51
|
Singha DK, Islam SS, Das C, Ahmed KC N, Nath RC, Mahata P. Synthesis and Investigation of Magnetic Properties of Rod Shaped Micron Sized Ni
4
and Co
2
Ni
2
Cluster based MOFs. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shams Sohel Islam
- School of Physics Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Chhatan Das
- Department of Chemistry Jadavpur University Kolkata 700032 India
| | - Niyaz Ahmed KC
- School of Physics Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Ramesh Chandra Nath
- School of Physics Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Partha Mahata
- Department of Chemistry Jadavpur University Kolkata 700032 India
| |
Collapse
|
52
|
Zhou HQ, Zheng SL, Wu CM, Ye XH, Liao WM, He J. Structure, Luminescent Sensing and Proton Conduction of a Boiling-Water-Stable Zn(II) Metal-Organic Framework. Molecules 2021; 26:molecules26165044. [PMID: 34443631 PMCID: PMC8401761 DOI: 10.3390/molecules26165044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS, has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2',5,5'-tetrafluoro-3,3',6,6'-tetrakis(2-thiophenethio)-4,4'-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS shows a broad green emission around 520 nm in solid state luminescence, with a Commission International De L'Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II) is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its luminescent intensities diminish to different extents when exposed to various metal ions, indicating its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measurements in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a low proton conductivity of 9.47 × 10-10 S cm-1 while NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced value of 2.38 × 10-5 S cm-1 at 40 °C and 90% RH. Both of the proton transport processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with Ea = 0.40 and 0.32 eV, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun He
- Correspondence: (W.-M.L.); (J.H.)
| |
Collapse
|
53
|
Lanthanide complexes of anthraquinone-1,8-disulfonate: Syntheses, structures and catalytic studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Gai S, Fan R, Zhang J, Sun J, Li P, Geng Z, Jiang X, Dong Y, Wang J, Yang Y. Structural Design of Low Toxicity Metal-Organic Frameworks for Multifunction Detection of Organic and Inorganic Contaminants from Water. Inorg Chem 2021; 60:10387-10397. [PMID: 34236850 DOI: 10.1021/acs.inorgchem.1c00936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal-organic frameworks (MOFs)-based sensors for monitoring toxic substances in wastewater have attracted great attention due to the efficient and reliable performance. Here, we has synthesized two novel zinc-based MOFs [Zn(ttb)2(H2O)2]n (Zn1-ttb) and {[Zn(ttb)2]·0.5CH3CN}n (Zn2-ttb) through changing the polarity of reaction solvents and finally obtained target 2D MOF material [Zn(ttb)(bdc)0.5]n(Zn3-ttb-bdc) by successfully introducing an ancillary ligand H2bdc (Httb = 1-(triazo-1-ly)-4-(tetrazol-5-ylmethyl)benzene, H2bdc = 1,4-benzenedicarboxylic acid). As-prepared Zn3-ttb-bdc exhibits high water and chemical stability as well as excellent fluorescence property. Due to the -COOH binding sites from H2bdc, Zn3-ttb-bdc shows high sensitivity and a rapid luminescent response to a representative organic micropollutant trinitrophenol (TNP) and inorganic pollutants (Fe3+ and Cr2O72-) in wastewater. The mechanisms of multifunctional detection abilities of Zn3-ttb-bdc toward different types of pollutants are further studied. This work presents the structural design in preparing MOF materials for multifunctional detection performance, thus opening new perspectives for emerging MOF-based sensors as environmental monitors.
Collapse
Affiliation(s)
- Shuang Gai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiakai Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Pengxiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Ziqi Geng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xin Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jiaqi Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
55
|
Theppitak C, Kielar F, Dungkaew W, Sukwattanasinitt M, Kangkaew L, Sahasithiwat S, Zenno H, Hayami S, Chainok K. The coordination chemistry of benzhydrazide with lanthanide(iii) ions: hydrothermal in situ ligand formation, structures, magnetic and photoluminescence sensing properties. RSC Adv 2021; 11:24709-24721. [PMID: 35481060 PMCID: PMC9037042 DOI: 10.1039/d1ra03106f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
The influence of synthetic conditions on the solid-state structural formation of lanthanide(iii) complexes based on a hydrazide ligand have been investigated and reported. Depending on the solvents and reaction temperatures, the reactions of hydrated Ln(NO3)3 with a benzohydrazide (bzz) ligand afforded three classes of lanthanide(iii) coordination complexes viz. [Ln(bzz)(NO3)](NO3)2 (1Ln; Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5)), [Ln(bzz)(ben)3(H2O)]·H2O (2Ln; Ln = Pr (6), Nd (7), Sm (8), Eu (9), Gd (10), Tb (11), Dy (12), Er (13)), and [Ln3(ben)3] (3Ln; Ln = Eu (14), Gd (15), Tb (16), Dy (17), Er (18), Tm (19), Yb (20), Lu (21)). Complexes 1-5 in series 1Ln were isolated by slow evaporation of their isopropanol solutions at ambient temperature, and the complexes display similar discrete structures bearing distinct intermolecular N-H⋯O hydrogen bonds to generate a three-dimensional (3D) supramolecular architecture. Complexes 6-13 in series 2Ln were obtained under hydrothermal conditions at 110 °C where the in situ generated benzoate (ben) ligands participated in the formation of one-dimensional (1D) coordination polymers (CPs) with the bzz ligands. At a temperature of 145 °C the hydrothermal conditions result in the formation of the thermodynamically more stable products of 14-21 in series 3Ln, in which the bzz ligand underwent complete in situ hydrolysis to create the ben ligand. These coordination assemblies feature 1D zigzag chains that are formed by unusual low coordination numbers of the six- and seven-fold coordinated Ln3+ centers bridged by the ben ligands in μ 2- and μ 3-coordination modes. Notably, the chain structures of 2Ln can be transformed into the zigzag tape-like structures of 3Ln upon heating the crystalline samples to 400 °C in air. In the solid state at room temperature, the Eu- (2, 9, 14) and Tb- (4, 11, 16) containing complexes emit red and green light, respectively. The luminescence investigations show that the Eu- (9, 14) and Tb-(11, 16) based CPs could be used as fluorescent probes for acetone and Co2+ ions via an energy competition mechanism. Meanwhile, the Gd- (10, 15) and Dy- (12, 17) based CPs show typical antiferromagnetic interactions.
