings.
Collapse
Affiliation(s)
- Bo Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Chao Zhou
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James D. Roland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
64
|
Sousa CFV, Fernandez-Megia E, Borges J, Mano JF. Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polym Chem 2021. [DOI: 10.1039/d1py00988e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive and critical overview of the supramolecular dendrimer-containing multifunctional layer-by-layer nanoassemblies driven by a multitude of intermolecular interactions for biological and biomedical applications.
Collapse
Affiliation(s)
- Cristiana F. V. Sousa
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
65
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
66
|
Lin X, Xie W, Lin Q, Cai Y, Hua Y, Lin J, He G, Chen J. NIR-responsive metal-containing polymer hydrogel for light-controlled microvalve. Polym Chem 2021. [DOI: 10.1039/d1py00404b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NIR-responsive metal-containing polymer hydrogel was prepared via the radical copolymerization of N-isopropylacrylamide and an osmium aromatic complex. It has excellent photothermal property and can be used as a light-controlled microvalve.
Collapse
Affiliation(s)
- Xusheng Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Weiwei Xie
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuanting Cai
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jianfeng Lin
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| |
Collapse
|
67
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
68
|
Neill CJ, Harris S, Goldstone RJ, Lau ECHT, Henry TB, Yiu HHP, Smith DGE. Antibacterial Activities of Ga(III) against E. coli Are Substantially Impacted by Fe(III) Uptake Systems and Multidrug Resistance in Combination with Oxygen Levels. ACS Infect Dis 2020; 6:2959-2969. [PMID: 32960047 DOI: 10.1021/acsinfecdis.0c00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The continued emergence and spread of antimicrobial resistance (AMR), particularly multidrug resistant (MDR) bacteria, are increasing threats driving the search for additional and alternative antimicrobial agents. The World Health Organization (WHO) has categorized bacterial risk levels and includes Escherichia coli among the highest priority, making this both a convenient model bacterium and a clinically highly relevant species on which to base investigations of antimicrobials. Among many compounds examined for use as antimicrobials, Ga(III) complexes have shown promise. Nonetheless, the spectrum of activities, susceptibility of bacterial species, mechanisms of antimicrobial action, and bacterial characteristics influencing antibacterial actions are far from being completely understood; these are important considerations for any implementation of an effective antibacterial agent. In this investigation, we show that an alteration in growth conditions to physiologically relevant lowered oxygen (anaerobic) conditions substantially increases the minimum inhibitory concentrations (MICs) of Ga(III) required to inhibit growth for 46 wild-type E. coli strains. Several studies have implicated a Trojan horse hypothesis wherein bacterial Fe uptake systems have been linked to the promotion of Ga(III) uptake and result in enhanced antibacterial activity. Our studies show that, conversely, the carriage of accessory Fe uptake systems (Fe_acc) significantly increased the concentrations of Ga(III) required for antibacterial action. Similarly, it is shown that MDR strains are more resistant to Ga(III). The increased tolerance of Fe_acc/MDR strains was apparent under anaerobic conditions. This phenomenon of heightened tolerance has not previously been shown although the mechanisms remain to be defined. Nonetheless, this further highlights the significant contributions of bacterial metabolism, fitness, and AMR characteristics and their implications in evaluating novel antimicrobials.
Collapse
Affiliation(s)
- Christopher J. Neill
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Susan Harris
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Robert J. Goldstone
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Elizabeth C. H. T. Lau
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Theodore B. Henry
- The Institute of Life and Earth Sciences (ILES), School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Humphrey H. P. Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - David G. E. Smith
- The Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
69
|
Sha Y, Jia H, Shen Z, Luo Z. Synthetic strategies, properties, and applications of unsaturated main-chain metallopolymers prepared by olefin metathesis polymerization. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1801727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Huan Jia
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Zhihua Shen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
70
|
Jarach N, Dodiuk H, Kenig S. Polymers in the Medical Antiviral Front-Line. Polymers (Basel) 2020; 12:E1727. [PMID: 32752109 PMCID: PMC7464166 DOI: 10.3390/polym12081727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Antiviral polymers are part of a major campaign led by the scientific community in recent years. Facing this most demanding of campaigns, two main approaches have been undertaken by scientists. First, the classic approach involves the development of relatively small molecules having antiviral properties to serve as drugs. The other approach involves searching for polymers with antiviral properties to be used as prescription medications or viral spread prevention measures. This second approach took two distinct directions. The first, using polymers as antiviral drug-delivery systems, taking advantage of their biodegradable properties. The second, using polymers with antiviral properties for on-contact virus elimination, which will be the focus of this review. Anti-viral polymers are obtained by either the addition of small antiviral molecules (such as metal ions) to obtain ion-containing polymers with antiviral properties or the use of polymers composed of an organic backbone and electrically charged moieties like polyanions, such as carboxylate containing polymers, or polycations such as quaternary ammonium containing polymers. Other approaches include moieties hybridized by sulphates, carboxylic acids, or amines and/or combining repeating units with a similar chemical structure to common antiviral drugs. Furthermore, elevated temperatures appear to increase the anti-viral effect of ions and other functional moieties.
