51
|
Das S, Mabuchi H, Irie T, Sasaki K, Nozaki M, Tomioka R, Wen D, Zhao Y, Ben T, Negishi Y. 3D Covalent Organic Framework with "the" Topology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307666. [PMID: 38279566 DOI: 10.1002/smll.202307666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Collapse
Affiliation(s)
- Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mika Nozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
52
|
Bommakanti S, Nath S, Panda R, Panda SN, Mohapatra J, Puthukkudi A, Rajput CV, Anwar S, Das R, Biswal BP. Octupolar Cyclotriphosphazene-Cored Self-Standing Covalent Organic Framework Membranes as Nonlinear Optical Materials: Impact of Linkage Types and Material Forms. J Phys Chem Lett 2024:4965-4975. [PMID: 38690787 DOI: 10.1021/acs.jpclett.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Conjugated and processable self-standing vinylene-linked covalent organic framework membranes (COFMs) are highly demanding for photonics and optoelectronics. In this work, we have fabricated the first cyclotriphosphazene (CTP) cored vinylene-linked self-standing COFM (CTP-PDAN). For comparison purposes, we have successfully fabricated the imine-linked congener (CTP-PDA). Leveraging the inherent nonlinear optical (NLO) response of the CTP core, both membranes were directly mounted to evaluate NLO parameters using the open-aperture (OA) Z-scan technique. Direct measurement of NLO responses on membranes is advantageous and free from solvent and scattering effects, making it a more practical approach compared to the conventional dispersion mode. The OA Z-scan transmission yields a reverse saturable absorption signature exhibiting a higher NLO absorption coefficient (β) of 58.37 cm/GW for CTP-PDAN, compared to that of the imine-linked CTP-PDA COFM (β = 8.5 cm/GW). These results can be correlated to the efficient conjugation through the vinylene linkage in CTP-PDAN compared to the imine linked congener.
Collapse
Affiliation(s)
- Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Rudrashish Panda
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Sankalpa N Panda
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chetan V Rajput
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Sharmistha Anwar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Ritwick Das
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| |
Collapse
|
53
|
Wang M, Lv H, Dong B, He W, Yuan D, Wang X, Wang R. Photoelectron Migration Boosted by Hollow Double-Shell Dyads Based on Covalent Organic Frameworks for Highly Efficient Photocatalytic Hydrogen Generation. Angew Chem Int Ed Engl 2024; 63:e202401969. [PMID: 38372671 DOI: 10.1002/anie.202401969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Photocatalytic hydrogen production based on noble metal-free systems is a promising technology for the conversion of solar energy into green hydrogen, it is pivotal and challenging to tailor-make photocatalysts for achieving high photocatalytic efficiency. Herein, we reported a hollow double-shell dyad through uniformly coating covalent organic frameworks (COFs) on the surface of hollow Co9S8. The double shell architecture enhances the scattering and refraction efficiency of incident light, shortens the transmission distance of the photogenerated charge carriers, and exposes more active sites for photocatalytic conversion. The hydrogen evolution rate is as high as 23.15 mmol g-1 h-1, which is significantly enhanced when compared with that of their physical mixture (0.30 mmol g-1 h-1) and Pt-based counterpart (11.84 mmol g-1 h-1). This work provides a rational approach to the construction of noble-metal-free photocatalytic systems based on COFs to enhance hydrogen evolution performance.
Collapse
Affiliation(s)
- Meiying Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Haowei Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Beibei Dong
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Wenhao He
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| |
Collapse
|
54
|
Dey A, Pradhan J, Biswas S, Ahamed Rahimi F, Biswas K, Maji TK. COF-Topological Quantum Material Nano-heterostructure for CO 2 to Syngas Production under Visible Light. Angew Chem Int Ed Engl 2024; 63:e202315596. [PMID: 38400778 DOI: 10.1002/anie.202315596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Efficient solar-driven syngas production (CO+H2 mixture) from CO2 and H2O with a suitable photocatalyst and fundamental understanding of the reaction mechanism are the desired approach towards the carbon recycling process. Herein, we report the design and development of an unique COF-topological quantum material nano-heterostructure, COF@TI with a newly synthesized donor-acceptor based COF and two dimensional (2D) nanosheets of strong topological insulator (TI), PbBi2Te4. The intrinsic robust metallic surfaces of the TI act as electron reservoir, minimising the fast electron-hole recombination process, and the presence of 6s2 lone pairs in Pb2+ and Bi3+ in the TI helps for efficient CO2 binding, which are responsible for boosting overall catalytic activity. In variable ratio of acetonitrile-water (MeCN : H2O) solvent mixture COF@TI produces syngas with different ratios of CO and H2. COF@TI nano-heterostructure enables to produce higher amount of syngas with more controllable ratios of CO and H2 compared to pristine COF. The electron transfer route from COF to TI was realized from Kelvin probe force microscopy (KPFM) analysis, charge density difference calculation, excited state lifetime and photoelectrochemical measurements. Finally, a probable mechanistic pathway has been established after identifying the catalytic sites and reaction intermediates by in situ DRIFTS study and DFT calculation.
Collapse
Affiliation(s)
- Anupam Dey
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Jayita Pradhan
- New Chemistry Unit (NCU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Sandip Biswas
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Kanishka Biswas
- New Chemistry Unit (NCU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
- New Chemistry Unit (NCU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| |
Collapse
|
55
|
Yao L, Pütz AM, Vignolo-González H, Lotsch BV. Covalent Organic Frameworks as Single-Site Photocatalysts for Solar-to-Fuel Conversion. J Am Chem Soc 2024; 146:9479-9492. [PMID: 38547041 PMCID: PMC11009957 DOI: 10.1021/jacs.3c11539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Single-site photocatalysts (SSPCs) are well-established as potent platforms for designing innovative materials to accomplish direct solar-to-fuel conversion. Compared to classical inorganic porous materials, such as zeolites and silica, covalent organic frameworks (COFs)─an emerging class of porous polymers that combine high surface areas, structural diversity, and chemical stability─are attractive candidates for SSPCs due to their molecular-level precision and intrinsic light harvesting ability, both amenable to structural engineering. In this Perspective, we summarize the design concepts and state-of-the-art strategies for the construction of COF SSPCs, and we review the development of COF SSPCs and their applications in solar-to-fuel conversion from their inception. Underlying pitfalls concerning photocatalytic characterization are discussed, and perspectives for the future development of this burgeoning field are given.
Collapse
Affiliation(s)
- Liang Yao
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Alexander M. Pütz
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Hugo Vignolo-González
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
- E-Conversion
and Center for Nanoscience, Lichtenbergstraße 4a, Garching, 85748 Munich, Germany
| |
Collapse
|
56
|
S S, Rajamohan N, S S, R A, M R. Sustainable remediation of pesticide pollutants using covalent organic framework - A review on material properties, synthesis methods and application. ENVIRONMENTAL RESEARCH 2024; 246:118018. [PMID: 38199472 DOI: 10.1016/j.envres.2023.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Covalent organic frameworks (COF) have emerged as a potential class of materials for a variety of applications in a wide number of sectors including power storage, environmental services, and biological applications due to their ordered and controllable porosity, large surface area, customizable structure, remarkable stability, and diverse electrical characteristics. COF have received a lot of attention in recent years in the field of environmental remediation, It also find its way to eliminate the emerging pollutant from the environment notably pesticide from polluted water. This review more concentrated on the application of COF in pesticide removal by modifying COF structure, COF synthesis and material properties. To increase the adsorption ability and selectivity of the material towards certain pesticides removal, the synthesis of COF involves organic linkers with various functional groups such as amine, carboxylic acid groups etc. The COF have a high degree of stability and endurance make them suitable for intermittent usage in water treatment applications. This review manifests the novel progress where modified COFs employed in a prominent manner to remove pesticides from polluted water. Some examples of COF application in the eradication of pesticides are triformyl phenylene framework functionalized with amine groups has capacity to remove up to 50 mg/l of Organophosphorus - chlorpyrifos. COF modified to improve their photocatalytic capacity to breakdown the pesticide under visible light irradiation. COF tetraphenyl ethylene linked with carboxylic acid group shows efficient photocatalytic degradation of 90% of organochlorine insecticide endosulfan when subjected to visible light. Atrazine and imidacloprid are reduced from 100 ppm to 1 ppm in aqueous solutions by COF based on high adsorption capacity. In addition, the strategies, technique, synthesis and functional group modification design of COF are discussed.