Collapse
Affiliation(s)
- Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
- Department of Chemistry, Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University Phitsanulok 65000 Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | | | - Laongdao Kangkaew
- National Metal and Materials Technology Center (MTEC), The National Science and Technology Development Agency Pathum Thani 12121 Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), The National Science and Technology Development Agency Pathum Thani 12121 Thailand
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University 2-39-1 Kurokami, Chuoku Kumamoto 860-8555 Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology and Institute of Pulsed Power Science, Ku-mamoto University 2-39-1 Kurokami, Chuoku Kumamoto 860-8555 Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| |
Collapse
|
56
|
Jornet-Mollá V, Dreessen C, Romero FM. Robust Lanthanoid Picolinate-Based Coordination Polymers for Luminescence and Sensing Applications. Inorg Chem 2021; 60:10572-10584. [PMID: 34229428 PMCID: PMC8454995 DOI: 10.1021/acs.inorgchem.1c01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Picolinate-based segmented dianionic ligands L12- (5-((4-carboxyphenyl)ethynyl)picolinate) and L22- (5,5'-(ethyne-1,2-diyl)dipicolinate) have been used in the synthesis of the highly robust and luminescent europium(III) coordination polymers [(CH3)2NH2][Eu(H2O)2(L1)2] (1) and [(CH3)2NH2][Eu(L2)2]·H2O·CH3COOH (2). Both 1 and 2 exhibit high selectivity for detection of nitroaromatic compounds since they act as quenchers of the Eu3+ emission. Stern-Volmer plots, using nitrobenzene as a quencher, yielded values of KSV = 150 M-1 and 160 M-1 for 1 and 2, respectively. Luminescence studies in the presence of different metal ions indicate a high selectivity for Fe3+ detection, with KSV values of 471 M-1 and 706 M-1 for 1 and 2, respectively. Both 1 and 2 possess extremely robust extended structures, leading to emissive properties that are stable in a wide pH range.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Chris Dreessen
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Francisco M Romero
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| |
Collapse
|
57
|
Li J, Yao SL, Liu SJ, Chen YQ. Fluorescent sensors for aldehydes based on luminescent metal-organic frameworks. Dalton Trans 2021; 50:7166-7175. [PMID: 33978009 DOI: 10.1039/d1dt00890k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Volatile aldehydes cause great harm to human health and the living environment, and the detection of aldehydes has attracted much attention from chemists and material scientists. In recent years, as one of the most promising classes of functional materials, luminescent metal-organic frameworks (LMOFs) have bloomed as fluorescent sensors for the detection of aldehydes. Herein, the sensing properties of LMOF sensors toward formaldehyde, benzaldehyde, acetaldehyde and other aldehydes have been reviewed, and the sensing mechanism and applications are also illustrated. Additionally, the current status and its potential development prospects in this field are outlined.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Shu-Li Yao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yong-Qiang Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China. and Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, Shanxi Province, P.R. China.
| |
Collapse
|
58
|
Sasaki K, Yoshino H, Shimoda Y, Saigo M, Miyata K, Onda K, Sugimoto K, Yamate H, Miura H, Le Ouay B, Ohtani R, Ohba M. Guest-Tunable Excited States in a Cyanide-Bridged Luminescent Coordination Polymer. Inorg Chem 2021; 60:6140-6146. [PMID: 33853327 DOI: 10.1021/acs.inorgchem.1c00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The excited-state energy was tuned successfully by guest molecules in a cyanide-bridged luminescent coordination polymer (CP). Methanol or ethanol vapor reversibly and significantly changed the luminescent color of the CP between green and yellow (Δλem = 32 nm). These vapors did not significantly affect the environment around the luminophore in the ground state of the CP, whereas they modulated the excited states for the resulting bathochromic shift. The time-resolved photoluminescent spectra of the CP systems showed that solvent adsorption enhanced the energetic relaxation in the excited states. Furthermore, time-resolved infrared spectroscopy indicated that cyanide bridging in the CP became more flexible in the excited states than that in the ground state, highlighting the sensitivity of the excited states to external stimuli, such as the guest vapor. Overall, guest-tunable excited states will allow the more straightforward design of sensing materials by characterizing the transient excited states.
