51
|
Tian J, Feng K, Yuan KN, Li X, Chang HH, Gao WC. 3,4-Bisthiolated Pyrroles: Concise Construction and Their Electronic Properties. J Org Chem 2022; 87:2402-2409. [DOI: 10.1021/acs.joc.1c02269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Tian
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Feng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kang-Ning Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Tihondan Pharmaceutical Technology Co. Ltd., Jinzhong 030600, China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanxi Tihondan Pharmaceutical Technology Co. Ltd., Jinzhong 030600, China
| |
Collapse
|
52
|
Kumar A, Kumar S, Chae PS. A Chromo-Fluorogenic Naphthoquinolinedione-Based Probe for Dual Detection of Cu 2+ and Its Use for Various Water Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030785. [PMID: 35164050 PMCID: PMC8838320 DOI: 10.3390/molecules27030785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
The presence of an abnormal amount of Cu2+ in the human body causes various health issues. In the current study, we synthesized a new naphthoquinolinedione-based probe (probe 1) to monitor Cu2+ in different water systems, such as tap water, lakes, and drain water. Two triazole units were introduced into the probe via a click reaction to increase the binding affinity to a metal ion. In day-light, probe 1 dissolved in a mixed solvent system (HEPES: EtOH = 1:4) showed a vivid color change from light greenish-yellow to pink in the presence of only Cu2+ among various metal ions. In addition, the green luminescence and fluorescence emission of the probe were effectively bleached out immediately after Cu2+ addition. The limit of detection (LOD) of the probe was 0.5 µM when a ratio-metric method was used for metal ion detection. The fluorescence titration data of the probe with Cu2+ showed a calculated LOD of 41.5 pM. Hence, probe 1 possesses the following dual response toward Cu2+ detection: color change and fluorescence quenching. Probe 1 was also useful for detecting Cu2+ spiked in tap/lake water as well as the cytoplasm of live HeLa cells. The current system was investigated using ultraviolet-visible and fluorescence spectroscopy as well as density functional theory calculations (DFT).
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
- Correspondence: (A.K.); (P.S.C.)
| | - Subodh Kumar
- Department of Chemistry, UGC Center for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India;
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
- Correspondence: (A.K.); (P.S.C.)
| |
Collapse
|
53
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra‐functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Zeng
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Peiren Liu
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Hao Xing
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State key Laboratory of Chemical Engineering Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
54
|
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem Rev 2022; 122:5604-5640. [PMID: 35023737 DOI: 10.1021/acs.chemrev.1c00815] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Collapse
Affiliation(s)
- Yue Zhao
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.,State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shanliang Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
55
|
Chen SQ, Yu SN, Zhao W, Liang L, Gong Y, Yuan L, Tang J, Yang XJ, Wu B. Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01991d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hexaurea-based receptors enable highly efficient sulfate extraction (over 97%) via liquid–liquid extraction, and a controllable release of the bound sulfate is achieved by acidifying the solution, as demonstrated in the U-tube experiment.
Collapse
Affiliation(s)
- Si-Qi Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Shu-Na Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lin Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yunyan Gong
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Lifei Yuan
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Juan Tang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Biao Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
56
|
Liu Q, Shen X, Dai Y, Zhang M, Zhou Z. Porous materials formed by four self-construction processes. Org Biomol Chem 2022; 20:8149-8156. [DOI: 10.1039/d2ob01530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multiple self-construction behavior of cyclic oligoesters is described.
Collapse
Affiliation(s)
- Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaorong Shen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ye Dai
- Zhejiang Zhongli Synthetic Material Technology Co., Ltd, Pinghu 314200, China
| | - Mengchen Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Province College Key Laboratory of Molecular Design and Green Chemistry; and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
57
|
Rather IA, Ali R, Ali A. Recent developments in calix[4]pyrrole (C4P)-based supramolecular functional systems. Org Chem Front 2022. [DOI: 10.1039/d2qo01298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent advances with calix[4]pyrrole-based supramolecular functional entities in the fields of molecular recognition (receptors, sensors, and metal ion caged systems), self-assembly (polymers), photo/pH-responsive molecular switches and catalysis are reviewed.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| | - Ayaaz Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi-110025, India
| |
Collapse
|
58
|
Dey SK, Harmalkar SS, Yadav RKHO, Lama P, Das G. Structure directing roles of weak noncovalent interactions and charge-assisted hydrogen bonds in the self-assembly of solvated podands: Example of an anion-assisted dimeric water capsule. CrystEngComm 2022. [DOI: 10.1039/d2ce00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of two new podand molecules (1 and 2) synthesized from 1,3,5-tris(bromomethyl)mesitylene and two bromide salts of tris(4-amino-N-ethylbenzamide)amine (3) were elucidated to witness the structure directing roles of weak...
Collapse
|
59
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
60
|
Zeng H, Liu P, Xing H, Huang F. Symmetrically Tetra-functionalized Pillar[6]arenes Prepared by Fragment Coupling. Angew Chem Int Ed Engl 2021; 61:e202115823. [PMID: 34962061 DOI: 10.1002/anie.202115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Due to the highly symmetrical structures generated from one-pot syntheses, the partial functionalization of macrocycles is usually beset with low yields and onerous purifications of the target multifunctional macrocycles. To improve this circumstance, taking pillar[6]arenes as an example, a two-step fragment coupling method is developed for synthesizing symmetrically tetra-functionalized pillar[6]arenes, namely X-pillar[6]arenes. This method is simple and versatile, which makes hetero-fragment coupling and pre-functionalization available. Nine new macrocycles and a pillar[6]arene-based cage are prepared. In addition, one of the newly synthesized macrocycles, COOEtEtXP[6] , exhibits a strong cyan luminescence in the solid state under irradiation by 365 nm UV light. This emission originates from intramolecular through-space conjugation. Meanwhile, formation of a supramolecular polymer by multiple non-covalent intra/intermolecular interactions help rigidify the structure and make COOEtEtXP[6] an efficient solid-state emitter. It is believed that this fragment coupling can also be used to realize the multi-functionalization of other macrocycles.