Collapse
Affiliation(s)
- Sujatha S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India.
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - Sanjay S
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Abhishek R
- Department of Chemical Engineering, St.Joseph's College of Engineering, OMR, Chennai, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
57
|
Llauradó-Capdevila G, Veciana A, Guarducci MA, Mayoral A, Pons R, Hertle L, Ye H, Mao M, Sevim S, Rodríguez-San-Miguel D, Sorrenti A, Jang B, Wang Z, Chen XZ, Nelson BJ, Matheu R, Franco C, Pané S, Puigmartí-Luis J. Tailored Design of a Water-Based Nanoreactor Technology for Producing Processable Sub-40 Nm 3D COF Nanoparticles at Atmospheric Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306345. [PMID: 38146105 DOI: 10.1002/adma.202306345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Indexed: 12/27/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.
Collapse
Affiliation(s)
- Gemma Llauradó-Capdevila
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Andrea Veciana
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Maria Aurora Guarducci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, 00185, Italy
| | - Alvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Ramon Pons
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, 08034, Spain
| | - Lukas Hertle
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Hao Ye
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Minmin Mao
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Semih Sevim
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | | | - Alessandro Sorrenti
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Bumjin Jang
- Department of Robotics, Hanyang University ERICA Campus, Ansan-si, 15588, Republic of Korea
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, P. R. China
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Roc Matheu
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Carlos Franco
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
58
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
59
|
Neumann SE, Kwon J, Gropp C, Ma L, Giovine R, Ma T, Hanikel N, Wang K, Chen T, Jagani S, Ritchie RO, Xu T, Yaghi OM. The propensity for covalent organic frameworks to template polymer entanglement. Science 2024; 383:1337-1343. [PMID: 38513024 DOI: 10.1126/science.adf2573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
The introduction of molecularly woven three-dimensional (3D) covalent organic framework (COF) crystals into polymers of varying types invokes different forms of contact between filler and polymer. Whereas the combination of woven COFs with amorphous and brittle polymethyl methacrylate results in surface interactions, the use of the liquid-crystalline polymer polyimide induces the formation of polymer-COF junctions. These junctions are generated by the threading of polymer chains through the pores of the nanocrystals, thus allowing for spatial arrangement of polymer strands. This offers a programmable pathway for unthreading polymer strands under stress and leads to the in situ formation of high-aspect-ratio nanofibrils, which dissipate energy during the fracture. Polymer-COF junctions also strengthen the filler-matrix interfaces and lower the percolation thresholds of the composites, enhancing strength, ductility, and toughness of the composites by adding small amounts (~1 weight %) of woven COF nanocrystals. The ability of the polymer strands to closely interact with the woven framework is highlighted as the main parameter to forming these junctions, thus affecting polymer chain penetration and conformation.
Collapse
Affiliation(s)
- S Ephraim Neumann
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Junpyo Kwon
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cornelius Gropp
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Le Ma
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Raynald Giovine
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Tianqiong Ma
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Nikita Hanikel
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Kaiyu Wang
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Tiffany Chen
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shaan Jagani
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Robert O Ritchie
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ting Xu
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science & Engineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Omar M Yaghi
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
- Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
60
|
Koner K, Mohata S, Ogaeri Y, Nishiyama Y, Addicoat MA, Banerjee R. Enhancing the Crystallinity of Keto-enamine-Linked Covalent Organic Frameworks through an in situ Protection-Deprotection Strategy. Angew Chem Int Ed Engl 2024; 63:e202316873. [PMID: 38324467 DOI: 10.1002/anie.202316873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
β-Keto-enamine-linked 2D covalent organic frameworks (COFs) have emerged as highly robust materials, showing significant potential for practical applications. However, the exclusive reliance on 1,3,5-triformylphloroglucinol (Tp aldehyde) in the design of such COFs often results in the production of non-porous amorphous polymers when combined with certain amine building blocks. Attempts to adjust the crystallinity and porosity by a modulator approach are inefficient because Tp aldehyde readily forms stable β-keto-enamine-linked monomers/oligomers with various aromatic amines through an irreversible keto-enol tautomerization process. Our research employed a unique protection-deprotection strategy to enhance the crystallinity and porosity of β-keto-enamine-linked squaramide-based 2D COFs. Advanced solid-state NMR studies, including 1D 13 C CPMAS, 1 H fast MAS, 15 N CPMAS, 2D 13 C-1 H correlation, 1 H-1 H DQ-SQ, and 14 N-1 H HMQC NMR were used to establish the atomic-level connectivity within the resultant COFs. The TpOMe -Sqm COFs synthesized utilizing this strategy have a surface area of 487 m2 g-1 , significantly higher than similar COFs synthesized using Tp aldehyde. Furthermore, detailed time-dependent PXRD, solid-state 13 C CPMAS NMR, and theoretical DFT studies shed more light on the crystallization and linkage conversion processes in these 2D COFs. Ultimately, we applied this protection-deprotection method to construct novel keto-enamine-linked highly porous organic polymers with a surface area of 1018 m2 g-1 .
Collapse
Affiliation(s)
- Kalipada Koner
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| | - Shibani Mohata
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| | - Yutaro Ogaeri
- JEOL Ltd. Musashino, Akishima, Tokyo, 196-8558, Japan
| | | | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, UK
| | - Rahul Banerjee
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata Mohanpur, 741246, India
| |
Collapse
|
61
|
Han X, Jiang C, Hou B, Liu Y, Cui Y. Covalent Organic Frameworks with Tunable Chirality for Chiral-Induced Spin Selectivity. J Am Chem Soc 2024; 146:6733-6743. [PMID: 38418379 DOI: 10.1021/jacs.3c13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) have attracted extensive interest for their potential applications in various enantioselective processes. However, the exploitation of chirality-induced spin selectivity (CISS) that enables a new technology for the injection of spin polarized current without the need for a permanent magnetic layer within CCOFs remains a largely untapped area of research. Here, we demonstrate that, for the first time, COFs can be an attractive platform to develop spin filter materials with efficient CISS. This facilitates the design and synthesis of a new family of Zn(salen)-based 2D CCOFs, namely, CCOFs-9-12, by imine condensation of chiral 1,2-diaminocyclohexane and tri- or tetra(salicylaldehyde) derivatives. CCOF-9, distinguished by its unique C2 symmetric "armchair" tetrasubstituted pyrene conformation, exhibits the most pronounced chirality among these materials and serves as a solid-state host, enabling the enantioselective adsorption of racemic drugs with an enantiomeric excess (ee) of up to 97%. After substituting diamagnetic zinc(II) ions for paramagnetic cobalt(II), the resulting CCOF-9-Co not only retains its high crystallinity, porosity, and exceptional chirality but also exhibits enhanced conductivity, a crucial factor for the effective observation of CISS. Magnetic conductive atomic force microscopy showed that CCOF-9-Co exhibited a remarkable CISS effect with up to an 88-94% spin polarization ratio. This phenomenon is further confirmed by the increased intensity in the magnetic circular dichroism (MCD) when CCOF-9-Co is under an external magnetic field. This work therefore shows the tremendous potential of CCOFs for controlling spin selectivity and will stimulate the creation of new types of crystalline polymers with strong CISS effects for spin filters.
