51
|
Development of C3 symmetric triaminoguanidine-2-naphthol conjugate: Aggregation induced emission, colorimetric and turn-off fluorimetric detection of Co2+ ion, smartphone and real sample applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
52
|
Wang C, Zhao X, Jiang H, Wang J, Zhong W, Xue K, Zhu C. Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy. NANOSCALE 2021; 13:1195-1205. [PMID: 33404030 DOI: 10.1039/d0nr07342c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-density lipoproteins (LDLs) are an endogenous nanocarrier to transport lipids in vivo. Owing to their biocompatibility and biodegradability, reduced immunogenicity, and natural tumor-targeting capability, we, for the first time, report the reconstitution of native LDL particles with saturated fatty acids and a mitochondrion-targeting aggregation-induced emission (AIE) photosensitizer for fluorescence-feedback photodynamic therapy (PDT). In particular, a novel AIE photosensitizer (TPA-DPPy) with a donor-acceptor (D-A) structure and a pyridinium salt is designed and synthesized, which possesses typical AIE and twisted intramolecular charge transfer (TICT) characteristics as well as reactive oxygen species (ROS)-sensitizing capability. In view of its prominent photophysical and photochemical properties, TPA-DPPy is encapsulated into LDL particles for photodynamic killing of cancer cells that overexpress LDL receptors (LDLRs). The resultant LDL (rLDL) particles maintain a similar morphology and size distribution to native LDL particles, and are efficiently ingested by cancer cells via LDLR-mediated endocytosis, followed by the release of TPA-DPPy for mitochondrion-targeting. Upon light irradiation, the produced ROS surrounding mitochondria lead to efficient and irreversible cell apoptosis. Interestingly, this process can be fluorescently monitored in a real-time fashion, as reflected by the remarkably enhanced luminescence and blue-shifted emission, indicating the increased mechanical stress during apoptosis. Quantitative cell viability analysis suggests that TPA-DPPy exhibits an outstanding phototoxicity toward LDLR-overexpressing A549 cancer cells, with a killing efficiency of ca. 88%. The rLDL particles are a class of safe and multifunctional nanophototheranostic agents, holding great promise in high-quality PDT by providing real-time fluorescence feedback on the therapeutic outcome.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Li Y, Zhou Y, Yao Y, Gao T, Yan P, Li H. White-light emission from the quadruple-stranded dinuclear Eu( iii) helicate decorated with pendent tetraphenylethylene (TPE). NEW J CHEM 2021. [DOI: 10.1039/d1nj00700a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hybrid film doped with a quadruple-stranded Eu3+ helicate displayed tuneable emission and white light.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yuan Yao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| |
Collapse
|
55
|
Mise Y, Imato K, Ogi T, Tsunoji N, Ooyama Y. Fluorescence sensors for detection of water based on tetraphenylethene–anthracene possessing both solvatofluorochromic properties and aggregation-induced emission (AIE) characteristics. NEW J CHEM 2021. [DOI: 10.1039/d1nj00186h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TPE-(An-CHO)4 has been developed as an SFC (solvatofluorochromism)/AIEE (aggregation-induced emission enhancement)-based fluorescence sensor for detection of water over a wide range from low to high water content regions in solvents.
Collapse
Affiliation(s)
- Yuta Mise
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Keiichi Imato
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takashi Ogi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Nao Tsunoji
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
56
|
Li J, Zhang Y, Wang P, Yu L, An J, Deng G, Sun Y, Seung Kim J. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
57
|
Jiang M, Mu J, Jacobson O, Wang Z, He L, Zhang F, Yang W, Lin Q, Zhou Z, Ma Y, Lin J, Qu J, Huang P, Chen X. Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS NANO 2020; 14:16875-16886. [PMID: 33206522 DOI: 10.1021/acsnano.0c05722] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotheranostics based on tumor-selective small molecular prodrugs could be more advantageous in clinical translation for cancer treatment, given its defined chemical structure, high drug loading efficiency, controlled drug release, and reduced side effects. To this end, we have designed and synthesized a reactive oxygen species (ROS)-activatable heterodimeric prodrug, namely, HRC, and nanoformulated it for tumor-selective imaging and synergistic chemo- and photodynamic therapy. The prodrug consists of the chemodrug camptothecin (CPT), the photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), and a thioketal linker. Compared to CPT- or HPPH-loaded polymeric nanoparticles (NPs), HRC-loaded NPs possess higher drug loading capacity, better colloidal stability, and less premature drug leakage. Interestingly, HRC NPs were almost nonfluorescent due to the strong π-π stacking and could be effectively activated by endogenous ROS once entering cells. Thanks to the higher ROS levels in cancer cells than normal cells, HRC NPs could selectively light up the cancer cells and exhibit much more potent cytotoxicity to cancer cells. Moreover, HRC NPs demonstrated highly effective tumor accumulation and synergistic tumor inhibition with reduced side effects on mice.
Collapse
Affiliation(s)
- Meijuan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Mu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qiaoya Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
58
|
Wang L, Liu Y, Liu H, Tian H, Wang Y, Zhang G, Lei Y, Xue L, Zheng B, Fan T, Zheng Y, Tan F, Xue Q, Gao S, Li C, He J. The therapeutic significance of the novel photodynamic material TPE-IQ-2O in tumors. Aging (Albany NY) 2020; 13:1383-1409. [PMID: 33472175 PMCID: PMC7835032 DOI: 10.18632/aging.202355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Combination therapies based on photodynamic therapy (PDT) have received much attention in various cancers due to their strong therapeutic effects. Here, we aimed to explore the safety and effectiveness of a new mitochondria-targeting photodynamic material, TPE-IQ-2O, in combination therapies (combined with surgery or immunotherapy). The safety and effectiveness of TPE-IQ-2O PDT were verified with cytotoxicity evaluation in vitro and a zebrafish xenograft model in vivo, respectively. The effectiveness of TPE-IQ-2O PDT combined with surgery or immune checkpoint inhibitors (ICIs) was verified in tumor-bearing mice. Small animal in vivo imaging, immunohistochemistry, and flow cytometry were used to determine the underlying mechanism. TPE-IQ-2O PDT can not only reduce tumor recurrence in surgical treatment but also effectively improve the response to ICIs in immunotherapy without obvious toxicity. It was also found to ameliorate the immunosuppressive tumor microenvironment and promote the antitumor immunity induced by ICIs by increasing CD8+ tumor-infiltrating lymphocyte accumulation. Thus, TPE-IQ-2O PDT is a safe and effective antitumor therapy that can be combined with surgery or immunotherapy.