Collapse
Affiliation(s)
| | | | - Samuel Kenig
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar College of Engineering and Design, Raman-Gan 52562, Israel; (N.J.); (H.D.)
| |
Collapse
|
71
|
Banaspati A, Raza MK, Goswami TK. Ni(II) curcumin complexes for cellular imaging and photo-triggered in vitro anticancer activity. Eur J Med Chem 2020; 204:112632. [PMID: 32781350 DOI: 10.1016/j.ejmech.2020.112632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Nickel(II) complexes [Ni(cur)(L)2](OAc) (1-3) where L is N,N-donor heterocyclic bases namely 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3) and Hcur is curcumin were prepared, fully characterized and light-induced in vitro anticancer activity studied. Three nickel(II) complexes containing acetylacetonato (Hacac) ligand, viz.[Ni(acac)(L)2](OAc) (4-6) where L is phen (in 4), dpq (in 5), dppz (in 6) were prepared and used as controls. Complex 4 was structurally characterized by single crystal X-ray diffraction technique, which revealed an octahedral NiN4O2 geometry around the metal centre. Complexes 1-3 showed an intense curcumin-based band at ∼440 nm in DMSO-Tris-HCl buffer (pH = 7.2) (1:4 v/v) which masks the nickel based d-d band. The curcumin comlexes (1-3) were redox inactive at the nickel centre, whereas the acetylacetonato complexes (4-6) displayed an irreversible voltammetric response at ∼1.00 V vs. Ag/AgCl reference electrode in DMF. The complexes bind to calf thymus DNA (ct-DNA) with considerable affinity and interacted with human serum albumin (HSA) with moderate affinity. The Ni(II) curcumin complexes display significant in vitro light-induced cytotoxicity in HeLa (human cervical carcinoma) and A549 (lung cancer cells) involving reactive oxygen species (ROS), with very low dark toxicity. The complexes were found to be much less toxic to immortalized lung epithelial normal cells (HPL1D). Confocal microscopic images using complex 2 and 3 showed that they primarily localize in the cytosol of A549 cells. The mechanism of cell death is mainly apoptosis in nature showing arrest of sub-G1 phase of cell cycle progression in A549 cells under visible light exposure and involves significant loss of mitochondrial membrane potential as observed from JC-1 assay.
Collapse
Affiliation(s)
- Atrayee Banaspati
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Tridib K Goswami
- Department of Chemistry, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
72
|
Sha Y, Shen Z, Jia H, Luo Z. Main-Chain Ferrocene-Containing Polymers Prepared by Acyclic Diene Metathesis Polymerization: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666191227111804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ferrocene, the crown of metallocene family, is widely studied as a functional
unit in electrochemical and catalytic applications due to its sandwich structure. Ferrocene
moieties can be embedded into the polymer backbone, leading to main-chain ferrocenecontaining
polymers. These polymeric materials combine the unique functionalities of
iron center with the processabilities of polymers. As one of the choice polymerization
techniques, acyclic diene metathesis (ADMET) polymerization serves as a versatile
method to prepare main-chain ferrocene-containing polymers under mild conditions using
α,ω-dienes as monomers. This paper overviews main-chain ferrocene-containing polymers
prepared by ADMET polymerization. Advances in the design, synthesis and applications
of this class of organometallic monomers and polymers are detailed.
Collapse
Affiliation(s)
- Ye Sha
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhihua Shen
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Huan Jia
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
73
|
Significant advancements of 4D printing in the field of orthopaedics. J Clin Orthop Trauma 2020; 11:S485-S490. [PMID: 32774016 PMCID: PMC7394805 DOI: 10.1016/j.jcot.2020.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Researchers, engineers and doctors are continuously focusing on the development of orthopaedics parts characterised by the required responses. So, advanced manufacturing technologies are introduced to fulfil various previously faced challenges. 4D printing provides rapid development with its capability of customization of smart orthopaedics implants and appropriate surgical procedure. This technology opens up the making of innovative, adaptable internal splints, stents, replacement of tissues and organs. Thus, to write this review based article, relevant papers on 4D printing in medical/orthopaedics and smart materials are identified and studied. 4D printed parts show the capability of shape-changing and self-assembly to perform the required functions, which otherwise manufactured parts are not providing. Smart orthopaedics implants are used for spinal deformities, fracture fixation, joint, knee replacement and other related orthopaedics applications. This paper briefs about the 4D printing technology with its major benefits for orthopaedics applications. Today various smart materials are available, which could be used as raw material in 4D printing, and we have discussed capabilities of some of them. Due to the ability of shape-changing, smart implants can change their shape after being implanted in the patient body. Finally, twelve significant advancements of 4D printing in the field of orthopaedics are identified and briefly provided. Thus, 4D printing help to provide a significant effect on personalised treatments.
