51
|
Rollo-Walker G, Hasanpoor M, Malic N, Azad FM, O'Dell L, White J, Chiefari J, Forsyth M. Impact of optimised quasi-block structures on the properties of polymer electrolytes. Phys Chem Chem Phys 2024; 26:15742-15750. [PMID: 38768338 DOI: 10.1039/d4cp00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A set of ionic quasi-block copolymers were investigated to determine the effects of their composition and structure on their performance in their application as solid-state battery electrolytes. Diffusion and electrochemical tests have shown that these new quasi-block electrolytes have comparable performance to traditional block copolymers reaching ionic conductivities of 3.8 × 10-4 S cm-1 and lithium-ion diffusion of 4.6 × 10-12 m2 s-1 at 80 °C. It was illustrated that the mechanical properties of each quasi-block electrolyte are highly dependent on the order of monomer addition in polymer synthesis while the phase morphology hints at each of the quasi-blocks' unique compositional make up.
Collapse
Affiliation(s)
- Greg Rollo-Walker
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Meisam Hasanpoor
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
| | - Nino Malic
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Faezeh Makhlooghi Azad
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
| | - Luke O'Dell
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
| | - Jacinta White
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - John Chiefari
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia.
| |
Collapse
|
52
|
Liu Q, Feng Y, Liu J, Liu Y, Cui X, He YJ, Nuli Y, Wang J, Yang J. In Situ Integration of a Flame Retardant Quasisolid Gel Polymer Electrolyte with a Si-Based Anode for High-Energy Li-Ion Batteries. ACS NANO 2024; 18:13384-13396. [PMID: 38736184 DOI: 10.1021/acsnano.4c03570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Silicon (Si) stands out as a promising high-capacity anode material for high-energy Li-ion batteries. However, a drastic volume change of Si during cycling leads to the electrode structure collapse and interfacial stability degradation. Herein, a multifunctional quasisolid gel polymer electrolyte (QSGPE) is designed, which is synthesized through the in situ polymerization of methylene bis(acrylamide) with silica-nanoresin composed of nanosilica and a trifunctional cross-linker in cells, leading to the creation of a "breathing" three-dimensional elastic Li-ion conducting framework that seamlessly integrates an electrode, a binder, and an electrolyte. The silicon particles within the anode are encapsulated by buffering the QSGPE after cross-linking polymerization, which synergistically interacts with the existing PAA binder to reinforce the electrode structure and stabilize the interface. In addition, the formation of the LiF- and Li3N-rich SEI layer further improves the interfacial property. The QSGPE demonstrates a wide electrochemical window until 5.5 V, good flame retardancy, high ionic conductivity (1.13 × 10-3 S cm-1), and a Li+ transference number of 0.649. The advanced QSGPE and cell design endow both nano- and submicrosized silicon (smSi) anodes with high initial Coulombic efficiencies over 88.0% and impressive cycling stability up to 600 cycles at 1 A g-1. Furthermore, the NCM811//Si cell achieves capacity retention of ca. 82% after 100 cycles at 0.5 A g-1. This work provides an effective strategy for extending the cycling life of the Si anode and constructing an integrated cell structure by in situ polymerization of the quasisolid gel polymer electrolyte.
Collapse
Affiliation(s)
- Qian Liu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yifeng Feng
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiqiong Liu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yijie Liu
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu611756, China
| | - Xuzixu Cui
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yi-Jun He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yanna Nuli
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiulin Wang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jun Yang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
53
|
Guo D, Xu Y, Xu J, Guo K, Wu N, Cao A, Liu G, Liu X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules 2024; 29:2228. [PMID: 38792090 PMCID: PMC11123785 DOI: 10.3390/molecules29102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The integration of heterostructures within electrode materials is pivotal for enhancing electron and Li-ion diffusion kinetics. In this study, we synthesized CoO/MnO heterostructures to enhance the electrochemical performance of MnO using a straightforward electrostatic spinning technique followed by a meticulously controlled carbonization process, which results in embedding heterostructured CoO/MnO nanoparticles within porous nitrogen-doped carbon nanofibers (CoO/MnO/NC). As confirmed by density functional theory calculations and experimental results, CoO/MnO heterostructures play a significant role in promoting Li+ ion and charge transfer, improving electronic conductivity, and reducing the adsorption energy. The accelerated electron and Li-ion diffusion kinetics, coupled with the porous nitrogen-doped carbon nanofiber structure, contribute to the exceptional electrochemical performance of the CoO/MnO/NC electrode. Specifically, the as-prepared CoO/MnO/NC exhibits a high reversible specific capacity of 936 mA h g-1 at 0.1 A g-1 after 200 cycles and an excellent high-rate capacity of 560 mA h g-1 at 5 A g-1, positioning it as a competitive anode material for lithium-ion batteries. This study underscores the critical role of electronic and Li-ion regulation facilitated by heterostructures, offering a promising pathway for designing transition metal oxide-based anode materials with high performances for lithium-ion batteries.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Yaya Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Jiaqi Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Kailong Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Naiteng Wu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Ang Cao
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Xianming Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| |
Collapse
|
54
|
Ge Q, Ma Z, Yao M, Dong H, Chen X, Chen S, Yao T, Ji X, Li L, Wang H. Carbon-Coated Tin-Titanate derived SnO 2/TiO 2 nanowires as High-Performance anode for Lithium-Ion batteries. J Colloid Interface Sci 2024; 661:888-896. [PMID: 38330661 DOI: 10.1016/j.jcis.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/12/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.
Collapse
Affiliation(s)
- Qianjiao Ge
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenhan Ma
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Menglong Yao
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Jiaxing Electric Power Company State Grid Zhejiang Electric Power Co., Ltd., Jiaxing, China
| | - Hao Dong
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyang Chen
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shiqi Chen
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianhao Yao
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Ji
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Li
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China; School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Hongkang Wang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Fengxi Zhiyuan New Material Technology Co., Ltd, China.
| |
Collapse
|
55
|
Liu X, Yu Y, Li K, Li Y, Li X, Yuan Z, Li H, Zhang H, Gong M, Xia W, Deng Y, Lei W. Intergrating Hollow Multishelled Structure and High Entropy Engineering toward Enhanced Mechano-Electrochemical Properties in Lithium Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312583. [PMID: 38302690 DOI: 10.1002/adma.202312583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Hollow multishelled structures (HoMSs) are attracting great interest in lithium-ion batteries as the conversion anodes, owing to their superior buffering effect and mechanical stability. Given the synthetic challenges, especially elemental diffusion barrier in the multimetal combinations, this complex structure design has been realized in low- and medium-entropy compounds so far. It means that poor reaction reversibility and low intrinsic conductivity remain largely unresolved. Here, a hollow multishelled (LiFeZnNiCoMn)3O4 high entropy oxide (HEO) is developed through integrating molecule and microstructure engineering. As expected, the HoMS design exhibits significant targeting functionality, yielding satisfactory structure and cycling stability. Meanwhile, the abundant oxygen defects and optimized electronic structure of HEO accelerate the lithiation kinetics, while the retention of the parent lattice matrix enables reversible lithium storage, which is validated by rigorous in situ tests and theoretical simulations. Benefiting from these combined properties, such hollow multishelled HEO anode can deliver a specific capacity of 967 mAh g-1 (89% capacity retention) after 500 cycles at 0.5 A g-1. The synergistic lattice and volume stability showcased in this work holds great promise in guiding the material innovations for the next-generation energy storage devices.
Collapse
Affiliation(s)
- Xuefeng Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingjie Yu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Kezhuo Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yage Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaohan Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhen Yuan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Weiwei Xia
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710000, China
| | - Yaping Deng
- Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Wen Lei
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| |
Collapse
|
56
|
Liu H, Chen Q, Chen H, Zhang S, Wang K, Chen Y, Liu H, Zhang C, Shi L, Li H. One-Step Cooperative Growth of High Reaction Kinetics Composite Homogeneous Core-Shell Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307308. [PMID: 38126576 DOI: 10.1002/smll.202307308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Reaction kinetics can be improved by the enhanced electrical contact between different components growing symbiotically. But so far, due to the necessity for material synthesis conditions match, the component structures of cooperative growth are similar, and the materials are of the same type. The collaborative growth of high-reaction kinetics composite homogeneous core-shell heterostructure between various materials is innovatively proposed with different structures in one step. The NiCo-LDH and PPy successfully symbiotically grow on activated carbon fiber fabric in one step. The open channel structure of the NiCo-LDH nanosheets is preserved while PPy effectively wrapped around the NiCo-LDH. The well-defined nanostructure with abundant active sites and convenient ion diffusion paths is favorable for electrolyte entry into the entire nanoarrays. In addition, owing to the enhanced electronic interaction between different components through XPS analysis, the NiCo-LDH@PPy electrode shows outstanding reaction kinetics and structural stability. The as-synthesized NiCo-LDH@PPy exhibited excellent super-capacitive storage capabilities, robust capacitive activity, and good rate survival. Furthermore, an asymmetric supercapacitor (ASC) device made of NiCo-LDH@PPy and activated carbon (AC) is able to maintain a long cycle life while achieving high power and energy densities.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qi Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haochang Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shunzhe Zhang
- Beijing Institute of Aerospace Long March Vehicle, South Dahongmen Road #1, Beijing, 100076, P. R. China
| | - Kaifeng Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chongyin Zhang
- Shanghai Aerospace Equipments Manufacturer Co., Ltd, Huaning Road #100, Shanghai, 200245, P. R. China
| | - Lu Shi
- Institute of Aerospace System Engineering Shanghai, Shanghai, 201108, P. R. China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Aerospace Equipments Manufacturer Co., Ltd, Huaning Road #100, Shanghai, 200245, P. R. China
| |
Collapse
|
57
|
Wang J, Zhu YF, Su Y, Guo JX, Chen S, Liu HK, Dou SX, Chou SL, Xiao Y. Routes to high-performance layered oxide cathodes for sodium-ion batteries. Chem Soc Rev 2024; 53:4230-4301. [PMID: 38477330 DOI: 10.1039/d3cs00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.
