51
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
52
|
Liu W, Berge-Lefranc D, Chaspoul F, Slaveykova VI. Cytochrome c - silver nanoparticle interactions: Spectroscopy, thermodynamic and enzymatic activity studies. Chem Biol Interact 2023; 382:110647. [PMID: 37499996 DOI: 10.1016/j.cbi.2023.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Cytochrome c, an iron containing metalloprotein in the mitochondria of the cells with an oxide/redox property, plays key role in the cell apoptotic pathway. In this study, the interaction of silver nanoparticles (AgNPs) with cytochrome c (Cyt c) was investigated by using a combination of spectroscopic, imaging and thermodynamic techniques, including dynamic light scattering (DLS), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). DLS and UV-vis analysis evidenced the formation of surface complexes of Cyt c on AgNPs. The saturation of surface coverage of AgNPs was observed at 4.36 Cyt c molecules per nm2 of AgNPs. The surface complexation resulted in a promotion of the Ag dissolution overtime. The negative sign of enthalpic (ΔH) contribution suggested that electrostatic forces are indicative forces in the interaction between protein and AgNPs. Moreover, the fluorescence spectra revealed that the conformation of protein was altered around tryptophan (Trp) and tyrosine (Tyr) residues indicating the alteration of the tertiary structure of Cyt c. CD analysis evidenced that the secondary structure of Cyt c was modified under AgNPs-Cyt c interactions and the binding of Cyt c onto AgNPs resulted in remarkable structural perturbation around the active site heme, which in turn alter the protein enzymatic activity. The results of the present study contributed to a deeper insight on the mechanisms of interaction between NPs and biomacromolecules and could help establish the in vivo fate of AgNPs on cellular redox homeostasis.
Collapse
Affiliation(s)
- Wei Liu
- University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Switzerland.
| | - David Berge-Lefranc
- ICR UMR Aix Marseille Université - CNRS 7273, IMBE UMR Aix Marseille Université - CNRS - IRD - AUPV 7263, France
| | - Florence Chaspoul
- ICR UMR Aix Marseille Université - CNRS 7273, IMBE UMR Aix Marseille Université - CNRS - IRD - AUPV 7263, France
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Switzerland
| |
Collapse
|
53
|
Xu Z, Zhen W, McCleary C, Luo T, Jiang X, Peng C, Weichselbaum RR, Lin W. Nanoscale Metal-Organic Framework with an X-ray Triggerable Prodrug for Synergistic Radiotherapy and Chemotherapy. J Am Chem Soc 2023; 145:18698-18704. [PMID: 37581644 PMCID: PMC10472429 DOI: 10.1021/jacs.3c04602] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 08/16/2023]
Abstract
As heavy-metal-based nanoscale metal-organic frameworks (nMOFs) are excellent radiosensitizers for radiotherapy via enhanced energy deposition and reactive oxygen species (ROS) generation, we hypothesize that nMOFs with covalently conjugated and X-ray triggerable prodrugs can harness the ROS for on-demand release of chemotherapeutics for chemoradiotherapy. Herein, we report the design of a novel nMOF, Hf-TP-SN, with an X-ray-triggerable 7-ethyl-10-hydroxycamptothecin (SN38) prodrug for synergistic radiotherapy and chemotherapy. Upon X-ray irradiation, electron-dense Hf12 secondary building units serve as radiosensitizers to enhance hydroxyl radical generation for the triggered release of SN38 via hydroxylation of the 3,5-dimethoxylbenzyl carbonate followed by 1,4-elimination, leading to 5-fold higher release of SN38 from Hf-TP-SN than its molecular counterpart. As a result, Hf-TP-SN plus radiation induces significant cytotoxicity to cancer cells and efficiently inhibits tumor growth in colon and breast cancer mouse models.
Collapse
Affiliation(s)
- Ziwan Xu
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenyao Zhen
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Radiation and Cellular Oncology and Ludwig Center for Metastasis
Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Caroline McCleary
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Taokun Luo
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Peng
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ralph R. Weichselbaum
- Department
of Radiation and Cellular Oncology and Ludwig Center for Metastasis
Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Radiation and Cellular Oncology and Ludwig Center for Metastasis
Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
54
|
Zhao X, Cheng H, Wang Q, Nie W, Yang Y, Yang X, Zhang K, Shi J, Liu J. Regulating Photosensitizer Metabolism with DNAzyme-Loaded Nanoparticles for Amplified Mitochondria-Targeting Photodynamic Immunotherapy. ACS NANO 2023; 17:13746-13759. [PMID: 37438324 DOI: 10.1021/acsnano.3c03308] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondria-specific photosensitizer accumulation is highly recommended for photodynamic therapy and mitochondrial DNA (mtDNA) oxidative damage-based innate immunotherapy but remains challenging. 5-Aminolevulinic acid (ALA), precursor of photosensitizer protoporphyrin IX (PpIX), can induce the exclusive biosynthesis of PpIX in mitochondria. Nevertheless, its photodynamic effect is limited by the intracellular biotransformation of ALA in tumors. Here, we report a photosensitizer metabolism-regulating strategy using ALA/DNAzyme-co-loaded nanoparticles (ALA&Dz@ZIF-PEG) for mitochondria-targeting photodynamic immunotherapy. The zeolitic imidazolate framework (ZIF-8) nanoparticles can be disassembled and release large amounts of zinc ions (Zn2+) within tumor cells. Notably, Zn2+ can relieve tumor hypoxia for promoting the conversion of ALA to PpIX. Moreover, Zn2+ acts as a cofactor of rationally designed DNAzyme for silencing excessive ferrochelatase (FECH; which catalyzes PpIX into photoinactive Heme), cooperatively promoting the exclusive accumulation of PpIX in mitochondria via the "open source and reduced expenditure" manner. Subsequently, the photodynamic effects derived from PpIX lead to the damage and release of mtDNA and activate the innate immune response. In addition, the released Zn2+ further enhances the mtDNA/cGAS-STING pathway mediated innate immunity. The ALA&Dz@ZIF-PEG system induced 3 times more PpIX accumulation than ALA-loaded liposome, significantly enhancing tumor regression in xenograft tumor models.