Collapse
|
74
|
Béland VA, Ragogna PJ. Metallized Phosphane-Ene Polymer Networks as Precursors for Ceramics with Excellent Shape Retention. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27640-27650. [PMID: 32441913 DOI: 10.1021/acsami.0c09044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Our research group has reported the synthesis of phosphane-ene photopolymer networks, where the networks are composed of cross-linked tertiary alkyl phosphines. Taking advantage of the rich coordination chemistry of alkyl phosphines and the material's susceptibility to solution chemistry, we were able to generate Co, Al, and Ge macromolecular adducts. The metallized polymer networks can be pyrolyzed to make metal-doped carbon, commodity materials in the areas of battery, and fuel cell research. The polymer precursors can also be shaped by spin coating and lithography, before being metallized and pyrolyzed to give patterned ceramics, which display excellent shape retention of the original patterns.
Collapse
Affiliation(s)
- Vanessa A Béland
- Department of Chemistry and the Center for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Paul J Ragogna
- Department of Chemistry and the Center for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
75
|
Tetrazole functional copolymers: Facile access to well-defined Rhenium(I)-Polymeric luminescent materials. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
76
|
Tao B, Yin Z. Redox-Responsive Coordination Polymers of Dopamine-Modified Hyaluronic Acid with Copper and 6-Mercaptopurine for Targeted Drug Delivery and Improvement of Anticancer Activity against Cancer Cells. Polymers (Basel) 2020; 12:polym12051132. [PMID: 32423174 PMCID: PMC7285144 DOI: 10.3390/polym12051132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 02/02/2023] Open
Abstract
Dopamine-modified hyaluronic acid (HA-DOP) was chosen as the drug carrier in this study, and Cu2+ was selected from among Cu2+, Zn2+, Fe2+, and Ca2+ as the central atom. 6-Mercaptopurine (6-MP) was conjugated with HA through a coordination reaction. HA-DOP-copper-MP (HA-DOP-Cu-MP), a redox-responsive coordination polymer prodrug, was prepared. The drug loading was 49.5 mg/g, the encapsulation efficiency was 70.18%, and the particle size was 173.5 nm. HA-DOP-Cu-MP released rapidly in the release medium containing reduced glutathione (GSH), and the accumulated release exceeded 94% in 2 h. In the release medium without GSH, the drug release rate was slow, with only 15% of the 6-MP released in 24 h. Cell uptake experiments revealed the CD44 targeting of HA. Cell viability assays showed that the cytotoxicity of HA-DOP-Cu-MP was higher than that of free 6-MP. Indeed, HA-DOP-Cu-MP is very toxic to cancer cells. In this paper, the redox-responsive drug delivery system was synthesized by a coordination reaction. The tumour targeting and tumour cytotoxicity of 6-MP were improved.
Collapse
|
77
|
Li Z, Li Y, Zhao Y, Wang H, Zhang Y, Song B, Li X, Lu S, Hao XQ, Hla SW, Tu Y, Li X. Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. J Am Chem Soc 2020; 142:6196-6205. [PMID: 32150680 PMCID: PMC7375330 DOI: 10.1021/jacs.0c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the past few decades, the study of the single polymer chain has attracted considerable attention with the goal of exploring the structure-property relationship of polymers. It still, however, remains challenging due to the variability and low atomic resolution of the amorphous single polymer chain. Here, we demonstrated a new strategy to visualize the single metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) with strong coordination and Fe(II) with weak coordination were combined together in a stepwise manner. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM) and scanning tunneling spectroscopy (STS), we were able to directly visualize both Ru(II) and Fe(II), which act as staining reagents on the repeat units, thus providing detailed structural information for the single polymer chain. As such, the direct visualization of the single random polymer chain is realized to enhance the characterization of polymers at the single-molecule level.