Collapse
Affiliation(s)
- Liyu Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu Liu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yalong Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanyuan Lei
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
59
|
Huang Y, Zhang G, Zhao R, Zhang D. Aggregation-Induced Emission Luminogens for Mitochondria-Targeted Cancer Therapy. ChemMedChem 2020; 15:2220-2227. [PMID: 33094568 DOI: 10.1002/cmdc.202000632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/24/2022]
Abstract
The importance of mitochondria in tumorigenesis makes these organelles an ideal target for cancer therapy. In recent years, luminogens with the aggregation-induced emission (AIE) effect have been developed for mitochondrial targeting and cancer treatment. The induction of mitochondrial dysfunction can be an effective pathway of chemotherapy, photodynamic therapy, and combination therapy against cancer. This review focuses on recent progress in the field of AIE luminogens (AIEgens) for cancer theranostics based on mitochondrial targeting and dysfunction. AIEgens for cancer treatment, including chemotherapy, photodynamic therapy, and combination therapy, are summarized herein. Molecular design efforts toward mitochondrial targeting and mitochondria-damaging mechanisms are also discussed. Finally, we discuss the challenges and future directions of development for AIEgens in mitochondria-targeted cancer treatment.
Collapse
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
60
|
Yu K, Pan J, Husamelden E, Zhang H, He Q, Wei Y, Tian M. Aggregation-induced Emission Based Fluorogens for Mitochondria-targeted Tumor Imaging and Theranostics. Chem Asian J 2020; 15:3942-3960. [PMID: 33025759 DOI: 10.1002/asia.202001100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Occurrence and development of cancer are multifactorial and multistep processes which involve complicated cellular signaling pathways. Mitochondria, as the energy producer in cells, play key roles in tumor cell growth and division. Since mitochondria of tumor cells have a more negative membrane potential than those of normal cells, several fluorescent imaging probes have been developed for mitochondria-targeted imaging and photodynamic therapy. Conventional fluorescent dyes suffer from aggregation-caused quenching effect, while novel aggregation-induced emission (AIE) probes are ideal candidates for biomedical applications due to their large stokes shift, strong photo-bleaching resistance, and high quantum yield. This review aims to introduce the recent advances in the design and application of mitochondria-targeted AIE probes. The comprehensive review focuses on the structure-property relationship of these imaging probes, expecting to inspire the development of more practical and versatile AIE fluorogens (AIEgens) as tumor imaging and therapy agents for preclinical and clinical use.
Collapse
Affiliation(s)
- Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Jiayue Pan
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Elkawad Husamelden
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| |
Collapse
|
61
|
Wu MY, Liu L, Zou Q, Leung JK, Wang JL, Chou TY, Feng S. Simple synthesis of multifunctional photosensitizers for mitochondrial and bacterial imaging and photodynamic anticancer and antibacterial therapy. J Mater Chem B 2020; 8:9035-9042. [PMID: 32959039 DOI: 10.1039/d0tb01669a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosensitizers (PSs), a critical drug administered for successful photodynamic therapy (PDT), have been well researched regarding their anticancer or bactericidal capability with high precision and low invasiveness. Although traditional PSs have been explored either in photodynamic anticancer or in antibiosis, they usually require synthesis with multiple steps, harsh synthetic conditions, and a complicated purification process for a single targeted product. Therefore, developing new multifunctional PSs with a simple synthesis and reactant flexibility which combine mitochondrial and bacterial imaging, efficient photodynamic anticancer and antibacterial effects is of the utmost urgency and of great importance for clinical applications. Herein, a large structural investigation of isoquinolinium-based PSs synthesized by a simple Rh-catalysed annulation reaction with high yields is presented. These lipophilic cationic PSs have a tunable photophysical property. LIQ-6 was found to perform not only as an ideal mitochondria targeting probe but also an effective cancer cell killing PS, and moreover, a tracker for bacterial imaging and ablation. LIQ-6 can be used to image a wide range of cancer cells and to monitor the photo-induced cell apoptosis, and simultaneously, it can also image and be a photodynamic germicide for both Gram-positive and Gram-negative bacteria. Furthermore, LIQ-6 shows great effectiveness in the wound healing process, showing its ability to be an ideal PS in vivo as well. This contribution is believed to offer a new platform for the construction of a theragnostic system for future practical applications in biology and biomedicine.
Collapse
Affiliation(s)
- Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Li Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Qian Zou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jong-Kai Leung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Jia-Li Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
62
|
Park SH, Shin I, Kim YH, Shin I. Mitochondrial Cl --Selective Fluorescent Probe for Biological Applications. Anal Chem 2020; 92:12116-12119. [PMID: 32829639 DOI: 10.1021/acs.analchem.0c02658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we describe the development of the first mitochondrial Cl--selective fluorescent probe, Mito-MQAE, and its applications in biological systems. Fluorescence of Mito-MQAE is insensitive to pH over the physiological pH range and is quenched by Cl- with a Stern-Volmer quenching constant of 201 M-1 at pH 7.0. The results of cell studies using Mito-MQAE show that substances with the ability to disrupt mitochondrial membranes cause increases in the mitochondrial Cl- concentration.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Insu Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Hyun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
63
|
Nabara M, Yamamoto S, Nishiyama Y, Nagatani H. Aggregation-Induced Emission of Water-Soluble Tetraphenylethene Derivatives at Polarized Liquid|Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10597-10605. [PMID: 32787028 DOI: 10.1021/acs.langmuir.0c01962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aggregation-induced emission (AIE) behavior of water-soluble tetraphenylethene (TPE) derivatives bearing carboxy and sulfo groups was studied at polarized liquid|liquid interfaces. The aggregation behavior of TPE derivatives in solution and at the water|1,2-dichloroethane (DCE) interface was highly dependent on their ionizable functional groups. Spectroelectrochemical analysis elucidated that the TPE derivatives were transferred across the interface accompanied by the adsorption process at the interface. The ion transfer and interfacial AIE features of TPEs responded reversibly to the externally applied potential, indicating no rigid crystalline structure formation in the interfacial region. The red shift measured in intense interfacial emission spectra demonstrated that the carboxylate derivatives formed their J-aggregates specifically at the polarized water|DCE interface, while the aggregation processes with distinguishable emission properties took place in both the interfacial region and organic solution in the sulfonate derivative system. The AIE features were also investigated at a glycerophospholipid-adsorbed interface as a model of the biomembrane surface. The aggregation process of TPE derivatives was significantly modified through the interaction with phospholipid layers which stimulate the interfacial AIE process of tetra-anionic TPEs.