Collapse
Affiliation(s)
- Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Qiongwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, People's Republic of China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, People's Republic of China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
55
|
Luo H, Wang Z, Mo Q, Yang J, Yang F, Tang Y, Liu J, Li X. Framework Nucleic Acid-Based Multifunctional Tumor Theranostic Nanosystem for miRNA Fluorescence Imaging and Chemo/Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37421332 DOI: 10.1021/acsami.3c01611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Intelligent stimulus-responsive theranostic systems capable of specifically sensing low-abundance tumor-related biomarkers and efficiently killing tumors remain a pressing endeavor. Here, we report a multifunctional framework nucleic acid (FNA) nanosystem for simultaneous imaging of microRNA-21 (miR-21) and combined chemo/gene therapy. To achieve this, two FNA nanoarchitectures labeled with Cy5/BHQ2 signal tags were designed, each of which contained an AS1411 aptamer, two pairs of DNA/RNA hybrids, a pH-sensitive DNA catcher, and doxorubicin (DOX) intercalating between cytosine and guanine in the tetrahedral DNA nanostructure (TDN). In the acidic tumor microenvironment, the DNA catchers spontaneously triggered to form an i-motif and create an FNA dimer (dFNA) while releasing DOX molecules to exert a cytotoxic effect. In addition, the overexpressed miR-21 in tumor cells dismantled the DNA/RNA hybrids to produce vascular endothelial growth factor-associated siRNA via a toehold-mediated strand displacement reaction, thus enabling a potent RNA interfering. Also importantly, the liberated miR-21 could initiate cascade-reaction amplification to efficiently activate the Cy5 signal reporters, thereby realizing on-site fluorescence imaging of miR-21 in living cells. The exquisitely designed FNA-based nanosystem showed favorable biocompatibility and stability as well as acid-driven DOX release characteristics. Owing to the aptamer-guided targeting delivery, specific uptake of the FNA-based theranostic nanosystem by HepG2 cells was verified with confocal laser scanning microscopy and flow cytometry analyses, which therefore resulted in apoptosis of HepG2 cells while doing minimal damage to normal H9c2 and HL-7702 cells. Strikingly, both in vitro and in vivo experiments demonstrated the achievements of the FNA-enabled miR-21 imaging and synergistically enhanced chemo/gene therapy. This work thus represents a noteworthy advance on the FNA-based theranostic strategy that can effectively avoid the undesirable premature leakage of anticarcinogen and off-target of siRNA, and achieve on-demand reagents release for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Haikun Luo
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Zhao Wang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- School of Medicine, Xiamen University, Xiang-an South Road, Xiamen 361102, China
| | - Qian Mo
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Jianying Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| |
Collapse
|
56
|
Wu C, Lu N, Peng L, Lin M, Bai Y, Lu M, Deng J, Wang J. Regulation of inflammatory macrophages by oral mineralized metal-organic framework nanoparticles for the synergistic treatment of ulcerative colitis and liver injury. CHEMICAL ENGINEERING JOURNAL 2023; 468:143655. [DOI: 10.1016/j.cej.2023.143655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
|
57
|
Luan X, Xiang Z, Dong J, Wang C, Li X, Shi Q, Du X. Silane-Functionalized Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery Systems: A New Universal Strategy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37248196 DOI: 10.1021/acsami.3c02052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new universal strategy for silane functionalization of metal-organic frameworks (MOFs) was developed. It was demonstrated that silanes were coupled both with terminal hydroxyl (OH) groups and with bridging OH groups of metal-oxo clusters of MOFs through condensation reactions between the silanols of hydrolyzed silanes and the terminal/bridging OH groups to form metal-O-Si bonds. A wide variety of functionalization of MOFs with conventional silanes can be realized by combining synthesis reactions in the solution phase and chemical modifications on the surface. Multivalent supramolecular nanovalves based on the host-guest chemistry of cyclodextrin polymer (CDP) and benzimidazole stalks silanized on the nanoscale MOF (NMOF) surface were successfully constructed. The CDP-valved NMOFs showed the excellent performance of low pH- and α-amylase-responsive controlled drug release. In vitro and in vivo results demonstrated that the CDP-valved NMOFs had a significant inhibitory effect on tumor growth and almost no damage/toxicity to normal tissues. The silanization strategy is universal and opens up a new way for the functionalization of MOFs, which are endowed with a wide variety of applications spanning gas storage, chemical sensing, adsorption and separation, heterogeneous catalysis, and drug delivery.
Collapse
Affiliation(s)
- Xingkun Luan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chen Wang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaona Li
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
58
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
59
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
60
|
Wang X, Lu H, Liao B, Li G, Chen L. Facile synthesis of layered double hydroxide nanosheets assembled porous structures for efficient drug delivery. RSC Adv 2023; 13:12059-12064. [PMID: 37082376 PMCID: PMC10111147 DOI: 10.1039/d3ra01000g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
As one of the important types of two-dimensional materials, layered double hydroxides (LDHs) have been widely used in the biomedical field as carriers for drug delivery. In this case, we propose a facile synthetic method for preparing LDH-based self-assembly structures via a metal ions-mediated zeolitic imidazolate framework-8 (ZIF-8) transformation process. The as-made hierarchical porous ZIF-8@LDHs core-shell structures and porous cages of LDHs (PC-LDHs) in drug delivery systems are used to study the loading and release of small molecular weight drugs such as doxorubicin hydrochloride (DOX) and 5-fluorouracil (5-FU). The intrinsic properties and assembly structures of both carriers are investigated in depth for their impact on slow drug release. Finally, PC-LDHs outperform ZIF-8@LDHs core-shell structures in terms of drug delivery performance under various conditions, indicating that LDH nanosheets would play a decisive role in the drug delivery process. In the drug release system, scattered LDH nanosheets with smaller sizes than their assemblies are gradually produced, allowing nanodrugs to enter cancer tissues more easily across biological barriers. This study provides the preliminary preparation for an LDH-based nanomedicine platform in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Haiyue Lu
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Baicheng Liao
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Gen Li
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
| | - Liyong Chen
- Department of Pharmaceutical Engineering, Bengbu Medical College Bengbu 233030 China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College Bengbu 233030 China
| |
Collapse
|
61
|