Collapse
Affiliation(s)
- Jingqiang Wang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yan-Fang Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yu Su
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Jun-Xu Guo
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Shuangqiang Chen
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Hua-Kun Liu
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shi-Xue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou 325035, China
| |
Collapse
|
58
|
Dai Y, Zhang S, Wen J, Song Z, Wang T, Zhang R, Fan X, Luo W. Metal chloride cathodes for next-generation rechargeable lithium batteries. iScience 2024; 27:109557. [PMID: 38623342 PMCID: PMC11016933 DOI: 10.1016/j.isci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Rechargeable lithium-ion batteries (LIBs) have prospered a rechargeable world, predominantly relying on various metal oxide cathode materials for their abilities to reversibly de-/intercalate lithium-ion, while also serving as lithium sources for batteries. Despite the success of metal oxide, issues including low energy density have raised doubts about their suitability for next-generation lithium batteries. This has sparked interest in metal chlorides, a neglected cathode material family. Metal chlorides show promise with factors like energy density, diffusion coefficient, and compressibility. Unfortunately, challenges like high solubility hamper their utilization. In this review, we highlight the opportunities for metal chlorides in the post-lithium-ion era. Subsequently, we summarize their dissolution challenges. Furthermore, we discuss recent advancements, encompassing liquid-state electrolyte engineering, solid-state electrolytes (SSEs) cooperation, and LiCl-based cathodes. Finally, we provide an outlook on future research directions of metal chlorides, emphasizing electrode fabrication, electrolyte design, the application of SSEs, and the exploration of conversion reactions.
Collapse
Affiliation(s)
- Yiming Dai
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiayun Wen
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhenyou Song
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Tengrui Wang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Renyuan Zhang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Luo
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
59
|
Yuan C, Liu B, Zhang H, Ma H, Lu Z, Xie J, Hu J, Cao Y. Construction of WS 2/NC@C nanoflake composites as performance-enhanced anodes for sodium-ion batteries. NANOSCALE 2024; 16:7660-7669. [PMID: 38529700 DOI: 10.1039/d4nr00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of layered metal sulfides with stable structure and accessible active sites is of great importance for sodium-ion batteries (SIBs). Herein, a simple liquid-mixing method is elaborately designed to immobilize WS2 nanoflakes on N-doped carbon (NC), then further coat carbon to produce WS2/NC@C. In the formation process of this composite, the presence of NC not only avoids the overlap and improves the dispersion of WS2 nanoflakes, but also creates a connection network for charge transfer, where the wrapped carbon provides a stable chemical and electrochemical reaction interface. Thus, the composite of WS2/NC@C exhibits the desired Na+ storage capacity as anticipated. The reversible capacity reaches the high value of 369.8 mA h g-1 at 0.2 A g-1 after 200 cycles, while excellent rate performances and cycle life are also acquired in that capacity values of 256.7 and 219.6 mA h g-1 at 1 and 5 A g-1 are preserved after 1000 cycles, respectively. In addition, the assembled sodium-ion hybrid capacitors (SIHCs, AC//WS2/NC@C) exhibit an energy/power density of 68 W h kg-1 at 64 W kg-1, and capacity retention of 82.9% at 1 A g-1 after 2000 cycles. The study provides insight into developing layered metal sulfides with eminent performance of Na+ storage.
Collapse
Affiliation(s)
- Chun Yuan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Huan Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| |
Collapse
|
60
|
Ma J, Zheng S, Fu Y, Wang X, Qin J, Wu ZS. The status and challenging perspectives of 3D-printed micro-batteries. Chem Sci 2024; 15:5451-5481. [PMID: 38638219 PMCID: PMC11023027 DOI: 10.1039/d3sc06999k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/10/2024] [Indexed: 04/20/2024] Open
Abstract
In the era of the Internet of Things and wearable electronics, 3D-printed micro-batteries with miniaturization, aesthetic diversity and high aspect ratio, have emerged as a recent innovation that solves the problems of limited design diversity, poor flexibility and low mass loading of materials associated with traditional power sources restricted by the slurry-casting method. Thus, a comprehensive understanding of the rational design of 3D-printed materials, inks, methods, configurations and systems is critical to optimize the electrochemical performance of customizable 3D-printed micro-batteries. In this review, we offer a key overview and systematic discussion on 3D-printed micro-batteries, emphasizing the close relationship between printable materials and printing technology, as well as the reasonable design of inks. Initially, we compare the distinct characteristics of various printing technologies, and subsequently emphatically expound the printable components of micro-batteries and general approaches to prepare printable inks. After that, we focus on the outstanding role played by 3D printing design in the device architecture, battery configuration, performance improvement, and system integration. Finally, the future challenges and perspectives concerning high-performance 3D-printed micro-batteries are adequately highlighted and discussed. This comprehensive discussion aims at providing a blueprint for the design and construction of next-generation 3D-printed micro-batteries.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Shuanghao Zheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yinghua Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Xiao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University No. 63 Agricultural Road Zhengzhou 450002 China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
61
|
Wei Y, Wang T, Wang J, Wang S, Zhang D, Ma Y, Gao Y, Duan L, Yang D, Zhang W. Scalable Synthesis of Si Nanosheets as Stable Anodes for Practical Lithium-Ion Batteries. SMALL METHODS 2024:e2400069. [PMID: 38593363 DOI: 10.1002/smtd.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Silicon (Si) is regarded as a promising anode material because of its outstanding theoretical capacity, abundant existence, and mature infrastructure, but it suffers from an inherent volume expansion problem. Herein, a facile, scalable, and cost-effective route to produce Si nanosheets (Si NSs) using a low-cost silica fume as the start materials is proposed. After coated with carbon, the as-prepared Si-NSs@C material delivers ultrahigh capability (2770 mAh g-1 at 0.1 C), high initial Coulombic efficiency (87.9%), and long cycling lifespan (100 cycles at 0.5 C with a capacity decay rate of 0.3% per cycle). Beyond proof of concept, this work demonstrates a Si-NSs based pouch cell with an impressive capacity retention of 70.9% after 400 cycles, making it more promising for practical application. Revealed by the theoretical simulation, kinetics analysis, and in situ thickness/pressure detection, it is found that the superior performance of Si-NSs is attributed to the improved diffusivity and reversibility of Li+ ions and low expansion.
Collapse
Affiliation(s)
- Yanwei Wei
- State Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Tong Wang
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Jinxiu Wang
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Shun Wang
- State Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Dian Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yuzhu Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yihan Gao
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Linlin Duan
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
62
|
Wang H, Zhao Q, Li W, Watanabe S, Wang X. A dendrite-free Zn anode enabled by PEDOT:PSS/MoS 2 electrokinetic channels for aqueous Zn-ion batteries. NANOSCALE 2024; 16:7200-7210. [PMID: 38507222 DOI: 10.1039/d4nr00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Notorious Zn dendrites and severe parasitic side reactions severely disrupt the anode-electrolyte interface during Zn plating/stripping, resulting in uncontrollable Zn deposition and limiting the application of aqueous zinc-ion batteries (AZIBs). Although the construction of an artificial interface is a highly desirable strategy, it is often limited by slow Zn2+ transport kinetics. To address these issues, we present a bifunctional polymer coating (PEPM) constructed from highly conductive PEDOT:PSS and monolayer MoS2, where the introduced PEDOT plays an important role in driving the fast Zn ion transfer kinetics as a zincophilic site and 2D MoS2 acts as a buffer layer to induce uniform Zn nucleation. With this corrosion inhibition and nucleation-oriented coating, the mobility of Zn2+ flux and the uniformity of Zn deposition were significantly improved, resulting in a stable plating/stripping performance at an ultra-low overpotential (<50 mV) of 2000 h and a high average coulombic efficiency (>99.4%) of 1000 cycles without significant dendrite formation. The proposed strategy provides a cost-efficient remedy and opens a new avenue for the development of dendrite-free zinc anodes.
Collapse
Affiliation(s)
- Hai Wang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Qin Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Shun Watanabe
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
63
|
Zhu D, Li J, Zheng Z, Ye S, Pan Y, Wu J, She F, Lai L, Zhou Z, Chen J, Li H, Wei L, Chen Y. Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16175-16185. [PMID: 38509690 DOI: 10.1021/acsami.3c19112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Zinc-ion batteries (ZIBs) are promising energy storage devices with safe, nonflammable electrolytes and abundant, low-cost electrode materials. Their practical applications are hampered by various water-related undesirable reactions, such as the hydrogen evolution reaction (HER), corrosion of zinc metal, and water-induced decay of cathode materials. Polymer hydrogel electrolytes were used to control these reactions. However, salt, water, and polymeric backbones intervene in polymer hydrogels, and currently, there are no systematic studies on how salt and water concentrations synergistically affect polymer hydrogels' electrochemical performance. Here, we used an in situ polymerization method to synthesize polyacrylamide (PAM) hydrogels with varied Zn(ClO4)2 (0.5 to 2.0 mol kg-1) and water (40 to 90 wt %) concentrations. Their electrochemical performances in Zn||Ti half-cells, Zn||Zn symmetrical cells, and Zn||V2O5 full cells have been comprehensively evaluated. Although the ionic conductivity of electrolytes increases with the salt concentration, a high salt concentration of 2.0 mol kg-1 with more Zn2+ solvated H2O would induce more severe HER and Zn corrosion at the electrolyte/electrode interfaces. A narrow window of the water concentration at 70-80 wt % is optimal to balance needs for achieving a high ionic conductivity and restricting water-related undesirable reactions. The chemically more active water counts roughly 64.1-73.1 wt % of the total water in electrolytes. PAM hydrogel electrolyte with 1.0 mol kg-1 Zn(ClO4)2 and 80 wt % water enables 1200 h of stable cycling in a Zn||Zn symmetric cell and 99.24% of Coulombic efficiency in a Zn||Ti half-cell. Due to the water-induced decay of V2O5, the electrolyte with 70 wt % water delivers the best performance in a Zn||V2O5 full cell, which can retain 73.7% of its initial capacity after 400 charge/discharge cycles. Our results show that achieving precise control of salt and water concentrations of hydrogel electrolytes in their optimal windows to reduce the fraction of chemically more active water while retaining high ionic conductivity is essential to enabling high-performance ZIBs.