Collapse
Affiliation(s)
- Kenta Sasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Yoshino
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuushi Shimoda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Saigo
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kunihisa Sugimoto
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hitomi Yamate
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroki Miura
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
59
|
Metal–organic frameworks of lanthanide iminodiacetates and tartrates: Synthesis, structural characterization and luminescence properties — Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
60
|
Zhang E, He Y, Jiang L, Cheng T, Ju P. Two novel LMOFs based on the flexible 1, 3-bis(imidazol-1-ylmethyl)benzene: The synthesis, crystal structures and temperature sensing applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
61
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
62
|
Ji J, Jiang KJ, Shen HY, Tian Y, Hou YL, Gao HL, Wang WM, Cui JZ. Structures and magnetic properties of rhombus-shaped tetranuclear [Ln4] clusters: Dy4 cluster displaying single molecule magnet behavior. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
Jeyaseelan A, Viswanathan N. Facile synthesis of tunable rare earth based metal organic frameworks for enhanced fluoride retention. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Hua YP, Xue CL, Zhang WM, Liu Y, Tian JL, Wang WM, Fang M. Structure, fluorescence properties and slow magnetic relaxation of Dy2 and Tb4 clusters. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Ju P, Yang H, Jiang L, Li M, Yu Y, Zhang E. A novel high sensitive Cd-MOF fluorescent probe for acetone vapor in air and picric acid in water: Synthesis, structure and sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118962. [PMID: 33007642 DOI: 10.1016/j.saa.2020.118962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
A novel three-dimensional luminescence Cd-MOF sensor with the molecular formula {[(CH3)2NH2]2 Cd3(ptptc)2} (complex 1) has been synthesized by using terphenyl-3,3',5,5'-tetracarboxylic acid (H4ptptc) and Cd(NO3)2·4H2O under solvothermal conditions. Single crystal X-ray diffraction analysis shows that complex 1 crystallizes in the monoclinic system C2/c space group and consists of one-dimensional channels. Complex 1 exhibits characteristic fluorescence emission (λem = 380 nm) both in solid state and solvents upon excitation at 300 nm. Real-time fluorescence quenching of complex 1 was observed in the fluorescence sensing of acetone vapor and picric acid. Intriguingly, ppm scale detection limit for acetone vapor in air and nano-mole scale detection limit for picric acid in water were observed. Moreover, good reusability and liner/nonlinear relationships were observed in the fluorescent titration.
Collapse
Affiliation(s)
- Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Hua Yang
- Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mengting Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yang Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China; Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| |
Collapse
|
66
|
Shi XH, Wang WM, Yan LL, Fan CJ, Pang JL, Wu ZL. Crystal structure and single-molecule magnet behavior of a novel tetranuclear Dy(III)-based cluster. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Wang H, Jiang S, Xiang L, Yan Y, Xiang G, Li Y, Luo X, Li L, Tang X, Zhou X. Synthsis and characterization of Tb 3+/Eu 3+ complexes based on 2,4,6-tris-(4-carboxyphenyl)-1,3,5-triazine ligand for ratiometric luminescence temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118781. [PMID: 32891898 DOI: 10.1016/j.saa.2020.118781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/30/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
By choosing C3 symmetric 2,4,6-tris-(4-carboxyphenyl)-1,3,5-triazine (TCTZ) as the ligand, a series of lanthanide metal-origanic complexes Tb1-xEux-TCTZ(DMF)·2H2O(x = 0, 0.01, 1) have been successfully synthesized via solvothermal reaction. The complexes present intense emission although with coordinationofwater molecules. The temperature-dependent photoluminescent (PL) properties of Tb-TCTZ is investigated both in terms of emission intensity and lifetime in order to establish their potentials as luminescent themometers. It shows excellent responseto temperature from 303 to 403 K and exhibits the maximum relative sensitivity(Sr) as high as 5.36% K-1 at 403 K. Tb0.99Eu0.01-TCTZ is evaluated for application as ratiometric luminescence thermometers, which exhibits high sensitivity to temperature in range of 303-403 K, with the maximum absolute sensitivity (Sa) and Sr as 5.16% and 3.22% K-1 respectively. The obtained maximum sensitivities in this study is superior to many materials reported. Moreover, the emission color changes from green at 303 K to red at 403 K, so that it is also suitable to act as colorimetric luminescent probes.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Sha Jiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Lin Xiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yulong Yan
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Guotao Xiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yanhong Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Xiaobing Luo
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Li Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Xiao Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| |
Collapse
|
68
|