Zhang D, Jiang C, Zheng X, Lin Z, Zhuang Q, Xie H, Liang Y, Xu Y, Cui L, Liu X, Zeng Y. Normalization of Tumor Vessels by Lenvatinib-Based Metallo-Nanodrugs Alleviates Hypoxia and Enhances Calreticulin-Mediated Immune Responses in Orthotopic HCC and Organoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207786. [PMID: 37052507 DOI: 10.1002/smll.202207786] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Immunocheckpoint inhibitors combined with Lenvatinib is the first line treatment for hepatocellular carcinoma (HCC), but their potency is hampered by the low response rate and adverse events. Herein, a targeted therapeutic strategy through the coassembly of Lenvatinib, Adriamycin, Fe3+ ion, and a natural polyphenol (metallo-nanodrugs) is presented by coordination effect for potentiating tumor vascular normalization and systematic chemo-immunotherapy to effectively inhibit the progression of HCC in both orthotopic model and patients-derived organoids. In mice with orthotopic HCC, the obtained metallo-nanodrugs efficiently increase the drug accumulation in orthotopic tumors and can respond to acidic tumor environment. The promotion of tumor vascular normalization by metallo-nanodrugs is observed, which enhances the infiltrating T lymphocytes in tumor, and reinforces the calreticulin-mediated antitumor immunity through alleviating hypoxia, reducing regulatory T cells, and down-regulating PDL1 expression of tumors. The excellent therapeutic efficiency with complete remission of orthotopic tumors (3/6) and long-term survival of mice (4/6, 42 days) are also achieved. Furthermore, the excellent therapeutic effect of metallo-nanodrugs is also validated in 5 patient-derived organoids, and hence can provide a marvelous systemic chemo-immunotherapy strategy for enhancing HCC treatment.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chenwei Jiang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huanzhang Xie
- Fujian Key Laboratory of Functional Marine Sensing Materials, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, P. R. China
| | - Yuzhi Liang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yu Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Linsheng Cui
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| |
Collapse
|
62
|
Zhang X, Kitao T, Nishijima A, Uemura T. Thermal Transformation of Polyacrylonitrile Accelerated by the Formation of Ultrathin Nanosheets in a Metal-Organic Framework. ACS Macro Lett 2023; 12:415-420. [PMID: 36916794 DOI: 10.1021/acsmacrolett.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
In this study, polyacrylonitrile (PAN) nanosheets with unimolecular thickness were successfully synthesized by cross-linking polymerization in the 2D nanospaces of a metal-organic framework. In contrast to 1D and 3D analogues, crystallization could be inhibited by the topological constraint of the ultrathin 2D network structure, allowing for an efficient thermal transformation reaction of PAN. The amorphous nature of the PAN nanosheets led to an increase in the access of oxygen molecules to the polymer chains, facilitating the thermal dehydroaromatization reactions to yield a ladder polymer structure with a highly extended conjugated system. Notably, further carbonization of this ladder polymer afforded graphitic carbon with a highly ordered structure because of the well-defined precursor structure.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ami Nishijima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
63
|
Quan Y, Parker TF, Hua Y, Jeong HK, Wang Q. Process Elucidation and Hazard Analysis of the Metal–Organic Framework Scale-Up Synthesis: A Case Study of ZIF-8. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Yufeng Quan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Trent F. Parker
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yinying Hua
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Qingsheng Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
64
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
65
|
Ghani MW, Iqbal A, Ghani H, Bibi S, Wang Z, Pei R. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. J Mater Chem B 2023. [PMID: 36779580 DOI: 10.1039/d2tb02610d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
CRISPR/Cas systems are novel gene editing tools with tremendous capacity and accuracy for gene editing and hold great potential for therapeutic genetic manipulation. However, the lack of safe and efficient delivery methods for CRISPR/Cas and its guide RNA hinders their wide adoption for therapeutic applications. To this end, there is an increasing demand for safe, efficient, precise, and non-pathogenic delivery approaches, both in vitro and in vivo. With the convergence of nanotechnology and biomedicine, functional nanocomposites have demonstrated unparalleled sophistication to overcome the limits of CRISPR/Cas delivery. The tunability of the physicochemical properties of nanocomposites makes it very easy to conjugate them with different functional substances. The combinatorial application of diverse functional materials in the form of nanocomposites has shown excellent properties for CRISPR/Cas delivery at the target site with therapeutic potential. The recent highlights of selective organ targeting and phase I clinical trials for gene manipulation by CRISPR/Cas after delivery through LNPs are at the brink of making it to routine clinical practice. Here we summarize the recent advances in delivering CRISPR/Cas systems through nanocomposites for targeted delivery and therapeutic genome editing.
Collapse
Affiliation(s)
- Muhammad Waseem Ghani
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Ambreen Iqbal
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Hammad Ghani
- Basic Health Unit Laleka, Primary and Secondary Healthcare Department, Bahawalngar, 62300, Punjab, Pakistan
| | - Sidra Bibi
- Department of Biology, The Islamia University of Bahawalpur, Bahawalnagar Campus 62300, Pakistan
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| |
Collapse
|
66
|
Taheri-Ledari R, Tarinsun N, Sadat Qazi F, Heidari L, Saeidirad M, Ganjali F, Ansari F, Hassanzadeh-Afruzi F, Maleki A. Vancomycin-Loaded Fe 3O 4/MOF-199 Core/Shell Cargo Encapsulated by Guanidylated-β-Cyclodextrine: An Effective Antimicrobial Nanotherapeutic. Inorg Chem 2023; 62:2530-2547. [PMID: 36734619 DOI: 10.1021/acs.inorgchem.2c02634] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study describes an efficient antimicrobial drug delivery system composed of iron oxide magnetic nanoparticles (Fe3O4 NPs) coated by an MOF-199 network. Then, the prepared vancomycin (VAN)-loaded carrier was fully packed in a lattice of beta-cyclodextrin (BCD). For cell adhesion, beta-cyclodextrin has been functionalized with guanidine (Gn) groups within in situ synthetic processes. Afterward, drug loading efficiency and the release patterns were investigated through precise analytical methods. Confocal microscopy has shown that the prepared cargo (formulated as [VAN@Fe3O4/MOF-199]BCD-Gn) could be attached to the Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial cells in a higher rate than the individual VAN. The presented system considerably increased the antibacterial effects of the VAN with a lower dosage of drug. The cellular experiments such as the zone of inhibition and optical density (OD600) have confirmed the enhanced antibacterial effect of the designed cargo. In addition, the MIC/MBC (minimum inhibitory and bactericidal concentrations) values have been estimated for the prepared cargo compared to the individual VAN, revealing high antimicrobial potency of the VAN@Fe3O4/MOF-199]BCD-Gn cargo.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Nasibe Tarinsun
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Leili Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| |
Collapse
|
67
|
Responsive Nanostructure for Targeted Drug Delivery. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Currently, intelligent, responsive biomaterials have been widely explored, considering the fact that responsive biomaterials provide controlled and predictable results in various biomedical systems. Responsive nanostructures undergo reversible or irreversible changes in the presence of a stimulus, and that stimuli can be temperature, a magnetic field, ultrasound, pH, humidity, pressure, light, electric field, etc. Different types of stimuli being used in drug delivery shall be explained here. Recent research progress in the design, development and applications of biomaterials comprising responsive nanostructures is also described here. More emphasis will be given on the various nanostructures explored for the smart stimuli responsive drug delivery at the target site such as wound healing, cancer therapy, inflammation, and pain management in order to achieve the improved efficacy and sustainability with the lowest side effects. However, it is still a big challenge to develop well-defined responsive nanostructures with ordered output; thus, challenges faced during the design and development of these nanostructures shall also be included in this article. Clinical perspectives and applicability of the responsive nanostructures in the targeted drug delivery shall be discussed here.