Collapse
Affiliation(s)
- Hong Zeng
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Peiren Liu
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Hao Xing
- Zhejiang University, Department of Chemistry, Hangzhou, CHINA
| | - Feihe Huang
- Zhejiang University, Department of Chemistry, Faculty of Sciences, 310027, Hangzhou, CHINA
| |
Collapse
|
61
|
Liu X, Tang J, Yang J, Zhang H, Fang Y. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation. J Colloid Interface Sci 2021; 610:368-375. [PMID: 34923274 DOI: 10.1016/j.jcis.2021.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Preparation of nanofilms which are able to reject water-soluble low molecular weight organic compounds in nanofiltration remains to be a challenge. Herein, we report a new kind of self-standing, defect-free, robust, centimeter-sized and thickness controllable calix[4]pyrrole (C[4]P)-based nanofilms with excellent molecular sieving performance in nanofiltration. The nanofilms were prepared via confined dynamic condensation of the tetra-benzoyl-hydrazine derivative of calix[4]pyrrole (CPTBH) with 1,3,5-benzenetricarboxaldehyde (BTC) at the air/dimethyl sulfoxide (DMSO) interface. Nanofiltration tests under 2 bar pressure with porous polyethylene terephthalate (PET) as the support and a CsF treated CPTBH-BTC nanofilm (∼100 nm) as the selective layer depicted a water permeance of 15 L m-2h-1 bar-1 and a methanol permeance of 45 L m-2h-1 bar-1. High rejection rates (>95%) were found in aqueous solution for most of the tested dyes and pharmaceuticals. Remarkably, the composite membrane also demonstrated good separation performance in aqueous phase to some amino acids and organic dyes with molecular weights around 200 g/mol. High-performance nanofiltration in methanol was also realized. In this case, the molecular weight cutoff value is ∼ 800 g/mol. These findings showed that introduction of macrocyclic hosts is an effective way to develop nanofilms with high solvent permeance but low molecular weight cutoff value.
Collapse
Affiliation(s)
- Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Helan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
62
|
Wang H, Jones LO, Hwang I, Allen MJ, Tao D, Lynch VM, Freeman BD, Khashab NM, Schatz GC, Page ZA, Sessler JL. Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. J Am Chem Soc 2021; 143:20403-20410. [PMID: 34812619 DOI: 10.1021/jacs.1c10255] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein are two functionalized crown ether strapped calix[4]pyrroles, H1 and H2. As inferred from competitive salt binding experiments carried out in nitrobenzene-d5 and acetonitrile-d3, these hosts capture LiCl selectively over four other test salts, viz. NaCl, KCl, MgCl2, and CaCl2. Support for the selectivity came from density functional theory (DFT) calculations carried out in a solvent continuum. These theoretical analyses revealed a higher innate affinity for LiCl in the case of H1, but a greater selectivity relative to NaCl in the case of H2, recapitulating that observed experimentally. Receptors H1 and H2 were outfitted with methacrylate handles and subject to copolymerization with acrylate monomers and cross-linkers to yield gels, G1 and G2, respectively. These two gels were found to adsorb lithium chloride preferentially from an acetonitrile solution containing a mixture of LiCl, NaCl, KCl, MgCl2, and CaCl2 and then release the lithium chloride in methanol. The gels could then be recycled for reuse in the selective adsorption of LiCl. As such, the present study highlights the use of solvent polarity switching to drive separations with potential applications in lithium purification and recycling.
Collapse
Affiliation(s)
- Hu Wang
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Inhong Hwang
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marshall J Allen
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States.,McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Daliao Tao
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Vincent M Lynch
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zachariah A Page
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jonathan L Sessler
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
63
|
McCarney EP, McCarthy WJ, Lovitt JI, Gunnlaugsson T. Macrocyclic vs. [2]catenane btp structures: influence of (aryl) substitution on the self templation of btp ligands in macrocyclic synthesis. Org Biomol Chem 2021; 19:10189-10200. [PMID: 34788352 DOI: 10.1039/d1ob02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of four 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) olefin based ligands 3, 4, 11 and 12 is described and their attempted use to form mechanically interlocked molecules using ring closing metatheses (RCM) reactions. The btp ligands were modified in two ways, in 3 and 4 the aryl substitution pattern was changed from 4th position to 3rd position and in the case of 11 and 12, the arms were replaced with aliphatic chains. Our study demonstrates that for all four ligands, the RCM reactions only result in the formation of macrocyclic structures, which in three of the cases, were structurally characterised in both solution (using NMR and HRMS) and in the solid-state using X-ray crystallography. NMR studies were also carried out to investigate if these ligands could preorganise in solution via hydrogen bonding interactions. This study provides a handle of how such precursor substitution can be used to direct the formation of macrocycles or mechanically interlocked structures.