Collapse
Affiliation(s)
- Makoto Nabara
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Sho Yamamoto
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yoshio Nishiyama
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Faculty of Chemistry, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Hirohisa Nagatani
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Faculty of Chemistry, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
64
|
Zhang H, Zhao Z, Turley AT, Wang L, McGonigal PR, Tu Y, Li Y, Wang Z, Kwok RTK, Lam JWY, Tang BZ. Aggregate Science: From Structures to Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001457. [PMID: 32734656 DOI: 10.1002/adma.202001457] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Indexed: 05/05/2023]
Abstract
Molecular science entails the study of structures and properties of materials at the level of single molecules or small interacting complexes of molecules. Moving beyond single molecules and well-defined complexes, aggregates (i.e., irregular clusters of many molecules) serve as a particularly useful form of materials that often display modified or wholly new properties compared to their molecular components. Some unique structures and phenomena such as polymorphic aggregates, aggregation-induced symmetry breaking, and cluster excitons are only identified in aggregates, as a few examples of their exotic features. Here, by virtue of the flourishing research on aggregation-induced emission, the concept of "aggregate science" is put forward to fill the gaps between molecules and aggregates. Structures and properties on the aggregate scale are also systematically summarized. The structure-property relationships established for aggregates are expected to contribute to new materials and technological development. Ultimately, aggregate science may become an interdisciplinary research field and serves as a general platform for academic research.
Collapse
Affiliation(s)
- Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Andrew T Turley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, 999077, China
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhaoyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
65
|
Feng HT, Li Y, Duan X, Wang X, Qi C, Lam JWY, Ding D, Tang BZ. Substitution Activated Precise Phototheranostics through Supramolecular Assembly of AIEgen and Calixarene. J Am Chem Soc 2020; 142:15966-15974. [DOI: 10.1021/jacs.0c06872] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxuan Wang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Chunxuan Qi
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
66
|
Feng HT, Zou S, Chen M, Xiong F, Lee MH, Fang L, Tang BZ. Tuning Push–Pull Electronic Effects of AIEgens to Boost the Theranostic Efficacy for Colon Cancer. J Am Chem Soc 2020; 142:11442-11450. [DOI: 10.1021/jacs.0c02434] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hai-Tao Feng
- Baoji AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Xiong
- Shenzhen Jinyu Biotechnology Co., Ltd., B1203 Compass Life Science Park, Julongshan B Road, Shenzhen 518118, China
| | | | | | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Institute for Advanced Study, Department of Chemical and Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
67
|
Roy E, Nagar A, Chaudhary S, Pal S. Advanced Properties and Applications of AIEgens-Inspired Smart Materials. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ekta Roy
- Department of Chemistry, Government Engineering College Jhalawar, Jhalawar, Rajasthan 326023, India
| | - Achala Nagar
- Department of Chemistry, Government Engineering College Jhalawar, Jhalawar, Rajasthan 326023, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan 302017, India
| | - Souvik Pal
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677, R.O.C
| |
Collapse
|
68
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020; 59:9868-9886. [DOI: 10.1002/anie.202000845] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
69
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000845] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
70
|
Zhang R, Niu G, Lu Q, Huang X, Chau JHC, Kwok RTK, Yu X, Li MH, Lam JWY, Tang BZ. Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AIEgens. Chem Sci 2020; 11:7676-7684. [PMID: 34094146 PMCID: PMC8159538 DOI: 10.1039/d0sc01213k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 11/21/2022] Open
Abstract
Cancer cell discrimination and cellular viability monitoring are closely related to human health. A universal and convenient fluorescence system with a dual function of wide-spectrum cancer cell discrimination and dynamic cellular viability monitoring is desperately needed, and is still extremely challenging. Herein we present a series of aggregation-induced emission luminogens (AIEgens) (denoted as IVP) which can allow accurate discrimination between cancer and normal cells and dynamic monitoring of cellular viability through mitochondria-nucleolus migration. By regulating the lengths and positions of alkyl chains in IVP molecules, we systematically studied the discrimination behavior of these AIEgens between cancer cells and normal cells and further investigated how they can migrate between the mitochondria and nucleolus based on the change of mitochondrial membrane potential (ΔΨ m). Using IVP-02 as a model molecule, wash-free bioimaging, excellent two-photon properties, and low cytotoxicity were demonstrated. This present work proves that these designed IVP AIEgens show great potential for cancer identification and metastasis monitoring, as well as activity evaluation and screening of drugs.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Guangle Niu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Qing Lu
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Xiaolin Huang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Xiaoqiang Yu
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
71
|
Aggregation-induced emission luminogen for specific identification of malignant tumour in vivo. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9677-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Panigrahi A, Are VN, Jain S, Nayak D, Giri S, Sarma TK. Cationic Organic Nanoaggregates as AIE Luminogens for Wash-Free Imaging of Bacteria and Broad-Spectrum Antimicrobial Application. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5389-5402. [PMID: 31931570 DOI: 10.1021/acsami.9b15629] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The increase in the use of bactericides is a matter of grave concern and a serious threat to human health. The present situation demands rapid and efficient detection and elimination of antibiotic-resistant microbes. Herein, we report the synthesis of a simple C3-symmetric molecular system (TGP) with an intrinsic positive charge through a single-step Schiff base condensation. In a water-dimethyl sulfoxide (DMSO) solvent mixture (80:20 v/v), TGP molecules self-aggregate to form spherical nanoparticles with a positively charged surface that displays efficient fluorescence owing to the aggregation-induced emission (AIE) phenomenon. Both Gram-positive and Gram-negative bacteria could be effectively detected through "turn-off" fluorescence spectroscopy as the electrostatic interaction of the resultant nanoaggregates with the negatively charged bacterial surface induced quenching of fluorescence of the nanoparticles. The fluorescence analysis and steady-state lifetime studies of TGP nanoparticles suggest that a nonradiative decay through photoinduced electron transfer from the nanoparticles to the bacterial surface leads to effective fluorescence quenching. Further, the TGP nanoaggregates demonstrate potent antimicrobial activity against microbes such as multidrug-resistant bacteria and fungi at a concentration as low as 74 μg/mL. A combination of factors including ionic surface characteristics of the nanoparticles for strong electrostatic binding on the bacterial surface followed by possible photoinduced electron transfer from the nanoaggregates to the bacterial membrane and enhanced oxidative stress in the membrane resulting from reactive oxygen species (ROS) generation is found accountable for the high antimicrobial activity of the TGP nanoparticles. The effective disruption of membrane integrity in both Gram-positive and Gram-negative bacteria upon interaction with the nanoaggregates can be observed from field emission scanning electron microscopy (FESEM) studies. The development of simple pathways for the molecular design of multifunctional broad-spectrum antimicrobial systems for rapid and real-time detection, wash-free imaging, and eradication of drug-resistant microbes might be crucial to combat pathogenic agents.