Collapse
Affiliation(s)
- Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
62
|
Kumar Y, Ahmad I, Rawat A, Pandey RK, Mohanty P, Pandey R. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11605-11616. [PMID: 38407024 DOI: 10.1021/acsami.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anuj Rawat
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rakesh K Pandey
- Department of Chemistry, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Paritosh Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
63
|
Wei Y, Li Z, Liu Y, Ji Z, Zou S, Zhou Y, Yan S, Chen C, Wu M. The Compatibility of COFs Cathode and Optimized Electrolyte for Ultra-Long Lifetime Rechargeable Aqueous Zinc-Ion Battery. CHEMSUSCHEM 2024:e202301851. [PMID: 38438307 DOI: 10.1002/cssc.202301851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Rechargeable aqueous zinc-ion batteries (RAZIBs) are attractive due to their affordability, safety, and eco-friendliness. However, their potential is limited by the lack of high-capacity cathodes and compatible electrolytes needed for reliable performance. Herein, we have presented a compatibility strategy for the development of a durable and long-lasting RAZIBs. The covalent organic frameworks (COFs) based on anthraquinone (DAAQ-COF) is created and utilized as the cathode, with zinc metal serving as the anode. The electrolyte is made up of an aqueous solution containing zinc salts at various concentrations. The COF cathode has been designed to be endowed with a rich array of redox-active groups, enhancing its electrochemical properties. Meanwhile, the electrolyte is formulated using triflate anions, which have exhibited superiority over sulfate anions. This strategy lead to the development of an optimized COF cathode with fast charging capability, high Coulombic efficiency (nearly 100 %) and long-term cyclability (retention rate of nearly 100 % at 1 A g-1 after 10000 cycles). Moreover, through experimental analysis, a co-insertion mechanism involving Zn2+ and H+ in this cathode is discovered for the first time. These findings represent a promising path for the advancement of organic cathode materials in high-performance and sustainable RAZIBs.
Collapse
Affiliation(s)
- Yifan Wei
- Department of Chemistry, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhonglin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yongyao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shuai Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
64
|
Kumar S, Lis T, Bury W, Chmielewski PJ, Garbicz M, Stępień M. Hierarchical Self-Assembly of Curved Aromatics: From Donor-Acceptor Porphyrins to Triply Periodic Minimal Surfaces. Angew Chem Int Ed Engl 2024; 63:e202316243. [PMID: 38198178 DOI: 10.1002/anie.202316243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
A saddle-shaped π-extended zinc porphyrin containing a peripheral pyridyl ligand undergoes quantitative self-assembly into a cyclic trimer. The trimer has a prismatic structure with negatively curved side walls, which promote the formation of supramolecular organic frameworks stabilized by dispersion interactions. The first framework type, UWr-1, has the npo topology, with a hexagonal structure analogous to the Schwartz H triply periodic minimal surface. Co-crystallization of the trimer with either C60 and C70 produces the isomorphous cubic UWr-2 and UWr-3 phases, characterized by the ctn network topology and a structural relationship to the Fischer-Koch minimal surface S. All three phases contain complex labyrinths of solvent-filled channels, corresponding to very large probe-accessible volumes (68 % to 76 %). The UWr-2 network could be partly desolvated while retaining its long range dimensional order, indicating remarkable strength of the dispersion interactions in the crystal. A theoretical analysis of noncovalent interactions shows the role of geometrical matching between the negatively curved porphyrin units and positively curved fullerenes.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Wojciech Bury
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Mateusz Garbicz
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
65
|
Li Z, Xu G, Zhang C, Ma S, Jiang Y, Xiong H, Tian G, Wu Y, Wei Y, Chen X, Yang Y, Wei F. Synthesis of 12-Connected Three-Dimensional Covalent Organic Framework with lnj Topology. J Am Chem Soc 2024; 146:4327-4332. [PMID: 38277433 DOI: 10.1021/jacs.3c12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The structural exploration of three-dimensional covalent organic frameworks (3D COFs) is of great significance to the development of COF materials. Different from structurally diverse MOFs, which have a variety of connectivity (3-24), now the valency of 3D COFs is limited to only 4, 6, and 8. Therefore, the exploration of organic building blocks with higher connectivity is a necessary path to broaden the scope of 3D COF structures. Herein, for the first time, we have designed and synthesized a 12-connected triptycene-based precursor (triptycene-12-CHO) with 12 symmetrical distributions of aldehyde groups, which is also the highest valency reported until now. Based on this unique 12-connected structure, we have successfully prepared a novel 3D COF with lnj topology (termed 3D-lnj-COF). The as-synthesized 3D COF exhibits honeycomb main pores and permanent porosity with a Brunauer-Emmett-Teller surface area of 1159.6 m2 g-1. This work not only provides a strategy for synthesizing precursors with a high connectivity but also provides inspiration for enriching the variety of 3D COFs.
Collapse
Affiliation(s)
- Zonglong Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guojie Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
| | - Shuan Ma
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| |
Collapse
|
66
|
Zhang F, Wang Y, Zhao H, Dong X, Gu XK, Lang X. Expanding Olefin-Linked Covalent Organic Frameworks toward Selective Photocatalytic Oxidation of Organic Sulfides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8772-8782. [PMID: 38324765 DOI: 10.1021/acsami.3c16838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Olefin-linked covalent organic frameworks (COFs) have exhibited great potential in visible-light photocatalysis. In principle, expanding fully conjugated COFs can facilitate light absorption and charge transfer, leading to improved photocatalysis. Herein, three olefin-linked COFs with the same topology are synthesized by combining 2,4,6-trimethyl-1,3,5-triazine (TMT) with 1,3,5-triformylbenzene (TFB), 1,3,5-tris(4-formylphenyl)benzene (TFPB), and 1,3,5-tris(4-formylphenylethynyl)benzene (TFPEB), namely, TMT-TFB-COF, TMT-TFPB-COF, and TMT-TFPEB-COF, respectively. From TMT-TFB-COF to TMT-TFPB-COF, expanding phenyl rings provides only limited expansion for π-conjugation due to the steric effect of structural twisting. However, from TMT-TFPB-COF to TMT-TFPEB-COF, the insertion of acetylenes eliminates the steric effect and provides more delocalized π-electrons. As such, TMT-TFPEB-COF exhibits the best optoelectronic properties among these three olefin-linked COFs. Consequently, the photocatalytic performance of TMT-TFPEB-COF is much better than those of TMT-TFB-COF and TMT-TFPB-COF on the oxidation of organic sulfides into sulfoxides with oxygen. The desirable reusability and substrate compatibility of the TMT-TFPEB-COF photocatalyst are further confirmed. The selective formation of organic sulfoxides over TMT-TFPEB-COF under blue light irradiation proceeds via both electron- and energy-transfer pathways. This work highlights a rational design of expanding the π-conjugation of fully conjugated COFs toward selective visible-light photocatalysis.
Collapse
Affiliation(s)
- Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxiang Zhao
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
67
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
68
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
69
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
70
|
Pu ZF, She WZ, Li RS, Wen QL, Wu BC, Li CH, Ling J, Cao Q. Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead. J Colloid Interface Sci 2024; 655:953-962. [PMID: 37951734 DOI: 10.1016/j.jcis.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Isomerism is an essential and ubiquitous phenomenon in organic chemistry, yet it is rarely observed in covalent organic frameworks (COFs). Herein, we synthesized two framework-isomeric COFs (BATD-Dma-COF-K and BATD-Dma-COF-R) and found for the first time that the light scattering signal of the COFs can be used for the analytical detection of lead ion. By using solvothermal and room temperature solvent synthesis methods, controlling different synthesis conditions, and introducing regulators to increase the energy difference between different products, the product with the lowest energy could be synthesized under specific conditions. This method could control the morphology of the synthesized COF and realize the precise synthesis of framework-isomeric COF by changing the experimental conditions. The structures of the two framework-isomeric COFs were characterized and confirmed by a series of analytical methods. Based on the principle that lead ions coordinate with N and O on the surface of two skeletal isomers BATD-Dma-COFs to enhance the light scattering signal of the COFs, a light scattering probe was developed by BATD-Dma-COF for the detection of metal lead ion in water samples. Lead ion concentration in the range from 2.0 to 250.0 μM had a good linear relationship with the light scattering intensity increase of the COFs with detection limit as low as 0.8397 μM by BATD-Dma-COF-K and 0.9207 μM by BATD-Dma-COF-R.