Collapse
|
68
|
Yang XG, Zhang JR, Tian XK, Qin JH, Zhang XY, Ma LF. Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni 2+ Ions. Angew Chem Int Ed Engl 2023; 62:e202216699. [PMID: 36536412 DOI: 10.1002/anie.202216699] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm-2 , which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Jian-Hua Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xin-Ya Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| |
Collapse
|
69
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
70
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
71
|
Hung HL, Iizuka T, Deng X, Lyu Q, Hsu CH, Oe N, Lin LC, Hosono N, Kang DY. Engineering gas separation property of metal-organic framework membranes via polymer insertion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
72
|
Fluorescence color transformation of trans-4-[4-(N,N'-dimethylamino)styryl]pyridine-loaded UiO-66 for monitorable drug release. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
73
|
Zhang W, Liu C, Liu Z, Zhao C, Zhu J, Ren J, Qu X. A Cell Selective Fluoride-Activated MOF Biomimetic Platform for Prodrug Synthesis and Enhanced Synergistic Cancer Therapy. ACS NANO 2022; 16:20975-20984. [PMID: 36394517 DOI: 10.1021/acsnano.2c08604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a burgeoning bioorthogonal reaction, the fluoride-mediated desilylation is capable of prodrug activation. However, due to the reactions lack of cell selectivity and unitary therapy modality, this strongly impedes their biomedical applications. Herein, we construct a cancer cell-selective biomimetic metal-organic framework (MOF)-F platform for prodrug activation and enhanced synergistic chemodynamic therapy (CDT). With cancer cell membranes camouflage, the designed biomimetic nanocatalyst displays preferential accumulation to homotypic cancer cells. Then, pH-responsive nanocatalyst releases fluoride ions and ferric ions. For activation of our designed prodrug tert-butyldimethyl silyl (TBS)-hydroxycamptothecin (TBSO-CPT), fluoride ions can desilylate TBS and cleave the designed silyl ether linker to synthesize the OH-CPT (10-hydroxycamptothecin) drug molecule, which effectively kills cancer cells. Intriguingly, the bioorthogonal-synthesized OH-CPT drug upregulates intracellular H2O2 by activating nicotinamide adenine dinucleotide phosphate oxidase (NOX), amplifying the released iron induced Fenton reaction for synergistic CDT. Both in vitro and in vivo studies demonstrate our strategy presents a versatile fluoride-activated bioorthogonal catalyst for cancer cell-selective drug synthesis. Our work may accelerate the biomedical applications of fluoride-activated bioorthogonal chemistry.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiawei Zhu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
74
|
Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022; 14:pharmaceutics14122790. [PMID: 36559283 PMCID: PMC9783219 DOI: 10.3390/pharmaceutics14122790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Metal-organic frameworks (MOFs) have a good designability, a well-defined pore, stimulus responsiveness, a high surface area, and a controllable morphology. Up to now, various MOFs have been widely used as nanocarriers and have attracted lots of attention in the field of drug delivery and release because of their good biocompatibility and high-drug-loading capacity. Herein, we provide a comprehensive summary of MOF-based nanocarriers for drug delivery and release over the last five years. Meanwhile, some representative examples are highlighted in detail according to four categories, including the University of Oslo MOFs, Fe-MOFs, cyclodextrin MOFs, and other MOFs. Moreover, the opportunities and challenges of MOF-based smart delivery vehicles are discussed. We hope that this review will be helpful for researchers to understand the recent developments and challenges of MOF-based drug-delivery systems.
Collapse
|
75
|
Zhu Z, Lan J, Chen SM, Wang F. Design and synthesis of hydrogen-bonded organic frameworks based on Ni4L4 cubane units. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022; 352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Effective pest management for enhanced crop output is one of the primary goals of establishing sustainable agricultural practices in the world. Pesticides are critical in preventing biological disasters, ensuring crop productivity, and fostering sustainable agricultural production growth. Studies showed that crops are unable to properly utilize pesticides because of several limiting factors, such as leaching and bioconversion, thereby damaging ecosystems and human health. In recent years, stimuli-responsive systems for pesticides delivery (SRSP) by nanotechnology demonstrated excellent promise in enhancing the effectiveness and safety of pesticides. SRSP are being developed with the goal of delivering precise amounts of active substances in response to biological needs and environmental factors. An in-depth analysis of carrier materials, design fundamentals, and classification of SRSP were provided. The adhesion of SRSP to crop tissue, absorption, translocation in and within plants, mobility in the soil, and toxicity were also discussed. The problems and shortcomings that need be resolved to accelerate the actual deployment of SRSP were highlighted in this review.
Collapse
Affiliation(s)
- Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
77
|
Fischer A, Zhang P, Ouyang Y, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Willner I. DNA-Tetrahedra Corona-Modified Hydrogel Microcapsules: "Smart" ATP- or microRNA-Responsive Drug Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204108. [PMID: 36351764 DOI: 10.1002/smll.202204108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The assembly of adenosine triphosphate (ATP)-responsive and miRNA-responsive DNA tetrahedra-functionalized carboxymethyl cellulose hydrogel microcapsules is presented. The microcapsules are loaded with the doxorubicin-dextran drug or with CdSe/ZnS quantum dots as a drug model. Selective unlocking of the respective microcapsules and the release of the loads in the presence of ATP or miRNA-141 are demonstrated. Functionalization of the hydrogel microcapsules a with corona of DNA tetrahedra nanostructures yields microcarriers that revealed superior permeation into cells. This is demonstrated by the effective permeation of the DNA tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to epithelial MCF-10A nonmalignant breast cells. The superior permeation of the tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to analog control hydrogel microcapsules modified with a corona of nucleic acid duplexes. The effective permeation of the stimuli-responsive, drug-loaded, DNA tetrahedra-modified microcapsules yields drug carriers of superior and selective cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ola Karmi
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University, of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
78
|
Shao L, Gao X, Liu J, Zheng Q, Li Y, Yu P, Wang M, Mao L. Biodegradable Metal-Organic-Frameworks-Mediated Protein Delivery Enables Intracellular Cascade Biocatalysis and Pyroptosis In Vivo. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47472-47481. [PMID: 36227724 DOI: 10.1021/acsami.2c14957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pyroptosis is a new type of regulated cell death that is of great interest for developing new strategies for treating cancers. This potential is however greatly limited by the low efficiency and selectivity of current strategies to regulate cancer cell pyroptosis. Herein, we report biodegradable metal-organic frameworks (MOFs) for intracellular delivery of glucose oxidase (GOx) that promotes cascade biocatalysis inside cells and selectively induces cancer cell pyroptosis. We show that the self-assembly of Cu2+ and 4,4'-azobisbenzoic acid along with GOx affords protein-encapsulated GOx@Cu MOF that efficiently delivers GOx into cells. In addition, the tumor-cell-overexpressed NAD(P)H quinone dehydrogenase 1 (NQO1) can trigger the reduction of 4,4'-azobisbenzoic acid and the degradation of GOx@Cu MOF, releasing GOx to catalyze glucose oxidation and produce excessive hydrogen peroxide (H2O2) intracellularly. Furthermore, released Cu2+ from Cu MOF could be reduced to Cu+ by intracellular glutathione (GSH), promoting Fenton-like reaction with H2O2 to continuously generate a hydroxyl radical that induces cancer cell pyroptosis and prohibits tumor cell growth. We anticipate the strategy of harnessing biodegradable MOFs for protein delivery, and intracellular biocatalysis provides a powerful approach to regulate tumor cell pyroptosis for advanced therapeutic development.