Aquino LEDN, Barbosa GA, Ramos JDL, O K Giese S, Santana FS, Hughes DL, Nunes GG, Fu L, Fang M, Poneti G, Carneiro Neto AN, Moura RT, Ferreira RAS, Carlos LD, Macedo AG, Soares JF. Seven-Coordinate Tb 3+ Complexes with 90% Quantum Yields: High-Performance Examples of Combined Singlet- and Triplet-to-Tb 3+ Energy-Transfer Pathways. Inorg Chem 2021; 60:892-907. [PMID: 33393287 DOI: 10.1021/acs.inorgchem.0c03020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven-coordinate, pentagonal-bipyramidal (PBP) complexes [Ln(bbpen)Cl] and [Ln(bbppn)Cl], in which Ln = Tb3+ (products I and II), Eu3+ (III and IV), and Gd3+ (V and VI), with bbpen2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bbppn2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by single-crystal X-ray diffraction analysis, alternating-current magnetic susceptibility measurements, and photoluminescence (steady-state and time-resolved) spectroscopy. Under a static magnetic field of 0.1 T, the Tb3+ complexes I and II revealed single-ion-magnet behavior. Also, upon excitation at 320 nm at 300 K, I and II presented very high absolute emission quantum yields (0.90 ± 0.09 and 0.92 ± 0.09, respectively), while the corresponding Eu3+ complexes III and IV showed no photoluminescence. Detailed theoretical calculations on the intramolecular energy-transfer rates for the Tb3+ products indicated that both singlet and triplet ligand excited states contribute efficiently to the overall emission performance. The expressive quantum yields, QLnL, measured for I and II in the solid state and a dichloromethane solution depend on the excitation wavelength, being higher at 320 nm. Such a dependence was rationalized by computing the intersystem crossing rates (WISC) and singlet fluorescence lifetimes (τS) related to the population dynamics of the S1 and T1 levels. Thin films of product II showed high air stability and photostability upon continuous UV illumination, which allowed their use as downshifting layers in a green light-emitting device (LED). The prototypes presented a luminous efficacy comparable with those found in commercial LED coatings, without requiring encapsulation or dispersion of II in host matrixes. The results indicate that the PBP environment determined by the ethylenediamine (en)-based ligands investigated in this work favors the outstanding optical properties in Tb3+ complexes. This work presents a comprehensive structural, chemical, and spectroscopic characterization of two Tb3+ complexes of mixed-donor, en-based ligands, focusing on their outstanding optical properties. They constitute good molecular examples in which both triplet and singlet excited states provide energy to the Tb3+ ion and lead to high values of QLnL.
Collapse
Affiliation(s)
| | - Guilherme A Barbosa
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Jaqueline de L Ramos
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Siddhartha O K Giese
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Francielli S Santana
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Giovana G Nunes
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Lianshe Fu
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Ming Fang
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Giordano Poneti
- Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 - Rio de Janeiro-RJ, Brazil
| | - Albano N Carneiro Neto
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000 - Areia-PB, Brazil
| | - Rute A S Ferreira
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Luís D Carlos
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Andreia G Macedo
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal.,Department of Physics, Federal University of Technology, 80230-901 - Curitiba, PR, Brazil
| | - Jaísa F Soares
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| |
Collapse
|
69
|
Han LJ, Kong YJ, Xu YY, Huang MM. A Zn-based coordination compound for fluorescence detection of Fe3+, Cu2+, Ni2+ and CrO42− ions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
70
|
A rhombic shaped {GdIII2CoII2} heterometallic cluster exhibiting larger cryogenic magnetocaloric effect. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
71
|
Zhang Y, Liu S, Zhao ZS, Wang Z, Zhang R, Liu L, Han ZB. Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01191f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research progress in lanthanide metal–organic frameworks and their derivatives in the field of catalysis has been presented on the basis of different organic reactions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Shuo Liu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Zi-Song Zhao
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Zengfang Wang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Ruiying Zhang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Lin Liu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Zheng-Bo Han
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
72
|
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01153c] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This comprehensive review systematically summarizes the luminescence response mode and chemical sensing mechanism for lanthanide-functionalized MOF hybrids (abbreviated as LnFMOFH).
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- School of Materials Science and Engineering
| |
Collapse
|
73
|
Yu H, Sun J. Synthesis, structure, and fluorescence properties of coordination polymers of 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine. CrystEngComm 2021. [DOI: 10.1039/d0ce01649g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Four coordination polymers based on 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine were synthesized. Compounds [Cd3(btc)2(btap)(H2O)6] and [Cd(oa)(btap)] exhibited high sensitivity luminescence response towards Fe3+, Ce3+, Cr2O72− and MnO4− in aqueous solution.