Collapse
Affiliation(s)
- Zheng-Fen Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Wen-Zhi She
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bi-Chao Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Chun-Hua Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| |
Collapse
|
71
|
Hollstein S, von Delius M. The Dynamic Chemistry of Orthoesters and Trialkoxysilanes: Making Supramolecular Hosts Adaptive, Fluxional, and Degradable. Acc Chem Res 2024. [PMID: 38286767 PMCID: PMC10882968 DOI: 10.1021/acs.accounts.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe encapsulation of ions into macro(bi)cyclic hosts lies at the core of supramolecular chemistry. While chemically inert hosts such as crown ethers (synthesis) and cyclodextrins (Febreze) have enabled real-world applications, there is a wider and accelerating trend toward functional molecules and materials that are stimuli-responsive, degradable, or recyclable. To endow supramolecular hosts with these properties, a deviation from ether C-O bonds is required, and functional groups that engage in equilibrium reactions under relatively mild conditions are needed.In this Account, we describe our group's work on supramolecular hosts that comprise orthoester and trialkoxysilane bridgeheads. In their simplest structural realization, these compounds resemble both Cram's crown ethers (macrocycles with oxygen donor atoms) and Lehn's cryptands (macrobicycles with 3-fold symmetry). It is therefore not surprising that these new hosts were found to have a natural propensity to bind cations relatively strongly. In recent work, we were also able to create anion-binding hosts by placing disubstituted urea motifs at the center of the tripodal architecture. Structural modifications of either the terminal substituents (e.g., H vs CH3 on the bridgehead), the diol (e.g., chiral), or the bridgehead atom itself (Si vs C) were found to have profound implications on the guest-binding properties.What makes orthoester/trialkoxysilane hosts truly unique is their dynamic covalent chemistry. The ability to conduct exchange reactions with alcohols at the bridgehead carbon or silicon atom is first and foremost an opportunity to develop highly efficient syntheses. Indeed, all hosts presented in this Account were prepared via templated self-assembly in yields of up to 90%. This efficiency is remarkable because the macrobicyclic architecture is established in one single step from at least five components. A second opportunity presented by dynamic bridgeheads is that suitable mixtures of orthoester hosts or their subcomponents can be adaptive, i.e. they respond to the presence of guests such that the addition of a certain guest can dictate the formation of a preferred host. In an extreme example of dynamic adaptivity, we found that ammonium ions can fulfill the dual role of catalyst for orthoester exchange and cationic template for efficient host formation, representing an unprecedented example of a fluxional supramolecular complex. The third implication of dynamic bridgeheads is due to the reaction of orthoesters and trialkoxysilanes with water instead of alcohols. We describe in detail how the hydrolysis rate differs strongly between O,O,O-orthoesters, S,S,S-trithioorthoesters, and trialkoxysilanes and how it is tunable by the choice of substituents and pH.We expect that the fundamental insights into exchange and degradation kinetics described in this Account will be useful far beyond supramolecular chemistry.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
72
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
73
|
Han X, Zhou Z, Wang K, Zheng Z, Neumann SE, Zhang H, Ma T, Yaghi OM. Crystalline Polyphenylene Covalent Organic Frameworks. J Am Chem Soc 2024; 146:89-94. [PMID: 38109262 DOI: 10.1021/jacs.3c11688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The synthesis of crystalline polyphenylene covalent organic frameworks (COFs) was accomplished by linking fluorinated tris(4-acetylphenyl)benzene building units using aldol cyclotrimerization. The structures of the two COFs, reported here, were confirmed by powder X-ray diffraction techniques, Fourier transform infrared, and solid-state 13C CP/MAS NMR spectroscopy. The results showed that the COFs were porous and chemically stable in corrosive, harsh environments for at least 1 week. Accordingly, postsynthetically modified derivatives of these COFs using primary amines showed CO2 uptake from air and flue gas.
Collapse
Affiliation(s)
- Xing Han
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Zihui Zhou
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Zhiling Zheng
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - S Ephraim Neumann
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Heyang Zhang
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Tianqiong Ma
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
74
|
Jain C, Kushwaha R, Rase D, Shekhar P, Shelke A, Sonwani D, Ajithkumar TG, Vinod CP, Vaidhyanathan R. Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. J Am Chem Soc 2024; 146:487-499. [PMID: 38157305 DOI: 10.1021/jacs.3c09937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Improving the electronic conductivity and the structural robustness of covalent organic frameworks (COFs) is paramount. Here, we covalently cross-link a 2D COF with polypyrrole (Ppy) chains to form a quasi-3D COF. The 3D COF shows well-defined reflections in the SAED patterns distinctly indexed to its modeled crystal structure. This knitting of 2D COF layers with conjugated polypyrrole units improves electronic conductivity from 10-9 to 10-2 S m-1. This conductivity boost is affirmed by the presence of density of states near the Fermi level in the 3D COF, and this elevates the COF's valence band maximum by 0.52 eV with respect to the parent 2D pyrrole-functionalized COF, which agrees well with the opto-electro band gaps. The extent of HOMO elevation suggests the predominant existence of a polaron state (radical cation), giving rise to a strong EPR signal, most likely sourced from the cross-linking polypyrrole chains. A supercapacitor devised with COF20-Ppy records a high areal capacitance of 377.6 mF cm-2, higher than that of the COF loaded with noncovalently linked polypyrrole chains. Thus, the polypyrrole acts as a "conjugation bridge" across the layers, lowering the band gap and providing polarons and additional conduction pathways. This marks a far-reaching approach to converting many 2D COFs into highly ordered and conducting 3D ones.
Collapse
Affiliation(s)
| | | | | | | | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | | | |
Collapse
|
75
|
Su L, Zheng X, Tang J, Wang Q, Zhang L, Wu X. Poly(ionic liquid)s threaded into covalent organic framework for synergistic capture of polybrominated diphenyl ethers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132657. [PMID: 37788553 DOI: 10.1016/j.jhazmat.2023.132657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The efficient enrichment of trace polybrominated diphenyl ethers (PBDEs) in environmental waters remains challenging for environmental monitoring and analysis. Herein, a covalent organic frameworks-poly(ionic liquid)s hybrid material (COF-γ-PIL) is synthesized by threading poly(1-vinyl-3-methylimidazolium bis ((trifluoromethyl) sulfonyl) imide) into a vinyl-decorated COF via photopolymerization. The resultant hybrid retains the crystallinity and porosity of COF, thus offering adequate adsorption sites for the targets. PIL threaded in COF facilitates the synergistic capture of target molecules within the hybrid through multiple interactions, including Van der Waals forces, weak hydrogen bonding, and hydrophobic interactions. As a proof of concept, COF-γ-PIL was utilized as the fiber coating for SPME of PBDEs in waters prior to their analysis via GC-MS. Excellent analytical results were achieved, with wide linearity (0.01-100 ng L-1), low limits of detection (0.0021-0.014 ng L-1), and satisfactory recoveries (78.6%-103.6%). The outstanding extraction performance can be ascribed to the extraordinary flexibility of the active fraction on linear polymers threaded in COF, which facilitates collaborative capture for target molecules, as revealed by density functional theory (DFT) calculations. This work uncovers the microscopic mechanism for PBDEs capturing and provides new insights into the design of functionalized COF hybrids.
