51
|
Chen J, Shu Y, Chen Y, Ge Z, Zhang C, Cao J, Li X, Wang Y, Sun C. Evaluation of Antioxidant Capacity and Gut Microbiota Modulatory Effects of Different Kinds of Berries. Antioxidants (Basel) 2022; 11:antiox11051020. [PMID: 35624885 PMCID: PMC9137550 DOI: 10.3390/antiox11051020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared the antioxidant capacities and gut microbiota modulatory effects of nine common berries, namely blackberry, black goji berry, blueberry, mulberry, red Chinese bayberry, raspberry, red goji berry, strawberry and white Chinese bayberry. Anthocyanin profiles were identified by UPLC-Triple-TOF/MS. In vitro antioxidant capacity was evaluated by four chemical assays (DPPH, ABTS, FRAP and ORAC). In vivo antioxidant capacity and gut microbiota modulatory effects evaluation was carried out by treating healthy mice with different berry extracts for two weeks. The results show that most berries could improve internal antioxidant status, reflected by elevated serum or colonic T-AOC, GSH, T-SOD, CAT, and GSH-PX levels, as well as decreased MDA content. All berries significantly altered the gut microbiota composition. The modulatory effects of the berries were much the same, namely by the enrichment of beneficial SCFAs-producing bacteria and the inhibition of potentially harmful bacteria. Our study shed light on the gut microbiota modulatory effect of different berries and may offer consumers useful consumption guidance.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yichen Shu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yanhong Chen
- Laboratory Animal Center of Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan 250103, China;
- National Engineering Research Center for Agricultural Products Logistics, Jinan 250103, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
- Correspondence: ; Tel.: +86-0571-88982229
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| |
Collapse
|
52
|
Tang Y, Pu Q, Zhao Q, Zhou Y, Jiang X, Han T. Effects of Fucoidan Isolated From Laminaria japonica on Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. Front Immunol 2022; 13:916618. [PMID: 35664002 PMCID: PMC9160524 DOI: 10.3389/fimmu.2022.916618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of Laminaria japonica fucoidan (LF) on immune regulation and intestinal microflora in cyclophosphamide (CTX)-treated mice were investigated in this work. Results indicated that LF significantly enhanced the spleen and thymus indices, promoted spleen lymphocyte and peritoneal macrophages proliferation, and increased the immune-related cytokines production in serum. Moreover, LF could regulate intestinal flora composition, increasing the abundance of Lactobacillaceae and Alistipes, and inhibiting Erysipelotrichia, Turicibacter, Romboutsia, Peptostreptococcaceae, and Faecalibaculum. These results were positively correlated with immune characteristics. Overall, LF could be useful as a new potential strategy to mitigate CTX immunosuppression and intestinal microbiota disorders.
Collapse
Affiliation(s)
- Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiuyan Pu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, China
| | - Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
53
|
Shi P, Zhao T, Wang W, Peng F, Wang T, Jia Y, Zou L, Wang P, Yang S, Fan Y, Zong J, Qu X, Wang S. Protective effect of homogeneous polysaccharides of Wuguchong (HPW) on intestinal mucositis induced by 5-fluorouracil in mice. Nutr Metab (Lond) 2022; 19:36. [PMID: 35585561 PMCID: PMC9118848 DOI: 10.1186/s12986-022-00669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In hospitalized patients, drug side effects usually trigger intestinal mucositis (IM), which in turn damages intestinal absorption and reduces the efficacy of treatment. It has been discovered that natural polysaccharides can relieve IM. In this study, we extracted and purified homogenous polysaccharides of Wuguchong (HPW), a traditional Chinese medicine, and explored the protective effect of HPW on 5-fluorouracil (5-FU)-induced IM. METHODS AND RESULTS First, we identified the physical and chemical properties of the extracted homogeneous polysaccharides. The molecular weight of HPW was 616 kDa, and it was composed of 14 monosaccharides. Then, a model of small IM induced by 5-FU (50 mg/kg) was established in mice to explore the effect and mechanism of HPW. The results showed that HPW effectively increased histological indicators such as villus height, crypt depth and goblet cell count. Moreover, HPW relieved intestinal barrier indicators such as D-Lac and diamine oxidase (DAO). Subsequently, western blotting was used to measure the expression of Claudin-1, Occludin, proliferating cell nuclear antigen, and inflammatory proteins such as NF-κB (P65), tumour necrosis factor-α (TNF-α), and COX-2. The results also indicated that HPW could reduce inflammation and protect the barrier at the molecular level. Finally, we investigated the influence of HPW on the levels of short-chain fatty acids, a metabolite of intestinal flora, in the faeces of mice. CONCLUSIONS HPW, which is a bioactive polysaccharide derived from insects, has protective effects on the intestinal mucosa, can relieve intestinal inflammation caused by drug side effects, and deserves further development and research.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Tianqi Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Wendong Wang
- Department of Orthopaedics, The Second People's Hospital of Dalian, 29 Hongji Street, Dalian, China
| | - Fangli Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Yong Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,Dalian Runxi Technology Development Co., Ltd, 3 Jinxia Street, Dalian, China
| | - Peng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China
| | - Simengge Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Yue Fan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| | - Xueling Qu
- Pelvic Floor Repair Centre, The Affiliated Dalian Maternity Hospital of Dalian Medical University, 1 Dunhuang Road, Dalian, China. .,Pelvic Floor Repair Centre, Dalian Women and Children Medical Centre (Group), No. 1 Road of Sports New Town, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China. .,College of Integrative Medicine, Dalian Medical University, 9 South Lushun Road West, Dalian, China.
| |
Collapse
|
54
|
Huang C, Sun Y, Liao SR, Chen ZX, Lin HF, Shen WZ. Suppression of Berberine and Probiotics ( in vitro and in vivo) on the Growth of Colon Cancer With Modulation of Gut Microbiota and Butyrate Production. Front Microbiol 2022; 13:869931. [PMID: 35572672 PMCID: PMC9096942 DOI: 10.3389/fmicb.2022.869931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background and Objective An increasing number of evidence has revealed that the gut microbiome functions in immunity, inflammation, metabolism, and homeostasis and is considered to be crucial due to its balance between human health and diseases such as cancer, leading to the emergence of treatments that target intestinal microbiota. Probiotics are one of them. However, many challenges remain regarding the effects of probiotics in cancer treatment. Berberine (BBR), a natural extract of Rhizoma Coptidis and extensively used in the treatment of gastrointestinal diseases, has been found to have antitumor effects in vivo and in vitro by many recent studies, but its definite mechanisms are still unclear. This study aimed to explore the inhibitory effect of BBR and probiotics on the growth of colon cancer cells in vitro and in vivo, and the regulatory influence on the gut microbiome and butyrate production. Methods Colon cancer cell line HT29 was used to establish a xenograft model of nude mice and an in vitro model. A total of 44 nude mice and HT29 cells were divided into control, model, model + BBR, model + probiotics, and model + combination of BBR with probiotics (CBPs). Live combined Bifidobacterium, Lactobacillus, and Enterococcus powder (LCBLEP) was used as a probiotic preparation. LCBLEP was cultured in the liquid medium under anaerobic conditions (the number of viable bacteria should reach 1 × 108CFU), and the supernatant was collected, and it is called probiotic supernatant (PS). Model + BBR and model + probiotics groups were treated with BBR and LCBLEP or PS for 4 weeks in vivo or 48, 72, and 96 h in vitro, respectively. Tumor volume or cell proliferation was measured. Gut microbiota was pyrosequenced using a 16S rDNA amplicon. HDAC1 mRNA level in HT29 cells and sodium butyrate (SB) expression in the serum of mice was detected by QPCR and ELISA. Results The treatment of BBR and CBP reduced the growth of neoplasms in mice to a different extent (p > 0.05), especially at 14 days. The inhibitory effect of LCBLEP on tumor growth was more significant, especially at 11-21 days (p < 0.05). Inhibition of BBR on in vitro proliferation was concentration-dependent. The suppression of 75% probiotic supernatant (PS) on the proliferation was the most significant. The supplement of LCBLEP significantly increased the richness and evenness of the gut microbe. BBR dramatically increased the abundance of Bacteroidetes and Proteobacteria, with reduced Ruminococcus, followed by the LCBLEP. The LCBLEP reduced the relative abundance of Verrucomicrobia and Akkermansia, and the CBP also promoted the relative level of Bacteroidetes but reduced the level of Verrucomicrobia and Akkermansia. BBR and LCBLEP or CBP improved the alpha and beta diversity and significantly affected the biomarker and metabolic function of the gut microbe in nude mice with colon cancer. The level of HDAC1 mRNA was reduced in HT29 cells treated with BBR or PS (p < 0.05), the mice treated with BBR revealed a significantly increased concentration of SB in serum (p < 0.05), and the inhibitory effect of SB on the proliferation of HT29 cells was stronger than panobinostat and TSA. Conclusion Although the combination of BBR and probiotics has no advantage in inhibiting tumor growth compared with the drug alone, BBR can be used as a regulator of the intestinal microbiome similar to the probiotics by mediating the production of SB during reducing the growth of colon cancer.