Collapse
Affiliation(s)
- Zhikai Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuan Zhang
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Bo Song
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Saw-Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
78
|
Altaf S, Ajaz H, Imran M, Ul-Hamid A, Naz M, Aqeel M, Shahzadi A, Shahbaz A, Ikram M. Synthesis and characterization of binary selenides of transition metals to investigate its photocatalytic, antimicrobial and anticancer efficacy. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01350-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
79
|
Zhu T, Zhang J, Tang C. Metallo-Polyelectrolytes: Correlating Macromolecular Architectures with Properties and Applications. TRENDS IN CHEMISTRY 2020; 2:227-240. [PMID: 34337370 PMCID: PMC8323828 DOI: 10.1016/j.trechm.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since the middle of the 20th century, metallopolymers have represented a standalone subfield with a beneficial combination of functionality from inorganic metal centers and processability from the organic polymeric frameworks. Metallo-polyelectrolytes are a new class of soft materials that showcase fundamentally different properties from neutral polymers due to their intrinsically ionic behaviors. This review describes recent trends in metallo-polyelectrolytes and discusses emerging properties and challenges, as well as future directions from a perspective of macromolecular architectures. The correlations between macromolecular architectures and properties are discussed from copolymer self-assembly, metallo-enzymes for biomedical applications, metallo-peptides for catalysis, crosslinked networks, and metallogels.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, 211189, Nanjing, PR China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
80
|
Mao J, Wang J, Tang G, Chu PK, Bai H. A zipped-up tunable metal coordinated cationic polymer for nanomedicine. J Mater Chem B 2020; 8:1350-1358. [PMID: 32039417 DOI: 10.1039/c9tb02965f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Incorporating metal elements into polymers is a feasible means to fabricate new materials with multiple functionalities. In this work, a metal coordinated cationic polymer (MCCP) was developed. Ferric ions were incorporated into the polyethyleneimine-β-cyclodextrin (PC) polymer chain via coordination to produce a zipped-up polymer with a micro-ordered and macro-disordered topological structure. By varying the metal concentration, a tunable superstructure could be formed on the nano-templates via the "zipping" effect. In addition, the physicochemical properties of the assembly of MCCPs and nucleic acids were tailored by tuning the composition of the metal ions and polymers. The loading efficiency of Rhodamine-B by MCCPs was enhanced. The in vitro and in vivo results showed that the hybrid materials could be adjusted to deliver nucleic acids or small molecules with good performance and acquired the capacity of generating reactive oxygen species in tumor cells. Thus, the tunable and multifunctional MCCP system has great potential in nanomedicine and biomaterial science.
Collapse
Affiliation(s)
- Jianming Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Jianwei Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China and Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China and Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China and Department of Physics, Department of Materials Science and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
81
|
Sha Y, Zhu T, Rahman A, Cha Y, Hwang J, Luo Z, Tang C. Synthesis of Site-specific Charged Metallopolymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. POLYMER 2020; 187:122095. [PMID: 32863439 PMCID: PMC7451713 DOI: 10.1016/j.polymer.2019.122095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific cobaltocenium-labeled polymers are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cobaltocenium-labeled chain transfer agents. These chain transfer agents show counterion-dependent solubility. Based on the chemical structure of the chain transfer agents, single cobaltocenium moieties are dictated to be in predetermined locations at either the center or terminals of the polymer chains. Polymerization of hydrophobic monomers (methyl methacrylate, methyl acrylate and styrene) and hydrophilic monomers (2-(dimethylamino)ethyl methacrylate and methacrylic acid) is demonstrated to follow a controlled manner based on kinetic studies. Cobaltocenium-labeled polymers with molecular weights greater than 100,000 Da can be prepared by using a difunctional chain transfer agent. Photophysical properties, electrochemical properties, thermal properties and morphology of the cobaltocenium-labeled polymers are also investigated.
Collapse
Affiliation(s)
- Ye Sha
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yujin Cha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jihyeon Hwang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
82
|
Rahman MA, Cha Y, Yuan L, Pageni P, Zhu T, Jui MS, Tang C. Polymerization-Induced Self-Assembly of Metallo-Polyelectrolyte Block Copolymers. JOURNAL OF POLYMER SCIENCE 2020; 58:77-83. [PMID: 34337427 PMCID: PMC8324045 DOI: 10.1002/pola.29439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 11/08/2022]
Abstract
Cobaltocenium-containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain-transfer agent (macro-CTA) based on poly (2-cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core-forming block was poly(2-hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro-CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core-forming PHPMA had a strong influence on the size of nanoparticles.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Yujin Cha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Liang Yuan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Parasmani Pageni
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Moumita Sharmin Jui
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
83
|
Yan J, Yang W, Zhang Q, Yan Y. Introducing borane clusters into polymeric frameworks: architecture, synthesis, and applications. Chem Commun (Camb) 2020; 56:11720-11734. [DOI: 10.1039/d0cc04709k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This feature article summarizes the preparation and applications of borane cluster-containing polymers and covers research progress and future trends of borane cluster-containing linear, dendritic, macrocyclic polymers and metal–organic frameworks.