Collapse
Affiliation(s)
- Eoin P McCarney
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - William J McCarthy
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - June I Lovitt
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. .,SFI Synthesis and Solid State Pharmaceutical Centre (SSPC), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
64
|
Abstract
Artificial receptors able to recognise biologically relevant molecules or ions have gained interest in the chemical community because they offer a plethora of posibilities. Molecular cage compounds are polycyclic compounds with a cavity designed for the encapsulation of guest species. Once inside the host cavity, the substrate can be transported through membranes and protected from the action of enzymes or other reactive species, thus offering the possibility of interfering with biological systems. Commonly, enzymes have been an inspiration for chemists in the search and design of defined cavities for different purposes. However, the chemical preparation of molecular cages has struggled with many synthetic challenges but this effort is worthwhile as they are a very promising tool for many applications ranging from sensing, delivery, purification or even promotion of/prevention from chemical modifications. Since the early reports at the end of the 60s, this field has experienced a growing interest; this review summarises the progress in the preparation and study of cage-like compounds highlighting their importance in biological applications.
Collapse
Affiliation(s)
- Lucía Tapia
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Jordi Solà
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
65
|
Ruppert H, Sigmund LM, Greb L. Calix[4]pyrroles as ligands: recent progress with a focus on the emerging p-block element chemistry. Chem Commun (Camb) 2021; 57:11751-11763. [PMID: 34661225 DOI: 10.1039/d1cc05120b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Calix[4]pyrroles are readily synthesized in one step from pyrroles and ketones. For several decades, these macrocycles have been exploited as powerful anion receptors or ligands for transition and rare-earth metals. In contrast, calix[4]pyrrolates as ligands for p-block elements were established only in 2018. The present feature article reviews these developments, together with the recent progress on s-, d-, and f-block element complexes of the calix[4]pyrroles. Particular focus is given on the calix[4]pyrrolato aluminate and the corresponding silane, both featuring square planar-coordinated p-block elements in their highest oxidation states. These unique "anti-van't-Hoff-Le-Bel" structures introduce valuable characteristics into main-group element chemistry, such as agostic interactions or ligand-to-metal charge transfer absorptions. The most vital reactivities are highlighted, which rely on properties ranging from amphoterism, redox-activity, and a small HOMO-LUMO gap up to the ability to provide a platform for additional external stimuli. Overall, these developments underscore the beneficial impact of structural constraint of p-block elements and element-ligand cooperativity to enhance the functionality of the most abundant elements in their native oxidation states.
Collapse
Affiliation(s)
- Heiko Ruppert
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lukas M Sigmund
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
66
|
Sun Q, Escobar L, de Jong J, Ballester P. Self-assembly of a water-soluble endohedrally functionalized coordination cage including polar guests. Chem Sci 2021; 12:13469-13476. [PMID: 34777766 PMCID: PMC8528040 DOI: 10.1039/d1sc03751j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Coordination cages containing endohedrally functionalized aromatic cavities are scarce in the literature. Herein, we report the self-assembly of a tetra-cationic super aryl-extended calix[4]pyrrole tetra-pyridyl ligand into a water-soluble Pd(ii)-cage featuring two endohedral polar binding sites. They are defined by the four pyrrole NHs of the calix[4]pyrrole unit and the four inwardly directed α-protons of the coordinated pyridyl groups. The efficient assembly of the Pd(ii)-cage requires the inclusion of mono- and ditopic pyridyl N-oxide and aliphatic formamide guests. The monotopic guests only partially fill the cage's cavity and require the co-inclusion of a water molecule that is likely hydrogen-bonded to the endohedral α-pyridyl protons. The ditopic guests are able to completely fill the cage's cavity and complement both binding sites. We observed high conformational selectivity in the inclusion of the isomers of α,ω-bis-formamides. We briefly investigate the uptake and release mechanism/kinetics of selected polar guests by the Pd(ii)-cage using pair-wise competition experiments. A tetra-cationic calix[4]pyrrole tetra-pyridyl ligand self-assembles into a water-soluble Pd(ii)-cage featuring two endohedral polar binding sites. The Pd(ii)-cage encapsulates pyridyl N-oxide and aliphatic formamide guests in water.![]()
Collapse
Affiliation(s)
- Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain .,Universitat Rovira i Virgili (URV), Departament de Química Analítica i Química Orgánica c/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain .,Universitat Rovira i Virgili (URV), Departament de Química Analítica i Química Orgánica c/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Jorn de Jong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain .,ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
67
|
Xu W, Chen Y, Zhang B, Xu W, Niu J, Liu Y. Supramolecular Assembly of β-Cyclodextrin-Modified Polymer by Electrospinning with Sustained Antibacterial Activity. Biomacromolecules 2021; 22:4434-4445. [PMID: 34495641 DOI: 10.1021/acs.biomac.1c01007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supramolecular assembly loading drug as biomedical materials is a research hotspot. Herein, we reported a supramolecular electrospun assembly constructed via the hydrophobic and hydrogen bonding interaction. The obtained results showed that the assembly by supramolecular electrospinning not only increased the interactions of multiple antibacterial active species including antibiotics, cationic polymers, and silver to form a flexible membrane with good mechanical strength but also indicated the dual effects of rapid doxycycline and polyethyleneimine release as well as a sustained Ag release. Interestingly, the assembly showed not only good degradability but also a high bacteriostatic efficacy toward Escherichia coli (E. coli) up to 99.9%. More importantly, the in vivo wound healing assay indicated that the assembly could promote the healing of uninfected, E. coli-infected, and even methicillin-resistant staphylococcus aureus-infected wounds. The current research provides a novel approach to construct a supramolecular assembly by electrospinning mechanically induced strong noncovalent interaction.