Collapse
Affiliation(s)
- Abhiram Panigrahi
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Venkata N Are
- Centre of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Siddarth Jain
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Debasis Nayak
- Centre of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Santanab Giri
- School of Applied Sciences and Humanities , Haldia Institute of Technology , Haldia 721657 , West Bengal , India
| | - Tridib K Sarma
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| |
Collapse
|
73
|
Situ B, Ye X, Zhao Q, Mai L, Huang Y, Wang S, Chen J, Li B, He B, Zhang Y, Zou J, Tang BZ, Pan X, Zheng L. Identification and Single-Cell Analysis of Viable Circulating Tumor Cells by a Mitochondrion-Specific AIE Bioprobe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902760. [PMID: 32099764 PMCID: PMC7029725 DOI: 10.1002/advs.201902760] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Indexed: 05/21/2023]
Abstract
Liquid biopsies of cancer via single-cell molecular profiling of circulating tumor cells (CTCs) are hampered by the lack of ideal CTC markers. In this study, it is reported that TPN, a bioprobe with aggregation-induced emission (AIE) activity is capable of distinguishing various tumor cells from blood leukocytes based on the difference in cell mitochondria. TPN is a cell-permeant live-cell stain that has little effect on cell viability and integrity, enabling single-cell DNA/RNA analysis with improved efficiency compared with traditional antibody-based methods. Using TPN labeling, CTCs and CTC cluster are detected in the blood from patients with lung or liver cancer. The capability of TPN to identify rare tumor cells in the malignant pleural effusion samples is also demonstrated. Furthermore, RNA sequencing of single lung CTC identified by TPN is successfully performed. The findings presented here provide an antibody-free, low-cost, and nondisruptive approach for detection and genomic characterization of viable tumor cells based on a mitochondria-targeting AIE luminogen. It might serve as a new tool for monitoring of genomics dynamic of tumor and unraveling the mechanisms of tumor metastasis.
Collapse
Affiliation(s)
- Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xinyi Ye
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianwen Zhao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Liyao Mai
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Yifang Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Siqi Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Jing Chen
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bo Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bairong He
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ye Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jianjun Zou
- Department of OncologyGuangzhou Chest HospitalGuangzhou510515China
| | - Ben Zhong Tang
- Guangdong Province Key Laboratory of Biomedical EngineeringSouth China University of TechnologyGuangzhou510006China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong KongChina
- HKUST‐Shenzhen Research InstituteNo. 9 Yuexing 1st RD, South Area, Hi‐tech Park, NanshanShenzhen518057China
| | - Xinghua Pan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
74
|
|
75
|
Zheng Z, Liu H, Zhai S, Zhang H, Shan G, Kwok RTK, Ma C, Sung HHY, Williams ID, Lam JWY, Wong KS, Hu X, Tang BZ. Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chem Sci 2020; 11:2494-2503. [PMID: 34084415 PMCID: PMC8157451 DOI: 10.1039/c9sc06441a] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Photosensitizers (PSs) with multiple characteristics, including efficient singlet oxygen (1O2) generation, cancer cell-selective accumulation and subsequent mitochondrial localization as well as near-infrared (NIR) excitation and bright NIR emission, are promising candidates for imaging-guided photodynamic therapy (PDT) but rarely concerned. Herein, a simple rational strategy, namely modulation of donor-acceptor (D-A) strength, for molecular engineering of mitochondria-targeting aggregation-induced emission (AIE) PSs with desirable characteristics including highly improved 1O2 generation efficiency, NIR emission (736 nm), high specificity to mitochondria, good biocompatibility, high brightness and superior photostability is demonstrated. Impressively, upon light irradiation, the optimal NIR AIE PS (DCQu) can generate 1O2 with efficiency much higher than those of commercially available PSs. The excellent two-photon absorption properties of DCQu allow two-photon fluorescence imaging of mitochondria and subsequent two-photon excited PDT. DCQu can selectively differentiate cancer cells from normal cells without the aid of extra targeting ligands. Upon ultralow-power light irradiation at 4.2 mW cm-2, in situ mitochondrial photodynamic activation to specifically damage cancer cells and efficient in vivo melanoma ablation are demonstrated, suggesting superior potency of the AIE PS in imaging-guided PDT with minimal side effects, which is promising for future precision medicine.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Haixiang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Shaodong Zhai
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Guogang Shan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Chao Ma
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Kam Sing Wong
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China .,HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China.,Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
76
|
Roy E, Nagar A, Chaudhary S, Pal S. AIEgen‐Based Fluorescent Nanomaterials for Bacterial Detection and its Inhibition. ChemistrySelect 2020. [DOI: 10.1002/slct.201904092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ekta Roy
- Department of Chemistry Government Engineering College Jhalawar Rajasthan India
| | - Achala Nagar
- Department of Chemistry Government Engineering College Jhalawar Rajasthan India
| | - Sandeep Chaudhary
- Department of Chemistry Malaviya National Institute of Technology Jaipur Rajasthan
| | - Souvik Pal
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| |
Collapse
|
77
|
Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020; 10:1923-1947. [PMID: 32042345 PMCID: PMC6993224 DOI: 10.7150/thno.39915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The continuous or real-time tracking of biological processes using biocompatible contrast agents over a certain period of time is vital for precise diagnosis and treatment, such as monitoring tissue regeneration after stem cell transplantation, understanding the genesis, development, invasion and metastasis of cancer and so on. The rationally designed nanoparticles, including aggregation-induced emission (AIE) dots, inorganic quantum dots (QDs), nanodiamonds, superparamagnetic iron oxide nanoparticles (SPIONs), and semiconducting polymer nanoparticles (SPNs), have been explored to meet this urgent need. In this review, the development and application of these nanoparticle-based cell trackers for a variety of imaging technologies, including fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, magnetic particle imaging, positron emission tomography and single photon emission computing tomography are discussed in detail. Moreover, the further therapeutic treatments using multi-functional trackers endowed with photodynamic and photothermal modalities are also introduced to provide a comprehensive perspective in this promising research field.