Collapse
Affiliation(s)
- Chao Huang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Ying Sun
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Sheng-Rong Liao
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Zhao-Xin Chen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Han-Feng Lin
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| | - Wei-Zeng Shen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University, People's Hospital of Shenzhen Baoan District, Shenzhen, China
| |
Collapse
|
55
|
Tian B, Geng Y, Xu T, Zou X, Mao R, Pi X, Wu W, Huang L, Yang K, Zeng X, Sun P. Digestive Characteristics of Hericium erinaceus Polysaccharides and Their Positive Effects on Fecal Microbiota of Male and Female Volunteers During in vitro Fermentation. Front Nutr 2022; 9:858585. [PMID: 35433782 PMCID: PMC9008368 DOI: 10.3389/fnut.2022.858585] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Hericium erinaceus polysaccharides (HEPs) have attracted widespread attention in regulating gut microbiota (GM). To investigate digestibility and fermentation of HEPs and their effects on GM composition, three polysaccharide fractions, namely, HEP-30, HEP-50, and HEP-70, were fractionally precipitated with 30%, 50%, and 70% ethanol concentrations (v/v) from hot water-soluble extracts of Hericium erinaceus, respectively. Three kinds of prepared HEPs were structurally characterized and simulated gastrointestinal digestion, and their effects on human fecal microbiota fermentations of male and female and short-chain fatty acid (SCFA) production in vitro were clarified. Under digestive conditions simulating saliva, stomach, and small intestine, HEPs were not significantly influenced and safely reached the distal intestine. After 24 h of in vitro fermentation, the content of SCFAs was significantly enhanced (p < 0.05), and the retention rates of total and reducing sugars and pH value were significantly decreased (p < 0.05). Thus, HEPs could be utilized by GM, especially HEP-50, and enhanced the relative abundance of SCFA-producing bacteria, e.g., Bifidobacterium, Faecalibacterium, Blautia, Butyricicoccus, and Lactobacillus. Furthermore, HEPs reduced the relative abundances of opportunistic pathogenic bacteria, e.g., Escherichia-Shigella, Klebsiella, and Enterobacter. This study suggests that gradual ethanol precipitation is available for the preparation of polysaccharides from Hericium erinaceus, and the extracted polysaccharide could be developed as functional foods with great development value.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yan Geng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co., Ltd., Quzhou, China
| | - Xionge Pi
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
56
|
Zhen Y, Ge L, Xu Q, Hu L, Wei W, Huang J, Loor JJ, Yang Q, Wang M, Zhou P. Normal Light-Dark and Short-Light Cycles Regulate Intestinal Inflammation, Circulating Short-chain Fatty Acids and Gut Microbiota in Period2 Gene Knockout Mice. Front Immunol 2022; 13:848248. [PMID: 35371053 PMCID: PMC8971677 DOI: 10.3389/fimmu.2022.848248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Regular environmental light–dark (LD) cycle-regulated period circadian clock 2 (Per2) gene expression is essential for circadian oscillation, nutrient metabolism, and intestinal microbiota balance. Herein, we combined environmental LD cycles with Per2 gene knockout to investigate how LD cycles mediate Per2 expression to regulate colonic and cecal inflammatory and barrier functions, microbiome, and short-chain fatty acids (SCFAs) in the circulation. Mice were divided into knockout (KO) and wild type (CON) under normal light–dark cycle (NLD) and short-light (SL) cycle for 2 weeks after 4 weeks of adaptation. The concentrations of SCFAs in the serum and large intestine, the colonic and cecal epithelial circadian rhythm, SCFAs transporter, inflammatory and barrier-related genes, and Illumina 16S rRNA sequencing were measured after euthanasia during 10:00–12:00. KO decreased the feeding frequency at 0:00–2:00 but increased at 12:00–14:00 both under NLD and SL. KO upregulated the expression of Per1 and Rev-erbα in the colon and cecum, while it downregulated Clock and Bmal1. In terms of inflammatory and barrier functions, KO increased the expression of Tnf-α, Tlr2, and Nf-κb p65 in the colon and cecum, while it decreased Claudin and Occludin-1. KO decreased the concentrations of total SCFAs and acetate in the colon and cecum, but it increased butyrate, while it had no impact on SCFAs in the serum. KO increased the SCFAs transporter because of the upregulation of Nhe1, Nhe3, and Mct4. Sequencing data revealed that KO improved bacteria α-diversity and increased Lachnospiraceae and Ruminococcaceae abundance, while it downregulated Erysipelatoclostridium, Prevotellaceae UCG_001, Olsenella, and Christensenellaceae R-7 under NLD in KO mice. Most of the differential bacterial genus were enriched in amino acid and carbohydrate metabolism pathways. Overall, Per2 knockout altered circadian oscillation in the large intestine, KO improved intestinal microbiota diversity, the increase in Clostridiales abundance led to the reduction in SCFAs in the circulation, concentrations of total SCFAs and acetate decreased, while butyrate increased and SCFAs transport was enhanced. These alterations may potentially lead to inflammation of the large intestine. Short-light treatment had minor impact on intestinal microbiome and metabolism.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiaoyun Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Human and Animal Physiology, Wageningen University & Research, Wageningen, Netherlands
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiantao Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Qingyong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- *Correspondence: Mengzhi Wang, ; Ping Zhou,
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
- *Correspondence: Mengzhi Wang, ; Ping Zhou,
| |
Collapse
|
57
|
Cui Y, Sun W, Li Q, Wang K, Wang Y, Lv F, Chen X, Peng X, Wang Y, Li J, Si H. Effects of Caulis Spatholobi Polysaccharide on Immunity, Intestinal Mucosal Barrier Function, and Intestinal Microbiota in Cyclophosphamide-Induced Immunosuppressive Chickens. Front Vet Sci 2022; 9:833842. [PMID: 35372558 PMCID: PMC8972122 DOI: 10.3389/fvets.2022.833842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The protective effects of Caulis Spatholobi polysaccharide (CSP) on immune function, intestinal mucosal barrier, and intestinal microflora in cyclophosphamide (CY)-induced immunosuppressed chickens have been rarely reported. This study was designed to investigate the cecal microbiota in chickens and to elucidate the immune mechanism involved in the CSP effect on CY induced-immunosuppressed chickens. A total of 288 cocks were equally divided into six groups and used to evaluate the immune effect of CSP. Results showed that the CSP increased the body weight and immune organ index of immunosuppressed chickens, significantly increased the secretion of cytokines (IL-4, IL-10) and immunoglobulins (IgG, IgM) in sera of chickens, and restored the body immune function. The CSP reduced intestinal injury of the jejunum and ileum, increased the ratio of the intestinal villus height to crypt depth (V/C), improved the expression of tight junction protein, and protected intestinal health. The CSP activated the toll-like receptor (TLR)/MyD88/NF-κB pathway and enhanced the expression of TLR4, MyD88, NF-κB, Claudin1, and Zo-1, protecting the intestinal tract. High-throughput sequencing of the 16S rRNA gene showed that CSP increased species richness, restored CY-induced intestinal microbiome imbalance, and enhanced the abundance of Lactobacillus in the intestinal tract. In conclusion, our study provided a scientific basis for CSP as an immune enhancer to regulate intestinal microflora and protect intestinal mucosal damage in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
58
|
Huang WC, Tung CL, Yang YCSH, Lin IH, Ng XE, Tung YT. Endurance exercise ameliorates Western diet-induced atherosclerosis through modulation of microbiota and its metabolites. Sci Rep 2022; 12:3612. [PMID: 35256637 PMCID: PMC8901804 DOI: 10.1038/s41598-022-07317-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
The World Health Organization determined cardiovascular disease to be the leading cause of death globally; atherosclerosis is the primary cause of the high morbidity and mortality rates. Regular physical activity is an effective strategy for maintaining endothelial health and function to prevent the development of atherosclerosis. Obesity is also a crucial risk factor for atherosclerotic progression in combination with various complications and systemic inflammation. Physiological homeostasis is modulated by the intestinal microbiota, but the mechanisms through which exercise attenuates atherosclerosis through the microbiota have not been elucidated. Therefore, we investigated the effects of endurance exercise on atherosclerosis induced by a Western diet (WD) and apolipoprotein E (ApoE) knockout in terms of microbiota parameters and metabolites. Genetically modified ApoE knockout mice (C57BL/6-Apoeem1Narl/Narl, ApoEKO) and wild-type mice (C57BL6/J) were divided into the following four groups (n = 6), namely, wild-type mice fed a chow diet (WT CD), ApoEKO mice fed a chow diet (ApoE CD), ApoEKO mice fed a WD (ApoE WD), and ApoEKO mice fed a WD and performing endurance exercise (ApoE WD EX), for a 12-week intervention. The WD significantly induced obesity and atherosclerotic syndrome in the ApoE WD group. Severe atherosclerotic lesions and arterial thickness were significantly elevated and accompanied by increases in VCAM-1, MCP-1, TNF-α, and IL-1β for immune cell chemotaxis and inflammation during atherosclerotic pathogenesis in the ApoE WD group. In addition, dysbiosis in the ApoE WD group resulted in the lowest short-chain fatty acid (SCFA) production. Endurance exercise intervention (ApoE WD EX) significantly alleviated atherosclerotic syndrome by reducing obesity, significantly inhibiting VCAM-1, MCP-1, TNF-α, and IL-1β expression, and increasing the production of SCFAs. Modulation of the microbiota associated with inflammation, such as Desulfovibrio, Tyzzerella, and Lachnospiraceae_ge, and increased SCFA production, particularly through an abundance of Rikenellaceae and Dubosiella, were also observed after exercise intervention. Endurance exercise can alleviate WD-induced atherosclerosis through the amelioration of obesity, inflammation, and chemotaxis signaling, which are modulated by the microbiota and derived SCFAs.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan, ROC
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan, ROC.,Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung, 413, Taiwan, ROC
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - I-Hsuan Lin
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan, ROC.,Bioinformatics Core Facility, University of Manchester, Manchester, M13 9PT, UK
| | - Xin Er Ng
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, 110, Taiwan, ROC. .,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC.