Collapse
Affiliation(s)
- Di Zhu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jing Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zhi Zheng
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Songbo Ye
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yuqi Pan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiacheng Wu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Fangxin She
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Leo Lai
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zihan Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Jiaxiang Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| |
Collapse
|
64
|
Duan J, Wang F, Huang M, Yang M, Li S, Zhang G, Xu C, Tang C, Liu H. High-Performance Single-Crystal Lithium-Rich Layered Oxides Cathode Materials via Na 2WO 4-Assisted Sintering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307998. [PMID: 38010124 DOI: 10.1002/smll.202307998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Single-crystal lithium-rich layered oxides (LLOs) with excellent mechanical properties can enhance their crystal structure stability. However, the conventional methods for preparing single-crystal LLOs, require large amounts of molten salt additives, involve complicated washing steps, and increase the difficulty of large-scale production. In this study, a sodium tungstate (Na2WO4)-assisted sintering method is proposed to fabricate high-performance single-crystal LLOs cathode materials without large amounts of additives and additional washing steps. During the sintering process, Na2WO4 promotes particle growth and forms a protective coating on the surface of LLOs particles, effectively suppressing the side reactions at the cathode/electrolyte interface. Additionally, trace amounts of Na and W atoms are doped into the LLOs lattice via gradient doping. Experimental results and theoretical calculations indicate that Na and W doping stabilizes the crystal structure and enhances the Li+ ions diffusion rate. The prepared single-crystal LLOs exhibit outstanding capacity retention of 82.7% (compared to 65.0%, after 200 cycles at 1 C) and a low voltage decay rate of 0.76 mV per cycle (compared to 1.80 mV per cycle). This strategy provides a novel pathway for designing the next-generation high-performance cathode materials for Lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Jidong Duan
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621907, P. R. China
| | - Fengqi Wang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Mengjie Huang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Maoxia Yang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Shaomin Li
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Gen Zhang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Chen Xu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621907, P. R. China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
| | - Hao Liu
- Chengdu Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, P. R. China
- Sichuan New Li-idea Energy Science and Technology Co., LTD, Shehong, Sichuan, 629200, P. R. China
| |
Collapse
|
65
|
Bhattarai RM, Le N, Chhetri K, Acharya D, Pandiyarajan SMS, Saud S, Kim SJ, Mok YS. Synergistic Performance Boosts of Dopamine-Derived Carbon Shell Over Bi-metallic Sulfide: A Promising Advancement for High-Performance Lithium-Ion Battery Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308160. [PMID: 38342631 PMCID: PMC11022702 DOI: 10.1002/advs.202308160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Indexed: 02/13/2024]
Abstract
A CoMoS composite is synthesized to combine the benefits of cobalt and molybdenum sulfides as an anodic material for advanced lithium-ion batteries (LIBs). The synthesis is accomplished using a simple two-step hydrothermal method and the resulting CoMoS nanocomposites are subsequently encapsulated in a carbonized polydopamine shell. The synthesis procedure exploited the self-polymerization ability of dopamine to create nitrogen-doped carbon-coated cobalt molybdenum sulfide, denoted as CoMoS@NC. Notably, the de-lithiation capacity of CoMoS and CoMoS@NC is 420 and 709 mAh g⁻1, respectively, even after 100 lithiation/de-lithiation cycles at a current density of 200 mA g⁻1. Furthermore, excellent capacity retention ability is observed for CoMoS@NC as it withstood 600 consecutive lithiation/de-lithiation cycles with 94% capacity retention. Moreover, a LIB full-cell assembly incorporating the CoMoS@NC anode and an NMC-532 cathode is subjected to comprehensive electrochemical and practical tests to evaluate the performance of the anode. In addition, the density functional theory showcases the increased lithium adsorption for CoMoS@NC, supporting the experimental findings. Hence, the use of dopamine as a nitrogen-doped carbon shell enhanced the performance of the CoMoS nanocomposites in experimental and theoretical tests, positioning the material as a strong candidate for LIB anode.
Collapse
Affiliation(s)
- Roshan Mangal Bhattarai
- Department of Chemical EngineeringJeju National University102 Jejudaehak‐roJeju63243Republic of Korea
| | - Nghia Le
- Department of ChemistryMississippi State UniversityPO Box 9573Mississippi StateMS39762USA
| | - Kisan Chhetri
- Department of Nano Convergence EngineeringJeonbuk National UniversityJeonju561756Republic of Korea
- Regional Leading Research Center (RLRC) for Nanocarbon‐based Energy Materials and Application TechnologyJeonbuk National UniversityJeollabuk‐do54001Republic of Korea
| | - Debendra Acharya
- Department of Nano Convergence EngineeringJeonbuk National UniversityJeonju561756Republic of Korea
| | | | - Shirjana Saud
- Department of Chemical EngineeringJeju National University102 Jejudaehak‐roJeju63243Republic of Korea
| | - Sang Jae Kim
- Nanomaterials and System LaboratoryDepartment of Mechatronics EngineeringJeju National University102 Jejudaehak‐roJeju63243Republic of Korea
| | - Young Sun Mok
- Department of Chemical EngineeringJeju National University102 Jejudaehak‐roJeju63243Republic of Korea
| |
Collapse
|
66
|
Zhou J, Chu Y, Liu W, Chu F, Guan Z, He Z, Li J, Wu F. Mg/Al Double-Pillared LiNiO 2 as a Co-Free Ternary Cathode Material Ensuring Stable Cycling at 4.6 V. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13948-13960. [PMID: 38441538 DOI: 10.1021/acsami.3c17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cobalt-free (Co-free) and nickel-rich (Ni-rich) cathode materials have attracted significant attention and undergone extensive studies due to their affordability and superior energy density. However, the commercialization of these Co-free materials is hindered by challenges such as cation disorder, irreversible phase changes, and inadequate high-voltage performance. To overcome these challenges, a Co-free ternary cathode material of Mg/Al double-pillared LiNiO2 (NMA) synthesized via a wet-coating and lithiation-sintering technique is proposed. Fundamental studies reveal that Mg and Al have the potential to form a distinctive double-pillar structure within the layered cathode, enhancing its structural stability. To be specific, the strategic placement of Mg and Al in Li and Ni layers, respectively, effectively reduces Li+/Ni2+ disorder and prevents irreversible phase transitions. Additionally, the inclusion of Mg and Al refines the primary grains and compacts the secondary grains in the cathode material, reducing stress from cyclic usage and preventing material cracking, thereby mitigating electrolyte erosion. As a result, NMA demonstrates exceptional electrochemical performance under a high charge cutoff voltage of 4.6 V. It maintains 70% of initial specific capacity after 500 cycles at 1 C and exhibits excellent rate performance, with a capacity of 162 mAh g-1 at 5 C and 149 mAh g-1 at 10 C. As a whole, the produced NMA achieves a high structural stability in cases of excessive delithiation, providing a groundbreaking solution for the development of cost-effective and high-energy-density cathode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Jinwei Zhou
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuhang Chu
- School of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Wenxin Liu
- School of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Fulu Chu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Zengqiang Guan
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Zhenjiang He
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jinhui Li
- School of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Feixiang Wu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
67
|
Wang Y, Wang T, Zhang W, Li L, Lv X, Wang H. A silver and manganese dioxide composite with oxygen vacancies as a high-performance cathode material for aqueous zinc-ion batteries. Dalton Trans 2024; 53:5534-5543. [PMID: 38420728 DOI: 10.1039/d4dt00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Aqueous zinc ion batteries (AZIBs) are regarded as a promising alternative for energy storage due to their safety, cost-effectiveness and environmental friendliness. Manganese dioxide is considered a promising cathode material for energy storage because of its abundant reserves and high energy density. However, its inherent low electronic conductivity and limited cycling performance due to structural instability hinder its further development. Herein, a silver and manganese dioxide composite (Ag@MnO2) enriched with oxygen vacancies was prepared by a simple liquid-phase reduction method. The introduction of silver particles facilitates the improvement of electrical conductivity, and the incorporation of oxygen vacancies helps change the surface properties of manganese dioxide, providing additional active sites for ion transport, enhancing the overall electrochemical kinetics, and further improving the battery performance. As a result, the Ag@MnO2 cathode exhibits an astonishingly high capacity of 353 mAh g-1 at a current density of 0.1 A g-1 and a capacity retention of 78% after 1500 cycles. Additionally, electrochemical and structural analyses have revealed that the Ag@MnO2 cathode undergoes a reversible and stable process of H+ and Zn2+ insertion/extraction.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P.R. China.
| | - Tengfei Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P.R. China.
| | - Wenjing Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P.R. China.
| | - Liangjun Li
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong Province, P. R. China
| | - Xiaoxia Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P.R. China.
| | - Hua Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, P. R. China
| |
Collapse
|
68
|
Zhang X, Zhao H, Wang N, Xiao Y, Liang S, Yang J, Huang X. Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance. J Colloid Interface Sci 2024; 658:836-845. [PMID: 38154246 DOI: 10.1016/j.jcis.2023.12.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Composite solid electrolytes (CSEs) have emerged as promising contenders for tackling the safety concerns associated with lithium metal batteries and attaining elevated energy densities. Nonetheless, augmenting ion conductivity and curtailing the growth of lithium dendrites within the electrolyte remain pressing challenges. We have developed CSEs featuring a unique structure, in which Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is distributed in a gradient decline from the center to both sides (GCSE). This distinctive arrangement encompasses heightened polymer content at the edges, thereby enhancing the compatibility between CSEs and electrode materials. Concurrently, the escalated LLZTO content at the center functions to impede the proliferation of lithium dendrites. The uniform gradient distribution state facilitates the consistent and rapid transport of lithium ions. At room temperature, GCSE exhibits an ionic conductivity of 1.5 × 10-4 S cm-1, with stable constant current cycling of lithium for over 1200 h. Furthermore, CR2032 coin batteries with a LiFePO4 (LFP)|GCSE|Li configuration demonstrate excellent rate performance and cycling stability, yielding a discharge capacity of 120 mA h g-1 at 0.5C and retaining 90 % capacity after 200 cycles at 60 °C. Flexible solid electrolytes with gradient structures offer substantial advantages in dealing with ion conductivity and inhibition of lithium dendrites, thereby expected to propel the practical application of lithium metal batteries.