Collapse
Affiliation(s)
- Lishen Su
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China
| | - Xuan Zheng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Jingpu Tang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China
| | - Qingxiang Wang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lan Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Wu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
76
|
Wang C, Cusin L, Ma C, Unsal E, Wang H, Consolaro VG, Montes-García V, Han B, Vitale S, Dianat A, Croy A, Zhang H, Gutierrez R, Cuniberti G, Liu Z, Chi L, Ciesielski A, Samorì P. Enhancing the Carrier Transport in Monolayer MoS 2 through Interlayer Coupling with 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305882. [PMID: 37690084 DOI: 10.1002/adma.202305882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Indexed: 09/12/2023]
Abstract
The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.
Collapse
Affiliation(s)
- Can Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Chun Ma
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Elif Unsal
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Hanlin Wang
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Verónica Montes-García
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Stefania Vitale
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062, Dresden, Germany
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
77
|
Dantas R, Ribeiro C, Souto M. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Chem Commun (Camb) 2023; 60:138-149. [PMID: 38051115 DOI: 10.1039/d3cc04322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electroactive organic materials have received much attention as alternative electrodes for metal-ion batteries due to their high theoretical capacity, resource availability, and environmental friendliness. In particular, redox-active covalent organic frameworks (COFs) have recently emerged as promising electrodes due to their tunable electrochemical properties, insolubility in electrolytes, and structural versatility. In this Highlight, we review some recent strategies to improve the energy density and power density of COF electrodes for lithium batteries from the perspective of molecular design and electrode optimisation. Some other aspects such as stability and scalability are also discussed. Finally, the main challenges to improve their performance and future prospects for COF-based organic batteries are highlighted.
Collapse
Affiliation(s)
- Raquel Dantas
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Catarina Ribeiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
- CIQUS, Centro Singular de Investigación en Química Bioloxica e Materiais Moleculares, Departamento de Química-Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
78
|
Liu S, Zhang G, Zhang W, Tian N, Sun Q, Wu Z. High-Performance Ethylene Glycol Sensor Based on Imine Covalent Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3103. [PMID: 38133000 PMCID: PMC10745960 DOI: 10.3390/nano13243103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The colorless and odorless ethylene glycol is prone to unknowingly causing poisoning, making preventive monitoring of ethylene glycol necessary. In this paper, scandium (III) trifluoromethanesulfonate was used as a catalyst to successfully prepare covalent organic framework (COF) nanospheres linked by imines at room temperature. The COF nanospheres were characterized by XRD, SEM, TEM, FT-IR, UV-Vis and BET. The results show that COF nanospheres have rough surfaces and a large number of mesoporous structures, which greatly increase the active sites on the surface of the sensing material and enhance the gas sensing performance. The sensing results showed that the prepared imine-conjugated COF nanospheres exhibited a good response-recovery ability for 10 consecutive response-recovery cycles for ethylene glycol at room temperature and had a theoretical detection limit of 40 ppb. In addition, the responses of COF nanospheres to nearly 20 interfering gases, including HCl, HNO3, phenol, formaldehyde and aniline, are relatively low compared to the response to ethylene glycol, indicating that the COF nanospheres have high selectivity towards ethylene glycol. The COF nanospheres show good sensitivity and selectivity for the detection of ethylene glycol, which should be attributed to the large specific surface area, hydrogen bonding interactions, and high defects. This work provides an effective method for the detection of ethylene glycol and expands the application field of COF materials.
Collapse
Affiliation(s)
- Shiwei Liu
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Guojie Zhang
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Weiyu Zhang
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Ning Tian
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Qihua Sun
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
| | - Zhaofeng Wu
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi 830046, China (Q.S.)
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
79
|
Park H, Kang Y, Kim J. Enhancing Structure-Property Relationships in Porous Materials through Transfer Learning and Cross-Material Few-Shot Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56375-56385. [PMID: 37983088 DOI: 10.1021/acsami.3c10323] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Porous materials have emerged as promising solutions for a wide range of energy and environmental applications. However, the asymmetric development in the field of metal-organic frameworks (MOFs) has led to a data imbalance when it comes to MOFs versus other porous materials such as covalent organic frameworks (COFs), porous polymer networks (PPNs), and zeolites. To address this issue, we introduce PMTransformer (Porous Material Transformer), a multimodal Transformer model pretrained on a vast data set of 1.9 million hypothetical porous materials, including metal-organic frameworks, covalent organic frameworks, porous polymer networks, and zeolites. PMTransformer showcases remarkable transfer learning capabilities, resulting in state-of-the-art performance in predicting various porous material properties. To address the challenge of asymmetric data aggregation, we propose cross-material few-shot learning, which leverages the synergistic effect among different porous material classes to enhance the fine-tuning performance with a limited number of examples. As a proof of concept, we demonstrate its effectiveness in predicting band gap values of COFs using the available MOF data in the training set. Moreover, we established cross-material relationships in porous materials by predicting the unseen properties of other classes of porous materials. Our approach presents a new pathway for understanding the underlying relationships among various classes of porous materials, paving the way toward a more comprehensive understanding and design of porous materials.
Collapse
Affiliation(s)
- Hyunsoo Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeonghun Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
80
|
Ding J, Guan X, Chen X, Nan P, Qiu S, Fang Q. Quantitative Assessment of Crystallinity and Stability in β-Ketoenamine-Based Covalent Organic Frameworks. Chemistry 2023; 29:e202302290. [PMID: 37669904 DOI: 10.1002/chem.202302290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
The design and synthesis of covalent organic frameworks (COFs) with high chemical stability pose significant challenges for practical applications. Although a growing number of robust COFs have been developed and employed for a broad scope of applications, the assessment of COF stability has primarily relied on qualitative descriptions, lacking a rational and quantitative assessment. Herein, a novel assessment method is presented that enables visual and quantitative depiction of COF stability. By analyzing the PXRD patterns of chemically stable β-ketoenamine-based COFs (KEA-COFs), two crystallinity-dependent parameters are identified, the relative intensity (I2θrel ) and the relative area (A2θrel ) of the main peak (2θ), which are expected to establish a standardized criterion for assessing COF crystallinity. Based on these parameters, the crystalline changes after stability tests can be visually presented, which provides a rational and quantitative assessment of their stability. This study not only demonstrates the remarkable chemical stability of KEA-COFs, but also provides valuable insights into the quantitative evaluation of COFs' crystallinity and stability.