| |
Collapse
|
59
|
Li Y, Zuo Z, Zhang B, Luo H, Song B, Zhou Z, Chang X. Impacts of early-life paraquat exposure on gut microbiota and body weight in adult mice. CHEMOSPHERE 2022; 291:133135. [PMID: 34863722 DOI: 10.1016/j.chemosphere.2021.133135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals can affect the composition and metabolic functions of gut microbiota, leading to various diseases including obesity. The composition of gut microbiota is highly dynamic in the early stages of life. Increasing lines of evidence suggest the adverse effect of early onset chemical exposure on gut microbiota and adulthood body weight gain. Paraquat (PQ) is a widely used toxic herbicide. However, it remains unclear whether PQ can affect the gut microbiota, particularly exposed during early life stage and its link to obesity in adulthood. Here, we applied 16S rRNA gene sequencing to explore how the gut microbiota of adult mice changed after postnatal PQ exposure via intraperitoneal injection. In addition, the body weight of mice was monitored through adulthood. Our results showed that early-life PQ exposure increased the body weight and perturbed the gut microbiota of adult mice in a highly sex-specific manner. In males, early PQ exposure reduced gut microbiota diversity and altered the structure of gut microbiota in adulthood. Interestingly, these changes were not observed in females. Moreover, gene function prediction analysis implied that PQ-induced alteration of gut microbiota was highly correlated with body weight gain in male mice. Taken together, these results suggest that early-life PQ exposure can perturb the gut microbiota and result in increased body weight in adult male mice, which highlights the potential role of gut microbiota in the toxicity of early-life PQ exposure and its sex-specific effects.
Collapse
Affiliation(s)
- Yixi Li
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zhenzi Zuo
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Bing Zhang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Huan Luo
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Bo Song
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Zhijun Zhou
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- Department of Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
60
|
Zou YF, Li CY, Fu YP, Feng X, Peng X, Feng B, Li LX, Jia RY, Huang C, Song X, Lv C, Ye G, Zhao L, Li YP, Zhao XH, Yin LZ, Yin ZQ. Restorative Effects of Inulin From Codonopsis pilosula on Intestinal Mucosal Immunity, Anti-Inflammatory Activity and Gut Microbiota of Immunosuppressed Mice. Front Pharmacol 2022; 13:786141. [PMID: 35237158 PMCID: PMC8882912 DOI: 10.3389/fphar.2022.786141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula, was characterized and demonstrated with potential prebiotic activity in vitro before. Based on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in vivo on immunosuppressed mice were investigated after oral administration of 200, 100 and 50 mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in different intestine parts were revealed. The intestine before colon could be the target active position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect was also presented by mainly modulating the relative abundance of Eubacteriales, including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota modulatory activities.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Feng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yuan-Feng Zou, ; Zhong-Qiong Yin,
| |
Collapse
|
61
|
Song X, Liu L, Peng S, Liu T, Chen Y, Jia R, Zou Y, Li L, Zhao X, Liang X, Tang H, Yin Z. Resveratrol regulates intestinal barrier function in cyclophosphamide-induced immunosuppressed mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1205-1215. [PMID: 34346509 DOI: 10.1002/jsfa.11458] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resveratrol, a kind of polyphenolic phytoalexin, can be obtained from numerous natural foods. Although resveratrol is demonstrated to have various bioactivities, little is known about the regulation of intestinal barrier function under immunosuppression. The present study is aimed at investigating the regulatory effect of resveratrol on intestinal barrier function in immunosuppression in mice induced by cyclophosphamide. RESULTS The effects of resveratrol on intestinal biological barrier were evaluated by 16S rRNA and metagenome sequencing analysis. The results showed that resveratrol could improve diversity of the intestinal microbiota and intestinal flora structure by increasing the abundance of probiotics, and resveratrol regulated the function of gut microbiota to resist immunosuppression. Resveratrol could significantly upregulate the secretion of secretory immunoglobulin A and promote the transcriptional levels of test cytokines, including tumor necrosis factor α, interferon γ, interleukin 4 and interleukin 6 in jejunum and ileum mucosa, suggesting improved intestinal immune barrier by resveratrol. The mRNA and protein levels of tight junction proteins involved in intestinal physical barrier function, including zonula occludens 1 (ZO-1), claudin 1 and occludin, were increased after resveratrol treatment. The protein levels of toll-like receptor 4 (TLR4), phosphorylation nuclear factor kappa-B (NF-κB-p65) and inhibitor of nuclear factor kappa-B kinase α were decreased by resveratrol treatment when compared with the untreated group, indicating inhibition of the TLR4/NF-ĸB signaling pathway. CONCLUSION These results provide new insights into regulation of the intestinal barrier function by resveratrol under immunosuppression and potential applications of resveratrol in recovering intestinal function. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lin Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuwei Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
62
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H, Nonomura N. Connecting the Dots Between the Gut-IGF-1-Prostate Axis: A Role of IGF-1 in Prostate Carcinogenesis. Front Endocrinol (Lausanne) 2022; 13:852382. [PMID: 35370981 PMCID: PMC8965097 DOI: 10.3389/fendo.2022.852382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men worldwide, thus developing effective prevention strategies remain a critical challenge. Insulin-like growth factor 1 (IGF-1) is produced mainly in the liver by growth hormone signaling and is necessary for normal physical growth. However, several studies have shown an association between increased levels of circulating IGF-1 and the risk of developing solid malignancies, including PCa. Because the IGF-1 receptor is overexpressed in PCa, IGF-1 can accelerate PCa growth by activating phosphoinositide 3-kinase and mitogen-activated protein kinase, or increasing sex hormone sensitivity. Short-chain fatty acids (SCFAs) are beneficial gut microbial metabolites, mainly because of their anti-inflammatory effects. However, we have demonstrated that gut microbiota-derived SCFAs increase the production of IGF-1 in the liver and prostate. This promotes the progression of PCa by the activation of IGF-1 receptor downstream signaling. In addition, the relative abundance of SCFA-producing bacteria, such as Alistipes, are increased in gut microbiomes of patients with high-grade PCa. IGF-1 production is therefore affected by the gut microbiome, dietary habits, and genetic background, and may play a central role in prostate carcinogenesis. The pro-tumor effects of bacteria and diet-derived metabolites might be potentially countered through dietary regimens and supplements. The specific diets or supplements that are effective are unclear. Further research into the "Gut-IGF-1-Prostate Axis" may help discover optimal diets and nutritional supplements that could be implemented for prevention of PCa.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- *Correspondence: Kazutoshi Fujita,
| | - Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Marco A. De Velasco
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
63
|
Xue L, Li Z, Xue J, Wang H, Wu T, Liu R, Sui W, Zhang M. Lactobacillus acidophilus LA85 ameliorates cyclophosphamide-induced immunosuppression by modulating Notch and TLR4/NF-κB signal pathways and remodeling the gut microbiota. Food Funct 2022; 13:8107-8118. [DOI: 10.1039/d1fo04331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the prevalence of coronavirus disease 2019 (COVID-19), we found that probiotics may be effective in organism immune recovery and remodeling of gut microbiota in their patients and recovered individuals....
Collapse
|
64
|
Zhang P, Jia J, Jiang P, Zheng W, Li X, Song S, Ai C. Polysaccharides from edible brown seaweed Undaria pinnatifida are effective against high-fat diet-induced obesity in mice through the modulation of intestinal microecology. Food Funct 2022; 13:2581-2593. [DOI: 10.1039/d1fo04012j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brown seaweed is rich in polysaccharides, including sulfated polysaccharides and alginate, both of which provide health benefit to the host, but their difference has not been given sufficient attention. In...
