51
|
Dinic J, Marciel AB, Tirrell MV. Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Knoerdel AR, Blocher McTigue WC, Sing CE. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. J Phys Chem B 2021; 125:8965-8980. [PMID: 34328340 DOI: 10.1021/acs.jpcb.1c03065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oppositely charged polyelectrolytes can undergo an associative phase separation, in a process known as polymeric complex coacervation. This phenomenon is driven by the electrostatic attraction between polyanion and polycation species, leading to the formation of a polymer-dense coacervate phase and a coexisting polymer-dilute supernatant phase. There has been significant recent interest in the physical origin and features of coacervation; yet notably, experiments often use weak polyelectrolytes the charge state of which depends on solution pH, while theoretical or computational efforts typically assume strong polyelectrolytes that remain fully charged. There have been only a few efforts to address this limitation, and thus there has been little exploration of how pH can affect complex coacervation. In this paper, we modify a transfer matrix theory of coacervation to account for acid-base equilibria, taking advantage of its ability to directly account for some local ion correlations that will affect monomer charging. We show that coacervation can stabilize the charged state of a weak polyelectrolyte via the proximity of oppositely charged monomers, and can lead to asymmetric phase diagrams where the positively and negatively charged polyelectrolytes exhibit different behaviors near the pKa of either chain. Specifically, there is a partitioning of one of the salt species to a coacervate to maintain electroneutrality when one of the polyelectrolytes is only partially charged. This results in the depletion of the same salt species in the supernatant, and overall can suppress phase separation. We also demonstrate that, when one of the species is only partially charged, mixtures that are off-stoichiometric in volume fraction but stoichiometric in charge exhibit the greatest propensity to form coacervate phases.
Collapse
Affiliation(s)
- Ashley R Knoerdel
- Program in Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Whitney C Blocher McTigue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
53
|
Kim S, Lee M, Lee WB, Choi SH. Ionic-Group Dependence of Polyelectrolyte Coacervate Phase Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sojeong Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Minhwan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
54
|
Tabandeh S, Lemus CE, Leon L. Deciphering the Role of π-Interactions in Polyelectrolyte Complexes Using Rationally Designed Peptides. Polymers (Basel) 2021; 13:2074. [PMID: 34202468 PMCID: PMC8271475 DOI: 10.3390/polym13132074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Electrostatic interactions, and specifically π-interactions play a significant role in the liquid-liquid phase separation of proteins and formation of membraneless organelles/or biological condensates. Sequence patterning of peptides allows creating protein-like structures and controlling the chemistry and interactions of the mimetic molecules. A library of oppositely charged polypeptides was designed and synthesized to investigate the role of π-interactions on phase separation and secondary structures of polyelectrolyte complexes. Phenylalanine was chosen as the π-containing residue and was used together with lysine or glutamic acid in the design of positively or negatively charged sequences. The effect of charge density and also the substitution of fluorine on the phenylalanine ring, known to disrupt π-interactions, were investigated. Characterization analysis using MALDI-TOF mass spectroscopy, H NMR, and circular dichroism (CD) confirmed the molecular structure and chiral pattern of peptide sequences. Despite an alternating sequence of chirality previously shown to promote liquid-liquid phase separation, complexes appeared as solid precipitates, suggesting strong interactions between the sequence pairs. The secondary structures of sequence pairs showed the formation of hydrogen-bonded structures with a β-sheet signal in FTIR spectroscopy. The presence of fluorine decreased hydrogen bonding due to its inhibitory effect on π-interactions. π-interactions resulted in enhanced stability of complexes against salt, and higher critical salt concentrations for complexes with more π-containing amino acids. Furthermore, UV-vis spectroscopy showed that sequences containing π-interactions and increased charge density encapsulated a small charged molecule with π-bonds with high efficiency. These findings highlight the interplay between ionic, hydrophobic, hydrogen bonding, and π-interactions in polyelectrolyte complex formation and enhance our understanding of phase separation phenomena in protein-like structures.
Collapse
Affiliation(s)
- Sara Tabandeh
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA;
| | | | - Lorraine Leon
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA;
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
55
|
Meng X, Du Y, Liu Y, Coughlin EB, Perry SL, Schiffman JD. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yifeng Du
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yalin Liu
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| |
Collapse
|
56
|
Aponte-Rivera C, Rubinstein M. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes. Macromolecules 2021; 54:1783-1800. [PMID: 33981120 PMCID: PMC8109663 DOI: 10.1021/acs.macromol.0c01393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We develop a scaling theory that predicts the dynamics of symmetric and asymmetric unentangled liquid coacervates formed by solutions of oppositely-charged polyelectrolytes. Symmetric coacervates made from oppositely-charged polyelectrolytes consist of polycations and polyanions with equal and opposite charge densities along their backbones. These symmetric coacervates can be described as mixtures of polyelectrolytes in the quasi-neutral regime with a single correlation length. Asymmetric coacervates are made from polycations and polyanions with unequal charge densities. The difference in charge densities results in a double semidilute structure of asymmetric coacervates with two correlation lengths, one for the high-charge-density and the other for the low-charge-density polyelectrolytes. We predict that the double-semidilute structure in asymmetric coacervates results in a dynamic coupling which increases the friction of the high-charge-density polyelectrolyte. This dynamic coupling increases the contribution to the zero-shear viscosity of the high-charge-density polyelectrolyte. The diffusion coefficient of the high-charge-density polyelectrolyte is predicted to depend on the concentration and degree of polymerization of the low-charge-density polyelectrolyte in the coacervate if the size of the low-charge-density polymer is smaller than the correlation length of the high-charge-density polymer. We also predict a non-monotonic salt concentration dependence of the zero-shear viscosity of asymmetric coacervates.