Collapse
Affiliation(s)
- Jen-Shyang Ni
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Yaxi Li
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wentong Yue
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Kai Li
- Department of Biomedical Engineering, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
78
|
|
79
|
Guo H, Cheng X, Li H, Li J, Wei J, Feng C. Synthesis, micellar structures and emission mechanisms of an AIE and DDED-featured fluorescent pH- and thermo-meter. RSC Adv 2020; 10:23532-23542. [PMID: 35517342 PMCID: PMC9054736 DOI: 10.1039/d0ra01000f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
A new nanoprobe, the luminescent diblock copolymer PNIPAM(MAh-4)-b-P4VP (PN4P), with pH- and thermo-responsive deprotonation-driven emission decay (DDED) and aggregation-induced emission (AIE) features was designed and synthesized. The nanoprobe PN4P can form micellar structures in water with reversible dual-responsive fluorescence (FL) behavior within a wide pH range of 2–11. The critical solution temperature was found at about 32, 30 and 27 °C as the pH switched from 2, 7 to 11. The critical pH value of the probe was about 4.0, and the micelles showed a core–shell inversion in response to pH and thermal stimuli, accompanied by a desirable emission tunability. P4VP as the micellar shell at pH = 2 was more easily dehydrated with the increase in temperature as compared to PNIPAM as the micellar shell at pH > 4. The strongest dehydration of the P4VP shell would make PN4P the most strongly aggregated and the most AIE-active, which supports the 2.10-fold most distinguished thermal-responsive emission enhancement at pH = 2. Moreover, a dramatic acidochromic redshift of the emission band from 450 (pH > 4) to 490 nm (pH = 2) was observed, and the maximum emission at pH = 2 was enhanced by about 2.07-fold as compared with that at pH = 7. Therefore, the probe displays the desired dual responses and good reversibility. AIE and DDED are the two major mechanisms responsible for the dual-responsive emission change, with AIE playing a more important role than DDED. This work offers a promising approach to interpreting temperature (range from 28 to 40 °C) and pH changes (range from 2 to 7) in water. A nanoprobe in water features pH- and thermal-responsive micellar/clustering structures, deprotonation-driven emission decay (DDED) and aggregation-induced emission (AIE).![]()
Collapse
Affiliation(s)
- He Guo
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Xiaomeng Cheng
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Colloid and Interface and Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Hongping Li
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Jun Li
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Jinjin Wei
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Chongyang Feng
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
80
|
Mathivanan M, Tharmalingam B, Lin CH, Pandiyan BV, Thiagarajan V, Murugesapandian B. ESIPT-active multi-color aggregation-induced emission features of triphenylamine–salicylaldehyde-based unsymmetrical azine family. CrystEngComm 2020. [DOI: 10.1039/c9ce01490j] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new family of ESIPT and AIE-active triphenylamine-appended unsymmetrical azine derivatives is reported.
Collapse
Affiliation(s)
| | | | - Chia-Her Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | | | | | | |
Collapse
|
81
|
Chen D, Mao H, Hong Y, Tang Y, Zhang Y, Li M, Dong Y. Hexaphenyl-1,3-butadiene derivative: a novel “turn-on” rapid fluorescent probe for intraoperative pathological diagnosis of hepatocellular carcinoma. MATERIALS CHEMISTRY FRONTIERS 2020; 4:2716-2722. [DOI: 10.1039/d0qm00262c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The staining method based on AIE-active ZZ-HPB-NC can simple distinguish the hepatocellular carcinoma from liver noncancerous tissue, which overcomes the drawbacks of the poor anti-interference ability of the authoritative clinical H&E technique.
Collapse
Affiliation(s)
- Didi Chen
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients
- Hubei University of Education
- Wuhan
- China
| | - Huiling Mao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Yuning Hong
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Yong Tang
- Department of Hepatobiliary Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Yong Zhang
- Department of Hepatobiliary Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Min Li
- Department of Hepatobiliary Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing
- China
| |
Collapse
|
82
|
Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS NANO 2019; 13:11283-11293. [PMID: 31525947 DOI: 10.1021/acsnano.9b04430] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Efficient organic photosensitizers (PSs) have attracted much attention because of their promising applications in photodynamic therapy (PDT). However, guidelines on their molecular design are rarely reported. In this work, a series of PSs are designed and synthesized based on a triphenylamine-azafluorenone core. Their structure-property-application relationships are systematically studied. Cationization is an effective strategy to enhance the PDT efficiency of PSs by targeting mitochondria. From the molecularly dispersed state to the aggregate state, the fluorescence and the reactive oxygen species generation efficiency of PSs with aggregation-induced emission (AIE) increase due to the restriction of the intramolecular motions and enhancement of intersystem crossing. Cationized mitochondrion-targeting PSs show higher PDT efficiency than that of nonionized ones targeting lipid droplets. The ability of AIE PSs to kill cancer cells can be further enhanced by combination of PDT with radiotherapy. Such results should trigger research enthusiasm for designing and synthesizing AIE PSs with better PDT efficiency and properties.