Collapse
Affiliation(s)
- Leihou Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, People's Republic of China
| | - Xiangyi Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yali Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, People's Republic of China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
79
|
Qiu S, Wu X, Li Z, Xu X, Wang J, Du Y, Pan W, Huang R, Wu Y, Yang Z, Zhou Q, Zhou B, Gao X, Xu Y, Cui W, Gao F, Geng D. A Smart Nanoreactor Based on an O 2-Economized Dual Energy Inhibition Strategy Armed with Dual Multi-stimuli-Responsive "Doorkeepers" for Enhanced CDT/PTT of Rheumatoid Arthritis. ACS NANO 2022; 16:17062-17079. [PMID: 36153988 DOI: 10.1021/acsnano.2c07338] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Activated fibroblast-like synovial (FLS) cells are regarded as an important target for rheumatoid arthritis (RA) treatment via starvation therapy mediated by glucose oxidase (GOx). However, the hypoxic RA-FLS environment greatly reduces the oxidation process of glucose and leads to a poor therapeutic effect of the GOx-based starvation therapy. In this work, we designed a hollow mesoporous copper sulfide nanoparticles (CuS NPs)-based smart GOx/atovaquone (ATO) codelivery system (named as V-HAGC) targeting RA-FLS cells to realize a O2-economized dual energy inhibition strategy to solve the limitation of GOx-based starvation therapy. V-HAGC armed with dual multi-stimuli-responsive "doorkeepers" can guard drugs intelligently. Once under the stimulation of photothermal and acidic conditions at the targeted area, the dual intelligent responsive "doors" would orderly open to realize the controllable release of drugs. Besides, the efficacy of V-HAGC would be much improved by the additional chemodynamic therapy (CDT) and photothermal therapy (PTT) stimulated by CuS NPs. Meanwhile, the upregulated H2O2 and acid levels by starvation therapy would promote the Fenton-like reaction of CuS NPs under O2-economized dual energy inhibition, which could enhance the PTT and CDT efficacy as well. In vitro and in vivo evaluations revealed V-HAGC with much improved efficacy of this combination therapy for RA. In general, the smart V-HAGC based on the O2-economized dual energy inhibition strategy combined with enhanced CDT and PTT has the potential to be an alternative methodology in the treatment of RA.
Collapse
Affiliation(s)
- Shang Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xiunan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xinyu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Wenzhen Pan
- Department of Orthopedics, Pingyin People's Hospital, Shandong Jinan 250000, P.R. China
| | - Ruqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Yafei Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Zhi Yang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Qi Zhou
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Bing Zhou
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xuren Gao
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
| |
Collapse
|
80
|
Yan X, Du G, Chen H, Zhao Q, Guo Q, Wang J, Wang Z, Song W, Sheng Q, Luo Y, Yuan Y, Yue T. Label-free fluorescence aptasensor for the detection of patulin using target-induced DNA gates and TCPP/BDC-NH 2 mixed ligands functionalized Zr-MOF systems. Biosens Bioelectron 2022; 217:114723. [PMID: 36150324 DOI: 10.1016/j.bios.2022.114723] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Patulin (PAT) is an unsaturated lactone mycotoxin primarily produced by Penicillium expansum and Aspergillus clavatus. Given the potential health risks and economic losses associated with PAT, the rapid detection of PAT using fluorescent aptasensors is of significant importance in evaluating food safety. However, it easily increases the cost and complexity caused by signal labeling. We combined TCPP/BDC-NH2 mixed ligands functionalized Zr metal-organic frameworks (Zr-MOFmix) and terminated three-stranded DNA gates (ttsDNA gates) to fabricate a label-free fluorescent aptasensor for PAT detection. The Zr-MOFmix system was synthesized via a one-pot strategy and could be used to address the problem of pore size limitation and increase the loading amounts of dyes. TtsDNA gate was integrated into the Zr-MOFmix system to control the release of dyes, exhibiting a high signal-to-background ratio. The single-stranded aptamer region in ttsDNA gate situated away from the surface of the Zr-MOFmix, resulting in a natural release of dyes in the absence of PAT. While binding to PAT resulted in target-induced conformational changes that helped form the hairpin structure of the aptamer. This structure hindered the release of dyes from the pores of Zr-MOFmix, thus reducing the fluorescence signals intensity. The stimuli-responsive DNA-gated material provides a platform for PAT analysis under conditions of a low limit of detection (0.871 pg/mL). Furthermore, the excellent specificity and anti-interference of the fluorescent aptasensor make the system suitable for the analysis of apple juice samples. This label-free strategy is cheaper and simper compared with labeled detection, especially for the development of multi-target-detection.