Collapse
Affiliation(s)
| | - Michael Rubinstein
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University
- Departments of Biomedical Engineering, Physics and Chemistry Department, Duke University
| |
Collapse
|
57
|
Sproncken CM, Magana JR, Voets IK. 100th Anniversary of Macromolecular Science Viewpoint: Attractive Soft Matter: Association Kinetics, Dynamics, and Pathway Complexity in Electrostatically Coassembled Micelles. ACS Macro Lett 2021; 10:167-179. [PMID: 33628618 PMCID: PMC7894791 DOI: 10.1021/acsmacrolett.0c00787] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Electrostatically coassembled micelles constitute a versatile class of functional soft materials with broad application potential as, for example, encapsulation agents for nanomedicine and nanoreactors for gels and inorganic particles. The nanostructures that form upon the mixing of selected oppositely charged (block co)polymers and other ionic species greatly depend on the chemical structure and physicochemical properties of the micellar building blocks, such as charge density, block length (ratio), and hydrophobicity. Nearly three decades of research since the introduction of this new class of polymer micelles shed significant light on the structure and properties of the steady-state association colloids. Dynamics and out-of-equilibrium processes, such as (dis)assembly pathways, exchange kinetics of the micellar constituents, and reaction-assembly networks, have steadily gained more attention. We foresee that the broadened scope will contribute toward the design and preparation of otherwise unattainable structures with emergent functionalities and properties. This Viewpoint focuses on current efforts to study such dynamic and out-of-equilibrium processes with greater spatiotemporal detail. We highlight different approaches and discuss how they reveal and rationalize similarities and differences in the behavior of mixed micelles prepared under various conditions and from different polymeric building blocks.
Collapse
Affiliation(s)
- Christian
C. M. Sproncken
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - J. Rodrigo Magana
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry and
Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
58
|
Morin FJ, Puppo ML, Laaser JE. Decoupling salt- and polymer-dependent dynamics in polyelectrolyte complex coacervates via salt addition. SOFT MATTER 2021; 17:1223-1231. [PMID: 33331383 DOI: 10.1039/d0sm01412e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In polyelectrolyte complex coacervates, changes in salt concentration and changes in polymer concentration are typically strongly coupled, complicating interpretation of the salt- and polymer-concentration-dependent dynamics of these materials. To address this problem, we developed a "salt addition" method for preparation of complex coacervates that allows the salt concentration of a coacervate sample to be varied without changing its polymer concentration. This method was used to prepare coacervates of poly(styrene sulfonate) (PSS) with poly(diallyldimethylammonium chloride) (PDADMAC) with salt concentrations between 1.2 and 2 M and volume fractions of polymer between 0.1 and 0.25. Characterization of these samples by small-amplitude oscillatory shear rheology revealed that the relaxation times scale significantly more strongly with polymer volume fraction than has been previously assumed, highlighting the need to account for both salt and polymer-dependent contributions to the dynamics of these complex materials.
Collapse
Affiliation(s)
- Frances J Morin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, USA.
| | - Marissa L Puppo
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, USA.
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA, USA.
| |
Collapse
|
59
|
Light BS, Zepeda-Rosales M, Li Y, Safinya CR. Forced Crowding of Colloids by Thermophoresis and Convection in a Custom Liquid Clusius-Dickel Microdevice. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:675-682. [PMID: 33406832 DOI: 10.1021/acs.langmuir.0c02721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a study demonstrating that simultaneous induction of a steady-state convection current and temperature gradient in a confined geometry can be an effective way to force crowding of dissolved particulates. To investigate this thermogravitationally driven concentration of particles in situ, we developed a microdevice capable of sustaining controlled transverse temperature gradients within a 5 cm long, 0.1 mm inner diameter capillary that allowed visualization of particle movement with standard optical microscopy. Experiments were conducted on two material systems representative of nanoscale small molecules and microscale particles. With the small molecules (aromatic dyes, 530-790 g/mol, 1-1.5 nm), thermophoretic and gravitational effects in the microdevice resulted in an asymmetrical 2× concentration change along the capillary height over 3 days. In contrast, the concentration change under similar conditions for 40-micron diameter latex colloids is 50-fold in 30 min. This dramatic difference in separation times is consistent with simulations and models of thermophoresis where the thermophoretic effect scales with particle size. Induced crowding of particulates leads to formation of accumulation and depletion zones at the bottom and top of the capillary, respectively. Both the concentration of dye molecules over time in the depletion zone and the spatial distribution of colloids over the entire capillary length were found to be good fits to simple first-order exponential decay functions. These results suggest potential applications of thermogravitational separation in developing new functional materials via thermophoretic and convective effects.