Collapse
Affiliation(s)
- Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
- HKUST Shenzhen Research Institute , No. 9 Yuexing First Road, South Area Hi-tech Park , Nanshan , Shenzhen 518057 , China
| | - Hang Zou
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou , 510515 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , 518055 , China
| | - Guo-Gang Shan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital , Southern Medical University , Guangzhou , 510515 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Department of Chemical and Biological Engineering and Institute for Advanced Study , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
- HKUST Shenzhen Research Institute , No. 9 Yuexing First Road, South Area Hi-tech Park , Nanshan , Shenzhen 518057 , China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou , 510640 , China
| |
Collapse
|
83
|
Zhu L, Li Y, Zhang L, Wen Y, Ju H, Lei J. Controlled assembly of AIEgens based on a super-quadruplex scaffold for detection of plasma membrane proteins. Anal Chim Acta 2019; 1094:130-135. [PMID: 31761039 DOI: 10.1016/j.aca.2019.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
Quantification of plasma membrane proteins (PMPs) is crucial for understanding the fundamentals of cellular signaling systems and their related diseases. In this work, a super-quadruplex scaffold was designed to regulate assembly of oligonucleotide-grafted AIEgens for detection of PMPs. The nonfluorescence oligonucleotide-grafted AIEgen (Oligo-AIEgen) was firstly synthesized by attaching the AIEgen to 3'-terminus of the oligonucleotide through click chemistry. Meanwhile, the tetramolecular hairpin-conjugated super-quadruplex (THP-G4) as cleavage element and signal enhancement scaffold composited of three elements: a substrate sequence of DNAzyme in the loop region, partial hybridization region in the stem, and six guanine nucleotides to form G-quadruplex. Once the DNAzyme was anchored on the specific PMPs through aptamer-protein recognition, the substrate sequence on the loop of THP-G4 was cleaved by DNAzyme with the aid of cofactor MnII, resulting in the conformation switch of THP-G4 to the activated G-quadruplex scaffold. The latter could assemble Oligo-AIEgens to generate aggregation-induced emission (AIE) enhancement, resulting in a simple and sensitive strategy for detection of membrane proteins. Moreover, the DNAzyme continuously cut the next THP-G4 to achieve recycling amplification. Under the optimized conditions, this AIE-based strategy exhibited good linear relationship with the logarithm of MUC1 concentration from 0.01 to 10 μg mL-1 with the limit of detection down to 4.3 ng mL-1. The G4-assembled AIEgens provides a universal platform for detecting various biomolecules and a proof-of concept for AIE biosensing.
Collapse
Affiliation(s)
- Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yunjie Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
84
|
Shi J, Wang M, Sun Z, Liu Y, Guo J, Mao H, Yan F. Aggregation-induced emission-based ionic liquids for bacterial killing, imaging, cell labeling, and bacterial detection in blood cells. Acta Biomater 2019; 97:247-259. [PMID: 31352110 DOI: 10.1016/j.actbio.2019.07.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
Abstract
A series of aggregation-induced emission (AIE)-based imidazolium-type ionic liquids (ILs) were designed and synthesized for bacterial killing and imaging, cell labeling, and bacterial detection in blood cells. The AIE-based ILs showed antibacterial activities against both Escherichia coli and Staphylococcus aureus. The carbon chain length of substitution at the N3 position of the imidazolium cations highly affects the antibacterial properties of ILs. Owing to their AIE characteristics, the ILs could selectively capture fluorescence image of dead bacteria while killing the bacteria. The fluorescence intensity varied with the concentration of bacteria, indicating that AIE-based ILs has potential as an antibacterial material and an efficient probe for bacterial viability assay. In addition, the synthesized AIE-based ILs exhibit relatively low cytotoxicity and hemolysis rate and therefore potential for cell labeling, as well as bacterial detection in blood cells. STATEMENT OF SIGNIFICANCE: Bacteria are ubiquitous, especially the pathogenic bacteria, which pose a serious threat to human health. There is an urgent need for materials with efficient antibacterial properties and biocompatibility and without causing drug resistance. In this work, we synthesized a series of aggregation-induced emission (AIE)-doped imidazolium type ionic liquids (ILs) with multifunction potential of bacterial killing and imaging, cell labeling, and detection of bacteria from blood cells. The synthesized AIE-based ILs can image dead bacteria at the same time of killing these bacteria, which can avoid the fluorescent dyeing process. Simultaneously, the fluorescent imaging of dead bacteria can be distinguished by the naked eye, and the fluorescence intensity from the AIE-based ILs varied with the concentration of bacteria. In addition, the AIE-based ILs exhibit relatively low cytotoxicity and hemolysis rate and therefore potential for cell labeling as well as detection of bacteria from red blood cell suspension.
Collapse
|
85
|
Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26529-26558. [PMID: 31136142 DOI: 10.1021/acsami.9b01370] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
86
|
Park SH, Shin I, Park SH, Kim ND, Shin I. An Inhibitor of the Interaction of Survivin with Smac in Mitochondria Promotes Apoptosis. Chem Asian J 2019; 14:4035-4041. [PMID: 31251464 DOI: 10.1002/asia.201900587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Herein we report the first small molecule that disrupts the survivin-Smac interaction taking place in mitochondria. The inhibitor, PZ-6-QN, was identified by initially screening a phenothiazine library using a fluorescence anisotropy assay and then conducting a structure-activity relationship study. Mutagenesis and molecular docking studies suggest that PZ-6-QN binds to survivin similarly to the known Smac peptide, AVPI. The results of the effort also show that PZ-6-QN exhibits good anticancer activity against various cancer cells. Moreover, cell-based mechanistic studies provide evidence for the proposal that PZ-6-QN enters mitochondria to inhibit the survivin-Smac interaction and promotes release of Smac and cytochrome c from mitochondria into the cytosol, a process that induces apoptosis in cancer cells. Overall, the present study suggests that PZ-6-QN can serve as a novel chemical probe for study of processes associated with the mitochondrial survivin-Smac interaction and it will aid the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Insu Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc., Incheon, 21984, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
87
|
Yin F, Gu B, Li J, Panwar N, Liu Y, Li Z, Yong KT, Tang BZ. In vitro anticancer activity of AIEgens. Biomater Sci 2019; 7:3855-3865. [PMID: 31305807 DOI: 10.1039/c9bm00881k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorogens with aggregation-induced emission (AIE) characteristics (AIEgens) possess unique optical properties, design flexibility, and multi-functional capabilities and have established their niche as smart materials since their discovery in 2001. In recent years, AIEgens have found varied applications in sensing, imaging, and therapy in biomedical research. In this work, we systematically and comprehensively investigate the in vitro anticancer activity of AIEgens. We report the high cytotoxicity of AIEgens against cancer cells, especially against cancer stem cells (CSCs) which show high resistance to existing therapeutic drug regimens. Furthermore, we explore the role of AIEgens as novel image-guided chemotherapy agents that offer a new avenue for efficient cancer treatment.