Collapse
Affiliation(s)
- Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices
- Ministry of Education
- School of Chemical and Environmental Engineering
- Jianghan University
- Wuhan 430056
| | - Jing Sun
- College of Physics Science and Technology
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
74
|
Dong JP, Li B, Jin YJ, Wang LY. Efficient detection of Fe( iii) and chromate ions in water using two robust lanthanide metal–organic frameworks. CrystEngComm 2021. [DOI: 10.1039/d0ce01802c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two novel robust Ln-MOFs feature a 3D highly porous pillared-layer framework and demonstrate selective sensing of Fe(iii) and chromate ions in aqueous solution.
Collapse
Affiliation(s)
- Jian-Peng Dong
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- People's Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- People's Republic of China
| | - Yu-Jie Jin
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- People's Republic of China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- People's Republic of China
| |
Collapse
|
75
|
Majee P, Singha DK, Daga P, Hui S, Mahata P, Mondal SK. Photophysical studies of a room temperature phosphorescent Cd( ii) based MOF and its application towards ratiometric detection of Hg 2+ ions in water. CrystEngComm 2021. [DOI: 10.1039/d1ce00333j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cadmium based MOF showed room temperature phosphorescence and interacted very selectively with Hg2+ ions. The phosphorescence emission at 520 nm gradually disappeared while low intensity fluorescence at 383 nm gradually increased.
Collapse
Affiliation(s)
- Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Debal Kanti Singha
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| |
Collapse
|
76
|
Shi QH, Xue CL, Fan CJ, Yan LL, Qiao N, Fang M, Wang SF. Magnetic refrigeration property and slow magnetic relaxation behavior of five dinuclear Ln(III)-based compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Ju P, Li M, Yang H, Jiang L, Xia L, Kong R, Zhang E, Qu F. A novel Cd-MOF with enhanced thermo-sensitivity: the rational design, synthesis and multipurpose applications. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00198a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel thermo-sensitive fluorescent Cd-MOF probe (complex 1) and its multipurpose sensing properties have been revealed.
Collapse
Affiliation(s)
- Ping Ju
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Mengting Li
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Hua Yang
- Laboratory of New Energy & New Functional Materials
- College of Chemistry and Chemical Engineering
- Yan'an University
- Yan'an
- P. R. China
| | - Long Jiang
- Instrumental Analysis & Research Center
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Lian Xia
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Rongmei Kong
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Ensheng Zhang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu
- P. R. China
| |
Collapse
|
78
|
Li Z, Zhu X, Gao E, Wu S, Zhang Y, Zhu M. Bifunctional luminescent Eu metal–organic framework for sensing nitroaromatic pollutants and Fe
3+
ion with high sensitivity and selectivity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhipeng Li
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Xiaopeng Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| |
Collapse
|
79
|
Qiu ZJ, Fan ST, Xing CY, Song MM, Nie ZJ, Xu L, Zhang SX, Wang L, Zhang S, Li BJ. Facile Fabrication of an AIE-Active Metal-Organic Framework for Sensitive Detection of Explosives in Liquid and Solid Phases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55299-55307. [PMID: 33232103 DOI: 10.1021/acsami.0c17165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, the practical applications of metal-organic framework (MOF)-based fluorescence detectors are severely hindered because of the complex synthesis process of linkers or heavy metal contamination. The development of a simple, inexpensive, and environmentally friendly fluorescence sensing system remains a huge challenge. In this study, we designed and synthesized a TPE@γ-CD-MOF-K complex using the facile in situ encapsulation method. The unique pore structure of γ-CD-MOF allowed it to effectively include TPE and explosives as guests simultaneously. The TPE@γ-CD-MOF-K showed stronger fluorescence emission than TPE and sensitive fluorescence quenching activities in response to nitro-aromatic compounds in the liquid phase with detection limits as low as 3 ppm. Furthermore, TPE@γ-CD-MOF-K can also effectively detect nitro-aromatic compounds in the solid state, which is very convenient for practical detection of explosives. The unique pore structure of γ-CD-MOF-K and the interaction between K+ and nitro compounds play important roles in solid-state quenching.
Collapse
Affiliation(s)
- Zhen-Jiang Qiu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Yuan Xing
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Meng Song
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Zi-Jun Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Long Xu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shao-Xia Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
80
|
Highly selective, sensitive and stable three-dimensional luminescent metal–organic framework for detecting and removing of the antibiotic in aqueous solution. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
81
|
Li L, Yang LR, Qiao N, Xue MM, Fang ZX, Ren J, Wang HT, Fang M, Wang WM. A novel tetranuclear Gd(III)-based cluster showing larger magnetic refrigeration property. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Zhang Y, Gao Z, Li Y, Pun EYB, Lin H. The thermo-optic relevance of Ho 3+ in fluoride microcrystals embedded in electrospun fibers. RSC Adv 2020; 10:41004-41012. [PMID: 35519182 PMCID: PMC9057727 DOI: 10.1039/d0ra08696g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Na(Y1-x-y Ho x Yb y )F4/PAN (NYF-HY/PAN) composite fibers were synthesized using an electrospinning method, and the sub-micron crystals embedded in the fibers had complete hexagonal crystal structures. Under 977 nm laser excitation, strong green and red up-conversion (UC) emission that originated from flexible fibers were due to the radiative transitions (5F4, 5S2) → 5I8 and 5F5 → 5I8 of Ho3+, respectively. The effective green fluorescence emission (539 and 548 nm) can be applied to micro-domain non-contact temperature measurements, realizing rapid and dynamic temperature acquisition in a complex environment without destroying the temperature field. In the temperature range of 313-393 K, the absolute and relative sensitivity of the fibers are 0.00373 K-1 and 0.723% K-1, respectively, which indicates that the NYF-HY/PAN composite fibers have good thermal sensitivity. Composite fibers in which crystallites are embedded have superior properties, with great stability, high sensitivity, and excellent flexibility, providing a reliable reference for developing temperature-sensing materials for the biomedical field.