Collapse
|
65
|
Yu Y, Zhu H, Shen M, Yu Q, Chen Y, Xie J. Sulfation modification enhances the intestinal regulation of Cyclocarya paliurus polysaccharides in cyclophosphamide-treated mice via restoring intestinal mucosal barrier function and modulating gut microbiota. Food Funct 2021; 12:12278-12290. [PMID: 34821227 DOI: 10.1039/d1fo03042f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work aimed to investigate the effects of a sulfated derivative of Cyclocarya paliurus polysaccharide (SCP3) on cyclophosphamide (CTX)-induced intestinal barrier damage and intestinal microbiota in mice. The results showed that SCP3 increased the intestine antioxidant defense, repaired the intestinal barrier via restoring villi length and crypt depth, and up-regulated the expression of tight junction proteins. Bacterial 16S rRNA sequencing results confirmed that SCP3 dramatically altered the structure of the gut microbiota, increased the diversity of gut microbiota, and regulated the relative abundances of specific bacteria, including increasing the abundances of Bacteroidetes, Firmicutes, Tenericutes, Oscillospira, and Akkermansia, and decreasing the abundances of Proteobacteria and Verrucomicrobia. In conclusion, SCP3 can improve intestinal function in CTX-treated mice via enhancing the intestinal oxidative stress capacity, repairing the intestinal mucosal barrier, and regulating intestinal microorganisms, and this study provides a scientific theoretical basis for the application of SCP3 in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. .,International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Haibin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. .,International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. .,International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. .,International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| |
Collapse
|
66
|
Wei R, Liu X, Wang Y, Dong J, Wu F, Mackenzie GG, Su Z. (-)-Epigallocatechin-3-gallate mitigates cyclophosphamide-induced intestinal injury by modulating the tight junctions, inflammation and dysbiosis in mice. Food Funct 2021; 12:11671-11685. [PMID: 34730149 DOI: 10.1039/d1fo01848e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclophosphamide (CTX) is an antitumor drug commonly used to treat various cancer types. Unfortunately, its toxic side effects, including gastrointestinal (GI) toxicity, affect treatment compliance and patients' prognosis. Thus, there is a critical need of evaluating strategies that may improve the associated GI toxicity induced by CTX. In this work, we evaluated the capacity of epigallocatechin-3-gallate (EGCG), a major constituent of green tea, to improve the recovery of gut injury induced by CTX in mice. Treatment with CTX for 5 days severely damaged the intestinal structure, increased immune-related cytokines (TNFα, IL-10 and IL-21), reduced the expression levels of tight junction proteins (ZO-1, occludin, claudin-1), induced reactive oxygen species, altered the composition of gut microbiota, and reduced short chain fatty acid levels. EGCG treatment, starting one day after the last CTX dose, significantly improved the intestinal structure, ameliorated gut permeability, and restored ZO-1, occludin and claudin-1 levels. Moreover, EGCG reduced TNFα, IL-10 and IL-21 levels and decreased oxidative stress by regulating the activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase. Finally, EGCG treatment restored the composition of gut microbiota and the levels of the short chain fatty acids. In conclusion, these findings indicate that EGCG may function as an effective bioactive compound to minimize CTX-induced GI tract toxicity.
Collapse
Affiliation(s)
- Ran Wei
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| | - Xingquan Liu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Dong
- Zhejiang Camel Transworld Organic Food Co., Ltd, Hangzhou, 310041, China
| | - Fenghua Wu
- Department of Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, California, 95616, USA.
| | - Zhucheng Su
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
67
|
Chen G, Yu L, Zhang Y, Chang Y, Liu Y, Shen J, Xue C. Utilizing heterologously overexpressed endo-1,3-fucanase to investigate the structure of sulfated fucan from sea cucumber (Holothuria hilla). Carbohydr Polym 2021; 272:118480. [PMID: 34420739 DOI: 10.1016/j.carbpol.2021.118480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023]
Abstract
Sea cucumber sulfated fucan (SC-FUC) attracted increasing interests in the recent decades. Endo-1,3-fucanase has been employed in the structural clarification and structure-function relationship investigations of SC-FUC. Nevertheless, the preparation of wild-type endo-1,3-fucanase is costly and time-consuming, which hinders its further utilization. In this study, a heterologously overexpressed endo-1,3-fucanase (FunA) was introduced into structural identification of SC-FUC. FunA was efficiently prepared within one day and utilized in the investigation of sulfated fucan from sea cucumber Holothuria hilla (Hh-FUC). By using enzymatic degradation, glycomics and NMR analysis, the major structure of Hh-FUC was identified to be composed of a tetrasaccharide repeating unit →3-α-l-Fucp-1 → 3-α-l-Fucp2,4(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1 → 3-α-l-Fucp2(OSO3-)-1→. Due to the efficient acquisition of enzyme and the superior oligosaccharide recovery, 0.6 mL of E. coli broth and 10 mg of Hh-FUC were sufficient for the structural identification. The results demonstrated the superiority of heterologously overexpressed fucanase over its wild-type enzyme in structural investigation of sulfated fucan.
Collapse
Affiliation(s)
- Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Long Yu
- Adelaide Glycomics, School of Food, Agriculture and Wine, The University of Adelaide, Waite Campus, Adelaide, SA 5064, Australia
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yanyan Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
68
|
Neuroprotective effect of fucoidan by regulating gut-microbiota-brain axis in alcohol withdrawal mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
69
|
Li Y, Qin J, Cheng Y, Lv D, Li M, Qi Y, Lan J, Zhao Q, Li Z. Marine Sulfated Polysaccharides: Preventive and Therapeutic Effects on Metabolic Syndrome: A Review. Mar Drugs 2021; 19:md19110608. [PMID: 34822479 PMCID: PMC8618309 DOI: 10.3390/md19110608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome is the pathological basis of cardiovascular and cerebrovascular diseases and type 2 diabetes. With the prevalence of modern lifestyles, the incidence of metabolic syndrome has risen rapidly. In recent years, marine sulfate polysaccharides (MSPs) have shown positive effects in the prevention and treatment of metabolic syndrome, and they mainly come from seaweeds and marine animals. MSPs are rich in sulfate and have stronger biological activity compared with terrestrial polysaccharides. MSPs can alleviate metabolic syndrome by regulating glucose metabolism and lipid metabolism. In addition, MSPs prevent and treat metabolic syndrome by interacting with gut microbiota. MSPs can be degraded by gut microbes to produce metabolites such as short chain fatty acids (SCFAs) and free sulfate and affect the composition of gut microbiota. The difference between MSPs and other polysaccharides lies in the sulfation pattern and sulfate content, therefore, which is very important for anti-metabolic syndrome activity of MSPs. This review summarizes the latest findings on effects of MSPs on metabolic syndrome, mechanisms of MSPs in treatment/prevention of metabolic syndrome, interactions between MSPs and gut microbiota, and the role of sulfate group and sulfation pattern in MSPs activity. However, more clinical trials are needed to confirm the potential preventive and therapeutic effects on human body. It may be a better choice to develop new functional foods containing MSPs for dietary intervention in metabolic syndrome.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Juan Qin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Yinghui Cheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Dong Lv
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Jing Lan
- Dalian Zhenjiu Biological Industry Co., Ltd., Dalian 116023, China;
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| | - Zhibo Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| |
Collapse
|
70
|
Achasova KM, Kozhevnikova EN, Borisova MA, Litvinova EA. Fucose Ameliorates Tritrichomonas sp.-Associated Illness in Antibiotic-Treated Muc2-/- Mice. Int J Mol Sci 2021; 22:ijms221910699. [PMID: 34639039 PMCID: PMC8509520 DOI: 10.3390/ijms221910699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The mucus layer in the intestine plays a critical role in regulation of host–microbe interactions and maintaining homeostasis. Disruptions of the mucus layer due to genetic, environmental, or immune factors may lead to inflammatory bowel diseases (IBD). IBD frequently are accompanied with infections, and therefore are treated with antibiotics. Hence, it is important to evaluate risks of antibiotic treatment in individuals with vulnerable gut barrier and chronic inflammation. Mice with a knockout of the Muc2 gene, encoding the main glycoprotein component of the mucus, demonstrate a close contact of the microbes with the gut epithelium which leads to chronic inflammation resembling IBD. Here we demonstrate that the Muc2−/− mice harboring a gut protozoan infection Tritrichomonas sp. are susceptible to an antibiotic-induced depletion of the bacterial microbiota. Suppression of the protozoan infection with efficient metronidazole dosage or L-fucose administration resulted in amelioration of an illness observed in antibiotic-treated Muc2−/− mice. Fucose is a monosaccharide presented abundantly in gut glycoproteins, including Mucin2, and is known to be involved in host–microbe interactions, in particular in microbe adhesion. We suppose that further investigation of the role of fucose in protozoan adhesion to host cells may be of great value.
Collapse
Affiliation(s)
- Kseniya M. Achasova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Krasnoobsk, Russia; (K.M.A.); (E.N.K.)
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena N. Kozhevnikova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Krasnoobsk, Russia; (K.M.A.); (E.N.K.)
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- The Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Mariya A. Borisova
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ekaterina A. Litvinova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Krasnoobsk, Russia; (K.M.A.); (E.N.K.)
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-923-147-94-64
| |
Collapse
|
71
|
Liu Z, Zhang Y, Ai C, Wen C, Dong X, Sun X, Cao C, Zhang X, Zhu B, Song S. Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model. Food Res Int 2021; 148:110562. [PMID: 34507721 DOI: 10.1016/j.foodres.2021.110562] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Sea cucumber Stichopus japonicus has been consumed as high-valued seafood in Asian, and its sulfated polysaccharide (SCSPsj) has been inferred to benefit the host health via modulating gut microbiota composition. The present study compared the responses of gut microbiota communities from different donors to SCSPsj, and the key bacteria were identified by 16S rRNA gene sequencing analysis and in vitro fermentation with specific bacteria. Gut microbiota communities from 6 donors (A ~ F) utilized the polysaccharides to different degrees in vitro fermentation. Further comparison of Samples A and C demonstrated that Sample C with the relatively strong SCSPsj utilization capability possessed more Parabacteroides while Sample A contained more Bacteroides. Further in vitro fermentation of SCSPsj with 10 Parabacteroides and Bacteroides species suggests that Parabacteroides distasonis, enriched in Sample C, plays a critical role in the utilization of the polysaccharides. Moreover, short chain fatty acids and the metabolite profiles of Samples A and C were also compared, and the results showed that more beneficial metabolites were accumulated by the microbiota community consuming more sulfated sea cucumber polysaccharides. Our findings revealed that certain key members of gut microbiota, such as Parabacteroides distasonis, are critical for SCSPsj utilization in gut so as to influence the benefits of the polysaccharide supplement for host. Thus, to obtain better functional outcome for sulfated sea cucumber polysaccharides and sea cucumber, more attention needs to be paid to the effects of inter-individual differences in microbiota community structure.