Collapse
Affiliation(s)
- Brandon S Light
- Materials Department, Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Miguel Zepeda-Rosales
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Cyrus R Safinya
- Materials Department, Physics Department, Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
60
|
Bos I, Timmerman M, Sprakel J. FRET-Based Determination of the Exchange Dynamics of Complex Coacervate Core Micelles. Macromolecules 2021; 54:398-411. [PMID: 33456072 PMCID: PMC7808214 DOI: 10.1021/acs.macromol.0c02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Complex coacervate core micelles (C3Ms) are nanoscopic structures formed by charge interactions between oppositely charged macroions and used to encapsulate a wide variety of charged (bio)molecules. In most cases, C3Ms are in a dynamic equilibrium with their surroundings. Understanding the dynamics of molecular exchange reactions is essential as this determines the rate at which their cargo is exposed to the environment. Here, we study the molecular exchange in C3Ms by making use of Förster resonance energy transfer (FRET) and derive an analytical model to relate the experimentally observed increase in FRET efficiency to the underlying macromolecular exchange rates. We show that equilibrated C3Ms have a broad distribution of exchange rates. The overall exchange rate can be strongly increased by increasing the salt concentration. In contrast, changing the unlabeled homopolymer length does not affect the exchange of the labeled homopolymers and an increase in the micelle concentration only affects the FRET increase rate at low micelle concentrations. Together, these results suggest that the exchange of these equilibrated C3Ms occurs mainly by expulsion and insertion, where the rate-limiting step is the breaking of ionic bonds to expel the chains from the core. These are important insights to further improve the encapsulation efficiency of C3Ms.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marga Timmerman
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft
Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
61
|
Criado-Gonzalez M, Wagner D, Iqbal MH, Ontani A, Carvalho A, Schmutz M, Schlenoff JB, Schaaf P, Jierry L, Boulmedais F. Supramolecular tripeptide self-assembly initiated at the surface of coacervates by polyelectrolyte exchange. J Colloid Interface Sci 2021; 588:580-588. [PMID: 33450601 DOI: 10.1016/j.jcis.2020.12.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023]
Abstract
Spatial control of supramolecular self-assembly can yield compartmentalized structures, a key feature for the design of artificial cells. Inducing self-assembly from and on compartments is still a challenge. Polyelectrolyte complex coacervates are simple model droplet systems able to reproduce the basic features of membrane-less organelles, appearing in cells. Here, we demonstrate the supramolecular self-assembly of a phosphorylated tripeptide, Fmoc-FFpY (Fmoc: fluorenyl-methoxycarbonyl; F: phenyl alanine, pY: phosphorylated tyrosine), on the surface of poly(l-glutamic acid)/poly(allylamine hydrochloride) (PGA/PAH) complex coacervate microdroplets. The phosphorylated peptides self-assemble, without dephosphorylation, through ion pairing between the phosphate groups of Fmoc-FFpY and the amine groups of PAH. This process provides spontaneous capsules formed by an amorphous polyelectrolyte complex core surrounded by a structured peptide/PAH shell. Similar fibrillar Fmoc-FFpY self-assembled structures are obtained at the interface between the peptide solution and a PGA/PAH polyelectrolyte multilayer, a complex coacervate in the thin film or "multilayer" format. In contact with the peptide solution, PAH chains diffuse out of the coacervate or multilayer film and complex with Fmoc-FFpY at the solution interface, exchanging any PGA with which they were associated. Self-assembly of Fmoc-FFpY, now concentrated by complexation with PAH, follows quickly.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France; Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, "Biomatériaux et Bioingénierie", 1 rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 7 rue Saint Elisabeth, 67000 Strasbourg, France
| | - Deborah Wagner
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Aymeric Ontani
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Alain Carvalho
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Joseph B Schlenoff
- Florida State University, Department of Chemistry and Biochemistry, Tallahassee, 32306 FL, United States
| | - Pierre Schaaf
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, "Biomatériaux et Bioingénierie", 1 rue Eugène Boeckel, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, 7 rue Saint Elisabeth, 67000 Strasbourg, France.
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR 22), 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| |
Collapse
|
62
|
Facchine EG, Bai L, Rojas OJ, Khan SA. Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology. J Colloid Interface Sci 2020; 588:232-241. [PMID: 33401050 DOI: 10.1016/j.jcis.2020.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Nanocellulose and nanochitin are both biobased materials with complementary structures and properties. Both exhibit pH-dependent surface charges which are opposite in sign. Hence, it should be possible to manipulate them to form complexed structures via ionic bond formation at prescribed pH conditions. EXPERIMENT Nanocellulose and nanochitin were mixed after exposure to acidic or neutral conditions to influence their ionization state. The heat of interaction during the introduction of nanochitin to nanocellulose was monitored via isothermal titration calorimetry. The strength and gel properties of the resulting structures were characterized via rheological measurement. FINDINGS The resultant gel properties in the designed hybrid systems were found to depend directly on the charge state of the starting materials, which was dictated by pH adjustment. Different interparticle interactions including ionic attraction, hydrophobic associations, and physical entanglement were identified in the systems and the influence of each was elucidated for different conditions of pH, concentration, and ratio of nanochitin to nanocellulose. Hydrophobic associations between neutralized nanochitin particles were found to contribute strongly to increased elastic modulus values. Ionic complex formation was found to provide enhanced stability under broader pH conditions, while physical entanglement of cellulose nanofibers was a substantial thickening mechanism in all systems.
Collapse
Affiliation(s)
- Emily G Facchine
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Long Bai
- Department of Byproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Espoo, Finland; Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Orlando J Rojas
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; Department of Byproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Espoo, Finland; Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
63
|
Jing B, Ferreira M, Lin K, Li R, Yavitt BM, Qiu J, Fukuto M, Zhu Y. Ultrastructure of Critical-Gel-like Polyzwitterion–Polyoxometalate Complex Coacervates: Effects of Temperature, Salt Concentration, and Shear. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Manuela Ferreira
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M. Yavitt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jie Qiu
- School of Nuclear Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
64
|
Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S, Li B, Huang Q. Effect of linear charge density of polysaccharides on interactions with α-amylase: Self-Assembling behavior and application in enzyme immobilization. Food Chem 2020; 331:127320. [PMID: 32562981 DOI: 10.1016/j.foodchem.2020.127320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 01/29/2023]
Abstract
The co-existence of polysaccharides and enzymes in the food matrix could form complexes that directly influence the catalytic efficacy of enzymes. This work investigated the self-assembly behaviors of α-amylase and charged polysaccharides and fabricated the α-amylase/polysaccharides complex coacervates. The results showed that the linear charge density of polysaccharides had a critical impact on the complex formation, structure, and enzyme protection under acidic conditions. At low pH, α-amylase formed compact and tight coacervates with the λ-carrageenan. However, α-amylase/pectin coacervates dissociated when the pH was lower than 3.0. The optimized binding ratio of α-amylase/λ-carrageenan was 12:1, and α-amylase/pectin was 4:1. Finally, the α-amylase/λ-carrageenan complex coacervates effectively immobilized the enzyme and almost 70% of enzyme activity remained in coacervates after exposure to pH3.0 for 1 h. This study demonstrates that the change in the linear charge density of polysaccharides could regulate the enzyme-catalyzed process in food processing by a simple and fine-controlled method.