Collapse
Affiliation(s)
- Xiaobao Zhang
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Huan Zhao
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Ning Wang
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Yiyang Xiao
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Shiang Liang
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Juanyu Yang
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China.
| | - Xiaowei Huang
- National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China.
| |
Collapse
|
69
|
Gao X, Zheng X, Ye Y, Lee HK, Zhang P, Cui A, Xiao X, Yang Y, Cui Y. Lithiophilic Hydrogen-Substituted Graphdiyne Aerogels with Ionically Conductive Channels for High-Performance Lithium Metal Batteries. NANO LETTERS 2024; 24:3044-3050. [PMID: 38437632 DOI: 10.1021/acs.nanolett.3c04370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Lithium (Li) metal stands as a promising anode in advancing high-energy-density batteries. However, intrinsic issues associated with metallic Li, especially the dendritic growth, have hindered its practical application. Herein, we focus on molecular combined structural design to develop dendrite-free anodes. Specifically, using hydrogen-substituted graphdiyne (HGDY) aerogel hosts, we successfully fabricated a promising Li composite anode (Li@HGDY). The HGDY aerogel's lithiophilic nature and hierarchical pores drive molten Li infusion and reduce local current density within the three-dimensional HGDY host. The unique molecular structure of HGDY provides favorable bulk pathways for lithium-ion transport. By simultaneous regulation of electron and ion transport within the HGDY host, uniform lithium stripping/platting is fulfilled. Li@HGDY symmetric cells exhibit a low overpotential and stable cycling. The Li@HGDY||lithium iron phosphate full cell retained 98.1% capacity after 170 cycles at 0.4 C. This study sheds new light on designing high-capacity and long-lasting lithium metal anodes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xueli Zheng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Yusheng Ye
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Hiang Kwee Lee
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Andy Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
70
|
Gao J, Zou Y, Han J, Zheng Z, Li K, Wang H, Wu S, Liang H, Hong W. Regulating the Electrode-Electrolyte Interfaces of Lithium-High Nickel Batteries via a Multifunctional Additive. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11506-11515. [PMID: 38382476 DOI: 10.1021/acsami.3c17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Lithium metal batteries with high nickel ternary (LiNixCoyMn1-x-yO2, x ≥ 0.8) as the cathode hold the promise to meet the demand of next-generation high energy density batteries. However, the unsatisfactory stability of electrode-electrolyte interfaces limits their practical applications. In this work, N-methyl-N-trimethylsilyltrifluoroacetamide (NMTFA) is suggested as a new functional electrolyte additive to stabilize the Li∥LiNi0.9Co0.05Mn0.05O2 chemistry by forming robust and effective electrode-electrolyte interphases, namely the anode-electrolyte interphase (AEI, or conventionally called SEI) and cathode-electrolyte interphase (CEI). The NMTFA-derived SEI/CEI greatly enhances the battery performance that a capacity retention of 82.1% after 200 cycles at 1C charge/discharge is achieved, significantly higher than that without NMTFA addition (52.5%). Moreover, the NMTFA also improves the thermal stability of the electrolyte and inhibits the hydrolysis of LiPF6. This work provides new clues for the optimization of electrolyte formulation for lithium-high nickel batteries through modulating interfaces.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Yuling Zou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jingfang Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Zhilong Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Kang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Huiqun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Siyi Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Hanfeng Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, China
| |
Collapse
|
71
|
Wang Q, Xu H, Fan Y, Chi SS, Han B, Ke R, Wang R, Wang J, Wang C, Xu X, Zheng Z, Deng Y, Chang J. Insight into Multiple Intermolecular Coordination of Composite Solid Electrolytes via Cryo-Electron Microscopy for High-Voltage All-Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314063. [PMID: 38444248 DOI: 10.1002/adma.202314063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5 La3 Zr1.5 Ta0.5 O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2 . Moreover, the high-voltage SLB with LiNi0.5 Co0.2 Mn0.3 O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs.
Collapse
Affiliation(s)
- Qingrong Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongli Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanchen Fan
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shang-Sen Chi
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bing Han
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruohong Ke
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruo Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxiong Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Chang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| |
Collapse
|
72
|
Wang S, Cai Z, Cao R, Ma Z, Wu Q, Moin M, Ahsan Z, Ma Y, Song G, Yang W, Wen C. Facile synthesis of multi-phase (Si+SiO 2)@C anode materials for lithium-ion batteries. Dalton Trans 2024; 53:4119-4126. [PMID: 38315146 DOI: 10.1039/d3dt04075e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To bring about a revolution in energy storage through Li-ion batteries, it is crucial to develop a scalable preparation method for Si-based composite anodes. However, the severe volume expansion and poor ionic transport properties of Si-based composites present significant challenges. Previous research focused on SiO and nano Si/C composites to address these issues. In this study, mechanical milling was used to introduce a SiOx layer onto the surface of Si by mixing Si and SiO2 in a 1 : 1 mass ratio. The resulting Si+SiO2 composites (denoted as SS50) exhibited an initial coulombic efficiency (ICE) of 73.5% and high rate performance. To further stabilize the overall structure, kerosene was introduced as a carbon source precursor to generate a coating layer. The resulting multiphase composite structure (SiOx+SiO2+C), designated as SS50-900C, demonstrated a capacity retention of 79.5% over 280 cycles at its capacity of 487 mA h g-1. These results suggest that a cost-effective mechanical ball milling refinement of Si+SiO2 and a gas-phase encapsulation process can significantly improve the electrochemical performance of Si-based composites.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Zhenfei Cai
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Rui Cao
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Ziyang Ma
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Qinyu Wu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Muhmmad Moin
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Zishan Ahsan
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Yangzhou Ma
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Guangsheng Song
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Weidong Yang
- Future Manufacturing Flagship, Commonwealth Scientific and Industry Research Organization, Melbourne, Victoria 3168, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
73
|
Zhou E, Luo X, Jin H, Wang C, Lu Z, Xie Y, Zhou S, Chen Y, He Z, Ma R, Zhang W, Xie H, Jiao S, Lin Y, Bin DS, Huang R, Wu X, Kong X, Ji H. Breaking Low-Strain and Deep-Potassiation Trade-Off in Alloy Anodes via Bonding Modulation for High-Performance K-Ion Batteries. J Am Chem Soc 2024; 146:4752-4761. [PMID: 38334447 DOI: 10.1021/jacs.3c12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P-S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge-charge cycles, elevating the modulus of K-P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.
Collapse
Affiliation(s)
- En Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hongchang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chaonan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyu Lu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuansen Xie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Ningde Amperex Technology Limited (ATL), Ningde 352100, China
| | - Shaoyun Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Ningde Amperex Technology Limited (ATL), Ningde 352100, China
| | - Yawei Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zixu He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ruoxuan Ma
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanyu Xie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuhong Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Rong Huang
- Vacuum Interconnected Nanotech Workstation (NANO-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Suzhou 215123, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xianghua Kong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hengxing Ji
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Applied Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
74
|
Li Y, Ding F, Shao Y, Wang H, Guo X, Liu C, Sui X, Sun G, Zhou J, Wang Z. Solvation Structure and Derived Interphase Tuning for High-Voltage Ni-Rich Lithium Metal Batteries with High Safety Using Gem-Difluorinated Ionic Liquid Based Dual-Salt Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202317148. [PMID: 38169131 DOI: 10.1002/anie.202317148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Stabilizing electrolytes for high-voltage lithium metal batteries (LMBs) is crucial yet challenging, as they need to ensure stability against both Li anodes and high-voltage cathodes (above 4.5 V versus Li/Li+ ), addressing issues like poor cycling and thermal runaway. Herein, a novel gem-difluorinated skeleton of ionic liquid (IL) is designed and synthesized, and its non-flammable electrolytes successfully overcome aforementioned challenges. By creatively using dual salts, fluorinated ionic liquid and dimethyl carbonate as a co-solvent, the solvation structure of Li+ ions is efficiently controlled through electrostatic and weak interactions that are well unveiled and illuminated via nuclear magnetic resonance spectra. The as-prepared electrolytes exhibit high security avoiding thermal runaway and show excellent compatibility with high-voltage cathodes. Besides, the solvation structure derives a robust and stable F-rich interphase, resulting in high reversibility and Li-dendrite prevention. LiNi0.6 Co0.2 Mn0.2 O2 /Li LMBs (4.5 V) demonstrate excellent long-term stability with a high average Coulombic efficiency (CE) of at least 99.99 % and a good capacity retention of 90.4 % over 300 cycles, even can work at a higher voltage of 4.7 V. Furthermore, the ultrahigh Ni-rich LiNi0.88 Co0.09 Mn0.03 O2 /Li system also delivers excellent electrochemical performance, highlighting the significance of fluorinated IL-based electrolyte design and enhanced interphasial chemistry in improving battery performance.