Collapse
Affiliation(s)
- Zhengqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yujiao Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiuping Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaona Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Cui Cao
- Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xueqian Zhang
- Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
72
|
Sun T, Xue M, Yang J, Pei Z, Zhang N, Qin K, Liang H. Metabolic regulation mechanism of fucoidan via intestinal microecology in diseases. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4456-4463. [PMID: 33682122 DOI: 10.1002/jsfa.11202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The intestinal microecology is an extremely complex ecosystem consisting of gut microbiota, intestinal mucosa and the intestinal immune system. The intestinal microecology performs several important functions and is considered to be an essential 'organ' because it plays an important role in regulating human metabolism. Fucoidan contains a large amount of fucose and galactose residues, as well as various other neutral and acidic monosaccharides. Fucoidan particularly effects tumors, inflammatory bowel disease, diabetes and obesity by repairing intestinal mucosal damage and improving the intestinal microecological environment. It has been proposed that fucoidan could be used as a prebiotic agent for pharmaceutical and functional foods. In this review, we elucidate the potential mechanisms of the metabolic regulation of fucoidan with respect to the intestinal microecology of diseases. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Zhongqian Pei
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Nan Zhang
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Kunpeng Qin
- Basic Medical College, Qingdao University of Medicine, Qingdao, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, China
| |
Collapse
|
73
|
Luo J, Wang Z, Fan B, Wang L, Liu M, An Z, Zhao X. A comparative study of the effects of different fucoidans on cefoperazone-induced gut microbiota disturbance and intestinal inflammation. Food Funct 2021; 12:9087-9097. [PMID: 34388231 DOI: 10.1039/d1fo00782c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibiotic abuse can lead to gut microbiota disturbance and intestinal inflammation, which in turn may lead to serious inflammatory bowel disease and metabolic syndromes. To investigate the effect of fucoidan on alleviation of the side effects of antibiotics and its structure-activity relationship, we compared the effects of two fucoidan fractions with medium and low molecular weights (MF and LF) from Laminaria japonica on microbiota dysbiosis, colonic inflammation and intestinal mucosal damage in a cefoperazone-induced intestinal injury mouse model. Our results showed that oral administration of 200 mg kg-1 LF (Mw = 1.13 kDa) and MF (Mw = 26.7 kDa) together with 100 mg kg-1 cefoperazone for 10 days could significantly alleviate weight loss, colon shortening and enlargement, mucosal structural damage in the small intestine, cecum and colon induced by cefoperazone in mice. Meanwhile, LF and MF also significantly suppressed the overproduction of TNF-α, IFN-γ, and IL-6 in the colon; however, LF can restore the decrease in the levels of TNF-α and IL-6 in the small intestine and the decrease in the levels of TNF-α, IFN-γ, and IL-6 in the cecum induced by cefoperazone in mice. We found that the molecular weight of fucoidan plays an important role in the regulation of the gut microbiota in antibiotic-treated mice. Interestingly, fucoidans with different molecular weights resulted in quite different caecal microbiota communities. MF exhibited a much better effect on the restoration of the gut microbiota community richness and diversity and the beneficial bacterium Muribaculaceae. However, LF resulted in the dominance of bacteria including Staphylococcus in cefoperazone treated mice, without an increase in the community richness and diversity of caecal microbiota. In the LF and MF treated mice, an increase in the abundance of beneficial bacteria, Muribaculaceae, Acinetobacter_lwoffii and Alloprevotella, and a decrease in the abundance of harmful bacteria, e.g., Parasutterella, Helicobacter and Enterococcus were also observed. Considering the negative effect of LF on the gut microbiota, MF with a molecular weight of 26.7 kDa seemed to be a more suitable choice of prebiotics for patients receiving cefoperazone treatment.
Collapse
Affiliation(s)
- Juanmei Luo
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China.
| | - Zhan Wang
- Qingdao Central Medical Group, Qingdao, 266042, China
| | - Bin Fan
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China.
| | - Li Wang
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China.
| | - Mengyang Liu
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China.
| | - Zizhe An
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China.
| | - Xue Zhao
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
74
|
Huang J, Huang J, Li Y, Wang Y, Wang F, Qiu X, Liu X, Li H. Sodium Alginate Modulates Immunity, Intestinal Mucosal Barrier Function, and Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7064-7073. [PMID: 34152142 DOI: 10.1021/acs.jafc.1c02294] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This study investigated the protective effects of sodium alginate (SA) on the gut microbiota, immunity, and intestinal mucosal barrier function in cyclophosphamide-induced immunosuppressed BALB/c mice. SA alleviated spleen tissue damage and restored impaired immune functions, such as increasing the immune organ index, decreasing splenic T lymphocytes, and markedly increasing the secretion of serum immunoglobulins and cytokines in immunosuppressed mice. In addition, SA reversed the intestinal mucosal injury and increased the intestinal permeability by upregulating the expression of tight junction proteins. Moreover, SA decreased gut inflammation by reducing serum d-lactic acid (D-LA) and lipopolysaccharide (LPS) concentrations and downregulating toll-like receptor 4 (Tlr4) and mitogen-activated protein kinase (Mapk) pathway expression. Furthermore, SA significantly increased the abundance of beneficial bacteria (Lactobacillus, Roseburia, and Lachnospiraceae NK4A136) and decreased pathogenic bacteria (Helicobacter, Peptococcus, and Tyzzerella) in the intestine as determined by 16S rRNA gene high-throughput sequencing. In conclusion, our study provides a scientific basis for SA as a functional food in modulating gut microbiota and protecting against intestinal mucosal injury and indicates that SA has potential application for enhancing immunity.
Collapse
Affiliation(s)
- Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, PR China
| | - Jinli Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, PR China
| | - Yao Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, PR China
| | - Yilu Wang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, PR China
| | - Fahe Wang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co.,, Ltd., 266400 Qingdao, PR China
| | - Xia Qiu
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co.,, Ltd., 266400 Qingdao, PR China
| | - Xvliang Liu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, PR China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, 116044 Dalian, PR China
| |
Collapse
|
75
|
Ouyang Y, Qiu Y, Liu Y, Zhu R, Chen Y, El-Seedi HR, Chen X, Zhao C. Cancer-fighting potentials of algal polysaccharides as nutraceuticals. Food Res Int 2021; 147:110522. [PMID: 34399500 DOI: 10.1016/j.foodres.2021.110522] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023]
Abstract
Cancer has been listed as one of the world's five incurable diseases by the World Health Organization and causes tens of thousands of deaths every year. Unfortunately, anticancer agents either show limited efficacy or show serious side effects. The algae possess high nutritional value and their polysaccharides have a variety of biological activities, especially anti-cancer and immunomodulatory properties. Algal polysaccharides exert anti-cancer effects by inducing apoptosis, cell cycle arrest, anti-angiogenesis, and regulating intestinal flora and immune function. Algal polysaccharides can be combined with nanoparticles and other drugs to reduce the side effects caused by chemotherapy and increase the anticancer effects. This review shows the signal pathways related to the anti-cancer mechanisms of algal polysaccharides, including their influence on intestinal flora and immune regulation, the application of nanoparticles, and the effects on combination therapy and clinical trials of cancer treatments.
Collapse
Affiliation(s)
- Yuezhen Ouyang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghui Qiu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuning Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yihan Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Chao Zhao
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
76
|
Chen S, Wang J, Fang Q, Dong N, Fang Q, Cui SW, Nie S. A polysaccharide from natural Cordyceps sinensis regulates the intestinal immunity and gut microbiota in mice with cyclophosphamide-induced intestinal injury. Food Funct 2021; 12:6271-6282. [PMID: 34105571 DOI: 10.1039/d1fo00596k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A polysaccharide from Cordyceps sinensis (NCSP) was reported to attenuate intestinal injury and regulate the balance of T helper (Th)1/Th2 cells in immunosuppressed mice. However, whether it influences Th17 and regulatory T (Treg) cells as well as gut ecology remains unknown. In the present study, the intestinal injury mouse model was also established by intraperitoneal injection of cyclophosphamide (Cy) for three consecutive days. NCSP was found to increase the number of CD4+ T cells, stimulate the secretion of interleukins (IL)-17 and IL-21, and the expression of transcription factor (retinoic acid-related orphan receptor (ROR)-γt). The levels of transforming growth factor (TGF)-β3 and transcription factor (forkhead box (Fox)p-3) were increased in NCSP-treated groups. Moreover, NCSP upregulated the mRNA expression of toll like receptors (TLR-2, -6 and -9), while it downregulated the TLR-4 expression. In addition, NCSP modulated the intestinal microbiota composition and increased the levels of SCFAs. These findings indicated that NCSP may enhance intestinal immunity and have the potential to become a prebiotic to regulate intestinal microbiota.