Collapse
Affiliation(s)
- Weiping Jin
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhifeng Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengfeng Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyang Shen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenzhou Zhu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingrong Huang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products and College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
65
|
Manoj Lalwani S, Eneh CI, Lutkenhaus JL. Emerging trends in the dynamics of polyelectrolyte complexes. Phys Chem Chem Phys 2020; 22:24157-24177. [PMID: 33094301 DOI: 10.1039/d0cp03696j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte complexes (PECs) are highly tunable materials that result from the phase separation that occurs upon mixing oppositely charged polymers. Over the years, they have gained interest due to their broad range of applications such as drug delivery systems, protective coatings, food packaging, and surface adhesives. In this review, we summarize the structure, phase transitions, chain dynamics, and rheological and thermal properties of PECs. Although most literature focuses upon the thermodynamics and application of PECs, this review highlights the fundamental role of salt and water on mechanical and thermal properties impacting the PEC's dynamics. A special focus is placed upon experimental results and techniques. Specifically, the review examines phase behaviour and salt partitioning in PECs, as well as different techniques used to measure diffusion coefficients, relaxation times, various superpositioning principles, glass transitions, and water microenvironments in PECs. This review concludes with future areas of opportunity in fundamental studies and best practices in reporting.
Collapse
Affiliation(s)
- Suvesh Manoj Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
66
|
Fares HM, Marras AE, Ting JM, Tirrell MV, Keating CD. Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates. Nat Commun 2020; 11:5423. [PMID: 33110067 PMCID: PMC7592044 DOI: 10.1038/s41467-020-19184-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Wet-dry cycling on the early Earth is thought to have facilitated production of molecular building blocks of life, but its impact on self-assembly and compartmentalization remains largely unexplored. Here, we investigate dehydration/rehydration of complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions. Solution compositions are identified for which tenfold water loss results in maintenance, disappearance, or appearance of coacervate droplets. Systems maintaining coacervates throughout the dehydration process are further evaluated to understand how their compartmentalization properties change with drying. Although added total RNA concentrations increase tenfold, RNA concentration within coacervates remains steady. Exterior RNA concentrations rise, and exchange rates for encapsulated versus free RNAs increase with dehydration. We explain these results in light of the phase diagram, with dehydration-driven ionic strength increase being particularly important in determining coacervate properties. This work shows that wet-dry cycling can alter the phase behavior and protocell-relevant functions of complex coacervates. Wet-dry cycling is thought to have enabled the production of molecular building blocks of life. Here, the authors investigate the impact of dehydration/rehydration on RNA-containing complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions.
Collapse
Affiliation(s)
- Hadi M Fares
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, 21046, USA
| | - Alexander E Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.,3M Company, 3M Center, Saint Paul, MN, 55144, USA
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
67
|
SAXS methods for investigating macromolecular and self-assembled polyelectrolyte complexes. Methods Enzymol 2020; 646:223-259. [PMID: 33453927 DOI: 10.1016/bs.mie.2020.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyelectrolyte complexation is driven by associative interactions between oppositely charged polyelectrolytes, resulting in formation of a macroscopic polymer dense phase and a polymer dilute phase with applications in coatings, adhesives, and purification membranes. Beyond macroscale phase separation, precision polymer synthesis has enabled further development of polyelectrolyte complex (PEC)-based self-assembled micelles and hydrogels with applications in biotechnology. Interestingly, it has been suggested that mechanisms similar to polyelectrolyte complexation drive formation of biological condensates that play an indispensable role in cellular biogenesis. The formation pathways and functionality of these complex materials is dependent on the physical properties that are built into polymer structure and the resulting physical conformation in the dilute and dense phase. Scattering techniques have enabled in situ investigation of structure-function relationships in PEC materials that may address unresolved biophysical questions in cellular processes as well as catalyze the development of novel materials for diverse applications. We describe preparation of PEC materials with controlled polymer characteristics (length, blockiness, charge density), small-angle X-ray scattering (SAXS) techniques employed to probe appropriate length scales, and the data analysis routines from a practical standpoint for new users. This article deals with bulk complexes and not with the related, important and interesting area of non-equilibrium layer-by-layer assembly of polyelectrolytes.
Collapse
|
68
|
Li Y, Lock LL, Mills J, Ou BS, Morrow M, Stern D, Wang H, Anderson CF, Xu X, Ghose S, Li ZJ, Cui H. Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. NANO LETTERS 2020; 20:6957-6965. [PMID: 32852220 DOI: 10.1021/acs.nanolett.0c01297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The separation and purification of therapeutic proteins from their biological resources pose a great limitation for industrial manufacturing of biologics in an efficient and cost-effective manner. We report here a supramolecular polymeric system that can undergo multiple reversible processes for efficient capture, precipitation, and recovery of monoclonal antibodies (mAbs). These supramolecular polymers, namely immunofibers (IFs), are formed by coassembly of a mAb-binding peptide amphiphile with a rationally designed filler molecule of varying stoichiometric ratios. Under the optimized conditions, IFs can specifically capture mAbs with a precipitation yield greater than 99%, leading to an overall mAb recovery yield of 94%. We also demonstrated the feasibility of capturing and recovering two mAbs from clarified cell culture harvest. These results showcase the promising potential of peptide-based supramolecular polymers as reversible affinity precipitants for mAb purification.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Ben S Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
69
|
Kim JM, Heo TY, Choi SH. Structure and Relaxation Dynamics for Complex Coacervate Hydrogels Formed by ABA Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jung-Min Kim
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
70
|
Delgado DE, King DR, Cui K, Gong JP, Shull KR. High-Fidelity Hydrogel Thin Films Processed from Deep Eutectic Solvents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43191-43200. [PMID: 32820902 DOI: 10.1021/acsami.0c09618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyampholyte (PA) hydrogels are a fascinating class of soft materials that can exhibit high toughness while retaining self-healing characteristics. This behavior results from the random distribution of oppositely charged monomers along the polymer chains that form transient bonds with a range of bond strengths. PAs can be dissolved in aqueous salt solutions and then recast via immersion precipitation, making them particularly useful as surface coatings in biomedical applications. Moreover, this immersion precipitation technique allows these PA hydrogels to be fabricated into films less than 100 nm. One critical challenge to this aqueous processing method is the recrystallization of the salt upon water evaporation. Such recrystallization can disrupt the hydrogel morphology especially in thin films. In this study, a deep eutectic solvent (DES) formed from urea and choline chloride was used to dissolve PAs made from p-styrenesulfonic acid sodium salt and 3-(methacryloylamino)propyl trimethylammonium chloride. This DES has a freezing point of 12 °C, allowing it to remain stable and liquid-like at room temperatures. Thus, these PAs can be processed in DES solutions, without this issue of recrystallization and with simple methods such as spin coating and dip coating. These methods allow these hydrogels to be used in thin (<100 nm)-film coating applications. Finally, the complete miscibility of DES in water allows a wider range of one-phase compositions and expands the processing window of these polyampholyte materials.