Collapse
Affiliation(s)
- Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Pihan Nan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
81
|
Wang F, Chen Y, Gong T, Gong J. From 3D to 2D: Directional Morphological Evolution of a Three-Dimensional Covalent Organic Framework. ACS Macro Lett 2023; 12:1576-1582. [PMID: 37934863 DOI: 10.1021/acsmacrolett.3c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The morphology of materials has a huge impact on their properties and functions; however, the precise control and direct evolution toward specific morphologies remains challenging. Herein, we outline a novel strategy for the morphology modulation of covalent organic frameworks based on COF-300 with the diamond structure, which usually exhibits a three-dimensional shuttle morphology. A monofunctional structural regulator has been designed to break the continuity of the three-dimensional structure. As the proportion of the monofunctional structural regulator increases, the morphology of COF-300 shows a directional evolution from a shuttle morphology to a two-dimensional nanosheet, while still retaining the consistency of the crystal structure. Our study reports the first two-dimensional nanosheet based on a three-dimensional structured COF to date and will inspire future research into the traced morphological evolution in materials by predesign.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Yiheyuan Road 5, Beijing 100871, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tingting Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
82
|
Zhao J, Shen X, Liu YF, Zou RY. (3,3)-Connected Triazine-Based Covalent Organic Frameworks for Efficient CO 2 Separation over N 2 and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16367-16373. [PMID: 37939229 DOI: 10.1021/acs.langmuir.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Covalent organic frameworks (COFs) are a promising class of adsorption and separation materials that can meet the needs of ecological sustainability, such as the removal of carbon dioxide and organic dyes. The two synthesized (3,3)-connected triazine-based COFs demonstrate high specific surface area and good thermal and chemical stability. COFZ1 shows good CO2 adsorption selectivities for different CO2 and N2 volume percentage systems at 273 K and 1 bar, with an ideal adsorbed solution theory (IAST) CO2 selectivity (i.e., separation factor) of 35.09 for the simulated flue gas component and a CO2 adsorption capacity of 24.21 cm3 g-1. In the aqueous dye solutions, both COFs present good adsorption performance for the selected dyes, and the maximum adsorption capacities of COFZ1 for methylene blue (MB) and gentian violet (GV) reach 510 and 564 mg g-1, respectively. Each of the two COFs shows a high anti-interference performance and excellent recyclability. The adsorption capacities of two COFs for RhB (Rhodamine B), MB, and GV hardly vary with pH values and salt concentrations. The adsorption behaviors of the two COFs for dyes follow Langmuir isothermal adsorption and quasi-secondary kinetic adsorption, approaching monolayer adsorption and chemisorption.
Collapse
Affiliation(s)
- Jie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Shen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ru-Yi Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
83
|
Ju T, Liu M, Shi X, Xiao A, Zhang Z, Wang J, Zhang Y, Wang Y. Chemically Asymmetric Polymers Manipulate the Crystallization of Two-Dimensional Covalent Organic Frameworks to Synthesize Processable Nanosheets. ACS NANO 2023. [PMID: 37976399 DOI: 10.1021/acsnano.3c07743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanosheets derived from two-dimensional covalent organic frameworks (2D COFs) are increasingly desirable in various fields. While breakthroughs in the chemical and physical delamination of 2D COFs are rising, precisely regulating the growth of the COF nanosheets has not been realized yet. Herein, we report an effective strategy of polymer-manipulated crystallization to accurately control the growth of COF nanosheets. Chemically asymmetric polyvinylpyrrolidone (PVP) is developed as the manipulator that selectively interacts with the aldehydes and (100) facet to induce anisotropic growth of COFs. The number of PVP constitutional units determines this specific interaction, leading to molecularly thin but thickness-controllable nanosheets with excellent dispersity. We process these nanosheets into robust A4-sized membranes for ultraselective molecular separation. The membrane intercalated with long-chain PVP demonstrates largely improved performance, surpassing the reported COF membranes. This work reports a strategy for anisotropically crystallizing 2D COFs to yield processable nanosheets toward practical applications.
Collapse
Affiliation(s)
- Tong Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
84
|
Lopatik N, De A, Paasch S, Schneemann A, Brunner E. High-field and fast-spinning 1H MAS NMR spectroscopy for the characterization of two-dimensional covalent organic frameworks. Phys Chem Chem Phys 2023; 25:30237-30245. [PMID: 37921503 DOI: 10.1039/d3cp04144a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Two-dimensional (2D) materials, like 2D covalent organic frameworks (COFs), have been attracting increasing research interest. They are usually obtained as polycrystalline powders. Solid-state NMR spectroscopy is capable of delivering structural information about such materials. Previous studies have applied, for example, 13C cross-polarization magic angle spinning (CP MAS) NMR experiments to characterize 2D COFs. Herein, we demonstrate the usefulness of high-field and fast-spinning 1H MAS NMR spectroscopy to resolve and quantify the signals of different 1H species within 2D COFs, including the edge sites and/or defects. Moreover, 1H-13C heteronuclear correlation (HETCOR) spectroscopy has also been applied and can provide improved resolution to obtain further information about stacking effects as well as edge sites/defects.
Collapse
Affiliation(s)
- Nikolaj Lopatik
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Ankita De
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
85
|
Sprachmann J, Grabicki N, Möckel A, Maltitz J, Monroy JR, Smales GJ, Dumele O. Substituted benzophenone imines for COF synthesis via formal transimination. Chem Commun (Camb) 2023; 59:13639-13642. [PMID: 37905422 DOI: 10.1039/d3cc03735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible.
Collapse
Affiliation(s)
- Josefine Sprachmann
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Anna Möckel
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Jeremy Maltitz
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - José Refugio Monroy
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, Berlin 12489, Germany.
| |
Collapse
|
86
|
Daum JP, Ajnsztajn A, Iyengar SA, Lowenstein J, Roy S, Gao GH, Tsai EHR, Ajayan PM, Verduzco R. Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition. ACS NANO 2023; 17:21411-21419. [PMID: 37871166 DOI: 10.1021/acsnano.3c06142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covalent organic frameworks (COFs) are a promising class of crystalline polymer networks that are useful due to their high porosity, versatile functionality, and tunable architecture. Conventional solution-based methods of producing COFs are marred by slow reactions that produce powders that are difficult to process into adaptable form factors for functional applications, and there is a need for facile and fast synthesis techniques for making crystalline and ordered covalent organic framework (COF) thin films. In this work, we report a chemical vapor deposition (CVD) approach utilizing co-evaporation of two monomers onto a heated substrate to produce highly crystalline, defect-free COF films and coatings with hydrazone, imine, and ketoenamine COF linkages. This all-in-one synthesis technique produces highly crystalline, 40 nm-1 μm-thick COF films on Si/SiO2 substrates in less than 30 min. Crystallinity and alignment were proven by using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and transmission electron microscopy (TEM), and successful conversion of the monomers to produce the target COF was supported by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-vis measurements. Additionally, we used atomic force microscopy (AFM) to investigate the growth mechanisms of these films, showing the coalescence of triangular crystallites into a smooth film. To show the wide applicability and scope of the CVD process, we also prepared crystalline ordered COF films with imine and ketoenamine linkages. These films show potential as high-quality size exclusion membranes, catalytic platforms, and organic transistors.
Collapse
Affiliation(s)
- Jeremy P Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Guan-Hui Gao
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
87
|
Shreeraj G, Sah A, Sarkar S, Giri A, Sahoo A, Patra A. Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16069-16078. [PMID: 37847043 DOI: 10.1021/acs.langmuir.3c02215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developing efficient adsorbent materials for iodine scavenging is essential to mitigate the threat of radioactive iodine causing adverse effects on human health and the environment. In this context, we explored N-rich two-dimensional covalent organic frameworks (COFs) with diverse functionalities for iodine capture. The pyridyl-hydroxyl-functionalized triazine-based novel 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(pyridine-2-amine) (TTPA)-COF possesses high crystallinity (crystalline domain size: 24.4 ± 0.6 nm) and high porosity (specific BET surface area: 1000 ± 90 m2 g-1). TTPA-COF exhibits superior vapor-phase iodine adsorption (4.43 ± 0.01 g g-1) compared to analogous COF devoid of pyridinic moieties, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT)-COF. The high iodine capture by TTPA-COF is due to the enhanced binding affinity conferred by the extra pyridinic active sites. Furthermore, the crucial role of long-range order in porous adsorbents has been experimentally evidenced by comparing the performance of iodine vapor capture of TTPA-COF with an amorphous network polymer having identical functionalities. We have also demonstrated the high iodine scavenging ability of TTPA-COF from the organic and aqueous phases. The mechanism of iodine adsorption by the heteroatom-rich framework is elucidated through FTIR, XPS, and Raman spectral analyses. The present study highlights the need for structural tweaking of the building blocks toward the rational construction of advanced functional porous materials for a task-specific application.