Collapse
Affiliation(s)
- Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qiannan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, 710067, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an, 710067, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, 710067, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710067, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710067, China.
| |
Collapse
|
81
|
Zhang P, Fischer A, Ouyang Y, Sohn YS, Nechushtai R, Zhang J, Tian H, Fan C, Willner I. Topologically switchable and gated transcription machinery. Chem Sci 2022; 13:10555-10565. [PMID: 36277654 PMCID: PMC9473513 DOI: 10.1039/d2sc01599d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Topological barriers control in nature the transcription machinery, thereby perturbing gene expression. Here we introduce synthetically designed DNA templates that include built-in topological barriers for switchable, triggered-controlled transcription of RNA aptamers. This is exemplified with the design of transcription templates that include reversible and switchable topological barriers consisting of a Sr2+-ion-stabilized G-quadruplex and its separation by kryptofix [2.2.2], KP, for the switchable transcription of the malachite green (MG) RNA aptamer, the T-A·T triplex barrier being separated by a fuel-strand for the cyclic triggered transcription of the 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding aptamer, and the use of a photoactivated cis/trans azobenzene-modified nucleic acid barrier for the switchable "ON"/"OFF" transcription of the MG RNA aptamer. By applying a mixture of topologically triggered templates consisting of the photoresponsive barrier and the T-A·T triplex barrier, the gated transcription of the MG aptamer or the DFHBI-binding aptamer is demonstrated. In addition, a Sr2+-ion/KP topologically triggered DNA tetrahedra promoter-transcription scaffold, for the replication of the MG RNA aptamer, and T7 RNA polymerase are integrated into DNA-based carboxymethyl cellulose hydrogel microcapsules acting as cell-like assemblies. The switchable, reversible transcription of the MG RNA aptamer in a cell-like containment is introduced.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Junji Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University 200240 Shanghai China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
82
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
83
|
Jaros S, Komarnicka UK, Kyzioł A, Pucelik B, Nesterov DS, Kirillov AM, Smoleński P. Therapeutic Potential of a Water-Soluble Silver-Diclofenac Coordination Polymer on 3D Pancreatic Cancer Spheroids. J Med Chem 2022; 65:11100-11110. [PMID: 35969454 PMCID: PMC9776540 DOI: 10.1021/acs.jmedchem.2c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work describes the traditional wet and green synthetic approaches, structural features, and extensive bioactivity study for a new coordination polymer [Ag(μ-PTA)(Df)(H2O)]n·3nH2O (1) that bears a silver(I) center, a 1,3,5-triaza-phosphaadamantane (PTA) linker, and a nonsteroidal anti-inflammatory drug, diclofenac (Df-). Compared to cisplatin, compound 1 exhibits both anti-inflammatory properties and very remarkable cytotoxicity toward various cancer cell lines with a high value of selectivity index. Additionally, the 3D model representing human pancreas/duct carcinoma (PANC-1) and human lung adenocarcinoma (A549) was designed and applied as a clear proof of the remarkable therapeutic potential of 1. The obtained experimental data indicate that 1 induces an apoptotic pathway via reactive oxygen species generation, targeting mitochondria due to their membrane depolarization. This study broadens a group of bioactive metal-organic networks and highlights the significant potential of such compounds in developing advanced therapeutic solutions.
Collapse
Affiliation(s)
- Sabina
W. Jaros
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Urszula K. Komarnicka
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Agnieszka Kyzioł
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Barbara Pucelik
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dmytro S. Nesterov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,
| | - Piotr Smoleński
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland,
| |
Collapse
|
84
|
Li Z, Wang J, Willner I. Autoinhibited transient, gated, and cascaded dynamic transcription of RNAs. SCIENCE ADVANCES 2022; 8:eabq5947. [PMID: 35977022 PMCID: PMC9385147 DOI: 10.1126/sciadv.abq5947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Following transient spatiotemporal misregulation of gene expression programs by native transcription machineries, we introduce a versatile biomimetic concept to design transient dynamic transcription machineries, revealing gated and cascaded temporal transcription of RNAs. The concept is based on the engineering of the reaction module consisting of malachite green (MG) and/or DFHBI {(5Z)-5-[(3,5-difluoro-4-hydroxyphenyl)methylene]-3,5-dihydro-2,3-dimethyl-4H-imidazol-4-one} DNA scaffolds, T7 RNA polymerase (RNAP) aptamer transcription scaffold, and the inhibited T7 RNAP-aptamer complex. In the presence of the counter RNAP aptamer strand and ribonucleoside triphosphates, the triggered activation of the three transcription scaffolds are activated, leading to the transcription of the MG and/or DFHBI RNA aptamer and to the transcription of the RNAP aptamer acting as an autoinhibitor that leads to the transient temporal, dissipative, and blockage of all transcription. By appropriate design of the transcription scaffolds and the inhibitors/coupler, transient gated and cascaded transcription processes are demonstrated, and a bimodal transcription module synthesizing a transient operating ribozyme is introduced.
Collapse
|
85
|
Wang Z, Huang X. Luminescent Organic-Inorganic Hybrid Metal Halides: An Emerging Class of Stimuli-Responsive Materials. Chemistry 2022; 28:e202200609. [PMID: 35514119 DOI: 10.1002/chem.202200609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/05/2022]
Abstract
Luminescent organic-inorganic metal halides (OIMHs) are well known as a new materials family in recent years. Novel materials and applications of luminescent OIMHs have been explored by changing either the organic component or the metal halide species. Thereinto, the stimuli-responsive (SR) phenomena in OIMHs have drawn much attention recently, for not only their attractive application potential but also the helpfulness in understanding the stability of OIMHs to the external environment. Herein, the luminescent OIMHs that are sensitive to external stimuli including contact, pressure, mechanical grinding, light, heat, and gas molecules, are reviewed, with an emphasis on analyses of the structural change during the SR process. The applications of SR luminescent OIMHs in widespread fields, including gas sensing, information encryption, and rewritable luminescent paper are summarized. Finally, the challenges that deserve to be further explored in this research field are discussed, which provides certain guidance for the future study of SR luminescent OIMHs.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
86
|
Karami A, Ahmed A, Sabouni R, Husseini GA, Paul V. Combined and Single Doxorubicin/Naproxen Drug Loading and Dual-Responsive pH/Ultrasound Release from Flexible Metal-Organic Framework Nanocarriers. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, the flexible aluminum-based MIL-53(Al) metal-organic framework was loaded with doxorubicin (DOX) and naproxen (NAP) and was examined as a promising pH/ultrasound dual-responsive drug delivery system. The two drugs were encapsulated in MIL-53(Al) individually to produce
the DOX@MIL-53(Al) and NAP@MIL-53(Al) nanocarriers. They were also encapsulated as a dual-drug formulation to produce the DOX* + NAP*@MIL-53(Al) nanocarrier. The MOF nanoparticles were characterized using the Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Fourier Transform Infrared
spectroscopy (FTIR), and Dynamic Light Scattering (DLS) techniques. In the case of the DOX@MIL, the nanocarriers’ drug Encapsulation Efficiency (EE) and Encapsulation Capacity (EC) were 92% and 16 wt.%, respectively, whereas, in the case of NAP@MIL-53(Al), the average NAP EE and EC were
around 97.7% and 8.5 wt.%, respectively. On the other hand, in the DOX* + NAP*@MIL-53(Al) nanoparticles, the average DOX* EE and EC were 38.9% and 6.22 wt.%, respectively, while for NAP*, the average EE and EC were 70.2% and 4.49 wt.%, respectively. In vitro release experiments demonstrated
the good pH and Ultrasound (US) dual-responsiveness of these nanocarriers, with a maximum US-triggered DOX and NAP release, at a pH level of 7.4, of approximately 53% and 95%, respectively. In comparison, the measured release was around 90% and 36% at pH 5.3 for DOX and NAP, respectively.