Collapse
Affiliation(s)
- Yixing Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Fangwei Ding
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yueyue Shao
- State Key Lab of Urban Water Resource and Environment School of Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin, 150001, China
| | - Hongyu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin, 150001, China
| | - Xiaolong Guo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Chang Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xulei Sui
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gang Sun
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jia Zhou
- State Key Lab of Urban Water Resource and Environment School of Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin, 150001, China
| | - Zhenbo Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin, 150001, China
| |
Collapse
|
75
|
Wang K, Yang C, Yuan R, Xu F, Zhang Y, Ding T, Yu M, Xu X, Long Y, Wu Y, Li L, Li X, Wu H. Lithiophilic Chemistry Facilitated Ultrathin Lithium for Scalable Prelithiation. NANO LETTERS 2024; 24:2094-2101. [PMID: 38315573 DOI: 10.1021/acs.nanolett.3c04885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prelithiation plays a crucial role in advancing the development of high-energy-density batteries, and ultrathin lithium (UTL) has been proven to be a promising anode prelithiation reagent. However, there remains a need to explore an adjustable, efficient, and cost-effective method for manufacturing UTL. In this study, we introduce a method for producing UTL with adjustable thicknesses ranging from 1.5 to 10 μm through blade coating of molten lithium on poly(vinylidene fluoride)-modified copper current collectors. By employing the transfer-printing method, prelithiated graphite and Si-C composite electrodes are prepared, which exhibit significantly improved initial Coulombic efficiencies of 99.60% and 99.32% in half-cells, respectively. Moreover, the energy densities of Li(NiCoMn)1/3O2 and LiFePO4 full cells assembled with the prelithiated graphite electrodes increase by 13.1% and 23.6%, respectively.
Collapse
Affiliation(s)
- Kuangyu Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ruichuan Yuan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yingchuan Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tiezheng Ding
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Maosheng Yu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxiu Xu
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yuanzheng Long
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yulong Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
76
|
Li AM, Wang Z, Pollard TP, Zhang W, Tan S, Li T, Jayawardana C, Liou SC, Rao J, Lucht BL, Hu E, Yang XQ, Borodin O, Wang C. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Nat Commun 2024; 15:1206. [PMID: 38332019 PMCID: PMC10853533 DOI: 10.1038/s41467-024-45374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Micro-sized silicon anodes can significantly increase the energy density of lithium-ion batteries with low cost. However, the large silicon volume changes during cycling cause cracks for both organic-inorganic interphases and silicon particles. The liquid electrolytes further penetrate the cracked silicon particles and reform the interphases, resulting in huge electrode swelling and quick capacity decay. Here we resolve these challenges by designing a high-voltage electrolyte that forms silicon-phobic interphases with weak bonding to lithium-silicon alloys. The designed electrolyte enables micro-sized silicon anodes (5 µm, 4.1 mAh cm-2) to achieve a Coulombic efficiency of 99.8% and capacity of 2175 mAh g-1 for >250 cycles and enable 100 mAh LiNi0.8Co0.15Al0.05O2 pouch full cells to deliver a high capacity of 172 mAh g-1 for 120 cycles with Coulombic efficiency of >99.9%. The high-voltage electrolytes that are capable of forming silicon-phobic interphases pave new ways for the commercialization of lithium-ion batteries using micro-sized silicon anodes.
Collapse
Affiliation(s)
- Ai-Min Li
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Zeyi Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Travis P Pollard
- Battery Science Branch, DEVCOM Army Research Laboratory, Adelphi, 20783, MD, USA
| | - Weiran Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Tianyu Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | | | - Sz-Chian Liou
- Maryland Nanocenter, University of Maryland, College Park, MD, 20740, USA
| | - Jiancun Rao
- Maryland Nanocenter, University of Maryland, College Park, MD, 20740, USA
| | - Brett L Lucht
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xiao-Qing Yang
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Oleg Borodin
- Battery Science Branch, DEVCOM Army Research Laboratory, Adelphi, 20783, MD, USA.
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA.
| |
Collapse
|
77
|
Dong T, Zhang S, Ren Z, Huang L, Xu G, Liu T, Wang S, Cui G. Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305753. [PMID: 38044323 PMCID: PMC10870087 DOI: 10.1002/advs.202305753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Indexed: 12/05/2023]
Abstract
High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF6 -carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF6 -carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.
Collapse
Affiliation(s)
- Tiantian Dong
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Shenghang Zhang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Zhongqin Ren
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Lang Huang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Gaojie Xu
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Tao Liu
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Shitao Wang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| |
Collapse
|
78
|
Wang L, Mukherjee A, Kuo CY, Chakrabarty S, Yemini R, Dameron AA, DuMont JW, Akella SH, Saha A, Taragin S, Aviv H, Naveh D, Sharon D, Chan TS, Lin HJ, Lee JF, Chen CT, Liu B, Gao X, Basu S, Hu Z, Aurbach D, Bruce PG, Noked M. High-energy all-solid-state lithium batteries enabled by Co-free LiNiO 2 cathodes with robust outside-in structures. NATURE NANOTECHNOLOGY 2024; 19:208-218. [PMID: 37798568 DOI: 10.1038/s41565-023-01519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm-2), a high specific cathode capacity (203 mAh g-1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g-1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.
Collapse
Affiliation(s)
- Longlong Wang
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Department of Materials, University of Oxford, Oxford, UK
| | - Ayan Mukherjee
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, Republic of China
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Sankalpita Chakrabarty
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Reut Yemini
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | | | | | - Sri Harsha Akella
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Arka Saha
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sarah Taragin
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Hagit Aviv
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Doron Naveh
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel Sharon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, Republic of China
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, Republic of China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, Republic of China
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, Republic of China
| | - Boyang Liu
- Department of Materials, University of Oxford, Oxford, UK
| | - Xiangwen Gao
- Department of Materials, University of Oxford, Oxford, UK
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| | - Doron Aurbach
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| | - Peter G Bruce
- Department of Materials, University of Oxford, Oxford, UK
| | - Malachi Noked
- Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
79
|
Gong Y, Fu D, Fan M, Zheng S, Xue Y. Multilayer Core-Sheath Wires with Radially Aligned N-Doped Carbon Nanohole Arrays for Boosting Energy Storage in Zinc-Ion Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4793-4802. [PMID: 38237117 DOI: 10.1021/acsami.3c16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Aqueous zinc-ion hybrid supercapacitors (ZHSCs) with the characteristics of low cost, long cycle stability, and good safety have been regarded as potential candidates for wearable energy storage applications. Herein, we reasonably designed a unique binder-free nitrogen-doped (N-doped) porous carbon@TiO2@Ti multilayer core-sheath wire (N-CTNT), which has vertical N-doped carbon nanoholes radially aligned on the wire surface. The unique structure and nitrogen dopants of N-CTNTs have facilitated zinc deposition on N-CTNT to form a hierarchical and robust zinc-carbon composite (Zn@N-CTNTs). A wire-shaped ZHSC was constructed with N-CTNTs and Zn@N-CTNTs as cathode and anode electrodes, respectively. The as-prepared ZHSC has an outstanding specific capacitance of 488 mF cm-2 at 1 mA cm-2. This hybrid supercapacitor also exhibits an excellent energy density of 211 μW h cm-2, good rate performance, and long cycle stability with a capacity retention rate of 90.4% after 16,000 cycles.
Collapse
Affiliation(s)
- Yun Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China
| | - Dingxiu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China
| | - Minmin Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China
| | - Shiyou Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P.R. China
| |
Collapse
|
80
|
Wang R, Wang L, Liu R, Li X, Wu Y, Ran F. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS NANO 2024; 18:2611-2648. [PMID: 38221745 DOI: 10.1021/acsnano.3c08712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance. Accordingly, employing anode materials with low diffusion barrier could improve the "fast-charging" performance of the lithium-ion battery. In this Review, first, the "fast-charging" principle of lithium-ion battery and ion diffusion path in the crystal are briefly outlined. Next, the application prospects of "fast-charging" anode materials with various crystal structures are evaluated to search "fast-charging" anode materials with stable, safe, and long lifespan, solving the remaining challenges associated with high power and high safety. Finally, summarizing recent research advances for typical "fast-charging" anode materials, including preparation methods for advanced morphologies and the latest techniques for ameliorating performance. Furthermore, an outlook is given on the ongoing breakthroughs for "fast-charging" anode materials of lithium-ion batteries. Intercalated materials (niobium-based, carbon-based, titanium-based, vanadium-based) with favorable cycling stability are predominantly limited by undesired electronic conductivity and theoretical specific capacity. Accordingly, addressing the electrical conductivity of these materials constitutes an effective trend for realizing fast-charging. The conversion-type transition metal oxide and phosphorus-based materials with high theoretical specific capacity typically undergoes significant volume variation during charging and discharging. Consequently, alleviating the volume expansion could significantly fulfill the application of these materials in fast-charging batteries.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Lu Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Youzhi Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
81
|
Zhang C, Ji F, Li D, Bai T, Zhang H, Xia W, Shi X, Li K, Lu J, Wang Y, Ci L. Interface Engineering Enables Wide-Temperature Li-Ion Storage in Commercial Silicon-Based Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310633. [PMID: 38279636 DOI: 10.1002/smll.202310633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Silicon-based materials have been considered potential anode materials for next-generation lithium-ion batteries based on their high theoretical capacity and low working voltage. However, side reactions at the Si/electrolyte interface bring annoying issues like low Coulombic efficiency, sluggish ionic transport, and inferior temperature compatibility. In this work, the surface Al2 O3 coating layer is proposed as an artificial solid electrolyte interphase (SEI), which can serve as a physical barrier against the invasion of byproducts like HF(Hydrogen Fluoride) from the decomposition of electrolyte, and acts as a fast Li-ion transport pathway. Besides, the intrinsically high mechanical strength can effectively inhibit the volume expansion of the silicon particles, thus promoting the cyclability. The as-assembled battery cell with the Al2 O3 -coated Si-C anode exhibits a high initial Coulombic efficiency of 80% at RT and a capacity retention ratio up to ≈81.9% after 100 cycles, which is much higher than that of the pristine Si-C anode (≈74.8%). Besides, the expansion rate can also be decreased from 103% to 50%. Moreover, the Al2 O3 -coated Si-C anode also extends the working temperature from room temperature to 0 °C-60 °C. Overall, this work provides an efficient strategy for regulating the interface reactions of Si-based anode and pushes forward the practical applications at real conditions.