Collapse
Affiliation(s)
- Yan Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 China
| | - Zelin Gao
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 China
| | - Yue Li
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University Dalian 116034 China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
83
|
Majee P, Daga P, Singha DK, Saha D, Mahata P, Mondal SK. A lanthanide doped metal-organic framework demonstrated as naked eye detector of a trace of water in organic solvents including alcohols by monitoring the turn-on of luminescence. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
84
|
Tang J, Ma X, Yang J, Feng DD, Wang XQ. Recent advances in metal-organic frameworks for pesticide detection and adsorption. Dalton Trans 2020; 49:14361-14372. [PMID: 33030153 DOI: 10.1039/d0dt02623a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The large-scale use of pesticides such as organophosphate pesticides (OPPs) and organochlorine pesticides (OCPs) has led to serious environmental problems worldwide, and their high toxicity could cause serious damage to human health. It is crucial to remove and track them precisely in the environment and food resources. As novel nanomaterials, metal-organic frameworks (MOFs) have attracted significant attention in the fields of adsorption and luminescence sensing due to their rich topology, tunable pore size and shape, high surface area, and abundant active sites. Luminescent metal-organic frameworks (LMOFs) have sprung up as great potential chemical sensors to detect pesticides with fast response, high sensitivity, high selectivity and easy operation. Therefore, in this highlight, we focus on recent progress of MOFs in sensing and adsorbing pesticides, as well as in the possible mechanism of sensing, so as to attract more attention to pesticide detection and adsorption.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Xuehui Ma
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Dou-Dou Feng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| |
Collapse
|
85
|
Fabrication of a new heterogeneous tungstate-based on the amino-functionalized metal-organic framework as an efficient catalyst towards sonochemical oxidation of alcohols under green condition. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
86
|
Zhang JH, Zhang ZT, Ou YJ, Zhang F, Meng J, Wang G, Fang ZL, Li Y. Red-emitting GSH-Cu NCs as a triplet induced quenched fluorescent probe for fast detection of thiol pollutants. NANOSCALE 2020; 12:19429-19437. [PMID: 32959864 DOI: 10.1039/d0nr04645k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiol compounds exist widely on the Earth and have certain significance in the fields of the circulation of the sulfur element and industrial production. However, the odor and biological toxicity of thiol compounds make them pollutants that seriously threaten the environmental safety and the living quality of human. In this study, a novel triplet induced fluorescence "turn-off" strategy was designed for the detection of thiol pollutants via a glutathione-stabilized copper nanocluster (GSH-Cu NC) probe. The as-prepared GSH-Cu NCs not only have small size and good water-solubility, but also exhibit strong red-emitting fluorescence at 630 nm, which could be quenched quantitatively with the increase of the concentration of thiol pollutants. So they were employed to detect thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), 2-mercaptoethanol (ME) and 2-(diethylamino)ethanethiol (2-AT) in a wide linear range of 1-100 μM with detection limits of 0.73 μM, 0.43 μM, 0.37 μM, and 0.69 μM, respectively. This method was successfully applied to detect the above thiol pollutants in lake water with good recoveries. Moreover, their further application was also expanded as luminous test strips based on the excellent fluorescence characteristics of GSH-Cu NCs for fast real-time detection of thiol pollutants.