Collapse
Affiliation(s)
- Shuping Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China.
| | | | | | | | | | | | | |
Collapse
|
77
|
Luo J, Yu J, Peng X. Could partial nonstarch polysaccharides ameliorate cancer by altering m 6A RNA methylation in hosts through intestinal microbiota? Crit Rev Food Sci Nutr 2021; 62:8319-8334. [PMID: 34036843 DOI: 10.1080/10408398.2021.1927975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a growing scientific view that the improvement of cancer by nonstarch polysaccharides (NSPs) is mediated by intestinal microbiota. Intestinal bacteria affect the supply of methyl donor substances and influence N6-methyladenosine (m6A) RNA methylation. As one of the epigenetic/epitranscriptomic modifications, m6A RNA methylation is closely related to the initiation and progression of cancers. This review summarizes the cancer-improving effects of NSPs through modulation of intestinal microbiota. It also summarizes the relationship between intestinal bacteria and the supply of methyl donor substances. Moreover, it also provides a summary of the effects of m6A RNA methylation on various types of cancer. The proposed mechanism is that, dietary consumed NSPs are utilized by specific intestinal bacteria and further reshape the microbial structure. Methyl donor substances will be directly or indirectly generated by the reshaped-microbiota, and affect the m6A RNA methylation of cancer-related and pro-carcinogenic inflammatory cytokine genes. Therefore, NSPs may change the m6A RNA methylation by affecting the methyl donor supply produced by intestinal microbiota and ameliorate cancer. This review discussed the possibility of cancer improvement of bioactive NSPs achieved by impacting RNA methylation via the intestinal microbiota, and it will offer new insights for the application of NSPs toward specific cancer prevention.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
78
|
Zhu Z, Han Y, Ding Y, Zhu B, Song S, Xiao H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr Rev Food Sci Food Saf 2021; 20:2882-2913. [PMID: 33884748 DOI: 10.1111/1541-4337.12754] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Various dietary sulfated polysaccharides (SPs) have been isolated from seafoods, including edible seaweeds and marine animals, and their health effects such as antiobesity and anti-inflammatory activities have attracted remarkable interest. Sulfate groups have been shown to play important roles in the bioactivities of these polysaccharides. Recent in vitro and in vivo studies have suggested that the biological effects of dietary SPs are associated with the modulation of the gut microbiota. Dietary SPs could regulate the gut microbiota structure and, accordingly, affect the production of bioactive microbial metabolites. Because of their differential chemical structures, dietary SPs may specifically affect the growth of certain gut microbiota and associated metabolite production, which may contribute to variable health effects. This review summarizes the latest findings on the types and structural characteristics of SPs, the effects of different processing techniques on the structural characteristics and health effects of SPs, and the current understanding of the role of gut microbiota in the health effects of SPs. These findings might help in better understanding the mechanism of the health effects of SPs and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yu Ding
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
79
|
Pan L, Zhou Z, Han Y. Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 delay the onset of autoimmune diabetes by modulating gut microbiota and its metabolites SCFAs in NOD mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
80
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
81
|
Polysaccharides in natural products that repair the damage to intestinal mucosa caused by cyclophosphamide and their mechanisms: A review. Carbohydr Polym 2021; 261:117876. [PMID: 33766363 DOI: 10.1016/j.carbpol.2021.117876] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Cyclophosphamide (CTX) is a commonly used antitumor drug in clinical practice, and intestinal mucosal injury is one of its main toxic side effects, which seriously affects the treatment tolerance and prognosis of patients. Therefore, the prevention of intestinal mucosal injury is a research hotspot. Studies have shown that polysaccharides can effectively prevent and improve CTX-induced intestinal mucosal injury and immune system disorders. Recent research has elucidated the structure, biological function, and physicochemical properties of polysaccharides that prevent intestinal mucosal injury, and the potential mechanisms whereby they have this effect. In this paper, we review the recent progress made in understanding the effects of polysaccharides on intestinal mucosal injury and their protective mechanism in order to provide a reference for further research on the prevention of intestinal mucosal injury and the mechanisms involved in nutritional intervention.
Collapse
|
82
|
Jiang P, Zheng W, Sun X, Jiang G, Wu S, Xu Y, Song S, Ai C. Sulfated polysaccharides from Undaria pinnatifida improved high fat diet-induced metabolic syndrome, gut microbiota dysbiosis and inflammation in BALB/c mice. Int J Biol Macromol 2021; 167:1587-1597. [PMID: 33217459 DOI: 10.1016/j.ijbiomac.2020.11.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Undaria pinnatifida was shown to reduce serum lipids and fat accumulation and produce beneficial effect on type 2 diabetes, but its effect on intestinal micro-ecology remains unclear. This study showed that sulfated polysaccharides from U. pinnatifida (UPSP) reduced weight gain, fat accumulation and metabolic disorders in mice fed with high fat diet (HFD). UPSP not only alleviated HFD-induced microbiota dysbiosis indicated as increased abundances of some Bacteroidales members that had positive correlations with the improvement of physiological indexes, but also maintained gut barrier integrity and reduced metabolic endotoxemia. A dose-effect relationship was observed between the dose of UPSP and its effect on some physiological indexes, gut microbiota community and nutrient utilization. The in vitro result showed that the use of Bacteroides species within Bacteroidales on UPSP was species-dependent, and the dose of UPSP affected the growth properties of some Bacteroides species. It implied that UPSP can be considered as prebiotic agent to prevent gut dysbiosis and obesity-related diseases in obese individuals.
Collapse
Affiliation(s)
- Pingrui Jiang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xiaona Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guoping Jiang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuxin Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
83
|
Mahgoub HA, El-Adl MAM, Ghanem HM, Martyniuk CJ. The effect of fucoidan or potassium permanganate on growth performance, intestinal pathology, and antioxidant status in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2109-2131. [PMID: 32829475 DOI: 10.1007/s10695-020-00858-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Fucoidans are marine algal sulfated glycans that are widely used as dietary additives in aquaculture. These glycans are recognized as beneficial supplements for their antimicrobial, anti-inflammatory, anticancer, and antiviral properties. Potassium permanganate is another commonly used chemical that is used in aquaculture to treat infections in fish. Despite their widespread use, there are few data available regarding the potential sublethal toxicity associated with fucoidan and potassium permanganate treatments of fish. In this study, we investigated the effect of each compound on the growth, intestinal health, and antioxidant status of Nile tilapia (Oreochromis niloticus). Both compounds affected the growth of experimental fish compared with untreated fish. However, while growth parameters were positively associated with the dose of fucoidan administered, growth was negatively associated with the dose of potassium permanganate in Nile tilapia. Fucoidan treatment was observed to improve the intestinal health of fish based upon increases in intestinal villous area, intestinal villous length and width, and the intraepithelial lymphocyte number and decreases in the total intestinal bacterial count compared with untreated fish. Conversely, potassium permanganate induced intestinal epithelium proliferation and villous branching, a histopathological response typically observed with chemical irritants. Both fucoidan and potassium permanganate decreased levels of oxidative and nitrosative stress markers and enhanced the antioxidant status in multiple organs. Taken together, fucoidan dietary application improved the growth, intestinal health, and antioxidant status in Nile tilapia, supporting the use of this compound as a promising feed additive for aquaculture production. Conversely, potassium permanganate baths have negative effects on fish growth at higher doses and appeared to act as a gastrointestinal irritant in tilapia. This study improves knowledge regarding the biochemical and histological responses in Nile tilapia to two widely used aquaculture-related treatments.
Collapse
Affiliation(s)
- Hebatallah A Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| | - Mohamed A M El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hanaa M Ghanem
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| |
Collapse
|
84
|
Xie Z, Bai Y, Chen G, Rui Y, Chen D, Sun Y, Zeng X, Liu Z. Modulation of gut homeostasis by exopolysaccharides from Aspergillus cristatus (MK346334), a strain of fungus isolated from Fuzhuan brick tea, contributes to immunomodulatory activity in cyclophosphamide-treated mice. Food Funct 2020; 11:10397-10412. [PMID: 33237077 DOI: 10.1039/d0fo02272a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the crude exopolysaccharides (CEPSs) from fungus Aspergillus cristatus (MK346334, NCBI) isolated from Fuzhuan brick tea and its main purified fraction (EPSs-2) were investigated. Using the RAW264.7 cell model, EPSs-2 exhibited an excellent immunomodulatory effect in vitro. Then, the regulating effects of EPSs on immune function and gut microbiota were evaluated using a cyclophosphamide (Cy)-induced mice model. It was found that both CEPSs and EPSs-2 improved the body weight loss, immune organ indexes as well as the levels of TNF-α, IL-1β, IFN-γ and IgA, exhibiting potent immunoregulatory activity. Moreover, CEPSs and EPSs-2 not only attenuated the intestinal tissue damage, but also promoted the production of short-chain fatty acids and modulated the microbial composition by increasing the growth of Muribaculaceae, Prevotellaceae_UCG-001, Bacteroides, Parabacteroides and Tidjanibacter, while decreasing the relative abundances of Helicobacter, Bilophila, Mucispirillum, Lachnospiraceae, Ruminococcaceae and Clostridiales. These results indicated that the EPSs, especially EPSs-2, exhibited immunomodulatory activity associated with the modulation of gut microbiota to maintain gut homeostasis, which provided evidence for the development of novel potential prebiotics and immunomodulators.
Collapse
Affiliation(s)
- Zhiyong Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Huang K, Yan Y, Chen D, Zhao Y, Dong W, Zeng X, Cao Y. Ascorbic Acid Derivative 2- O-β-d-Glucopyranosyl-l-Ascorbic Acid from the Fruit of Lycium barbarum Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11128-11143. [PMID: 32825805 DOI: 10.1021/acs.jafc.0c04253] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
2-O-β-d-Glucopyranosyl-l-ascorbic acid (AA-2βG) is a natural and stable ascorbic acid derivative isolated from the fruits of Lycium barbarum. In our present study, cyclophosphamide (Cy) was used to make BALB/c mice immunosuppressive and AA-2βG was used to intervene immunosuppressive mice. It was found that Cy treatment resulted in a series of changes on basic immune indexes including a decrease of thymus and spleen indexes and levels of pro-inflammatory cytokines and destruction of leucocyte proportion balance, accompanied with weight loss, reduction in colon length, and changes of hepatic function markers. However, all these changes were reversed in varying degrees by AA-2βG intervention. Notably, AA-2βG could significantly change both mouse colonic and small-intestinal microbiota. The key responsive taxa found in a mouse colon were Muribaculaceae, Ruminococcaceae, Oscillibacter, Rikenella, Helicobacter, Negativibacillus, Alistipes, and Roseburia, and the key responsive taxa found in a mouse small intestine were Muribaculaceae, Anaerotruncus, and Paenibacillus. The results demonstrated that AA-2βG could modulate microbiota in the small intestine and colon and exert an immunomodulatory effect. Further studies should focus on the degradation pathways of AA-2βG and the interaction between AA-2βG and Muribaculaceae.