Collapse
Affiliation(s)
- Chenwu Zhang
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fengjun Ji
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Deping Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Tiansheng Bai
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hongqiang Zhang
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Weihao Xia
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiuling Shi
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Kaikai Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jingyu Lu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yu Wang
- Shenzhen Solidtech Co., Ltd., Shenzhen, 518132, China
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
82
|
Lan H, Wang J, Cheng L, Yu D, Wang H, Guo L. The synthesis and application of crystalline-amorphous hybrid materials. Chem Soc Rev 2024; 53:684-713. [PMID: 38116613 DOI: 10.1039/d3cs00860f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Crystalline-amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects-from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure-property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.
Collapse
Affiliation(s)
- Hao Lan
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Jiawei Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Liwei Cheng
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Dandan Yu
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Hua Wang
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| | - Lin Guo
- School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing, China.
| |
Collapse
|
83
|
Su Y, Liu X, Wang H, Hao Y, Guan L, Chen W. Polyoxometalate-Modified g-C 3N 4 Composites with High Work Function for Triboelectric Nanogenerators. Inorg Chem 2024; 63:1328-1336. [PMID: 38166367 DOI: 10.1021/acs.inorgchem.3c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Designing friction materials with high electron storage capacity, high work function, low cost, and high stability is an important method to improve the output performance of a triboelectric nanogenerator (TENG). Here, we report two kinds of friction materials based on Keggin-type polyoxometalates (POMs)-modified graphite carbon nitride (g-C3N4), namely, g-C3N4@PMo12 and g-C3N4@PW12, and form TENG with commercial indium tin oxide/poly(ethylene terephthalate) (ITO/PET) electrodes. The performance test shows that the g-C3N4@PMo12 TENG device exhibits a high output voltage of about 78 V, a current of about 657 nA, and a transfer charge of about 15 nC, which is more than 3 times higher than that of unmodified TENG. This performance improvement is attributed to the fact that POM loaded on the surface of g-C3N4 can be used as a shallow electron trap to increase the electron storage capacity through electron interaction and to increase the charge density on the surface of the material by increasing the work function of the composite. This work not only broadens the choices of TENG friction materials but also offers a practical means of enhancing TENG's output performance.
Collapse
Affiliation(s)
- Ying Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
- Dalian No.102 Middle School, Dalian 116103, P. R. China
| | - Xiaodong Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Haoyu Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yijia Hao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Xiantai Street 126, Changchun 130033, P. R. China
| | - Weilin Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
84
|
Luo X, Zhou D, Wu T, Xiao Z. Elastic Restraint Induced by Carbon Coating Enhances Potassium-Ion Batteries' Performance via Phase Transition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:467-475. [PMID: 38133905 DOI: 10.1021/acsami.3c12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Potassium-ion batteries (PIBs) possess great potential in the next generation of large-scale energy storage due to their abundant sources and suitable operating voltage. However, the serious volume expansion resulting from the large radius of K+ makes it difficult to insert and extract, which greatly limits the development of PIBs. Herein, tin phosphide coated with carbon (Sn4P3@C) is designed for the PIB anode material by in situ construction of robust physical barriers of carbonaceous materials to accommodate the strain induced by volume expansion. Furthermore, the unique elastic restraint induced by the carbon coating in Sn4P3@C blocks the phase transition of α-Sn to β-Sn during the process of potassiation. Meanwhile, the existence of α-Sn facilitates K+ diffusion dynamics, endowing the Sn4P3@C electrode with high reversible discharge ability, good circularity, and a low discharge plateau. Moreover, the electrode can maintain a capacity of 187 mAh g-1 over repeated 1500 cycles at 1 A g-1. This work not only explores the chemical kinetics of K+ in Sn4P3 but also provides a new idea for basic research of tin-based anode materials.
Collapse
Affiliation(s)
- Xinran Luo
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Dan Zhou
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Tianli Wu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Zhubing Xiao
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
85
|
Xu Y, Li Z, Wu L, Dou H, Zhang X. Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells. NANO-MICRO LETTERS 2024; 16:72. [PMID: 38175313 PMCID: PMC10766582 DOI: 10.1007/s40820-023-01292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Lithium-ion thermoelectrochemical cell (LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant (FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li+ solvation with the aggregated double anions through a crowded electrolyte environment, resulting in an enhanced mobility kinetics of Li+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K-1 and a normalized output power density of 3.99 mW m-2 K-2 as well as an outstanding output energy density of 607.96 J m-2 can be obtained. These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.
Collapse
Affiliation(s)
- Yinghong Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Langyuan Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| |
Collapse
|
86
|
Yang J, Hou W, Ye L, Hou G, Yan C, Zhang Y. Vanadium Hexacyanoferrate Prussian Blue Analogs for Aqueous Proton Storage: Excellent Electrochemical Properties and Mechanism Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305386. [PMID: 37668264 DOI: 10.1002/smll.202305386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Indexed: 09/06/2023]
Abstract
The significant attraction toward aqueous proton batteries (APBs) is attributable to their expedited kinetics, elevated safety profile, and economical feasibility. Nevertheless, their practical implement is significantly blocked by the unsatisfactory energy density due to the limited cathode materials. Herein, vanadium hexacyanoferrate Prussian blue analog (VOHCF) is introduced as a potentially favorable cathode material for APBs. The findings demonstrate that this VOHCF electrode exhibits a notable reversible capacity of 102.7 mAh g-1 and exceptional cycling stability, with 95.4% capacity retention over 10 000 cycles at 10 A g-1 . It is noteworthy that this is the detailed instance of VOHCF being proposed as a cathode for APBs. Combining the in situ characterization techniques and theoretical simulations, the origins of excellent proton storage performance are revealed as the multiple redox mechanisms with double active centers of ─C≡N group and V═O bond in VOHCF as well as the robust structure stability. A proton full cell with excellent performance is further achieved by coupling the VOHCF cathode and diquinoxalino[2,3-a:2',3'-c] phenazine (HATN) anode, demonstrating the great potential of VOHCF in practical applications. This work could provide fundamental understanding to the development of feasible cathode materials for proton storage device.
Collapse
Affiliation(s)
- Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Wenxiu Hou
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Lingqian Ye
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Guoyu Hou
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chao Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
87
|
Cheng XB, Yang SJ, Liu Z, Guo JX, Jiang FN, Jiang F, Xiong X, Tang WB, Yuan H, Huang JQ, Wu Y, Zhang Q. Electrochemically and Thermally Stable Inorganics-Rich Solid Electrolyte Interphase for Robust Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307370. [PMID: 37684038 DOI: 10.1002/adma.202307370] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Severe dendrite growth and high-level activity of the lithium metal anode lead to a short life span and poor safety, seriously hindering the practical applications of lithium metal batteries. With a trisalt electrolyte design, an F-/N-containing inorganics-rich solid electrolyte interphase on a lithium anode is constructed, which is electrochemically and thermally stable over long-term cycles and safety abuse conditions. As a result, its Coulombic efficiency can be maintained over 98.98% for 400 cycles. An 85.0% capacity can be retained for coin-type full cells with a 3.14 mAh cm-2 LiNi0.5 Co0.2 Mn0.3 O2 cathode after 200 cycles and 1.0 Ah pouch-type full cells with a 4.0 mAh cm-2 cathode after 72 cycles. During the thermal runaway tests of a cycled 1.0 Ah pouch cell, the onset and triggering temperatures were increased from 70.8 °C and 117.4 °C to 100.6 °C and 153.1 °C, respectively, indicating a greatly enhanced safety performance. This work gives novel insights into electrolyte and interface design, potentially paving the way for high-energy-density, long-life-span, and thermally safe lithium metal batteries.
Collapse
Affiliation(s)
- Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Shi-Jie Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zaichun Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Jia-Xin Guo
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Feng-Ni Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng Jiang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaosong Xiong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Wen-Bo Tang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hong Yuan
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
88
|
Dantas R, Ribeiro C, Souto M. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Chem Commun (Camb) 2023; 60:138-149. [PMID: 38051115 DOI: 10.1039/d3cc04322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electroactive organic materials have received much attention as alternative electrodes for metal-ion batteries due to their high theoretical capacity, resource availability, and environmental friendliness. In particular, redox-active covalent organic frameworks (COFs) have recently emerged as promising electrodes due to their tunable electrochemical properties, insolubility in electrolytes, and structural versatility. In this Highlight, we review some recent strategies to improve the energy density and power density of COF electrodes for lithium batteries from the perspective of molecular design and electrode optimisation. Some other aspects such as stability and scalability are also discussed. Finally, the main challenges to improve their performance and future prospects for COF-based organic batteries are highlighted.