Collapse
Affiliation(s)
- Wenshi Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wenwen Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
68
|
Paul B, Mukherjee A, Bhuyan D, Guha S. Construction of unsymmetrical b
is‐urea
macrocyclic host for neutral molecule and chloride‐ion binding. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biprajit Paul
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Deepak Bhuyan
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| |
Collapse
|
69
|
Journot G, Neier R, Gualandi A. Hydrogenation of Calix[4]pyrrole: From the Formation to the Synthesis of Calix[4]pyrrolidine. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Reinhard Neier
- Department of Chemistry University of Neuchâtel Avenue Bellevaux 51 2000 Neuchâtel Switzerland
| | - Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 I-40126 Bologna Italy
| |
Collapse
|
70
|
Valle-Sánchez M, Contreras-Celedón CA, Ochoa-Terán A, Chacón-García L. Cooperative Recognition of Ni 2+ Triggered by Fluoride Ions in Naturally Occurring α-Hydroxyquinone Derivatives. ACS OMEGA 2021; 6:16419-16427. [PMID: 34235313 PMCID: PMC8246452 DOI: 10.1021/acsomega.1c01420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Perezone is a naturally occurring hydroxyquinone that has been deeply studied from different chemical aspects, such as therapeutics, electrochemistry, physical-chemical properties, or synthetic approaches that turn it an attractive template for new semisynthetic derivatives with a wide range of purposes. Herein, we describe a facile synthetic pathway to obtain new perezone derivatives by the addition of a pyrrole moiety that can be used for ion recognition. Compounds 2-4 showed the capability to interact with several anions and M2+ cations as separate events that result in colorimetric changes. Moreover, the compounds can behave as heteroditopic receptors. Besides, a previous interaction between fluoride ions and perezone derivatives triggered a successful recognition of M2+ ions, remarking Ni2+ as the most interesting phenomenon. These results project the compounds as potential colorimetric receptors for nickel ions in complex solutions.
Collapse
Affiliation(s)
- Mario Valle-Sánchez
- Laboratorio
de Diseño Molecular, Instituto de
Investigaciones Químico-Biológicas, Edificio B-1, Ciudad Universitaria, Morelia, Michoacán 58030 Mexico
| | - Claudia A. Contreras-Celedón
- Laboratorio
de Diseño Molecular, Instituto de
Investigaciones Químico-Biológicas, Edificio B-1, Ciudad Universitaria, Morelia, Michoacán 58030 Mexico
| | - Adrián Ochoa-Terán
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, 22510 Tijuana, Baja California, Mexico
| | - Luis Chacón-García
- Laboratorio
de Diseño Molecular, Instituto de
Investigaciones Químico-Biológicas, Edificio B-1, Ciudad Universitaria, Morelia, Michoacán 58030 Mexico
| |
Collapse
|
71
|
Dong K, Humeidi A, Griffith W, Arman H, Xu X, Doyle MP. Ag
I
‐Catalyzed Reaction of Enol Diazoacetates and Imino Ethers: Synthesis of Highly Functionalized Pyrroles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuiyong Dong
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ahmad Humeidi
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Wendell Griffith
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi Arman
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Michael P. Doyle
- Department of Chemistry The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
72
|
Shang J, Gong H, Zhang Q, Cui Z, Li S, Lv P, Pan T, Ge Y, Qi Z. The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Aguilar A, He Q, Lammer A, Thordarson P, Sessler JL. Double tailed scorpiand-type calix[10]phyrin: Synthesis and proton-driven anion recognition features. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Dong K, Humeidi A, Griffith W, Arman H, Xu X, Doyle MP. Ag I -Catalyzed Reaction of Enol Diazoacetates and Imino Ethers: Synthesis of Highly Functionalized Pyrroles. Angew Chem Int Ed Engl 2021; 60:13394-13400. [PMID: 33831277 DOI: 10.1002/anie.202101641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Indexed: 12/11/2022]
Abstract
An unprecedented AgI -catalyzed efficient method for the coupling of imino ethers and enol diazoacetates through a [3+2]-cycloaddition/C-O bond cleavage/[1,5]-proton transfer cascade process is reported. The general class of imino ethers that includes oxazolines, benzoxazoles and benzimidates are applicable substrates for these reactions that provide direct access to fully substituted pyrroles with uniformly high chemo- and regioselectivity. High variability in substitution at the pyrrole 2-, 5- and N-positions characterizes this methodology that also presents an entry point for further pyrrole diversification via facile modification of resulting N-functional pyrroles.