Collapse
Affiliation(s)
- Jing Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Weihong Yang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Qiuyu Zhang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| | - Yi Yan
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions
- Northwestern Polytechnical University
| |
Collapse
|
84
|
Yu Q, Li M, Gao J, Xu P, Chen Q, Xing D, Yan J, Zaworotko MJ, Xu J, Chen Y, Cheng P, Zhang Z. Fabrication of Large Single Crystals for Platinum‐Based Linear Polymers with Controlled‐Release and Photoactuator Performance. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qi Yu
- College of ChemistryNankai University Tianjin 300071 China
- Shandong Provincial Key Laboratory of Fine ChemicalsSchool of Chemistry and Pharmaceutical EngineeringQilu University of Technology Jinan 250353 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Mingmin Li
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Jia Gao
- College of ChemistryNankai University Tianjin 300071 China
| | - Peixin Xu
- College of ChemistryNankai University Tianjin 300071 China
| | - Qizhe Chen
- College of ChemistryNankai University Tianjin 300071 China
| | - Dong Xing
- College of ChemistryNankai University Tianjin 300071 China
| | - Jie Yan
- College of ChemistryNankai University Tianjin 300071 China
| | - Michael J. Zaworotko
- Department of Chemical SciencesBernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Jun Xu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Peng Cheng
- College of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
- College of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| |
Collapse
|
85
|
Wang RS, Chen LC, Yang H, Fu MA, Cheng J, Wu XL, Gao Y, Huang ZB, Chen XJ. Superconductivity in an organometallic compound. Phys Chem Chem Phys 2019; 21:25976-25981. [PMID: 31637392 DOI: 10.1039/c9cp04227j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organometallic compounds constitute a very large group of substances that contain at least one metal-to-carbon bond in which the carbon is part of an organic group. They have played a major role in the development of the science of chemistry. These compounds are used to a large extent as catalysts (substances that increase the rate of reactions without themselves being consumed) and as intermediates in the laboratory and in industry. Recently, novel quantum phenomena such as topological insulators and superconductors were also suggested in these materials. However, there has been no report on the experimental exploration of the topological state. Evidence for superconductivity from the zero-resistivity state in any organometallic compound has not been achieved yet, though much effort has been made. Here we report the experimental realization of superconductivity with a critical temperature of 3.6 K in a potassium-doped organometallic compound, i.e. tri-o-tolylbismuthine, with evidence of both the Meissner effect and the zero-resistivity state through dc and ac magnetic susceptibility measurements. The obtained superconducting parameters classify this compound as a type-II superconductor. The benzene ring is identified to be the essential superconducting unit in such a phenyl organometallic compound. The superconducting phase and its composition are determined by combined studies of X-ray diffraction and theoretical calculations as well as Raman spectroscopy measurements. These findings enrich the applications of organometallic compounds in superconductivity and add a new electron-acceptor family of organic superconductors. This work also points to a large pool for finding superconductors from organometallic compounds.
Collapse
Affiliation(s)
- Ren-Shu Wang
- School of Materials Science and Engineering, Faculty of Physics and Electronic Technology, Hubei University, Wuhan 430062, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zubair M, Sirajuddin M, Haider A, Hussain I, Tahir MN, Ali S. Organotin (IV) Complexes as Catalyst for Biodiesel Formation: Synthesis, Structural Elucidation and Computational Studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Muhammad Zubair
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Muhammad Sirajuddin
- Department of ChemistryUniversity of Science and Technology Bannu Bannu 28100 Pakistan
| | - Ali Haider
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Ishtiaq Hussain
- Department of Pharmaceutical ScienceAbbottabad University of Science and Technology Havelian Abbottabad Pakistan
| | | | - Saqib Ali
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Pakistan
| |
Collapse
|
87
|
Sha Y, Rahman MA, Zhu T, Cha Y, McAlister CW, Tang C. ROMPI-CDSA: ring-opening metathesis polymerization-induced crystallization-driven self-assembly of metallo-block copolymers. Chem Sci 2019; 10:9782-9787. [PMID: 32055347 PMCID: PMC6993615 DOI: 10.1039/c9sc03056e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are among the most prevailing methods for block copolymer self-assembly. Taking the merits of scalability of PISA and dimension control of CDSA, we report one-pot synchronous PISA and CDSA via ring-opening metathesis polymerization (ROMP) to prepare nano-objects based on a crystalline poly(ruthenocene) motif. We denote this self-assembly methodology as ROMPI-CDSA to enable a simple, yet robust approach for the preparation of functional nanomaterials.
Collapse
Affiliation(s)
- Ye Sha
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , USA .
| | - Md Anisur Rahman
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , USA .
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , USA .
| | - Yujin Cha
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , USA .
| | - C Wayne McAlister
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , USA .