In the case of the dualdrug formulation, the nanocarrier displayed similar pH/US dual-responsive behavior. Finally, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) results confirmed the biocompatibility and low cytotoxicity of MIL-53(Al) at concentrations up to 1000
μg/ml.
Collapse
Affiliation(s)
- Abdollah Karami
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Ahmed Ahmed
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Rana Sabouni
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, UAE
| | - Ghaleb A. Husseini
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Vinod Paul
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
87
|
Wang K, Li Y, Xie LH, Li X, Li JR. Construction and application of base-stable MOFs: a critical review. Chem Soc Rev 2022; 51:6417-6441. [PMID: 35702993 DOI: 10.1039/d1cs00891a] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.
Collapse
Affiliation(s)
- Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yaping Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiangyu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
88
|
Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au 3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O 2•- and •OH Generating Nanozymes and Their Antibacterial Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of Au3+ -modified UiO-67 metal-organic framework nanoparticles, Au3+ -NMOFs, are described. The Au3+ -NMOFs reveal dual oxidase-like and peroxidase-like activities and act as an active catalyst for the catalyzed generation of O2•- under aerobic conditions or •OH in the presence of H2 O2 . The two reactive oxygen species (ROS) agents O2•- and •OH are cooperatively formed by Au3+ -NMOFs under aerobic conditions, and in the presence of H2 O2. The Au3+ -NMOFs are applied as an effective catalyst for the generation ROS agents for antibacterial and wound healing applications. Effective antibacterial cell death and inhibition of cell proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial colonies are demonstrated in the presence of the Au3+ -NMOFs. In addition, in vivo experiments demonstrate effective wound healing of mice wounds infected by S. aureus, treated by the Au3+ -NMOFs.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lu-Qin Si
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
89
|
Yu HJ, Wang H, Shen FF, Li FQ, Zhang YM, Xu X, Liu Y. Cyclodextrin-Confined Supramolecular Lanthanide Photoswitch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201737. [PMID: 35585680 DOI: 10.1002/smll.202201737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Indexed: 06/15/2023]
Abstract
The utilization of azobenzene-based photoisomerization cannot only control the morphology of supramolecular assemblies, but can also regulate many biological processes. However, the design of azobenzene-involved nanoconstructs with switchable photoluminescence remains challenging because of the light-quenching ability of azobenzene. Herein, an azobenzene-derived multicomponent nanosystem is reported and its function as a supramolecular lanthanide photoswitch is explored. The metal chelation between lanthanide ions (Ln3+ = Eu3+ and Tb3+ ) and 2,6-pyridinedicarboxylic acid is utilized as the light-emitting center but its inherent fluorescence emission is completely suppressed via the disordered motion of the adjoining azophenyl unit. Interestingly, the hydrophobic cavity of α-cyclodextrin can provide a confined microenvironment to immobilize the molecular conformation of trans-azobenzene, thus leading to the recovery of characteristic lanthanide luminescence both in aqueous solution and the hydrogel state. Also, the luminescence can be reversibly turned off when the cis-azobenzene is expelled from the cavity of α-cyclodextrin upon alternating light irradiation. This mutual cooperation arising from host-guest complexation and metal-ligand coordination confers the desired photoswitchable luminescence abilities on the commonly used azobenzenes, which may hold great promise in the creation of more advanced light-responsive smart materials.
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Haoran Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Feng-Qing Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
90
|
Xiang F, Chen S, Yuan Z, Li L, Fan Z, Yao Z, Liu C, Xiang S, Zhang Z. Switched Proton Conduction in Metal-Organic Frameworks. JACS AU 2022; 2:1043-1053. [PMID: 35647587 PMCID: PMC9131472 DOI: 10.1021/jacsau.2c00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 04/14/2023]
Abstract
Stimuli-responsive materials can respond to external effects, and proton transport is widespread and plays a key role in living systems, making stimuli-responsive proton transport in artificial materials of particular interest to researchers due to its desirable application prospects. On the basis of the rapid growth of proton-conducting porous metal-organic frameworks (MOFs), switched proton-conducting MOFs have also begun to attract attention. MOFs have advantages in crystallinity, porosity, functionalization, and structural designability, and they can facilitate the fabrication of novel switchable proton conductors and promote an understanding of the comprehensive mechanisms. In this Perspective, we highlight the current progress in the rational design and fabrication of stimuli-responsive proton-conducting MOFs and their applications. The dynamic structural change of proton transfer pathways and the role of trigger molecules are discussed to elucidate the stimuli-responsive mechanisms. Subsequently, we also discuss the challenges and propose new research opportunities for further development.
Collapse
|
91
|
Synthesis and structure of new europium(ɪɪɪ) and terbium(ɪɪɪ) coordination polymers with trans-1,4-cyclohexanedicarboxylic acid. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
92
|
Ouyang Y, Zhang P, Willner I. Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. SCIENCE ADVANCES 2022; 8:eabn3534. [PMID: 35522744 PMCID: PMC9075803 DOI: 10.1126/sciadv.abn3534] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Living systems consist of complex transient cellular networks guiding structural, catalytic, and switchable functions driven by auxiliary triggers, such as chemical or light energy inputs. We introduce two different transient, dissipative, biocatalytic cascades, the coupled glucose oxidase (GOx)/horseradish peroxidase (HRP) glucose-driven oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2-) to the radical anion (ABTS•-) and the lactate dehydrogenase (LDH)/nicotinamide adenine dinucleotide (NAD+) lactate-driven reduction of NAD+ to NADH. The transient biocatalytic systems are driven by nucleic acid reaction modules using a nucleic acid fuel strand L1' and a nicking enzyme, Nt.BbvCI, as fuel-degrading catalyst, leading to the dynamic spatiotemporal transient formation of structurally proximate biocatalysts activating the biocatalytic cascades and transient coupled processes, including the generation of chemiluminescence and the synthesis of alanine. Subjecting the mixture of biocatalysts to selective inhibitors allows the gated transient operation of the biocatalysts. The kinetics of transient biocatalytic cascades are accompanied by kinetic models and computational simulations.