Collapse
Affiliation(s)
- Jun-Hua Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zi-Tong Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yang-Jing Ou
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Fei Zhang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China. and State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, PR China
| | - Zhao-Lin Fang
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Yan Li
- Tianjin Key laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
87
|
Wang GT, Zhang MY, Chen X, Lu ZW, Fan BT, Li KL, Yang J, Duan SL, Yang CB, Zou P. Highly selective and sensitive lanthanoids coordination polymers sensors for trans, trans-muconic acid, a biomarker of benzene. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
89
|
Yang B, Li X, Wang L, An J, Wang T, Zhang F, Ding B, Li Y. A water-stable MOF-AgClO4-abtz as fluorescent sensor for detection of folic acid based on inner filter effect. Talanta 2020; 217:121019. [DOI: 10.1016/j.talanta.2020.121019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
|
90
|
Li L, Zou JY, You SY. A luminescent pillar-layer Zn(II) metal–organic framework for the ultrasensitive detection of nitroaniline. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
Zhang Y, Zeng B, Liu Y, Li P, Chen L, Zhao J. A Penta‐Eu
III
Sandwiched Dawson Selenotungstate and Its Unique Luminescence Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Yifan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Pan Li
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry College of Chemistry and Chemical Engineering Henan University 475004 Kaifeng Henan P. R. China
| |
Collapse
|
92
|
Allendorf MD, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Electronic Devices Using Open Framework Materials. Chem Rev 2020; 120:8581-8640. [DOI: 10.1021/acs.chemrev.0c00033] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
93
|
Lin C, Xia Z, Zhang L, Chen X, Sun Q, Lu M, Yuan Z, Xie X, Huang L. Organic Linkers Enable Tunable Transfer of Migrated Energy from Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31783-31792. [PMID: 32539325 DOI: 10.1021/acsami.0c07683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy transfer plays a pivotal role in applying lanthanide-doped upconversion nanoparticles (UCNPs) as optical probes for diverse applications, particularly in biology and medicine. However, achieving tunable energy transfer from UCNPs to different acceptors remains a daunting challenge. Here, we demonstrate that using small organic molecules as linkers, the energy transfer from UCNPs to acceptors can be modulated. Specifically, organic linkers can enable efficient energy transfer from NaGdF4:Yb/Tm@NaGdF4 core-shell UCNPs to different acceptors. Moreover, the organic linker-mediated energy transfer can be facilely tuned by simply changing organic linkers. Based on our mechanistic investigations, the extraction of Gd3+ migrated energy from UCNPs by organic linkers and the subsequent energy injection from linkers to acceptors should be the two key processes for controlling the energy transfer. The tunable energy transfer from UCNPs allows us to design novel applications, including sensors and optical waveguides, based on UCNPs. These findings may open up new ways to develop UCNP-based bioapplications and advance further fabrication of hybrid upconversion nanomaterials.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhengyu Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiumei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiang Sun
- Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Min Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ze Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
94
|
Zhao Y, Xu Y, Xu B, Cen P, Song W, Duan L, Liu X. A dual-sensitized luminescent europium(iii) complex as a photoluminescent probe for selectively detecting Fe 3. RSC Adv 2020; 10:24244-24250. [PMID: 35516177 PMCID: PMC9055115 DOI: 10.1039/d0ra03821k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
A new luminescent EuIII complex, namely [Eu2(BTFA)4(OMe)2(dpq)2] (1), in which BTFA = 3-benzoyl-1,1,1-trifluoroacetone and dpq = dipyrido [3,2-d:2',3'-f] quinoxaline, has been designed and synthesized by employing two different ligands as sensitizers. Crystal structure analysis reveals that complex 1 is composed of dinuclear EuIII units crystallized in the monoclinic P1̄ space group. Notably, 1 exhibits high thermal stability up to 270 °C and excellent water stability. The photoluminescence property of the complex is investigated. Further studies show 1 can recognize Fe3+ ions with high selectivity from mixed metal ions in aqueous solution through the luminescence quenching phenomenon. Furthermore, the recyclability and stability of 1 after sensing experiments are observed to be adequate. By virtue of the superior stability, detection efficiency, applicability and reusability, the as-prepared EuIII complex can be a promising fluorescent material for practical sensing.
Collapse
Affiliation(s)
- Yafeng Zhao
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yanhong Xu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Bing Xu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Weiming Song
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Lijuan Duan
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiangyu Liu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 China
| |
Collapse
|
95
|
Rath BB, Vittal JJ. Water Stable Zn(II) Metal-Organic Framework as a Selective and Sensitive Luminescent Probe for Fe(III) and Chromate Ions. Inorg Chem 2020; 59:8818-8826. [PMID: 32501007 DOI: 10.1021/acs.inorgchem.0c00545] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensing and monitoring toxic contaminants like Fe3+, CrO42-, and Cr2O72- ions in water is very important due to their harmful effects on biological and environmental systems. Enhanced hydrolytic stability, sensitivity, and selectivity, in addition to their excellent luminescence properties, are important attributes of metal-organic framework (MOF)-based sensors for sensing applications. In this work, the water stable Zn-MOF [Zn2(tpeb)(bpdc)2] (where tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene and bpdc = biphenyl-4,4'-dicarboxylic acid) was synthesized and characterized. The framework retains its crystallinity and structural integrity in harsh acidic and basic conditions (pH 4-11). Most interestingly, the Zn-MOF demonstrates a strong blue luminescence in water that can be quenched selectively only by contaminants like Fe3+, CrO42-, and Cr2O72- ions. Higher Ksv values and low detection limits in selective luminescence quenching confirm the superior sensing performance, which is comparable to those of contemporary materials. Furthermore, in all cases, quenching efficiency remains unaltered in the presence of interfering ions, even after the compound is used in multiple cycles, which makes this MOF an attractive, reliable, and recyclable luminescent sensor material. The luminescence quenching mechanism is based on the competitive absorption and weak interactions. It is worth noting that most of the reported MOF-based sensors used for the separate sensing of Fe(III) and chromate ions are used in organic media due to their poor hydrolytic stabilities. Reports on the dual sensing of Fe(III) and chromate ions, which are also in aqueous media, are rare. Based on these results, Zn-MOF can be considered as a suitable candidate for advanced practical applications for the efficient sensing of Fe(III) and chromate ions in water.