Collapse
Affiliation(s)
- Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jingxu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yong Liu
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Ben Zhong Tang
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
88
|
Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem Sci 2019; 10:5766-5772. [PMID: 31293763 PMCID: PMC6568044 DOI: 10.1039/c9sc00985j] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The efficacy of photodynamic therapy and chemotherapy is largely limited by oxygen deficiency in the hypoxic tumor microenvironment. To solve these problems, we fabricated a novel NIR-responsive nanosystem which could co-deliver oxygen and anticancer drug DOX. An oxygen self-sufficient amphiphile (F-IR780-PEG) was first synthesized and subsequently utilized to load anticancer drug DOX to form nanoparticles (F/DOX nanoparticles). Due to the high oxygen capacity of such nanoparticles, the hypoxic tumor microenvironment was greatly modulated after these nanoparticles reached the tumor region, and the results revealed that hypoxia-inducible factor α (HIF-1α) was down-regulated and the expression of P-glycoprotein (P-gp) was then reduced, which were in favor of chemotherapy. Under light irradiation at 808 nm, IR780 could efficiently produce singlet oxygen to damage cancer cells by photodynamic therapy (PDT). Simultaneously, the IR780 linkage could be cleaved by singlet oxygen generated by itself and resulted in DOX release, which further caused cell damage by chemotherapy. With the combination of PDT and chemotherapy, F/DOX nanoparticles showed remarkable therapeutic efficacy under in vitro and in vivo conditions. Furthermore, the F/DOX nanoparticles are favorable for imaging-guided tumor therapy due to the inherent fluorescence properties of IR780. We thus believe that the synergistic treatment described here leads to an ideal therapeutic approach to hypoxic tumors.
Collapse
Affiliation(s)
- Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering Center , East China University of Science and Technology , China
| | - Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| |
Collapse
|
89
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
90
|
He X, Xiong LH, Zhao Z, Wang Z, Luo L, Lam JWY, Kwok RTK, Tang BZ. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019; 9:3223-3248. [PMID: 31244951 PMCID: PMC6567968 DOI: 10.7150/thno.31844] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria, fungi and viruses pose serious threats to the human health under appropriate conditions. There are many rapid and sensitive approaches have been developed for identification and quantification of specific pathogens, but many challenges still exist. Culture/colony counting and polymerase chain reaction are the classical methods used for pathogen detection, but their operations are time-consuming and laborious. On the other hand, the emergence and rapid spread of multidrug-resistant pathogens is another global threat. It is thus of utmost urgency to develop new therapeutic agents or strategies. Luminogens with aggregation-induced emission (AIEgens) and their derived supramolecular systems with unique optical properties have been developed as fluorescent probes for turn-on sensing of pathogens with high sensitivity and specificity. In addition, AIE-based supramolecular nanostructures exhibit excellent photodynamic inactivation (PDI) activity in aggregate, offering great potential for not only light-up diagnosis of pathogen, but also image-guided PDI therapy for pathogenic infection.
Collapse
Affiliation(s)
- Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Zaiyu Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
- HKUST-Shenzhen Research Institute, Shenzhen 518057, China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
91
|
Jiang T, Zhou L, Liu H, Zhang P, Liu G, Gong P, Li C, Tan W, Chen J, Cai L. Monitorable Mitochondria-Targeting DNAtrain for Image-Guided Synergistic Cancer Therapy. Anal Chem 2019; 91:6996-7000. [DOI: 10.1021/acs.analchem.9b01777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tao Jiang
- Department of Pharmaceutical Sciences, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, P. R. China
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Haixiang Liu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
- Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water
Bay, Kowloon, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
- Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water
Bay, Kowloon, China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, Australian Centre for NanoMedicine, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Chunbin Li
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States
| | - Jianhai Chen
- Department of Pharmaceutical Sciences, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong 510515, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
92
|
Xie W, Yin T, Chen YL, Zhu DM, Zan MH, Chen B, Ji LW, Chen L, Guo SS, Huang HM, Zhao XZ, Wang Y, Wu Y, Liu W. Capture and "self-release" of circulating tumor cells using metal-organic framework materials. NANOSCALE 2019; 11:8293-8303. [PMID: 30977474 DOI: 10.1039/c8nr09071h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capturing circulating tumor cells (CTCs) from peripheral blood for subsequent analyses has shown potential in precision medicine for cancer patients. Broad as the prospect is, there are still some challenges that hamper its clinical applications. One of the challenges is to maintain the viability of the captured cells during the capturing and releasing processes. Herein, we have described a composite material that could encapsulate a magnetic Fe3O4 core in a MIL-100 shell (MMs), which could respond to pH changes and modify the anti-EpCAM antibody (anti-EpCAM-MMs) on the surface of MIL-100. After the anti-EpCAM-MMs captured the cells, there was no need for additional conditions but with the acidic environment during the cell culture process, MIL-100 could realize automatic degradation, leading to cell self-release. This self-release model could not only improve the cell viability, but could also reduce the steps of the release process and save human and material resources simultaneously. In addition, we combined clinical patients' case diagnosis with the DNA sequencing and next generation of RNA sequencing technologies in the hope of precision medicine for patients in the future.