Collapse
Affiliation(s)
- David E Delgado
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel R King
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research, Hokkaido University, Sapporo 001-0021, Japan
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
71
|
Yu B, Rauscher PM, Jackson NE, Rumyantsev AM, de Pablo JJ. Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates. ACS Macro Lett 2020; 9:1318-1324. [PMID: 35638633 DOI: 10.1021/acsmacrolett.0c00522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable interest in the dynamics and rheology of polyelectrolyte complex coacervates has been motivated by their industrial application as viscosity modifiers. A central question is the extent to which classical Rouse and reptation models can be applied to systems where electrostatic interactions play a critical role on the thermodynamics. By relying on molecular simulations, we present a direct analysis of the crossover from Rouse to reptation dynamics in salt-free complex coacervates as a function of chain length. This crossover shifts to shorter chain lengths as electrostatic interactions become stronger, which corresponds to the formation of denser coacervates. To distinguish the roles of Coulomb interactions and density, we compare the dynamics of coacervates to those of neutral, semidilute solutions at the same density. Both systems exhibit a universal dynamical behavior in the connectivity-dominated (subdiffusion and normal diffusion) regimes, but the monomer relaxation time in coacervates is much longer and increases with increasing Bjerrum length. This is similar to the cage effect observed in glass-forming polymers, but the local dynamical slowdown is caused here by strong Coulomb attractions (ion pairing) between oppositely charged monomers. Our findings provide a microscopic framework for the quantitative understanding of coacervate dynamics and rheology.
Collapse
Affiliation(s)
- Boyuan Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Phillip M Rauscher
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas E Jackson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Artem M Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
72
|
Liu Y, Santa Chalarca CF, Carmean RN, Olson RA, Madinya J, Sumerlin BS, Sing CE, Emrick T, Perry SL. Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yalin Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Cristiam F. Santa Chalarca
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - R. Nicholas Carmean
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca A. Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jason Madinya
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Todd Emrick
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
73
|
Han Y, Shi C, Cui F, Chen Q, Tao Y, Li Y. Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Meng S, Ting JM, Wu H, Tirrell MV. Solid-to-Liquid Phase Transition in Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Siqi Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hao Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
75
|
Syed VMS, Srivastava S. Time-Ionic Strength Superposition: A Unified Description of Chain Relaxation Dynamics in Polyelectrolyte Complexes. ACS Macro Lett 2020; 9:1067-1073. [PMID: 35648617 DOI: 10.1021/acsmacrolett.0c00252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Addition of salt speeds up chain relaxation dynamics in polyelectrolyte complexes (PECs), and time-salt superposition (TSS) approaches to describe the linear viscoelastic response of PECs are well-established. However, TSS is carried out at fixed initial polyelectrolyte concentrations, and varying the initial polyelectrolyte concentration results in distinct TSS master curves. In this contribution, we show that accounting for the small ions that accompany the oppositely charged polyelectrolyte chains (designated as accompanying counterions) enables assimilation of these distinct TSS master curves into a single universal master curve. This approach, that we christen as time-ionic strength superposition (TISS), enables a unified description of the PEC viscoelastic response in terms of the solution ionic strength, that accounts for both the accompanying counterions and the added ions, and underlines the dynamic similarities between PECs and semidilute polymer solutions. The sticky electrostatic associations among the oppositely charged chains, however, contribute additional relaxation modes in the PECs. We demonstrate that the time scales of these additional relaxation modes are described quantitatively by a modified sticky Rouse model that accounts for the influence of solution ionic strength on electrostatic screening and chain friction.
Collapse
Affiliation(s)
- Vaqar M. S. Syed
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
76
|
Rizvi A, Patel U, Ianiro A, Hurst PJ, Merham JG, Patterson JP. Nonionic Block Copolymer Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Urja Patel
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Alessandro Ianiro
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Paul J. Hurst
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Jovany G. Merham
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
77
|
Srivastava S, Levi AE, Goldfeld DJ, Tirrell MV. Structure, Morphology, and Rheology of Polyelectrolyte Complex Hydrogels Formed by Self-Assembly of Oppositely Charged Triblock Polyelectrolytes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00847] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Adam E. Levi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David J. Goldfeld
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
78
|
Yang M, Digby ZA, Schlenoff JB. Precision Doping of Polyelectrolyte Complexes: Insight on the Role of Ions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
79
|
Akkaoui K, Yang M, Digby ZA, Schlenoff JB. Ultraviscosity in Entangled Polyelectrolyte Complexes and Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00133] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
80
|
Abstract
AbstractStrongly interacting polyelectrolyte complexes (PECs) are a versatile class of materials whose physical states can be driven from solids into liquids and ultimately into homogenous solution upon salt addition. However, many of these materials can display high stability using common monovalent salts, leading to difficulties in accessing the entire PEC spectrum. Here, the model system, composed of two styrenic polyelectrolytes, required exceptionally high salt to drive phase transition. We term the amount of salt required to drive these transitions salt resistance. In water, the PEC transferred from solid into liquid at 2.5 M NaBr and never fully dissociated within the studied salt range. We discovered an unconventional approach of weakening salt resistance by switching the solvent to miscible ethylene glycol/water and ethanol/water, allowing us to systematically introduce more hydrophobic constituents. Employing microscopy to determine physical states qualitatively, we found that higher hydrophobicity lowered salt resistance for phase transition and disassembly.