Collapse
Affiliation(s)
- Kuiyong Dong
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ahmad Humeidi
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Wendell Griffith
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
75
|
Abstract
ConspectusMacrocycles have had a profound influence on the establishment of supramolecular chemistry because of their abundant molecular recognition and self-assembly characteristics. The design of new macrocyclic receptors that can be tailored by synthesis to display new and exotic properties is an important research objective for chemists and materials scientists. Rigid macrocycles with π-conjugated aromatic units, in contrast with flexible ones, tend to possess large interior and exterior π-surfaces in addition to persistent shapes. These features not only endow these macrocycles with a wide range of host-guest properties but also render them ideal building blocks for constructing a diverse variety of supramolecular architectures. The incorporation of π-conjugated units into macrocycles also imbues them with a wealth of optical, electronic, and magnetic properties, resulting in their broad application in materials science and molecular nanotechnology.Recently, we have designed and synthesized a new class of macrocycles, namely, molecular triangles, which have rigid structures with triangular geometries. They consist of three chiral trans-1,2-cyclohexano apexes and three aromatic tetracarboxylic diimide linkers, such as pyromellitic diimide, naphthalene diimide, and perylene diimide. Benefiting from the availability of facile synthetic protocols, the geometries and properties of these rigid molecular triangles can be altered at will. By combining these tetracarboxylic diimide linkers, we have been able to synthesize both molecular equilateral and isosceles triangles. During the past few years, we have conducted research in a systematic manner on the structural features and self-assembly characteristics of these molecular triangles. The following points are worthy of note regarding these molecular triangles: (i) They possess shape-persistent inner cavities of a highly electron-deficient nature. These features endow them with the ability to complex with anions and electron-rich molecules, forming supramolecular nanotubes and two-dimensional tilings. (ii) Those with intrinsic chirality are able to self-assemble into solid-state nonhelical or single-handed helical superstructures, inducing selective chirality transfer from the macrocycles to their crystalline supramolecular assemblies. (iii) The triangular arrangement of aromatic tetracarboxylic diimide linkers contributes to through-space electron delocalization encompassing the entire macrocycle, conferring exotic electronic and spin properties. To date, the family of molecular triangles has exhibited a range of physicochemical properties, such as anion recognition, chiral assembly, supramolecular gelation, energy storage, solid-state luminescence, and nonlinear optical response.In this Account, we summarize our recent progress in research into these molecular triangles. We present an overview of their design and synthesis, as well as a general summary of their structural features. Thereafter, we discuss state-of-the-art developments in relation to their molecular recognition properties and their assembly characteristics. In addition, we highlight the potential applications of these molecular triangles and their complexes with a range of solvents and electron-rich molecules. Finally, we speculate on further structural modifications and application-oriented explorations based on this class of molecular triangles.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
76
|
Brake H, Peresypkina E, Virovets AV, Kremer W, Klimas C, Schwarzmaier C, Scheer M. Au-Containing Coordination Polymers Based on Polyphosphorus Ligand Complexes. Inorg Chem 2021; 60:6027-6039. [PMID: 33830751 DOI: 10.1021/acs.inorgchem.1c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas the self-assembly of pentaphosphaferrocenes [CpRFe(η5-P5)] (CpR = Cp*, Cp×, and CpBn) with Cu and Ag salts has been well-studied in the past, the coordination chemistry toward Au complexes has been left untouched so far. Herein, the results of the self-assembly processes of [CpRFe(η5-P5)] with Au salts of different anions (GaCl4-, SbF6-, and Al(OC(CF3)3)4 (TEF-)) are reported. Next to a variety of molecular coordination products, the first coordination polymers based on polyphosphorus ligand complexes and Au salts are also obtained. Thereby, a 2D coordination polymer comprising metal vacancies is isolated. In all products, the Au centers are coordinated in a linear or a trigonal planar environment. In solution, highly dynamic processes are observed. Variable-temperature NMR spectroscopy, solid-state NMR spectroscopy, and X-ray powder diffraction were applied to gain further insight into selected coordination compounds.
Collapse
Affiliation(s)
- Helena Brake
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Christian Klimas
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
77
|
Wang T, Liu J, Cao X. Revealing the Dynamic Process of Ion Pair Recognition by Calix[4]pyrrole: A Case Study of Cesium Chloride. J Phys Chem Lett 2021; 12:3253-3259. [PMID: 33764069 DOI: 10.1021/acs.jpclett.1c00628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion pair receptors based on meso-octamethylcalix[4]pyrrole (CP) have been extensively investigated over recent years. However, the nature of their ion pair recognition has barely been reported, even for CP itself. Herein, cesium chloride was used as a guest ion pair to investigate the dynamic process of ion pair recognition by CP, and the "capture-bind" mechanism for this process is proposed for the first time. The results reveal that Cs+ can be first captured by Cl- at long distances, and then it is bound to the cavity through almost equal contributions of Cl- and CP. Although the effective charge of Cl- is obviously reduced by charge-transfer, the electrostatic interactions between Cl- and Cs+ are still strong even at long distances in the presence of CP.
Collapse
Affiliation(s)
- Teng Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, P. R. China
| | - Jingjing Liu
- School of Chemistry and Chemical Engineering, Taishan University, Taian, 271021, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, P. R. China
| |
Collapse
|
78
|
Zhai H, Xiong S, Peng S, Sheng W, Xu G, Sessler JL, He Q. Thallium(I) Salts: New Partners for Calix[4]pyrroles. Org Lett 2021; 23:2638-2642. [PMID: 33733784 DOI: 10.1021/acs.orglett.1c00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calix[4]pyrrole 1 can form host-guest complexes with certain thallium salts, for example, TlF, not only in the gas phase but also in solution and in the solid state. The complexation of TlF by calix[4]pyrrole 1 was found to promote self-assembly and the formation of well-defined and highly ordered fibrous supramolecular morphologies, as revealed by polarizing microscopy and scanning electron microscopy. The findings reported here serve to broaden the scope of cationic substrates that may be complexed as ion pairs by calix[4]pyrrole receptors while setting the stage for the development of new hosts for thallium(I) salts.