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , USA .
| |
Collapse
|
88
|
Musgrave RA, Hailes RLN, Annibale VT, Manners I. Role of torsional strain in the ring-opening polymerisation of low strain [ n]nickelocenophanes. Chem Sci 2019; 10:9841-9852. [PMID: 32015807 PMCID: PMC6977548 DOI: 10.1039/c9sc02624j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Ring-opening polymerisation (ROP) of strained [1]- and [2]metallocenophanes and related species is well-established, and the monomer ring-strain is manifest in a substantial tilting of the cyclopentadienyl ligands, giving α angles of ∼14-32°. Surprisingly, tetracarba[4]nickelocenophane [Ni(η5-C5H4)2(CH2)4] (2) undergoes ROP (pyridine, 20 °C, 5 days) to give primarily insoluble poly(nickelocenylbutylene) [Ni(η5-C5H4)2(CH2)4] n (12), despite the lack of significant ring-tilt. The exoenthalpic nature of the ROP was confirmed by DFT calculations involving the cyclic precursor and model oligomers (ΔH0ROP = -14 ± 2 kJ mol-1), and is proposed to be a consequence of torsional strain present in the ansa bridge of 2. The similarly untilted disila-2-oxa[3]nickelocenophanes [Ni(η5-C5H4)2(SiMe2)2O] (13) and [Ni(η5-C5H4)2(SiMePh)2O] (14) were found to lack similar torsional strain and to be resistant to ROP under the same conditions. In contrast, 1-methyltricarba[3]nickelocenophane {Ni(η5-C5H4)2(CH2)2[CH(CH3)]} (15) with a significant tilt angle (α ∼ 16°) was found to undergo ROP to give soluble polymer {Ni(η5-C5H4)2(CH2)2[CH(CH3)]} n (18). The reversibility of the process in this case allowed for the effects of temperature and reaction concentration on the monomer-polymer equilibrium to be explored and thereby thermodynamic data to be elucidated (ΔH0ROP = -8.9 kJ mol-1, ΔG0ROP = -3.1 kJ mol-1). Compared to the previously described ROP of the unsubstituted analogue [Ni(η5-C5H4)2(CH2)3] (1) (ΔH0ROP = -10 kJ mol-1, ΔG0ROP = -4.0 kJ mol-1), the presence of the additional methyl substituent in the ansa bridge appears to marginally disfavour ROP and leads to a corresponding decrease in the equilibrium polymer yield.
Collapse
Affiliation(s)
| | | | | | - Ian Manners
- School of Chemistry , University of Bristol , Bristol BS8 1TS , UK .
- Department of Chemistry , University of Victoria , Victoria , BC V8W 3V6 , Canada
| |
Collapse
|
89
|
Bhattacharjee H, Zhu J, Müller J. Unique Bora[1]ferrocenophanes with Sterically Protected Boron: A Potential Gateway to Helical Polyferrocenes. Angew Chem Int Ed Engl 2019; 58:16575-16582. [PMID: 31518485 DOI: 10.1002/anie.201908993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/05/2022]
Abstract
Silicon-bridged [1]ferrocenophanes are a versatile class of monomers to obtain well-defined metallopolymers, however, their boron-bridged analogues are far less utilized despite being significantly higher strained. We assumed that the reactivity of known bora[1]ferrocenophanes towards ring-opening polymerization is hampered by π-donating R2 N groups at the bridging boron atom and therefore prepared the first bora[1]ferrocenophanes lacking such electronic stabilization. The new, isolated ferrocenophane with a 2,4,6-triisopropylphenyl group attached to the bridging boron atom exhibits the most tilted Cp rings among all isolated strained sandwich compounds [α(DFT)=33.3°] with a measured record value of the bathochromic shift (λmax =516 nm). Attempts to purify the mesityl analogue by vacuum sublimation transformed this monomer to a purple-colored polymer that resulted in Cotton effects in circular dichroism spectroscopy. DFT calculations revealed a left-handed helical structure for this polymer. This is the first evidence for a polyferrocene with a chiral secondary structure.