Collapse
|
81
|
Hollingsworth WR, Williams V, Ayzner AL. Semiconducting Eggs and Ladders: Understanding Exciton Landscape Formation in Aqueous π-Conjugated Inter-Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- William R. Hollingsworth
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Vanessa Williams
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
82
|
Sing CE, Perry SL. Recent progress in the science of complex coacervation. SOFT MATTER 2020; 16:2885-2914. [PMID: 32134099 DOI: 10.1039/d0sm00001a] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Complex coacervation is an associative, liquid-liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase, which is a dense mix of the oppositely-charged components, and a supernatant phase, which is primarily devoid of these same species. First observed almost a century ago, coacervates have since found relevance in a wide range of applications; they are used in personal care and food products, cutting edge biotechnology, and as a motif for materials design and self-assembly. There has recently been a renaissance in our understanding of this important class of material phenomena, bringing the science of coacervation to the forefront of polymer and colloid science, biophysics, and industrial materials design. In this review, we describe the emergence of a number of these new research directions, specifically in the context of polymer-polymer complex coacervates, which are inspired by a number of key physical and chemical insights and driven by a diverse range of experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews, Urbana, IL, USA.
| | | |
Collapse
|
83
|
Lin Y, Fichou Y, Zeng Z, Hu NY, Han S. Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions. ACS Chem Neurosci 2020; 11:615-627. [PMID: 31971365 DOI: 10.1021/acschemneuro.9b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid aggregation of the microtubule binding protein tau is a hallmark of many neurodegenerative diseases. Recently, tau has been found to undergo liquid-liquid phase separation (LLPS) by an electrostatically driven complex coacervation (CC) mechanism near physiological conditions. Although LLPS and aggregation have been shown to simultaneously occur under certain common conditions, it is unclear whether LLPS promotes aggregation of tau, or whether they are two independent processes. In this study, we address this question by combining multiple biochemical and biophysical assays in vitro. We investigate the impacts of LLPS-CC on cofactor-induced tau aggregation by evaluating the conformation of tau, kinetics of aggregation, and fibril quantity. We showed that none of these properties are influenced directly by LLPS-CC and that LLPS-CC and cofactor-induced aggregation of tau merely occur under overlapping conditions of enhanced intermolecular interactions and localization but are two independent processes. We furthermore showed that tau LLPS can be driven by nonelectrostatic interaction using high-salt concentrations. Under these conditions, LLPS strongly correlated with increased aggregation propensity. Whether LLPS of tau formed under different conditions or of different constituents may actively promote aggregation of tau remains an open question, but this study shows that the readily accessible electrostatically driven condensation of tau into LLPS in and of itself is not sufficient to promote aggregation.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhikai Zeng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nicole Y. Hu
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
84
|
Shakya A, Girard M, King JT, Olvera de la Cruz M. Role of Chain Flexibility in Asymmetric Polyelectrolyte Complexation in Salt Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anisha Shakya
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, S. Korea
| | - Martin Girard
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - John T. King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, S. Korea
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
85
|
Fukao K, Nakajima T, Nonoyama T, Kurokawa T, Kawai T, Gong JP. Effect of Relative Strength of Two Networks on the Internal Fracture Process of Double Network Hydrogels As Revealed by in Situ Small-Angle X-ray Scattering. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02562] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kazuki Fukao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Takahiko Kawai
- Graduate School of Engineering, Gunma University, Ota 373-0057, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
86
|
Wu H, Ting JM, Tirrell MV. Mechanism of Dissociation Kinetics in Polyelectrolyte Complex Micelles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hao Wu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
87
|
Spakowitz AJ. Polymer physics across scales: Modeling the multiscale behavior of functional soft materials and biological systems. J Chem Phys 2019; 151:230902. [DOI: 10.1063/1.5126852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
88
|
Dompé M, Cedano-Serrano FJ, Vahdati M, Sidoli U, Heckert O, Synytska A, Hourdet D, Creton C, van der Gucht J, Kodger T, Kamperman M. Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives. Int J Mol Sci 2019; 21:ijms21010100. [PMID: 31877824 PMCID: PMC6982270 DOI: 10.3390/ijms21010100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress.
Collapse
Affiliation(s)
- Marco Dompé
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.D.); (O.H.); (J.v.d.G.); (T.K.)
| | - Francisco J. Cedano-Serrano
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France; (F.J.C.-S.); (M.V.); (D.H.); (C.C.)
| | - Mehdi Vahdati
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France; (F.J.C.-S.); (M.V.); (D.H.); (C.C.)
| | - Ugo Sidoli
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (U.S.); (A.S.)
| | - Olaf Heckert
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.D.); (O.H.); (J.v.d.G.); (T.K.)