Collapse
Affiliation(s)
- Raquel Dantas
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Catarina Ribeiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
- CIQUS, Centro Singular de Investigación en Química Bioloxica e Materiais Moleculares, Departamento de Química-Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
89
|
Wang L, Li S, Li N, Song WL, Chen HS, Jiao S. Surface Engineering Based on Conductive Agent Dispersion Uniformity: Strategies toward Performance Consistency of Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18654-18662. [PMID: 38060435 DOI: 10.1021/acs.langmuir.3c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The consistency of lithium-ion battery performance is the key factor affecting the safety and cycle life of battery packs. Surface engineering of electrodes in production processes plays an important role in improving the consistency of battery performance. In this study, the drying process in the electrode manufacturing process is studied as the effect on surface engineering of the electrode materials, with consideration on impacting the battery performance. Specifically, the solid content of the slurry and drying temperature are considered to be the two factors that affect conductive agent dispersion uniformity in the porous electrodes. To achieve surface engineering on the dispersion uniformity of the conductive agent, the optimal processing parameters can be obtained by adjusting the temperature and solid content of the slurry. The mechanism of dispersion uniformity of the conductive agent is mainly related to the polyvinylidene fluoride grid structure. In the manufacturing of lithium-ion batteries, the electrode coated with 66% solid slurry and dried at 90-100 °C presents stable energy storage performance, which is beneficial to maintain the stable performance of the battery pack in the application.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Tianjin Lishen Battery Joint-Stock Co., Limited, Tianjin 300384, China
| | - Shijie Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hao-Sen Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
90
|
Ou G, Huang M, Lu X, Manke I, Yang C, Qian J, Lin X, Chen R. A Metal-Organic Framework-Derived Strategy for Constructing Synergistic N-Doped Carbon-Encapsulated NiCoP@N-C-Based Anodes toward High-Efficient Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307615. [PMID: 38111975 DOI: 10.1002/smll.202307615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/16/2023] [Indexed: 12/20/2023]
Abstract
Transition metal phosphides (TMPs) have been regarded as the prospective anodes for lithium-ion batteries (LIBs). However, their poor intrinsic conductivity and inevitable large volume variation result in sluggish redox kinetics and the collapse of electrode structure during cycling, which substantially hinders their practical use. Herein, an effective composite electrodes design strategy of "assembly and phosphorization" is proposed to construct synergistic N-doped carbon-encapsulated NiCoP@N-C-based composites, employing a metal-organic frameworks (MOFs) as sacrificial hosts. Serving as the anodes for LIBs, one representative P-NCP-NC-600 electrode exhibits high reversible capacity (858.5 mAh g-1 , 120 cycles at 0.1 A g-1 ) and superior long-cycle stability (608.7 mAh g-1 , 500 cycles at 1 A g-1 ). The impressive performances are credited to the synergistic effect between its unique composite structure, electronic properties and ideal composition, which achieve plentiful lithium storage sites and reinforce the structural architecture. By accompanying experimental investigations with theoretical calculations, a deep understanding in the lithium storage mechanism is achieved. Furthermore, it is revealed that a more ideal synergistic effect between NiCoP components and N-doped carbon frameworks is fundamentally responsible for the realization of superb lithium storage properties. This strategy proposes certain instructive significance toward designable high-performance TMP-based anodes for high-energy density LIBs.
Collapse
Affiliation(s)
- Guanrong Ou
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Mianying Huang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiaomeng Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ingo Manke
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Chao Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
91
|
Xiao J, Yu P, Gao H, Yao J. Endogenous Nb 2CT x/Nb 2O 5 Schottky heterostructures for superior lithium-ion storage. J Colloid Interface Sci 2023; 652:113-121. [PMID: 37591072 DOI: 10.1016/j.jcis.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Schottky heterostructures have significant advantages for exciting charge transfer kinetics at material interfaces. In this work, endogenous Nb2CTx/Nb2O5 Schottky heterostructures with a large active surface area were constructed using an in-situ architectural strategy. The semiconductor Nb2O5 has a low work function, and during the construction of Nb2CTx/Nb2O5 Schottky heterostructures, there was an interfacial electron transfer, which resulted in a built-in electric field. The electrochemical reaction kinetics of Nb2CTx/Nb2O5 Schottky heterostructures were enhanced due to the rapid transfer of charge driven by the electric field. The Nb2CTx/Nb2O5 Schottky heterostructures have a large active surface area, which contributes to excellent electrolyte diffusion kinetics. Therefore, Nb2CTx/Nb2O5 Schottky heterostructures have excellent lithium-ion storage capacity with 575 mAh/g after 200 cycles at 0.10 A/g, and 290 mAh/g after 1000 cycles at 2.00 A/g, without capacity fading. Furthermore, in-situ X-ray diffraction and ex-situ X-ray photoelectron spectroscopy analyses reveal the mechanisms for structure evolution and lithium-ion storage optimization of Nb2CTx/Nb2O5 Schottky heterostructures during the electrochemical reaction. The construction of Schottky heterostructures with excited charge transport kinetics provides a novel idea for optimizing the lithium-ion storage activity of MXenes materials.
Collapse
Affiliation(s)
- Junpeng Xiao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China; School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Peng Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Hong Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Jing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
92
|
Chen Y, Yin J, Jiang S, Zhu X, Lei Y, Xu X, Gao Y. Poly-1,3-dioxolane anchoring graphitic carbon nitride to achieve high-energy-density solid-state Li metal batteries. J Colloid Interface Sci 2023; 652:490-499. [PMID: 37604060 DOI: 10.1016/j.jcis.2023.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Solid-state Li metal batteries (SSLMBs) are promising solutions for the next-generation energy storage devices with high energy densities and safety. Accordingly, the advanced solid-state electrolytes are further needed to address the challenges-low ionic conductivity, poor interfacial compatibility and uncontrollably Li dendrites, boosting the electrochemical and safety performances of SSLMBs. Herein, a "flexible and rigid" strategy is proposed to enhance the electrochemical and mechanical properties of polyethylene oxide (PEO)-based electrolytes. Specifically, the flexible poly-1,3-dioxolane (poly-DOL) and rigid graphitic carbon nitride (g-C3N4) are coordinated by a coupling reaction to prepare g-C3N4-poly-DOL, which is further employed as the filler for the PEO matrix to fabricate a composite polymer electrolyte g-C3N4-pDOL-PEO. The flexible poly-DOL and rigid g-C3N4 together endow the PEO-based electrolyte with good interfacial stability, high ion-conductivity and strong mechanical strength. Consequently, the Li/g-C3N4-pDOL-PEO/LiFePO4 cell delivers high cyclability with a capacity retention ratio of 89.7 % after 150 cycles and an average Coulombic efficiency over 99.9 %, and, the Li/g-C3N4-pDOL-PEO/Li cell can stably cycle beyond 300 h at 0.2 mAh cm-2 with small polarization (13 mV). The "flexible and rigid" strategy coupling the polymer with the filler provides an effective electrolyte design for high-performance SSLMBs.
Collapse
Affiliation(s)
- Yu Chen
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, PR China; Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, Binzhou Key Laboratory of Applied Electrochemistry, College of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, PR China
| | - Junying Yin
- Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, Binzhou Key Laboratory of Applied Electrochemistry, College of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, PR China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Sen Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xuequan Zhu
- Sunyes Shanshan Advanced Materials Technology (Quzhou) Co. Ltd., Quzhou 324012, PR China
| | - Yue Lei
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xin Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yunfang Gao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
93
|
Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric Electrolytes Design for Aqueous Multivalent Metal Ion Batteries. NANO-MICRO LETTERS 2023; 16:51. [PMID: 38099969 PMCID: PMC10724106 DOI: 10.1007/s40820-023-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
With the rapid development of portable electronics and electric road vehicles, high-energy-density batteries have been becoming front-burner issues. Traditionally, homogeneous electrolyte cannot simultaneously meet diametrically opposed demands of high-potential cathode and low-potential anode, which are essential for high-voltage batteries. Meanwhile, homogeneous electrolyte is difficult to achieve bi- or multi-functions to meet different requirements of electrodes. In comparison, the asymmetric electrolyte with bi- or multi-layer disparate components can satisfy distinct requirements by playing different roles of each electrolyte layer and meanwhile compensates weakness of individual electrolyte. Consequently, the asymmetric electrolyte can not only suppress by-product sedimentation and continuous electrolyte decomposition at the anode while preserving active substances at the cathode for high-voltage batteries with long cyclic lifespan. In this review, we comprehensively divide asymmetric electrolytes into three categories: decoupled liquid-state electrolytes, bi-phase solid/liquid electrolytes and decoupled asymmetric solid-state electrolytes. The design principles, reaction mechanism and mutual compatibility are also studied, respectively. Finally, we provide a comprehensive vision for the simplification of structure to reduce costs and increase device energy density, and the optimization of solvation structure at anolyte/catholyte interface to realize fast ion transport kinetics.
Collapse
Affiliation(s)
- Xiaochen Yang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yue Xiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Longtao Ma
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
94
|
Li R, Bao L, Chen L, Zha C, Dong J, Qi N, Tang R, Lu Y, Wang M, Huang R, Yan K, Su Y, Wu F. Accelerated aging of lithium-ion batteries: bridging battery aging analysis and operational lifetime prediction. Sci Bull (Beijing) 2023; 68:3055-3079. [PMID: 37926585 DOI: 10.1016/j.scib.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
The exponential growth of stationary energy storage systems (ESSs) and electric vehicles (EVs) necessitates a more profound understanding of the degradation behavior of lithium-ion batteries (LIBs), with specific emphasis on their lifetime. Accurately forecasting the lifetime of batteries under various working stresses aids in optimizing their operating conditions, prolonging their longevity, and ultimately minimizing the overall cost of the battery life cycle. Accelerated aging, as an efficient and economical method, can output sufficient cycling information in short time, which enables a rapid prediction of the lifetime of LIBs under various working stresses. Nevertheless, the prerequisite for accelerated aging-based battery lifetime prediction is the consistency of aging mechanisms. This review, by comprehensively summarizing the aging mechanisms of various components within LIBs and the battery degradation mechanisms under stress-accelerated conditions, provides a reference for evaluating the consistency of battery aging mechanisms. Furthermore, this paper introduces accelerated aging-based lifetime prediction models and offers constructive suggestions for future research on accelerated lifetime prediction of LIBs.