Collapse
Affiliation(s)
- Kaiyin Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| |
Collapse
|
86
|
Polysaccharides from Hemp Seed Protect against Cyclophosphamide-Induced Intestinal Oxidative Damage via Nrf2-Keap1 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1813798. [PMID: 32908623 PMCID: PMC7468657 DOI: 10.1155/2020/1813798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
Hemp seed has been used as a traditional oriental medicine and health food in China for centuries. Polysaccharides from hemp seed (HSP) exhibit important properties of intestinal protection, but there are limited data on the specific underlying mechanism. The primary objective of this study was to investigate the protective effect of HSP on intestinal oxidative damage induced by cyclophosphamide (Cy) in mice. The results showed that pretreatment with HSP significantly increased the average daily gain, thymus index, spleen index, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity in serum and ileal homogenate and significantly reduced malondialdehyde (MDA) content in ileal homogenate. In addition, the expression levels of SOD, GSH-Px, Nrf2, heme oxidase-1 (HO-1), and quinoneoxidoreductase-1 (NQO1) mRNA in ileal homogenate were significantly increased. Western blot results showed that HSP significantly upregulated the expression of Nrf2 protein and downregulated the expression of Keap1 protein in the ileum. Collectively, our findings indicated that HSP had protective effects on intestinal oxidative damage induced by Cy in mice, and its mechanism might be related to the activation of Nrf2-Keap1 signaling pathway.
Collapse
|
87
|
Sun T, Liang H, Xue M, Liu Y, Gong A, Jiang Y, Qin Y, Yang J, Meng D. Protective effect and mechanism of fucoidan on intestinal mucosal barrier function in NOD mice. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1789071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ting Sun
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Meilan Xue
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Ying Liu
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Yimin Qin
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, People’s Republic of China
| | - Jia Yang
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| | - Danyang Meng
- Basic Medical College, Qingdao University of Medicine, Qingdao, People’s Republic of China
| |
Collapse
|
88
|
Shang Q. Revisit the effects of fucoidan on gut microbiota in health and disease: What do we know and what do we need to know? ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
89
|
Wang L, Ai C, Wen C, Qin Y, Liu Z, Wang L, Gong Y, Su C, Wang Z, Song S. Fucoidan isolated from Ascophyllum nodosum alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice. Food Funct 2020; 11:5595-5606. [PMID: 32525182 DOI: 10.1039/d0fo00668h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotic treatment, as an important therapeutic intervention, can cause damage to the host microbiome and the intestinal mucosal barrier. In order to find a way to alleviate the side effects of antibiotics, the present study investigated the effects of fucoidan (ANP) isolated from Ascophyllum nodosum on gut microbiota dysbiosis and colonic inflammation induced by ciprofloxacin-metronidazole (CiMe) in C57BL/6J mice. Our results showed that dietary ANP prevented colon shortening, alleviated the colonic tissue damages, and partially reversed the alteration of gut microbiota by increasing the abundance of potentially beneficial bacteria, e.g., Ruminococcaceae_UCG_014 and Akkermansia and decreasing the abundance of harmful bacteria, e.g., Proteus and Enterococcus. ANP also suppressed the overproduction of TNF-α, IL-1β, and IL-6 and promoted the expression of IL-10. In addition, ANP reversed the decreased production of short-chain fatty acids in CiMe-treated mice. Furthermore, correlation analysis indicated the presence of critical gut microbiota, which played important roles in reducing the inflammation-related indices. Thus, the present study suggests that fucoidan isolated from Ascophyllum nodosum is effective in providing protection against the negative effects of antibiotics on gut microbiota and colonic health.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China. and National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chengrong Wen
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China. and National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yimin Qin
- Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao 266400, P. R. China and State Key Laboratory of Bioactive Seaweed Substances, Qingdao 266400, P. R. China
| | - Zhengqi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yue Gong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Changyu Su
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Zhongfu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education and Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P. R. China. and National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
90
|
Huo W, Feng Z, Hu S, Cui L, Qiao T, Dai L, Qi P, Zhang L, Liu Y, Li J. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food Funct 2020; 11:4291-4303. [PMID: 32356856 DOI: 10.1039/d0fo00597e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysaccharides isolated from mushrooms have been identified as potential prebiotics that could impact gut microbiota. In this study, a water-soluble polysaccharide (MP) extracted from wild morels was evaluated for its effects on the gut microbiota of non-treated and cyclophosphamide (CP)-treated mice. The results showed that MP restored the spleen weight and increased the counts of white blood cells and lymphocytes in the peripheral blood and spleen of the CP-treated mice. Mice treated with MP exhibited increased levels of short-chain fatty acid (SCFA)-producing bacteria, especially Lachnospiraceae, compared to normal mice, and increased levels of Bacteroidetes and SCFA-producing bacteria, especially Ruminococcaceae, compared to the CP-treated mice. Moreover, MP treatment increased the production of valeric acid and decreased the production of acetic acid in the non-treated mice and increased the production of acetic acid, propionic acid, butyric acid, and valeric acid in the CP-treated mice. These results show that MP is potentially good for health.
Collapse
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi'an 710043, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. Int J Biol Macromol 2020; 151:344-354. [DOI: 10.1016/j.ijbiomac.2020.02.168] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/16/2022]
|
92
|
Effects of fucoidan on gut flora and tumor prevention in 1,2-dimethylhydrazine-induced colorectal carcinogenesis. J Nutr Biochem 2020; 82:108396. [PMID: 32388163 DOI: 10.1016/j.jnutbio.2020.108396] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the major malignancies in humans. This study was designed to evaluate the effects of fucoidan on gut flora and tumor prevention in 1,2-dimethylhydrazine-induced colorectal carcinogenesis in rats. We found that dietary fucoidan treatment decreased the tumor incidence and mean tumor weight and increased cell apoptosis. Fucoidan treatment decreased the expression of β-catenin C-Myc, CyclinD1 and Survivin, while the Hippo pathway was activated with increased phosphorylation levels of mammalian sterile 20-like kinase 1 and 2, large tumor suppressor 1 and 2, and Yes-associated protein. Compared with the model group, the levels of interleukin (IL)-17 and IL-23 were decreased, but the levels of interferon-γ, IL-4 and IL-10 were increased, in the fucoidan group. Fucoidan treatment increased natural killer cells in peripheral blood and the proportion of CD4+ T cells. Immunofluorescence detection of colorectal tumor tissues showed decreased expression of Foxp3 and up-regulated expression of CD68 in the fucoidan group. Moreover, fucoidan treatment decreased the levels of diamine oxidase and lipopolysaccharides and up-regulated the levels of tight junction proteins. 16S rDNA high-throughput sequencing revealed that fucoidan treatment decreased the abundance of Prevotella and increased the abundance of Alloprevotella. Fucoidan increased the levels of butyric acid and valeric acid compared to the model group. This study provides experimental evidence that dietary fucoidan may prevent colorectal tumorigenesis by regulating gut microecology and body immunity. Meanwhile, fucoidan activated the Hippo pathway and down-regulated the β-catenin pathway to induce tumor cell apoptosis and suppress tumor growth.
Collapse
|
93
|
Zhang L, Cao W, Gao Y, Yang R, Zhang X, Xu J, Tang Q. Astaxanthin (ATX) enhances the intestinal mucosal functions in immunodeficient mice. Food Funct 2020; 11:3371-3381. [PMID: 32232254 DOI: 10.1039/c9fo02555c] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing pressure of life may bring some disease risks and stress injuries, which may destroy the immune system and result in intestinal mucosal immune disorders. In this study, the effects of different doses of ATX (30 mg per kg b.w., 60 mg per kg b.w. and 120 mg per kg b.w.) on intestinal mucosal functions were explored in cyclophosphamide (Cy)-induced immunodeficient mice. The results showed that continuous intraperitoneal injection of 100 mg per kg b.w. Cy for three days led to a persistent decrease of body weight and a range of abnormalities in the intestine of C57BL/6 mice. However, administration of ATX at 60 and 120 mg per kg b.w. could effectively prevent intestinal mucosa from this damage, including reduced levels of oxidative stress (MDA, GSH and GSH-PX), increased intestinal morphological structural integrity, stimulative growth of goblet cells and mucous secretion, decreased development of Paneth cells and expression levels of antimicrobial peptides (AMPs) (Reg-3γ and lysozyme), increased IgA secretion, ameliorative main gut flora (especially total bacteria, Lactobacillus and Enterobacteriaceae spp. ) and its metabolites (acetic acid, propionic acid and butyric acid). These protective effects of ATX were better than those of control-β-carotene in general. Our results may provide a new protective measure to keep intestinal mucosal barriers, which is of great significance for maintaining immune function in the body.