Collapse
Affiliation(s)
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
96
|
Zhao CX, Zhang XP, Shu Y, Wang JH. Europium-Pyridinedicarboxylate-Adenine Light-Up Fluorescence Nanoprobes for Selective Detection of Phosphate in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22593-22600. [PMID: 32345010 DOI: 10.1021/acsami.0c04318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphate (Pi) plays important roles in various physiological processes. Its quantification in biological fluids is highly crucial for timely warning of Pi accumulation. Herein, an europium (Eu)-based coordination polymer nanoprobe (Eu/DPA/Ade) is prepared by coordinating 2,6-pyridinedicarboxylic acid (2,6-DPA) and adenine (Ade) with Eu3+. Eu/DPA/Ade exhibits light-up fluorescence response to Pi. The strong coordinating interaction between Eu3+ and O atoms in the Pi group not only shortens the Eu3+-ligand distance to improve the energy transfer from 2,6-DPA to Eu3+ but also attenuates the fluorescence quenching from water molecules in the coordinating sphere of Eu3+. Eu/DPA/Ade produces red emission at λem 618 nm via the "antenna effect". The coligand Ade further promotes the fluorescent emission. The selective recognition of Pi within 10-60 μM is achieved with a detection limit of 4.65 μM. In addition, a certain level of Pi (100-170 μM) causes an exponential increment on the fluorescence of Eu/DPA/Ade and makes it feasible for visual estimation of Pi under irradiation by an ultraviolet lamp at 254 nm. The quantitative detection and visual estimation of Pi in human urine and saliva have been demonstrated.
Collapse
Affiliation(s)
- Chen-Xi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
97
|
Zhang J, Xu S, Liu S, Hu J, Qiao Y, Liu B. Two Series of Substituent‐Group‐Directed Adipate‐Based Lanthanide Coordination Polymers: Syntheses, Structures, Photoluminescence, and Magnetism. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ju‐Wen Zhang
- Department of Chemistry Bohai University 121013 Jinzhou P.R. China
- College of Chemistry and Chemical Engineering Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell Bohai University 121013 Jinzhou P.R. China
| | - Shuang Xu
- Department of Chemistry Bohai University 121013 Jinzhou P.R. China
| | - Sai‐Nan Liu
- Department of Chemistry Bohai University 121013 Jinzhou P.R. China
| | - Jing Hu
- Department of Chemistry Bohai University 121013 Jinzhou P.R. China
| | - Yu‐Xia Qiao
- Department of Chemistry Bohai University 121013 Jinzhou P.R. China
| | - Bin‐Qiu Liu
- Department of Chemistry Bohai University 121013 Jinzhou P.R. China
| |
Collapse
|
98
|
Wang J, Xu LF, Wu J, You GQ, Cai R, Wu CL. A water-stable eu(iii)-mof for phosphorescent detection of acetone and treatment effect on catheter-associated infections by inhibiting gram positive and negative bacteria survival. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1743829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing Wang
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lin-Fang Xu
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jing Wu
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Guang-Qing You
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ru Cai
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chun-Lei Wu
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
99
|
Abstract
Metal–organic frameworks (MOFs) have been of great interest for their outstanding properties, such as large surface area, low density, tunable pore size and functionality, excellent structural flexibility, and good chemical stability. A significant advancement in the preparation of MOF thin films according to the needs of a variety of applications has been achieved in the past decades. Yet there is still high demand in advancing the understanding of the processes to realize more scalable, controllable, and greener synthesis. This review provides a summary of the current progress on the manufacturing of MOF thin films, including the various thin-film deposition processes, the approaches to modify the MOF structure and pore functionality, and the means to prepare patterned MOF thin films. The suitability of different synthesis techniques under various processing environments is analyzed. Finally, we discuss opportunities for future development in the manufacturing of MOF thin films.
Collapse
|
100
|
Huang L, Zhang Y, Liu ZY, Wang XG, Zhao XJ, Yang EC. Two Isostructural Layered Lanthanide(III) Complexes: Syntheses, Structures, Magnetic and Luminescent Properties. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lu Huang
- College of Chemistry; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Yu Zhang
- College of Chemistry; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Zhong-Yi Liu
- College of Chemistry; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Xiu-Guang Wang
- College of Chemistry; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Xiao-Jun Zhao
- College of Chemistry; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Normal University; 300387 Tianjin P. R. China
| | - En-Cui Yang
- College of Chemistry; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; Tianjin Normal University; 300387 Tianjin P. R. China
| |
Collapse
|