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; (U.S.); (A.S.)
| | - Dominique Hourdet
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France; (F.J.C.-S.); (M.V.); (D.H.); (C.C.)
| | - Costantino Creton
- Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France; (F.J.C.-S.); (M.V.); (D.H.); (C.C.)
| | - Jasper van der Gucht
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.D.); (O.H.); (J.v.d.G.); (T.K.)
| | - Thomas Kodger
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.D.); (O.H.); (J.v.d.G.); (T.K.)
| | - Marleen Kamperman
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (M.D.); (O.H.); (J.v.d.G.); (T.K.)
- Laboratory of Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
89
|
Zhang M, Wiener CG, Sepulveda-Medina PI, Douglas JF, Vogt BD. Influence of Sodium Salts on the Swelling and Rheology of Hydrophobically Cross-linked Hydrogels Determined by QCM-D. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16612-16623. [PMID: 31747520 DOI: 10.1021/acs.langmuir.9b03063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrophobically modified copolymers provide a versatile platform of hydrogel materials for diverse applications, but the influence of salts on the swelling and material properties of this class of hydrogels has not been extensively studied. Here, we investigate model hydrogels with three different sodium salts with anions chosen from the classic Hofmeister series to determine how these counterions influence the swelling and mechanical properties of neutral hydrogels. The gel chosen was based on a statistical copolymer of dimethylacrylamide and 2-(N-ethylperfluorooctane sulfonamido) ethyl acrylate (FOSA). Our measurements utilize a quartz crystal microbalance with dissipation (QCM-D) to quantify both swelling and rheological properties of these gels. We find that a 1 mol/L solution of Na2SO4, corresponding to a kosmotropic anion, leads to nearly a 2.6-fold gel deswelling and correspondingly, the complex modulus increases by an order of magnitude under these solution conditions. In contrast, an initial increase in swelling and then a swelling maximum is observed for a 0.02 mol/L concentration in the case of a chaotropic anion, NaClO4, but the changes in the degree of gel swelling in this system are not directly correlated with changes in the gel shear modulus. The addition of NaBr, an anion salt closer to the middle of the chaotropic to kosmotropic range, leads to hydrogel deswelling where the degree of deswelling and the shear modulus are both nearly independent of salt concentration. Overall, the observed trends are broadly consistent with more kosmotropic ions causing diminished solubility ("salting out") and strongly chaotropic ions causing improved solubility ("salting in"), a trend characteristic of the Hoffmeister series governing the solubility of many proteins and synthetic water-soluble polymers, but trends in the shear stiffness with gel swelling are clearly different from those normally observed in chemically cross-linked gels and are correspondingly difficult to interpret. The salt specificity of swelling and mechanical properties of nonionic hydrogels is important for any potential application in which a wide range of salt concentrations and types are encountered.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Polymer Engineering , University of Akron , Akron , Ohio 44325 United States
| | - Clinton G Wiener
- Department of Polymer Engineering , University of Akron , Akron , Ohio 44325 United States
| | | | - Jack F Douglas
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 United States
| | - Bryan D Vogt
- Department of Chemical Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 United States
| |
Collapse
|
90
|
Li J, Jin W, Xu W, Liu G, Huang Q, Zhu Z, Li S, Cheng S. Effect of charge density of polysaccharide on self-assembly behaviors of ovalbumin and sodium alginate. Int J Biol Macromol 2019; 154:1245-1254. [PMID: 31730955 DOI: 10.1016/j.ijbiomac.2019.10.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Similarities and differences of assembly for ovalbumin (OVA) and two kinds of sodium alginate (SA1 and SA2) varying in charge densities (λSA1: λSA2 ≈ 2:1) were investigated. The assembly processes of OVA/SA mixtures were characterized by phase diagram, particle size, and microstructure. Two differences between OVA/SA1 and OVA/SA2 mixtures in the phase diagram were distinctly observed. First, due to the higher charge density of SA1, the strong interaction between OVA and SA1 caused only pHφ1 to be recorded. A higher linear charge density of SA1 narrowed the pHφ1-pHφ2 range at ratios of 2:1 and 1:1. Second, OVA/SA1 complexes formed a coacervate with a relatively strong resistance to ion-induced shielding effects. This maintained the smaller size (tighter structure) with a larger number of complexes in the coacervate without 250 mM NaCl. The regulating polysaccharides with different charge densities could control the soluble region of complexes and endow various size or morphology of the coacervate assembled by proteins and polysaccharides.
Collapse
Affiliation(s)
- Junzhu Li
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China
| | - Weiping Jin
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China.