Collapse
Affiliation(s)
- G Shreeraj
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Ajay Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
88
|
Gong Y, Huang S, Lei Z, Wayment L, Chen H, Zhang W. Double-Walled Covalent Organic Frameworks with High Stability. Chemistry 2023; 29:e202302135. [PMID: 37556201 DOI: 10.1002/chem.202302135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Double-walled covalent organic frameworks, consisting of two same building blocks parallel to each other forming ladder-shape linkers, could enhance the stability of the frameworks and increase the density of functional sites, thus making them suitable for various applications. In this study, two double-walled covalent organic frameworks, namely DW-COF-1 and DW-COF-2, were successfully synthesized via imine condensation. The resulting DW-COFs exhibited a honeycomb topology, high crystallinity and stability. Particularly, DW-COF-2 showed excellent resistance toward boiling water, strong acid, and strong base, due to its double-walled structure, which limits the exposure of labile imine bonds to external chemical environments. The DW-COFs showed high porosity near 900 m2 /g, making them suitable for gas storage/separation. The selective gas adsorption experiments showed that at 273 K and 1 atm pressure, DW-COF-1 and DW-COF-2 exhibited a good IAST selectivity towards CO2 /N2 (15/85) adsorption, with selectivity values of 121.3 and 56.4 for CO2 over N2 , respectively.
Collapse
Affiliation(s)
- Yu Gong
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Lacey Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
89
|
Wang T, Zhang Y, Wang Z, Chen Y, Cheng P, Zhang Z. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans 2023; 52:15178-15192. [PMID: 37461388 DOI: 10.1039/d3dt01684f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Covalent organic frameworks (COFs) with high specific porosity, easy functionalization, and tailored structure are an emerging class of crystalline porous polymers that have been extensively exploited as ideal materials in various fields. Among them, sp2-carbon linked COFs with high chemical stability, porous backbone, and unique π-electron conjugated architectures structure have raised widespread attention. Specifically, the porous channels of olefin-linked COFs could be packed with active sites for catalysis and guest molecules, while π-π stacking interactions and conjugation systems pave the way for electron transfer. In recent years, many efforts have been devoted to the development of sp2-carbon linked COFs for applications in catalysis, energy storage, gas adsorption, and separation. In this review, we highlight the design principles, synthesis strategies, and impactful applications of olefin-linked COFs. We are looking forward to this review to deepen the understanding of the synthesis of olefin-linked COFs and motivate the further development of these novel conjugated organic materials with distinctive physicochemical properties, as well as their applications in a variety of fields.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
90
|
Zhang J, Cheng C, Guan L, Jiang HL, Jin S. Rapid Synthesis of Covalent Organic Frameworks with a Controlled Morphology: An Emulsion Polymerization Approach via the Phase Transfer Catalysis Mechanism. J Am Chem Soc 2023; 145:21974-21982. [PMID: 37779433 DOI: 10.1021/jacs.3c06764] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) with a periodic network of permanent porosity and ordered structures have witnessed enormous potential in many applications. However, the synthesis of COFs with controllable morphologies under mild conditions remains a critical issue. Herein, we report a novel strategy to synthesize β-ketoenamine-linked COFs by emulsion polymerization via phase transfer catalysis for the first time. This new approach employs commercially available pyridinium surfactants as emulsifiers for emulsion polymerization, which function as both catalysts and morphological regulators. By controlling the interfacial interaction in the emulsion, the TpPa-COF can be prepared into different morphologies, i.e., spheres, bowls, and fibers. Furthermore, the COF emulsion can be directly used to prepare a film by applying an electric field, providing a new route to prepare COF films. This phase transfer catalysis method also allows the synthesis of the TpPa-COF on a gram scale. The strategy is fast, facile, and effective in improving the morphology and particle size, providing a prospective route for the green preparation of functional COFs.
Collapse
Affiliation(s)
- Jin Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Cheng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
91
|
Feng XN, Yang Y, Cao X, Wang T, Kong DM, Yin XB, Li B, Bu XH. General Approach to Construct C-C Single Bond-Linked Covalent Organic Frameworks. J Am Chem Soc 2023; 145:21284-21292. [PMID: 37703101 DOI: 10.1021/jacs.3c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
C-C single bond-linked covalent organic frameworks (CSBL-COFs) are extremely needed because of their excellent stabilities and potential applications in harsh conditions. However, strategies to generate CSBL-COFs are limited to the acetylenic self-homocoupling Glaser-Hay reaction or post-synthetic reduction of vinylene-based COFs. Exploring new strategies to expand the realm of CSBL-COFs is urgently needed but extremely challenging. To address the synthetic challenges, we for the first time developed a general approach via the reaction between aromatic aldehydes and active methyl group-involving monomers with enhanced acidity, which realized the successful construction of a series of CSBL-COFs. As expected, the obtained CSBL-COFs exhibited outstanding chemical stability, which can stabilize in 6 M NaOH, 3 M HCl, boiling water, and 100 mg/mL NaBH4 for at least 3 days. It is important to mention that CSBL-COFs possess a large amount of ionic sites distributed throughout the networks; gentle shaking allowed our COFs to easily self-disperse as nanoparticles and suspend in water for at least 12 h without reprecipitating. As far as we know, such self-dispersed COFs with high water dispersity are rare to date, and few examples are mainly limited to the guanidinium- and pseudorotaxane-based COFs. Our work thus developed a family of self-dispersed COFs for potential applications in different sorts of fields. Our contribution would thus pave a new avenue for constructing a broader class of CSBL-COFs for their wide applications in various fields.
Collapse
Affiliation(s)
- Xue-Nan Feng
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Yang
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xuejie Cao
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ting Wang
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Xian-He Bu
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
92
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
93
|
Fonseca J, Meng L, Moronta P, Imaz I, López C, Maspoch D. Assembly of Covalent Organic Frameworks into Colloidal Photonic Crystals. J Am Chem Soc 2023; 145:20163-20168. [PMID: 37672353 PMCID: PMC10515629 DOI: 10.1021/jacs.3c06265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/08/2023]
Abstract
Self-assembly of colloidal particles into ordered superstructures is an important strategy to discover new materials, such as catalysts, plasmonic sensing materials, storage systems, and photonic crystals (PhCs). Here we show that porous covalent organic frameworks (COFs) can be used as colloidal building particles to fabricate porous PhCs with an underlying face-centered cubic (fcc) arrangement. We demonstrate that the Bragg reflection of these can be tuned by controlling the size of the COF particles and that species can be adsorbed within the pores of the COF particles, which in turn alters the Bragg reflection. Given the vast number of existing COFs, with their rich properties and broad modularity, we expect that our discovery will enable the development of colloidal PhCs with unprecedented functionality.
Collapse
Affiliation(s)
- Javier Fonseca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lingxin Meng
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Pedro Moronta
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones
Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cefe López
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones
Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona
Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
94
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
95
|
Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131835. [PMID: 37348374 DOI: 10.1016/j.jhazmat.2023.131835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The nuclear industry will continue to develop rapidly and produce energy in the foreseeable future; however, it presents unique challenges regarding the disposal of released waste radionuclides because of their volatility and long half-life. The release of radioactive isotopes of iodine from uranium fission reactions is a challenge. Although various adsorbents have been explored for the uptake of iodine, there is still interest in novel adsorbents. The novel adsorbents should be synthesized using reliable and economically feasible synthetic procedures. Herein, we discussed the state-of-the-art performance of various categories of porous organic materials including covalent organic frameworks, covalent triazine frameworks, porous aromatic frameworks, porous organic cages, among other porous organic polymers for the uptake of iodine. This review discussed the synthesis of porous organic materials and their iodine adsorption capacity and reusability. Finally, the challenges and prospects for iodine capture using porous organic materials are highlighted.