Collapse
Affiliation(s)
- Huijuan Zhai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shenglun Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenlei Sheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
79
|
Solvent-Controlled Self-Assembled Oligopyrrolic Receptor. Molecules 2021; 26:molecules26061771. [PMID: 33809927 PMCID: PMC8004224 DOI: 10.3390/molecules26061771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
We report a fully organic pyridine-tetrapyrrolic U-shaped acyclic receptor 10, which prefers a supramolecular pseudo-macrocyclic dimeric structure (10)2 in a less polar, non-coordinating solvent (e.g., CHCl3). Conversely, when it is crystalized from a polar, coordinating solvent (e.g., N,N-dimethylformamide, DMF), it exhibited an infinite supramolecular one-dimensional (1D) “zig-zag” polymeric chain, as inferred from the single-crystal X-ray structures. This supramolecular system acts as a potential receptor for strong acids, e.g., p-toluenesulfonic acid (PTSA), methane sulfonic acid (MSA), H2SO4, HNO3, and HCl, with a prominent colorimetric response from pale yellow to deep red. The receptor can easily be recovered from the organic solution of the host–guest complex by simple aqueous washing. It was observed that relatively stronger acids with pKa < −1.92 in water were able to interact with the receptor, as inferred from 1H NMR titration in tetrahydrofuran-d8 (THF-d8) and ultraviolet–visible (UV–vis) spectroscopic titrations in anhydrous THF at 298 K. Therefore, this new dynamic supramolecular receptor system may have potentiality in materials science research.
Collapse
|
80
|
Zhang D, Ronson TK, Zou YQ, Nitschke JR. Metal–organic cages for molecular separations. Nat Rev Chem 2021; 5:168-182. [PMID: 37117530 DOI: 10.1038/s41570-020-00246-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022]
Abstract
Separation technology is central to industries as diverse as petroleum, pharmaceuticals, mining and life sciences. Metal-organic cages, a class of molecular containers formed via coordination-driven self-assembly, show great promise as separation agents. Precise control of the shape, size and functionalization of cage cavities enables them to selectively bind and distinguish a wide scope of physicochemically similar substances in solution. Extensive research has, thus, been performed involving separations of high-value targets using coordination cages, ranging from gases and liquids to compounds dissolved in solution. Enantiopure capsules also show great potential for the separation of chiral molecules. The use of crystalline cages as absorbents, or the incorporation of cages into polymer membranes, could increase the selectivity and efficiency of separation processes. This Review covers recent progress in using metal-organic cages to achieve separations, with discussion of the many methods of using them in this context. Challenges and potential future developments are also discussed.
Collapse
|
81
|
Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021; 427:213560. [PMID: 34108734 PMCID: PMC8184024 DOI: 10.1016/j.ccr.2020.213560] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
82
|
Villarón D, Siegler MA, Wezenberg SJ. A photoswitchable strapped calix[4]pyrrole receptor: highly effective chloride binding and release. Chem Sci 2021; 12:3188-3193. [PMID: 34164086 PMCID: PMC8179391 DOI: 10.1039/d0sc06686a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
A stiff-stilbene strapped calix[4]pyrrole receptor can be reversibly switched by light between a strong chloride-binding Z-isomer and a very weakly binding E-isomer. The light-induced switching process is monitored by UV-Vis and 1H NMR spectroscopy and chloride binding is studied in detail using both 1H NMR and ITC titrations in DMSO and MeCN. In DMSO, at millimolar concentrations, switching from a fully bound to an almost fully unbound state can be triggered. Quantification of the binding constants in MeCN reveals an extraordinary 8000-fold affinity difference between the Z- and E-isomer. Single crystal X-ray crystallographic analysis gives insight into the structure of the photogenerated E-isomer and the geometry of the chloride-bound receptors is optimized by DFT calculations. The highly effective control of binding affinity demonstrated in this work opens up new prospects for on demand binding and release in extractions and photocontrol of membrane transport processes, among other applications.
Collapse
Affiliation(s)
- David Villarón
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Baltimore MD 21218 USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
83
|
Lai Z, Zhao T, Sessler JL, He Q. Bis–Calix[4]pyrroles: Preparation, structure, complexation properties and beyond. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
84
|
Oh JH, Yang JH, Choi H, Kim SK. Bicarbonate Recognition Features of a
Naphthobipyrrole‐strapped
Calix[4]pyrrole. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| | - Ju Ho Yang
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| | - Han‐Byeol Choi
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
85
|
Zhang S, Wang Z, Cao Q, Yue E, Liu Q, Ma Y, Liang T, Sun WH. Aza-crown compounds synthesised by the self-condensation of 2-amino-benzyl alcohol over a pincer ruthenium catalyst and applied in the transfer hydrogenation of ketones. Dalton Trans 2020; 49:15821-15827. [PMID: 33151229 DOI: 10.1039/d0dt03257c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A well-defined PNN-Ru catalyst was revisited to self-condense 2-aminobenzyl alcohol in forming a series of novel aza-crown compounds [aza-12-crown-3 (1), aza-16-crown-4 (2) and aza-20-crown-5 (3)]. All aza-crown compounds are separated and determined by NMR, IR, and ESI-MS spectroscopy as well as X-ray crystallography, indicating the saddle structure of 1 and the twisted 1,3-alternate conformation structure of 3. These aza-crown compounds have been explored to study ferric initiation of transfer hydrogenation (TH) of ketones into their corresponding secondary alcohols in the presence of 2-propanol with a basic t-BuOK solution, achieving a high conversion (up to 95%) by a ferric complex with 2 in a low loading (0.05 mol%).