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Gang Liu
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China
| | - Qingrong Huang
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China; College of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Zhenzhou Zhu
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China
| | - Shuyi Li
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China
| | - Shuiyuan Cheng
- College of Food Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Hubei Province 430023, China
| |
Collapse
|
91
|
|
92
|
Litmanovich EA, Efremov VV. Rheological Properties of Poly(acrylic acid) Complexes with Poly(sodium styrenesulfonate) in Semidilute Aqueous Solutions. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19060051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
93
|
Martin P, Vasilyev G, Chu G, Boas M, Arinstein A, Zussman E. pH‐Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick Martin
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Gleb Vasilyev
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Guang Chu
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Mor Boas
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Arkadii Arinstein
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Eyal Zussman
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
94
|
Richards JJ, Riley JK. Dielectric RheoSANS: a mutual electrical and rheological characterization technique using small-angle neutron scattering. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
95
|
Danielsen SPO, McCarty J, Shea JE, Delaney KT, Fredrickson GH. Small ion effects on self-coacervation phenomena in block polyampholytes. J Chem Phys 2019; 151:034904. [PMID: 31325933 PMCID: PMC6639116 DOI: 10.1063/1.5109045] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Self-coacervation is a phenomenon in which a solution of polyampholytes spontaneously phase separates into a dense liquid coacervate phase, rich in the polyampholyte, coexisting with a dilute supernatant phase. Such coacervation results in the formation of membraneless organelles in vivo and has further been applied industrially as synthetic encapsulants and coatings. It has been suggested that coacervation is primarily driven by the entropy gain from releasing counter-ions upon complexation. Using fully fluctuating field-theoretic simulations employing complex Langevin sampling and complementary molecular dynamics simulations, we have determined that the small ions contribute only weakly to the self-coacervation behavior of charge-symmetric block polyampholytes in solution. Salt partitioning between the supernatant and coacervate is also found to be negligible in the weak-binding regime at low electrostatic strengths. Asymmetries in charge distribution along the polyampholytes can cause net-charges that lead to "tadpole" configurations in dilute solution and the suppression of phase separation at low salt content. The field and particle-based simulation results are compared with analytical predictions from the random phase approximation (RPA) and postulated scaling relationships. The qualitative trends are mostly captured by the RPA, but the approximation fails at low concentration.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - James McCarty
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Joan-Emma Shea
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
96
|
Wu H, Ting JM, Weiss TM, Tirrell MV. Interparticle Interactions in Dilute Solutions of Polyelectrolyte Complex Micelles. ACS Macro Lett 2019; 8:819-825. [PMID: 35619501 DOI: 10.1021/acsmacrolett.9b00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The application of dilute solutions of polyelectrolyte complex (PEC) micelles for delivering therapeutic nucleic acids into disease sites has gained momentum. This Letter reports a detailed characterization of PEC micelles in dilute solutions including their internal structures and the determination of the interparticle interactions. The polymer concentration ranges from 0.1 to 0.5 wt %, a regime where micelle-micelle interactions are infrequent. We employ synchrotron small-angle X-ray scattering (SAXS) to simultaneously probe the morphology, internal structure, and radius of gyration (Rg) of the self-assemblies formed by charged diblock polyelectrolytes and homopolyelectrolytes. The emerging appearance of the structure factor in SAXS profiles with the increasing polymer concentration demonstrates the presence of the repulsive intermicellar correlations, which is further confirmed by the differences between the "reciprocal Rg" estimated by Guinier approximation and the "real space Rg" determined by pair distribution functions. We find that the soft corona chains tethered on the surface of phase-separated complex domains are compressed when micelles come close to the point where a hard-sphere interaction takes over. These findings contribute to the fundamental understanding of the structure and space-filling constraints in the complexation-driven self-assemblies and advance the rational design of cationic polymer-based nonviral gene delivery vectors.
Collapse
Affiliation(s)
- Hao Wu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey M. Ting
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
97
|
Rumyantsev AM, de Pablo JJ. Liquid Crystalline and Isotropic Coacervates of Semiflexible Polyanions and Flexible Polycations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
98
|
Huang J, Morin FJ, Laaser JE. Charge-Density-Dominated Phase Behavior and Viscoelasticity of Polyelectrolyte Complex Coacervates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00036] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Frances J. Morin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E. Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
99
|
Ong GMC, Sing CE. Mapping the phase behavior of coacervate-driven self-assembly in diblock copolyelectrolytes. SOFT MATTER 2019; 15:5116-5127. [PMID: 31188388 DOI: 10.1039/c9sm00741e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oppositely-charged polymers can undergo an associative phase separation process known as complex coacervation, which is driven by the electrostatic attraction between the two polymer species. This driving force for phase separation can be harnessed to drive self-assembly, via pairs of block copolyelectrolytes with opposite charge and thus favorable coulombic interactions. There are few predictions of coacervate self-assembly phase behavior due to the wide variety of molecular and environmental parameters, along with fundamental theoretical challenges. In this paper, we use recent advances in coacervate theory to predict the solution-phase assembly of diblock polyelectrolyte pairs for a number of molecular design parameters (charged block fraction, polymer length). Phase diagrams show that self-assembly occurs at high polymer, low salt concentrations for a range of charge block fractions. We show that we qualitatively obtain limiting results seen in the experimental literature, including the emergence of a high polymer-fraction reentrant transition that gives rise to a self-compatibilized homopolymer coacervate behavior at the limit of high charge block fraction. In intermediate charge block fractions, we draw an analogy between the role of salt concentration in coacervation-driven assembly and the role of temperature in χ-driven assembly. We also explore salt partitioning between microphase separated domains in block copolyelectrolytes, with parallels to homopolyelectrolyte coacervation.
Collapse
Affiliation(s)
- Gary M C Ong
- Department of Chemical and Biomolecular Engineering, 600 S. Mathews Ave., Urbana, IL, USA.
| | | |
Collapse
|
100
|
Boas M, Vasilyev G, Vilensky R, Cohen Y, Zussman E. Structure and Rheology of Polyelectrolyte Complexes in the Presence of a Hydrogen-Bonded Co-Solvent. Polymers (Basel) 2019; 11:polym11061053. [PMID: 31212925 PMCID: PMC6630629 DOI: 10.3390/polym11061053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Intermolecular interactions as well as macromolecular conformation affect the rheological and microstructural properties of polyelectrolyte complexes (PECs) solutions. The properties of semi-dilute solutions of weakly charged PECs can be controlled by the degree of ionization and solvent composition. In this work, we examined the effect of ethanol as a co-solvent on PECs composed of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) at low pH. The aqueous PECs solution was turbid, indicating formation of large aggregates, whereas PECs solution in water/ethanol (60:40 w/w) was transparent, implying no aggregation, and demonstrated higher relative viscosity than the aqueous solution, implying pronounced network formation. Imaging PECs solution by transmission electron microscopy (TEM) demonstrated aggregation, whereas the solution prepared with the mixed solvent revealed almost no phase contrast. Small-angle X-ray scattering (SAXS) of PECs in the aqueous solution indicated the presence of aggregates, while PECs in mixed solvent demonstrated a swelled macromolecular conformation with diminished aggregation. PECs with no ionic interactions in the mixed solvent assumes a homogenous network structure, which enables PECs solution processing by electrospinning.
Collapse
Affiliation(s)
- Mor Boas
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Yachin Cohen
- Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|