Collapse
Affiliation(s)
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
96
|
Fabiani T, Ricci E, Boi C, Dimartino S, De Angelis MG. In silico screening of nanoporous materials for urea removal in hemodialysis applications. Phys Chem Chem Phys 2023; 25:24069-24080. [PMID: 37655458 DOI: 10.1039/d3cp01510f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The design of miniaturized hemodialysis devices, such as wearable artificial kidneys, requires regeneration of the dialysate stream to remove uremic toxins from water. Adsorption has the potential to capture such molecules, but conventional adsorbents have low urea/water selectivity. In this work, we performed a comprehensive computational study of 560 porous crystalline adsorbents comprising mainly covalent organic frameworks (COFs), as well as some siliceous zeolites, metal organic frameworks (MOFs) and graphitic materials. An initial screening using Widom insertion method assessed the excess chemical potential at infinite dilution for water and urea at 310 K, providing information on the strength and selectivity of urea adsorption. From such analysis it was observed that urea adsorption and urea/water selectivity increased strongly with fluorine content in COFs, while other compositional or structural parameters did not correlate with material performance. Two COFs, namely COF-F6 and Tf-DHzDPr were explored further through Molecular Dynamics simulations. The results agree with those of the Widom method and allow to identify the urea binding sites, the contribution of electrostatic and van der Waals interactions, and the position of preferential urea-urea and urea-framework interactions. This study paves the way for a well-informed experimental campaign and accelerates the development of novel sorbents for urea removal, ultimately advancing on the path to achieve wearable artificial kidneys.
Collapse
Affiliation(s)
- Thomas Fabiani
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, EH9 3FB, Edinburgh, Scotland, UK.
| | - Eleonora Ricci
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings Colin Maclaurin Road, EH9 3DW, Edinburgh, Scotland, UK
| | - Maria Grazia De Angelis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Sanderson Building, Robert Stevenson Road, EH9 3FB, Edinburgh, Scotland, UK.
| |
Collapse
|
97
|
Krinninger M, Bock N, Kaiser S, Reich J, Bruhm T, Haag F, Allegretti F, Heiz U, Köhler K, Lechner BAJ, Esch F. On-Surface Carbon Nitride Growth from Polymerization of 2,5,8-Triazido- s-heptazine. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6762-6770. [PMID: 37719034 PMCID: PMC10500973 DOI: 10.1021/acs.chemmater.3c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Indexed: 09/19/2023]
Abstract
Carbon nitrides have recently come into focus for photo- and thermal catalysis, both as support materials for metal nanoparticles as well as photocatalysts themselves. While many approaches for the synthesis of three-dimensional carbon nitride materials are available, only top-down approaches by exfoliation of powders lead to thin-film flakes of this inherently two-dimensional material. Here, we describe an in situ on-surface synthesis of monolayer 2D carbon nitride films as a first step toward precise combination with other 2D materials. Starting with a single monomer precursor, we show that 2,5,8-triazido-s-heptazine can be evaporated intact, deposited on a single crystalline Au(111) or graphite support, and activated via azide decomposition and subsequent coupling to form a covalent polyheptazine network. We demonstrate that the activation can occur in three pathways, via electrons (X-ray illumination), via photons (UV illumination), and thermally. Our work paves the way to coat materials with extended carbon nitride networks that are, as we show, stable under ambient conditions.
Collapse
Affiliation(s)
- Matthias Krinninger
- TUM
School of Natural Sciences, Department of Chemistry, Chair of Physical
Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
- TUM
School of Natural Sciences, Department of Chemistry, Functional Nanomaterials
Group, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
| | - Nicolas Bock
- TUM
School of Natural Sciences, Department of Chemistry, Chair of Physical
Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
| | - Sebastian Kaiser
- TUM
School of Natural Sciences, Department of Chemistry, Chair of Physical
Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
| | - Johanna Reich
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
- TUM
School of Natural Sciences, Department of Chemistry, Functional Nanomaterials
Group, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
| | - Tobias Bruhm
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
- TUM
School of Natural Sciences, Department of Chemistry, Professorship
of Inorganic Chemistry, Technical University
of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
| | - Felix Haag
- TUM
School of Natural Sciences, Department of Physics, Chair of Experimental
Physics (E20), Technical University of Munich, James-Franck Str. 1, Garching D-85748, Germany
| | - Francesco Allegretti
- TUM
School of Natural Sciences, Department of Physics, Chair of Experimental
Physics (E20), Technical University of Munich, James-Franck Str. 1, Garching D-85748, Germany
| | - Ueli Heiz
- TUM
School of Natural Sciences, Department of Chemistry, Chair of Physical
Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
| | - Klaus Köhler
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
- TUM
School of Natural Sciences, Department of Chemistry, Professorship
of Inorganic Chemistry, Technical University
of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
| | - Barbara A. J. Lechner
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
- TUM
School of Natural Sciences, Department of Chemistry, Functional Nanomaterials
Group, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
- Institute
for Advanced Study, Technical University
of Munich, Lichtenbergstr. 2a, Garching D-85748, Germany
| | - Friedrich Esch
- TUM
School of Natural Sciences, Department of Chemistry, Chair of Physical
Chemistry, Technical University of Munich, Lichtenbergstr. 4, Garching D-85748, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Str. 1, Garching D-85748, Germany
| |
Collapse
|
98
|
Li Y, Wu X, Zhang J, Han C, Cao M, Li X, Wan J. Vinylene-Linked Emissive Covalent Organic Frameworks for White-Light-Emitting Diodes. Polymers (Basel) 2023; 15:3704. [PMID: 37765558 PMCID: PMC10535042 DOI: 10.3390/polym15183704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their highly conjugated π-skeletons, rendering them promising candidates for the design of light-emitting materials. In this study, we present two vinylene-linked COFs, namely, VL-COF-1 and VL-COF-2, which were synthesized through the Knoevenagel condensation of 2,4,6-trimethyl-1,3,5-triazine with terephthalaldehyde or 4,4'-biphenyldicarboxaldehyde. Both VL-COF-1 and VL-COF-2 exhibited excellent chemical and thermal stability. The presence of vinylene linkages between the constituent building blocks in these COFs resulted in broad excitation and emission properties. Remarkably, the designed VL-COFs demonstrated bright emission, fast fluorescence decay, and high stability, making them highly attractive for optoelectronic applications. To assess the potential of these VL-COFs in practical devices, we fabricated white-light-emitting diodes (WLEDs) coated with VL-COF-1 and VL-COF-2. Notably, the WLEDs coated with VL-COF-1 achieved high-quality white light emission, closely approximating standard white light. The promising performance of VL-COF-coated WLEDs suggests the feasibility of utilizing COF materials for stable and efficient lighting applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.)
| |
Collapse
|
99
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
100
|
Zhang F, Dong X, Wang Y, Lang X. Design and Synthesis of a Triazine-Based sp 2 Carbon-Conjugated Covalent Organic Framework for Blue Light Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302456. [PMID: 37196416 DOI: 10.1002/smll.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Indexed: 05/19/2023]
Abstract
Fully conjugated covalent organic frameworks (COFs) can exhibit great potential in semiconductor photocatalysis. But their syntheses remain elusive due to the low reversibility of vinylene linkage. Herein, by tuning the amount of base and temperature, a novel triazine-based sp2 carbon-conjugated COF (TA-sp2 c-COF) is successfully constructed over Cs2 CO3 . Besides, the influence of modulating factors on the chemical and optoelectronic properties of TA-sp2 c-COF is thoroughly investigated. TA-sp2 c-COF adopts an eclipsed AA stacking structure with uniform micropores (1.4 nm). The blue light photocatalysis of the highly crystalline TA-sp2 c-COF is established for the selective oxidative coupling of amines with oxygen, and the predominant role of superoxide is identified in forming imines. This work foretells that meticulous modulation of reaction conditions is the key to constructing sp2 carbon-conjugated COFs toward solar photocatalysis.
Collapse
Affiliation(s)
- Fulin Zhang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|