Collapse
Affiliation(s)
- Hridaynath Bhattacharjee
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada.,Present address: Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Jianfeng Zhu
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Jens Müller
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| |
Collapse
|
90
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
91
|
Bhattacharjee H, Zhu J, Müller J. Unique Bora[1]ferrocenophanes with Sterically Protected Boron: A Potential Gateway to Helical Polyferrocenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hridaynath Bhattacharjee
- Department of Chemistry University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
- Present address: Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Jianfeng Zhu
- Saskatchewan Structural Sciences Centre University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Jens Müller
- Department of Chemistry University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
92
|
Yu Q, Li M, Gao J, Xu P, Chen Q, Xing D, Yan J, Zaworotko MJ, Xu J, Chen Y, Cheng P, Zhang Z. Fabrication of Large Single Crystals for Platinum‐Based Linear Polymers with Controlled‐Release and Photoactuator Performance. Angew Chem Int Ed Engl 2019; 58:18634-18640. [DOI: 10.1002/anie.201910749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Qi Yu
- College of ChemistryNankai University Tianjin 300071 China
- Shandong Provincial Key Laboratory of Fine ChemicalsSchool of Chemistry and Pharmaceutical EngineeringQilu University of Technology Jinan 250353 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Mingmin Li
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Jia Gao
- College of ChemistryNankai University Tianjin 300071 China
| | - Peixin Xu
- College of ChemistryNankai University Tianjin 300071 China
| | - Qizhe Chen
- College of ChemistryNankai University Tianjin 300071 China
| | - Dong Xing
- College of ChemistryNankai University Tianjin 300071 China
| | - Jie Yan
- College of ChemistryNankai University Tianjin 300071 China
| | - Michael J. Zaworotko
- Department of Chemical SciencesBernal InstituteUniversity of Limerick Limerick V94 T9PX Republic of Ireland
| | - Jun Xu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
| | - Peng Cheng
- College of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical biologyNankai University Tianjin 300071 China
- College of ChemistryNankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials ChemistryMinistry of EducationNankai University Tianjin 300071 China
| |
Collapse
|
93
|
Kumar G, Pachisia S, Kumar P, Kumar V, Gupta R. Zn‐ and Cd‐based Coordination Polymers Offering H‐Bonding Cavities: Highly Selective Sensing of S
2
O
7
2−
and Fe
3+
Ions. Chem Asian J 2019; 14:4594-4600. [DOI: 10.1002/asia.201901142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Gulshan Kumar
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Sanya Pachisia
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Pramod Kumar
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Vijay Kumar
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - Rajeev Gupta
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| |
Collapse
|
94
|
Martin KL, Smith JN, Young ER, Carter KR. Synthetic Emission Tuning of Carborane-Containing Poly(dihexylfluorene)s. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kara L. Martin
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jessica N. Smith
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Elizabeth R. Young
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Kenneth R. Carter
- Department of Polymer Science and Engineering, University of Massachusetts—Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
95
|
Jarrett-Wilkins CN, Musgrave RA, Hailes RLN, Harniman RL, Faul CFJ, Manners I. Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Rebecca A. Musgrave
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Rebekah L. N. Hailes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robert L. Harniman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
96
|
Knights AW, Chitnis SS, Manners I. Photolytic, radical-mediated hydrophosphination: a convenient post-polymerisation modification route to P-di(organosubstituted) polyphosphinoboranes [RR'PBH 2] n. Chem Sci 2019; 10:7281-7289. [PMID: 31588298 PMCID: PMC6686642 DOI: 10.1039/c9sc01428d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
Polymers with a phosphorus-boron main chain have attracted interest as novel inorganic materials with potentially useful properties since the 1950s. Although examples have recently been shown to be accessible via several routes, the materials reported so far have been limited to P-mono(organosubstituted) materials, [RHPBH2] n , containing P-H groups. Here we report a general route for the post-polymerisation modification of such polyphosphinoboranes giving access to a large range of previously unknown examples featuring P-disubstituted units. Insertion of alkenes, R'CH[double bond, length as m-dash]CH2 into the P-H bonds of poly(phenylphosphinoborane), [PhHPBH2] n was facilitated by irradiation under UV light in the presence of the photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPAP) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) under benchtop conditions giving high molar mass, air-stable polymers [PhR'PBH2] n with controlled functionalisation and tunable material properties. The mechanistic explanation for the favourable effect of the addition of TEMPO was also investigated and was proposed to be a consequence of reversible binding to radical species formed from the photolysis of DMPAP. This new methodology was also extended to the formation of crosslinked gels and to water-soluble bottlebrush copolymers showcasing applicability to form a wide range of polyphosphinoborane-based soft materials with tunable properties.
Collapse
Affiliation(s)
- Alastair W Knights
- School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS , UK
| | - Saurabh S Chitnis
- School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS , UK
- Department of Chemistry , Dalhousie University , Halifax , NS B3H 4R2 , Canada
| | - Ian Manners
- School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS , UK
- Department of Chemistry , University of Victoria , Victoria , BC V8W 2Y2 , Canada .
| |
Collapse
|
97
|
Gao X, Deng L, Hu J, Zhang H. Ferrocene-Containing Conjugated Oligomers Synthesized by Acyclic Diene Metathesis Polymerization. Polymers (Basel) 2019; 11:polym11081334. [PMID: 31408998 PMCID: PMC6722986 DOI: 10.3390/polym11081334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
A series of conjugated, symmetrical, and ferrocene-containing main-chain monomers was prepared following a gentle coupling reaction. Ferrocene-containing oligomers with all-trans-configured vinylene bonds could be synthesized via acyclic diene metathesis (ADMET) polymerization. These oligomers had a larger Stokes shift (2400 to 2600 cm−1) and both exhibited stable and reversible electrochemistry. Meanwhile, the copolymerization of 1,1’-bis[1-methyl-2-(4-vinylphenyl)ethenyl]ferrocene with 2,7-divinyl-9,9-dioctylfluorene was achieved. The structurally regular copolymers proved their optical and electrochemical properties. The fluorescence intensity of the copolymer gradually enhanced with the increasing number of fluorene units. At the same time, it was also found that the color of the copolymers had a significant change from yellow-green to red.