Collapse
Affiliation(s)
- Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zhang T, Li Y, Zheng Z, Ye R, Zhang Y, Kwok RTK, Lam JWY, Tang BZ. In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. J Am Chem Soc 2019; 141:5612-5616. [DOI: 10.1021/jacs.9b00636] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tianfu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiru Zhang
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou 510640, China
| | - Ryan T. K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
94
|
Liu L, Zou Q, Leung JK, Wang JL, Kam C, Chen S, Feng S, Wu MY. Ultrafast labeling and high-fidelity imaging of mitochondria in cancer cells using an aggregation-enhanced emission fluorescent probe. Chem Commun (Camb) 2019; 55:14681-14684. [DOI: 10.1039/c9cc07775h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aggregation-enhanced emission probe was developed for ultrafast labeling and high-fidelity imaging of mitochondria in cancer cells with a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Li Liu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Qian Zou
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Jong-Kai Leung
- Ming Wai Lau Centre for Reparative Medicine
- Karolinska Institutet
- China
| | - Jia-Li Wang
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine
- Karolinska Institutet
- China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine
- Karolinska Institutet
- China
| | - Shun Feng
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| | - Ming-Yu Wu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
- China
| |
Collapse
|
95
|
Bakulina O, Merkt FK, Knedel T, Janiak C, Müller TJJ. Synthesis of Water‐Soluble Blue‐Emissive Tricyclic 2‐Aminopyridinium Salts by Three‐Component Coupling‐(3+3)‐Anellation. Angew Chem Int Ed Engl 2018; 57:17240-17244. [DOI: 10.1002/anie.201808665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Olga Bakulina
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
- Institute of Chemistry Saint Petersburg State University 26 Universitetskii Prospekt Peterhof 198504 Russia, Russian Federation
| | - Franziska K. Merkt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Tim‐Oliver Knedel
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
96
|
Bakulina O, Merkt FK, Knedel T, Janiak C, Müller TJJ. Dreikomponenten‐Kupplungs‐(3+3)‐Anellierung zum Aufbau von blaufluoreszierenden, wasserlöslichen, tricyclischen 2‐Aminopyridinsalzen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olga Bakulina
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
- Institute of Chemistry Saint Petersburg State University 26 Universitetskii Prospekt Peterhof 198504 Russland
| | - Franziska K. Merkt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Tim‐Oliver Knedel
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Deutschland
| |
Collapse
|
97
|
Lin F, Bao YW, Wu FG. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules 2018; 23:E3016. [PMID: 30453692 PMCID: PMC6278291 DOI: 10.3390/molecules23113016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
Mitochondria-targeted cancer phototherapy (PT), which works by delivering photoresponsive agents specifically to mitochondria, is a powerful strategy to improve the phototherapeutic efficiency of anticancer treatments. Mitochondria play an essential role in cellular apoptosis, and are relevant to the chemoresistance of cancer cells. Furthermore, mitochondria are a major player in many cellular processes and are highly sensitive to hyperthermia and reactive oxygen species. Therefore, mitochondria serve as excellent locations for organelle-targeted phototherapy. In this review, we focus on the recent advances of mitochondria-targeting materials for mitochondria-specific PT. The combination of mitochondria-targeted PT with other anticancer strategies is also summarized. In addition, we discuss both the challenges currently faced by mitochondria-based cancer PT and the promises it holds.
Collapse
Affiliation(s)
- Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | |
Collapse
|
98
|
Hu F, Xu S, Liu B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801350. [PMID: 30066341 DOI: 10.1002/adma.201801350] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
99
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
100
|
Chen M, Xie W, Li D, Zebibula A, Wang Y, Qian J, Qin A, Tang BZ. Utilizing a Pyrazine-Containing Aggregation-Induced Emission Luminogen as an Efficient Photosensitizer for Imaging-Guided Two-Photon Photodynamic Therapy. Chemistry 2018; 24:16603-16608. [PMID: 30178898 DOI: 10.1002/chem.201803580] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 12/22/2022]
Abstract
The development of novel photosensitizers with aggregation-induced emission (AIE) characteristics has aroused tremendous interest, because it could combine efficient bioimaging with precise photodynamic therapy, which would thus dramatically promote applications in biomedical treatment. Among various AIE luminogens (AIEgens), heterocycle-containing molecules are highly promising for this usage because of their high photostability and tunable electronic properties. In this work, a pyrazine-containing AIEgen with a dicyanopyrazine moiety as an electron acceptor and a triphenylamine unit as an electron donor was chosen for study. The V-shaped donor-π-acceptor-π-donor structure of the AIEgen endowed its nanoparticles with excellent nonlinear optical properties for two-photon cell imaging under near-infrared laser excitation. Also, under the same excitation, the nanoparticles could produce reactive oxygen species and further kill the cells efficiently and accurately. The present work thus presents a pyrazine-containing AIEgen as a new photosensitizer for imaging-guided two-photon photodynamic therapy and gives more opportunities for deep-tissue treatment of cancer in future research.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering, Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science, and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Weisi Xie
- State Key Laboratory of Modern Optical Instrumentations, Center for, Optical and Electromagnetic Research, Joint Research Laboratory of Optics, of Zhejiang Normal University, Zhejiang University, Zhejiang, University, Hangzhou, 310058, P. R. China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentations, Center for, Optical and Electromagnetic Research, Joint Research Laboratory of Optics, of Zhejiang Normal University, Zhejiang University, Zhejiang, University, Hangzhou, 310058, P. R. China
| | - Abudureheman Zebibula
- State Key Laboratory of Modern Optical Instrumentations, Center for, Optical and Electromagnetic Research, Joint Research Laboratory of Optics, of Zhejiang Normal University, Zhejiang University, Zhejiang, University, Hangzhou, 310058, P. R. China.,Department of Urology Sir Run-Run Shaw Hospital College of Medicine, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310016, P. R. China
| | - Yalun Wang
- State Key Laboratory of Modern Optical Instrumentations, Center for, Optical and Electromagnetic Research, Joint Research Laboratory of Optics, of Zhejiang Normal University, Zhejiang University, Zhejiang, University, Hangzhou, 310058, P. R. China.,College of Information Science and Technology, Zhejiang, Shuren University, Hangzhou, 310015, P. R. China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Center for, Optical and Electromagnetic Research, Joint Research Laboratory of Optics, of Zhejiang Normal University, Zhejiang University, Zhejiang, University, Hangzhou, 310058, P. R. China
| | - Anjun Qin
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of, Luminescent Materials and Devices, South China University of, Technology, Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National, Engineering, Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Biomedical Engineering, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science, and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of, Luminescent Materials and Devices, South China University of, Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|