Collapse
Affiliation(s)
- Shanshan Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Zheng Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China. and Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianrong Cao
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China. and Hebei Research Institute of Microbiology, Baoding 071051, China
| | - Erlin Yue
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingbin Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tongling Liang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
86
|
Li A, Zhai H, Li J, He Q. Practical Applications of Supramolecular Extraction with Macrocycles. CHEM LETT 2020. [DOI: 10.1246/cl.200409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huijuan Zhai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jilian Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
87
|
Affiliation(s)
- Daisuke Shimoyama
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi Hiroshima 739-8526 Japan
| |
Collapse
|
88
|
Wu H, Wang Y, Jones LO, Liu W, Song B, Cui Y, Cai K, Zhang L, Shen D, Chen XY, Jiao Y, Stern CL, Li X, Schatz GC, Stoddart JF. Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. J Am Chem Soc 2020; 142:16849-16860. [PMID: 32886881 DOI: 10.1021/jacs.0c07745] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One ring threaded by two other rings to form a non-intertwined ternary ring-in-rings motif is a challenging task in noncovalent synthesis. Constructing multicolor photoluminescence systems with tunable properties is also a fundamental research goal, which can lead to applications in multidimensional biological imaging, visual displays, and encryption materials. Herein, we describe the design and synthesis of binary and ternary ring-in-ring(s) complexes, based on an extended tetracationic cyclophane and cucurbit[8]uril. The formation of these complexes is accompanied by tunable multicolor fluorescence outputs. On mixing equimolar amounts of the cyclophane and cucurbit[8]uril, a 1:1 ring-in-ring complex is formed as a result of hydrophobic interactions associated with a favorable change in entropy. With the addition of another equivalent of cucurbit[8]uril, a 1:2 ring-in-rings complex is formed, facilitated by additional ion-dipole interactions involving the pyridinium units in the cyclophane and the carbonyl groups in cucurbit[8]uril. Because of the narrowing in the energy gaps of the cyclophane within the rigid hydrophobic cavities of cucurbit[8]urils, the binary and ternary ring-in-ring(s) complexes emit green and bright yellow fluorescence, respectively. A series of color-tunable emissions, such as sky blue, cyan, green, and yellow with increased fluorescence lifetimes, can be achieved by simply adding cucurbit[8]uril to an aqueous solution of the cyclophane. Notably, the smaller cyclobis(paraquat-p-phenylene), which contains the same p-xylylene linkers as the extended tetracationic cyclophane, does not form ring-in-ring(s) complexes with cucurbit[8]uril. The encapsulation of this extended tetracationic cyclophane by both one and two cucurbit[8]urils provides an incentive to design and synthesize more advanced supramolecular systems, as well as opening up a feasible approach toward achieving tunable multicolor photoluminescence with single chromophores.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
| |
Collapse
|
89
|
Mutihac RC, Bunaciu AA, Buschmann HJ, Mutihac L. A brief overview on supramolecular analytical chemistry of cucurbit[n]urils and hemicucurbit[n]urils. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
90
|
Heo NJ, Yang JH, Lynch VM, Ko BJ, Sessler JL, Kim SK. Capture and displacement-based release of the bicarbonate anion by calix[4]pyrroles with small rigid straps. Chem Sci 2020; 11:8288-8294. [PMID: 34094182 PMCID: PMC8163245 DOI: 10.1039/d0sc03445b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Two-phenoxy walled calix[4]pyrroles 1 and 2 strapped with small rigid linkers containing pyridine and benzene, respectively, have been synthesized. 1H NMR spectroscopic analyses carried out in CDCl3 revealed that both of receptors 1 and 2 recognize only F- and HCO3 - among various test anions with high preference for HCO3 - (as the tetraethylammonium, TEA+ salt) relative to F- (as the TBA+ salt). The bound HCO3 - anion was completely released out of the receptors upon the addition of F- (as the tetrabutylammonium, TBA+ salt) as a result of significantly enhanced affinities and selectivities of the receptors for F- once converted to the TEAHCO3 complexes. Consequently, relatively stable TEAF complexes of receptors 1 and 2 were formed via anion metathesis occurring within the receptor cavities. By contrast, the direct addition of TEAF to receptors 1 and 2 produces different complexation products initially, although eventually the same TEAF complexes are produced as via sequential TEAHCO3 and TBAF addition. These findings are rationalized in terms of the formation of different ion pair complexes involving interactions both inside and outside of the core receptor framework.