Collapse
Affiliation(s)
- Lirong Zhang
- College of Food Science and Engineering, Ocean University of China, Yushan Road 5th, Qingdao, Shandong Province 266003, China.
| | | | | | | | | | | | | |
Collapse
|
94
|
Gao Y, Yang L, Chin Y, Liu F, Li RW, Yuan S, Xue C, Xu J, Tang Q. Astaxanthin n-Octanoic Acid Diester Ameliorates Insulin Resistance and Modulates Gut Microbiota in High-Fat and High-Sucrose Diet-Fed Mice. Int J Mol Sci 2020; 21:ijms21062149. [PMID: 32245087 PMCID: PMC7139465 DOI: 10.3390/ijms21062149] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin n-octanoic acid diester (AOD) is a type of astaxanthin connecting medium-chain fatty acids with a more stable structure. In this study, we examined the role of AOD in ameliorating insulin resistance (IR) induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating gut microbiota in mice, with free astaxanthin (AST) as a comparison. Four groups of male C57BL/6J mice (6 weeks old; n = 10 per group) were fed with a normal control diet (NC), HFD orally administered with AOD, AST (50 mg/kg body weight), or vehicle for 8 weeks. AOD improved glucose tolerance, IR, systematic and intestinal inflammation, and intestinal integrity better than AST. Further, both AOD and AST modulated gut microbiota. A significantly higher abundance of Bacteroides and Coprococcus was found in AOD than in AST, and the predicted pathway of carbohydrate metabolism was significantly impacted by AOD. Overall, AOD may play a role in alleviating IR and inflammation with the modulating effect on microbiota in HFD-fed mice. Our findings could facilitate the development of AOD as a bioactive nutraceutical and more stable alternative to AST.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lu Yang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaoxian Chin
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Robert W. Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (J.X.); (Q.T.); Tel.: +86-0532-8203-2597 (J.X. & Q.T.)
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (J.X.); (Q.T.); Tel.: +86-0532-8203-2597 (J.X. & Q.T.)
| |
Collapse
|
95
|
Artemisia sphaerocephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modulation of gut microbiota in diet-induced obese mice. Int J Biol Macromol 2020; 147:1008-1017. [DOI: 10.1016/j.ijbiomac.2019.10.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
|
96
|
Cultured Cordyceps sinensis polysaccharides modulate intestinal mucosal immunity and gut microbiota in cyclophosphamide-treated mice. Carbohydr Polym 2020; 235:115957. [PMID: 32122493 DOI: 10.1016/j.carbpol.2020.115957] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
The present study aimed to investigate the protective effect of cultured Cordyceps sinensis polysaccharides (CSP) on cyclophosphamide (Cy)-induced intestinal mucosal immunosuppression and microbial dysbiosis in mice. Results showed that CSP stimulated cytokines secretion (IL-12, IFN-γ, IL-4, IL-13, IL-6, IL-17, IL-10, TGF-β3, TNF-α, IL-2, IL-21) and transcription factors production (T-bet, GATA-3, RORγt, Foxp3). TLRs (TLR-2, TLR-4, TLR-6) and NF-κB pathway key proteins (p-IκB-α, NF-κB p65) were also upregulated after CSP administration. Moreover, CSP recovered SCFAs levels which decreased by Cy treatment. Furthermore, 16S rRNA sequencing of fecal samples was performed. α-diversity and β-diversity analysis revealed CSP improved microbial community diversity and modulated the overall structure of gut microbiota. Taxonomic composition analysis found that CSP increased the abundance of probiotics (Lactobacillus, Bifidobacterium, Bacteroides) and decreased pathogenic bacteria (Clostridium, Flexispira). These findings suggested the potential of CSP as a prebiotics to reduce side effects of Cy on intestinal mucosal immunity and gut microbiota.
Collapse
|
97
|
Leng J, Huang F, Hai Y, Tian H, Liu W, Fang Y, Hu Y, Peng J. Amelioration of non-alcoholic steatohepatitis by Qushi Huayu decoction is associated with inhibition of the intestinal mitogen-activated protein kinase pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153135. [PMID: 31790895 DOI: 10.1016/j.phymed.2019.153135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gut microbiota is increasingly recognized as the key participant in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) by translocation of its products, such as lipopolysaccharide (LPS), via the dysfunctional intestinal barrier. Qushi Huayu decoction (QHD), a traditional Chinese medicine, is developed specially for NAFLD and used in clinic in China for more than a decade and previously found to ameliorate non-alcoholic steatohepatitis (NASH) induced by high-fat diet (HFD) in mice accompanied with inhibited metabolic endotoxemia and hepatic LPS signalling. PURPOSE To investigate the mechanism of LPS gut-leakage inhibition by QHD in NASH. METHODS Effects of QHD on gut microbioa and intestinal barrier were evaluated in NASH induced by HFD in mice. 16S rRNA sequencing is employed to analyse the gut microbiota composition. To identify the potential signalling pathway responsible for tight junction regulation, the colonic phosphoprotein profile is screened via the Phospho Explorer Antibody Array and verified in NASH, intestinal barrier dysfunctional mouse and Caco-2 cells. RESULTS QHD ameliorates NASH accompanied with regulating the gut microbiota composition, protecting intestinal tight junctions and inhibiting LPS gut-leakage without decreasing the abundance of identified Gram-negative bacteria. The validated data of phosphorylated proteins suggested that mitogen-activated protein kinase (MAPK) pathway is predominantly responsible for the colonic tight junction regulation by QHD. CONCLUSION QHD inhibits LPS gut-leakage in NASH, which is associated with downregulation of intestinal MAPK pathway.
Collapse
Affiliation(s)
- Jing Leng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Fu Huang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yamei Hai
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Huajie Tian
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Wei Liu
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yi Fang
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China
| | - Jinghua Peng
- Institute of Liver diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528, Zhangheng Road, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
98
|
Xue M, Liang H, Ji X, Liu Y, Ge Y, Hou L, Sun T. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutr Metab (Lond) 2019; 16:87. [PMID: 31889967 PMCID: PMC6916240 DOI: 10.1186/s12986-019-0392-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background This study was to investigate the effect and its possible mechanism of fucoidan on the development of spontaneous autoimmune diabetes in non-obese diabetic (NOD) mice. Methods 7-week-old NOD mice were randomly divided into three groups: control group, low-dose (300 mg/kg) and high-dose (600 mg/kg) fucoidan-treatment groups. After 5 weeks of treatment, 10 mice per group were randomly selected to be sacrificed after feces collection. The remaining 12 mice per group were fed until 26 weeks of age to assess the incidence of diabetes. Results Treatment with fucoidan increased serum insulin level, delayed the onset and decreased the development of diabetes in NOD mice. Fucoidan reduced the levels of strong Th1 proinflammatory cytokines, but induced Th2-bias ed. cytokine response. And dentridic cells (DCs) in fucoidan treatment group were characterized as low expression of MHC class II and CD86 molecules. TLR4 expressions and the downstream molecules in pancreas were down-regulated in fucoidan-treated groups. There were significant differences in the composition of gut flora between NOD control group and fucoidan group. Lactobacillus and Akkermansia were significantly enriched in fucoidan group. Conclusions Fucoidan could prevent the development of autoimmune diabetes in NOD mice via regulating DC/Treg induced immune tolerance, improving gut microecology, down-regulating TLR4 signaling pathway, and maintaining pancreatic internal environment.
Collapse
Affiliation(s)
- Meilan Xue
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Hui Liang
- 2The Institute of Human Nutrition, Qingdao University of Medicine, Qingdao, 266021 People's Republic of China
| | - Xinqiang Ji
- 3Department of Gynaecology, the Affiliated Hospital of Qingdao University, Qingdao, 266021 People's Republic of China
| | - Ying Liu
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Yinlin Ge
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Lin Hou
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Ting Sun
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| |
Collapse
|
99
|
Ding Y, Yan Y, Chen D, Ran L, Mi J, Lu L, Jing B, Li X, Zeng X, Cao Y. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice. Food Funct 2019; 10:3671-3683. [PMID: 31168539 DOI: 10.1039/c9fo00638a] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the present study, the effects of Lycium barbarum polysaccharides (LBPS) on immunoregulation and gut microbiota dysbiosis in cyclophosphamide (CTX)-induced mice were investigated to elucidate whether the attenuation of immunosuppression is related to the modulation of the gut microbiota. The results showed that administration of LBPS could protect immune organs (enhancing immune organ indexes and alleviating immune organ damage), enhance the production of immune-related cytokines (IL-2, IL-6, IL-1β, TNF-α and IFN-γ) and prevent the hepatotoxicity in CTX-induced mice. Additionally, LBPS treatment could promote the production of short-chain fatty acids and modulate the composition of the gut microbiota, increasing the relative abundances of Bacteroidaceae, Lactobacillaceae, Prevotellaceae and Verrucomicrobiaceae, which were positively associated with immune traits. The present results indicated that LBPS might regulate the immune response depending on the modulation of the gut microbiota, suggesting that LBPS could be developed as special ingredients for immunoregulation in association with the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Yu Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Zeng H, Huang L, Zhou L, Wang P, Chen X, Ding K. A galactoglucan isolated from of Cistanche deserticola Y. C. Ma. and its bioactivity on intestinal bacteria strains. Carbohydr Polym 2019; 223:115038. [DOI: 10.1016/j.carbpol.2019.115038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023]
|