Collapse
Affiliation(s)
- Xin Gao
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Lei Deng
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Jianfeng Hu
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, China
| | - Hao Zhang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, China.
| |
Collapse
|
98
|
Alam TM, Jones BH. Investigating Chain Dynamics in Highly Crosslinked Polymers using Solid‐State
1
H NMR Spectroscopy. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Todd M. Alam
- Department of Organic Materials ScienceSandia National Laboratories Albuquerque New Mexico 87185
| | - Brad H. Jones
- Department of Organic Materials ScienceSandia National Laboratories Albuquerque New Mexico 87185
| |
Collapse
|
99
|
Wang Z, Kuang G, Yu Z, Li A, Zhou D, Huang Y. Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater 2019; 94:459-468. [PMID: 31128323 DOI: 10.1016/j.actbio.2019.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/09/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022]
Abstract
The synergistic efficacy and clinical application of light-responsive polymeric co-delivery systems are severely restricted by uncontrollable/imprecise drug loading, release, and adverse effects caused by the introduction of additional light-responsive molecules or contrast agents when diagnostic imaging is applied to guide therapy. Here, we report the design of a light-activatable dual prodrug polymer nanoparticle (DPP NP) for precise synergistic chemotherapy guided by drug-mediated computed tomography (DMCT) imaging without the introduction of any additional diagnostic imaging agent. DPP NP enables visible light-triggered prodrug polymer backbone cleavage and bioactive Pt(II) release in cancer cell/tumor site; the light-cleaved polymer fragments are further hydrolyzed to produce demethyl cantharidin (DMC). Notably, the drug loading ratio of Pt(IV) and DMC in DPP NP was fixed at an optimal value to achieve maximum synergistic cancer cell killing, which was kept even after cellular uptake, thereby resulting in enhanced synergistic antitumor efficacy both in vitro and in vivo. Because of the high content of the heavy metal Pt in the polymer chain, the spatial/temporal dynamic biodistribution as well as metabolism of DPP NP in vivo can be monitored by Pt DMCT imaging to guide the light irradiation parameters for optimized light-activatable synergistic chemotherapy. Guided by Pt DMCT imaging, DPP NP was able to achieve an improved light-activatable antitumor efficacy, with 75% tumors fully cured and low toxicity. The light-activatable DDP NP system exhibits tremendous potential as precise theranostic nanomedicine. STATEMENT OF SIGNIFICANCE: The synergistic efficacy and clinical application of light-responsive polymeric co-delivery systems are severely restricted by uncontrollable/imprecise drug loading, delivery, and release, as well as adverse effects caused by the introduction of additional light-responsive molecules or contrast agents when diagnostic imaging is applied to guide therapy. Herein, we report the design of a light-activatable dual prodrug polymer nanoparticle (DPP NP) for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging without the introduction of any additional diagnostic imaging agents. Notably, the drug loading ratio of Pt(II) and DMC in DPP NP was fixed at an optimal value to achieve maximum synergistic cancer cell killing, which was kept even after cellular uptake, thereby resulting in enhanced synergistic antitumor efficacy both in vitro and in vivo. The light-activatable DDP NP system exhibits tremendous potential as precise theranostic nanomedicine.
Collapse
Affiliation(s)
- Zigui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Gaizhen Kuang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, PR China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China.
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
100
|
Chang H, Li J, Lin C, Hsu Y, Tu T, Hsieh Y, Hsu H, Lee G, Liu Y, Peng C. Development of dipyridine‐based coordinative polymers for reusable heterogeneous catalysts. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hsiang‐Chun Chang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Jia‐Qi Li
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Ching‐Kai Lin
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Yu‐Jung Hsu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Tsung‐Han Tu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Yi‐Liang Hsieh
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Hsiu‐Hao Hsu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| | - Gene‐Hsiang Lee
- Instrumentation CenterNational Taiwan University Taipei Taiwan
| | - Yi‐Hung Liu
- Instrumentation CenterNational Taiwan University Taipei Taiwan
| | - Chi‐How Peng
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua University Hsinchu Taiwan
| |
Collapse
|