Collapse
Affiliation(s)
- Nam Jung Heo
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University Jinju 660-701 Korea
| | - Ju Ho Yang
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University Jinju 660-701 Korea
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street-Stop A5300 Austin Texas 78712-1224 USA
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovation Foundation Chungbuk Korea 28160
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street-Stop A5300 Austin Texas 78712-1224 USA
| | - Sung Kuk Kim
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University Jinju 660-701 Korea
| |
Collapse
|
91
|
Narukawa R, Kobayashi T, Fukunaga S, Suzuki Y, Kan T, Kondo M. Substituent-controlled Constructions of M 2L 4 Cage and 1D Network Structures for Cu(II) Complexes with Bis-benzimidazole Ligands. CHEM LETT 2020. [DOI: 10.1246/cl.200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryo Narukawa
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toya Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Saki Fukunaga
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yuna Suzuki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mitsuru Kondo
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Green Bio Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
92
|
Bartl J, Kubik S. Anion Binding of a Cyclopeptide-Derived Molecular Cage in Aqueous Solvent Mixtures. Chempluschem 2020; 85:963-969. [PMID: 32406613 DOI: 10.1002/cplu.202000255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 11/06/2022]
Abstract
A molecular cage consisting of two cyclic hexapeptides with an alternating sequence of (2S,4S)-4-aminoproline and 6-aminopicolinic acid subunits, covalently linked via three diglycolic acid subunits, interacts with a variety of inorganic anions in acetonitrile/water. In the respective complexes, the anion resides in a cavity between the two cyclopeptide rings where it interacts with six converging NH groups. The cage binds sulfate anions in acetonitrile/water, 2 : 1 (v/v) with a log Ka of 6.7, ca. 2.5 orders of magnitude stronger than an analogous bis(cyclopeptide) with only one linker whose sulfate affinity log Ka amounts to 4.3. The preorganization induced by the three linking units is thus beneficial for sulfate binding. In addition, these linkers cause the dissociation of the sulfate complex to have a substantial Gibbs free energy of activation ΔG≠ of 68.9 kJ mol-1 and they also seem to affect anion selectivity as illustrated by the different effects some anions produce on the 1 H NMR spectra of the triply and singly-linked bis(cyclopeptides). Such anion binding cages represent promising scaffolds to mimic natural anion receptors such as the sulfate-binding protein.
Collapse
Affiliation(s)
- Julia Bartl
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| | - Stefan Kubik
- Fachbereich Chemie - Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| |
Collapse
|
93
|
Guo C, Wang H, Lynch VM, Ji X, Page ZA, Sessler JL. Molecular recognition of pyrazine N, N'-dioxide using aryl extended calix[4]pyrroles. Chem Sci 2020; 11:5650-5657. [PMID: 34094078 PMCID: PMC8159416 DOI: 10.1039/d0sc01496f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/19/2020] [Indexed: 02/02/2023] Open
Abstract
Calix[4]pyrrole (C4P)-based systems have been extensively explored as binding agents for anions and ion pairs. However, their capacity to act as molecular containers for neutral species remains underexplored. We report here the molecular recognition of pyrazine N,N'-dioxide (PZDO) using a series of aryl extended C4Ps including three α,α-diaryl substituted C4Ps (receptors 1-3), an α,β-diaryl substituted C4P (receptor 4) and an α,α,α,α-tetraaryl substituted C4P (receptor 5). Single crystal structural analyses of the 2 : 1 host-guest complexes between receptors 1-3 and PZDO revealed that the C4P subunits exist in an unusual partial cone conformation and that the PZDO guest is held within electron-rich cavities formed by the lower rims of the individual C4P macrocycle. In contrast, receptor 5 was seen to adopt the cone conformation in the solid state, allowing one PZDO molecule to be accommodated inside the upper-rim cavity. Evidence for guest-directed self-assembly is also seen in the solid state. Evidence for C4P-PZDO interactions in CD3CN/CD3OD solution came from 1H NMR spectroscopic titrations. Electrostatic potential maps created by means of density functional theory calculations were constructed. Density functional theory calculations were also performed to analyse the energetics of various limiting binding modes. On the basis of these studies, it is inferred that interactions between the 'two-wall' C4P derivatives (i.e. receptors 1-4) and PZDO involve a complex binding mode that differs from what has been seen in previous host-guest complexes formed between C4Ps and N-oxides. The present study thus paves the way for the further design of C4P-based receptors with novel recognition features.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin Texas 78712 USA
| | - Hu Wang
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin Texas 78712 USA
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin Texas 78712 USA
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan 430074 China
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin Texas 78712 USA
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin Texas 78712 USA
| |
Collapse
|
94
|
Affiliation(s)
- Franz H. Kohnke
- Department CHIBIOFARAM; University of Messina; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
95
|
Dey SK, Archana, Pereira S, Harmalkar SS, Mhaldar SN, Gobre VV, Janiak C. Selective encapsulation and extraction of hydrogenphosphate by a hydrogen bond donor tripodal receptor. CrystEngComm 2020. [DOI: 10.1039/d0ce00834f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intramolecular N–H⋯OC hydrogen bonding between the inner amide groups dictates the receptor–anion complementarity in a tripodal receptor towards selective encapsulation of hydrogenphosphate in the outer urea cavity by multiple hydrogen bonds.
Collapse
Affiliation(s)
| | - Archana
- School of Chemical Sciences
- Goa University
- Taleigao Plateau
- India
| | - Sybil Pereira
- School of Chemical Sciences
- Goa University
- Taleigao Plateau
- India
| | | | | | | | - Christoph Janiak
- Institute for Inorganic and Structural Chemistry
- Heinrich-Heine University Dusseldorf
- 40225 Dusseldorf
- Germany
| |
Collapse
|
96
|
Hong KI, Kim H, Kim Y, Choi MG, Jang WD. Strapped calix[4]pyrrole as a lithium salts selective receptor through separated ion-pair binding. Chem Commun (Camb) 2020; 56:10541-10544. [DOI: 10.1039/d0cc04809g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triazole-bearing strapped calix[4]pyrrole (1) was synthesized as a lithium salt selective ion pair receptor.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | | | - Younghun Kim
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Moon-Gun Choi
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Woo-Dong Jang
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| |
Collapse
|