Collapse
Affiliation(s)
- Rui Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Liying Bao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lai Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China.
| | - Cheng Zha
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Jingyang Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Nan Qi
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Rui Tang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Yun Lu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Meng Wang
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Rong Huang
- Beijing Electric Vehicle Co., Ltd., Beijing 100176, China
| | - Kang Yan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China.
| | - Yuefeng Su
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China.
| | - Feng Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| |
Collapse
|
95
|
Deng R, Chen J, Chu F, Qian M, He Z, Robertson AW, Maier J, Wu F. "Soggy-Sand" Chemistry for High-Voltage Aqueous Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311153. [PMID: 38095834 DOI: 10.1002/adma.202311153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
The narrow electrochemical stability window, deleterious side reactions, and zinc dendrites prevent the use of aqueous zinc-ion batteries. Here, aqueous "soggy-sand" electrolytes (synergistic electrolyte-insulator dispersions) are developed for achieving high-voltage Zn-ion batteries. How these electrolytes bring a unique combination of benefits, synergizing the advantages of solid and liquid electrolytes is revealed. The oxide additions adsorb water molecules and trap anions, causing a network of space charge layers with increased Zn2+ transference number and reduced interfacial resistance. They beneficially modify the hydrogen bond network and solvation structures, thereby influencing the mechanical and electrochemical properties, and causing the Mn2+ in the solution to be oxidized. As a result, the best performing Al2 O3 -based "soggy-sand" electrolyte exhibits a long life of 2500 h in Zn||Zn cells. Furthermore, it increases the charging cut-off voltage for Zn/MnO2 cells to 2 V, achieving higher specific capacities. Even with amass loading of 10 mgMnO2 cm-2 , it yields a promising specific capacity of 189 mAh g-1 at 1 A g-1 after 500 cycles. The concept of "soggy-sand" chemistry provides a new approach to design powerful and universal electrolytes for aqueous batteries.
Collapse
Affiliation(s)
- Rongyu Deng
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Jieshuangyang Chen
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Fulu Chu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Mingzhi Qian
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Zhenjiang He
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Joachim Maier
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Feixiang Wu
- School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
96
|
Leng H, Zhang P, Wu J, Xu T, Deng H, Yang P, Wang S, Qiu J, Wu Z, Li S. The elemental pegging effect in locally ordered nanocrystallites of high-entropy oxide enables superior lithium storage. NANOSCALE 2023; 15:19139-19147. [PMID: 37933578 DOI: 10.1039/d3nr04006b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
High-entropy oxides (HEOs) can be well suited for lithium-ion battery anodes because of their multi-principal synergistic effect and good stability. The appropriate selection and combination of elements play a crucial role in designing conversion-type anode materials with outstanding electrochemical performance. In this study, we have successfully built a single-phase spinel-structured HEO material of (Mn0.23Fe0.23Co0.22Cr0.19Zn0.13)3O4 (HEO-MFCCZ). When the HEO-MFCCZ materials transform into a coexisting state of amorphous and nanocrystalline structures during the cycling process, the inert Zn element can initiate a pegging effect, causing enhanced stability. The transition also introduces many defect sites, effectively reducing the potential barrier for ion transport and accelerating ion transport. The increased electronic and ionic conductivities and pseudocapacitive contribution significantly enhance the rate performance. As a result, a unique and practical approach is provided for developing anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Huitao Leng
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Panpan Zhang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Jiansheng Wu
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Taiding Xu
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Hong Deng
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Pan Yang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast 4222, Australia.
| | - Shouyue Wang
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Jingxia Qiu
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast 4222, Australia.
| | - Sheng Li
- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
97
|
Xu S, Wu J, Wang X, Zhang Q. Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chem Sci 2023; 14:13601-13628. [PMID: 38075665 PMCID: PMC10699565 DOI: 10.1039/d3sc04571d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 04/26/2024] Open
Abstract
Due to their excellent stability, ease of modification, high specific surface area, and tunable redox potentials, covalent organic frameworks (COFs) as potential electrodes in supercapacitors (SCs) have raised much research interest because these materials can enable the achievement of high electric double-layer supercapacitance and high pseudocapacitance. Here, the design strategies and SC applications of COF-based electrode materials are summarized. The detailed principles are introduced first, followed by discussions on strategies with diverse examples. The updated advances in design and applications are also discussed. Finally, in the outlook section, we provide some guidelines on the rational design of COF-based electrode materials for high-performance SCs, which we hope will inspire novel concepts for COF-based supercapacitors.
Collapse
Affiliation(s)
- Shen Xu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 P. R. China
| |
Collapse
|
98
|
Liu H, Zhang W, Wang W, Han G, Zhang J, Zhang S, Wang J, Du Y. Design and Construction of Carbon-Coated Fe 3 O 4 /Cr 2 O 3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304264. [PMID: 37661567 DOI: 10.1002/smll.202304264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/16/2023] [Indexed: 09/05/2023]
Abstract
Transition metal oxides, highly motivated anodes for lithium-ion batteries due to high theoretical capacity, typically afflict by inferior conductivity and significant volume variation. Architecting heterogeneous structures with distinctive interfacial features can effectively regulate the electronic structure to favor electrochemical properties. Herein, an engineered carbon-coated nanosized Fe3 O4 /Cr2 O3 heterostructure with multiple interfaces is synthesized by a facile sol-gel method and subsequent heat treatment. Such ingenious components and structural design deliver rapid Li+ migration and facilitate charge transfer at the heterogeneous interface. Simultaneously, the strong coupling synergistic interactions between Fe3 O4 , Cr2 O3 , and carbon layers establish multiple interface structures and built-in electric fields, which accelerate ion/electron transport and effectively eliminate volume expansion. As a result, the multi-interface heterostructure, as a lithium-ion battery anode, exhibits superior cycling stability maintaining a reversible capacity of 651.2 mAh g-1 for 600 cycles at 2 C. The density functionaltheory calculations not only unravel the electronic structure of the modulation but also illustrate favorable lithium-ion adsorption kinetics. This multi-interface heterostructure strategy offers a pathway for the development of advanced alkali metal-ion batteries.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Weibin Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Weili Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Guifang Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jingde Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Shiwei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Jianchuan Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
99
|
Yi X, Li X, Zhong J, Wang Z, Guo H, Peng W, Duan J, Wang D, Wang J, Yan G. Uncovering the Redox Shuttle Degradation Mechanism of Ether Electrolytes in Sodium-Ion Batteries and its Inhibition Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304162. [PMID: 37642534 DOI: 10.1002/smll.202304162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Ether-based electrolytes exhibit excellent performance when applied in different anode materials of sodium ion batteries (SIBs), but their exploration on cathode material is deficient and the degradation mechanism is still undiscovered. Herein, various battery systems with different operation voltage ranges are designed to explore the electrochemical performance of ether electrolyte. It is found for the first time that the deterioration mechanism of ether electrolyte is closely related to the "redox shuttle" between cathode and low-potential anode. The "shuttle" is discovered to occur when the potential of anodes is below 0.57 V, and the gas products coming from "shuttle" intermediates are revealed by differential electrochemical mass spectrometry (DEMS). Moreover, effective inhibition strategies by protecting low-potential anodes are proposed and verified; ethylene carbonate (EC) is found to be very effective as an additive by forming an inorganics-rich solid electrolyte interphase (SEI) on low-potential anodes, thereby suppressing the deterioration of ether electrolytes. This work reveals the failure mechanism of ether-based electrolytes applied in SIBs and proposes effective strategies to suppress the "shuttle," which provides a valuable guidance for advancing the application of ether-based electrolytes in SIBs.
Collapse
Affiliation(s)
- Xiaoli Yi
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
| | - Xinhai Li
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Jing Zhong
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
| | - Zhixing Wang
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Huajun Guo
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Wenjie Peng
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
| | - Jianguo Duan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ding Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiexi Wang
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| | - Guochun Yan
- School of Metallurgy & Environment, Central South University, Changsha, 410083, China
- Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
100
|
Bao J, Song X, Tian F, Shi H, Liang S, Wang S, Zeng M, Xue Y, Hong C, Xu Z. Biomass Separators as a "Lifesaver" for Safe and Long-Life Lithium Metal Batteries. Chemistry 2023; 29:e202302236. [PMID: 37705492 DOI: 10.1002/chem.202302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
The growth of lithium dendrites and the shuttle of polysulfides in lithium metal batteries (LMBs) have hindered their development. In LMBs, the cathode and anode are separated by a separator, although this does not solve the battery's issues. The use of biomass materials is widespread for modifying the separator due to their porous structure and abundant functional groups. LMBs perform more electrochemically when lithium ions are deposited uniformly and polysulfide shuttling is reduced using biomass separators. In this review, we analyze the growth of lithium dendrite and the shuttle of polysulfide in LMBs, summarize the types of biomass separator materials and the mechanisms of action (providing mechanical barriers, promoting uniform deposition of metal ions, capturing polysulfides, shielding polysulfide). The prospect of developing new separator materials from the perspective of regulating ion transport and physical sieving efficiency as well as the application of advanced technologies such as synchrotron radiation to characterize the mechanism of action of biomass separators is also proposed.
Collapse
Affiliation(s)
- Jinxi Bao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaohui Song
- Tianjin Kinfa Advanced Materials Co., Ltd., Tianjin, 300000, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuaitong Liang
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Shuo Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Ming Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunxia Hong
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|