Collapse
|
93
|
Zhu Z, Bi C, Zou H, Feng G, Xu S, Tang BZ. Smart Tetraphenylethene-Based Luminescent Metal-Organic Frameworks with Amide-Assisted Thermofluorochromics and Piezofluorochromics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200850. [PMID: 35486035 PMCID: PMC9165507 DOI: 10.1002/advs.202200850] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Indexed: 05/04/2023]
Abstract
Luminescent metal-organic frameworks (MOFs) are appealing for the design of smart responsive materials, whereas aggregation-induced emission (AIE) fluorophores with twisted molecular rotor structure provide exciting opportunities to construct MOFs with new topology and responsiveness. Herein, it is reported that elongating AIE rotor ligands can render the newly formed AIE MOF (ZnETTB) (ETTB = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-3,5-dicarboxylic acid))) with more elasticity, more control for intramolecular motion, and specific amide-sensing capability. ZnETTB shows specific host-guest interaction with amide, where N,N-diethylformamide (DEF), as an example, is anchored through CH···O and CH···π bonds with Zn cluster and ETTB8- ligand, respectively. DEF anchoring reduces both the distortion level and the intramolecular motions of ETTB8- ligand to lead a blueshifted and intensified emission for DEF ∈ ZnETTB. Moreover, amide anchoring also affords the DEF ∈ ZnETTB with the excellent thermofluorochromic behavior, and further increases the piezofluorochromic sensitivity at low-pressure ranges on the basis of its elastic framework. This work is one of the rare examples of amide-responsive smart materials, which shall shed new lights on design of smart MOFs with twisted AIE rotors for further sensing and detection applications.
Collapse
Affiliation(s)
- Zhong‐Hong Zhu
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Changjiang Bi
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Hua‐Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmacy of Guangxi Normal UniversityGuilin541004China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- School of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen518172China
| |
Collapse
|
94
|
Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. EXPLORATION (BEIJING, CHINA) 2022; 2:20210238. [PMID: 37323881 PMCID: PMC10191001 DOI: 10.1002/exp.20210238] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/30/2022] [Indexed: 06/15/2023]
Abstract
Chemodynamic therapy (CDT) has emerged to be a frontrunner amongst reactive oxygen species-based cancer treatment modalities. CDT utilizes endogenous H2O2 in tumor microenvironment (TME) to produce cytotoxic hydroxyl radicals (•OH) via Fenton or Fenton-like reactions. While possessing advantages such as tumor specificity, no need of external stimuli, and low side effects, practical applications of CDT are still impeded owing to the heterogeneity, complexity, and reductive environment of TME. Over the past couple of years, strategies to enhance CDT for efficient tumor regression are in rapid development in synergy with the growth of nanomedicine. In this review, we initially outline the fundamental understanding of Fenton and Fenton-like reactions and their relationship with CDT. Subsequently, the development in the design of nanosystems for CDT is highlighted in a general manner. Furthermore, recent advancement of the strategies to augment Fenton reactions in TME for enhanced CDT is discussed in detail. Finally, perspectives toward the future development of CDT for better therapeutic outcome are presented. This review is expected to draw attention for collaborative research on CDT in the best interest of its future clinical applications.
Collapse
Affiliation(s)
- Deblin Jana
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
95
|
Tian M, Xin X, Wu R, Guan W, Zhou W. Advances in Intelligent-Responsive Nanocarriers for Cancer Therapy. Pharmacol Res 2022; 178:106184. [PMID: 35301111 DOI: 10.1016/j.phrs.2022.106184] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
With the rapid development of nanotechnology, strategies related to nanomedicine have been used to overcome the shortcomings of traditional chemotherapy drugs, thereby demonstrating significant potential for innovative drug delivery. Nanomaterials play an increasingly important role in cancer immunotherapy. Stimuli-responsive nanomaterials enable the precise control of drug release through exposure to specific stimuli and exhibit excellent specificity in response to various stimuli. Immunomodulators carried by nanomaterials can also effectively regulate the immune system and significantly improve their therapeutic effect on cancer. In recent years, stimuli-responsive nanomaterials have evolved rapidly from single stimuli-responsive systems to multi-stimuli-responsive systems. This review focuses on recent advances in the design and applications of stimuli-responsive nanomaterials, including exogenous and endogenous responsive nanoscale drug delivery systems, which show extraordinary potential in intelligent drug delivery for multimodal cancer diagnosis and treatment. Ultimately, the opportunities and challenges in the development of intelligent responsive nanomaterials are briefly discussed according to recent advances in multi-stimuli-responsive systems.
Collapse
Affiliation(s)
- Mingce Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xiaxia Xin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Riliga Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, China.
| |
Collapse
|
96
|
Zn(II) Coordination Polymer with π-Stacked 4,4’-Bipyridine Dimers: Synthesis, STRUCTURE and Luminescent Properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
97
|
Yu J, Xiao H, Yang Z, Qiao C, Zhou B, Jia Q, Wang Z, Wang X, Zhang R, Yang Y, Wang Z, Li J. A Potent Strategy of Combinational Blow Toward Enhanced Cancer Chemo-Photodynamic Therapy via Sustainable GSH Elimination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106100. [PMID: 34910845 DOI: 10.1002/smll.202106100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Excessive glutathione (GSH), which is produced owing to abnormal metabolism of tumor cells, scavenges photo-induced reactive oxygen species (ROS) and consumes chemotherapeutic drugs, thereby attenuating the efficacy of photodynamic therapy and chemotherapy, respectively. Predominant strategies for GSH inhibition involve its chemical depletion, which only leads to a temporary therapeutic effect because GSH is replenished via various compensatory routes in tumor cells. Here, a versatile GSH-inhibiting nanosystem (termed PCNPs) for persistent synergistic therapy of cancer is reported. The porous skeleton of PCNPs allows easy encapsulation of buthionine sulfoximine (BSO) to sustainably suppress the biosynthesis of GSH. Thus, PCNPs not only demonstrate a prolonged release of BSO and improve drug utilization for efficient chemotherapy, but also act as an efficient photo-induced singlet oxygen radical generator that prevents the loss of ROS, thereby enhancing photodynamic therapy. In addition, the liposomal coating prevents cargo release in the blood, improves the accumulation of PCNPs at the tumor site, and promotes the cellular uptake of oxaliplatin and BSO. This strategy is applicable to ROS-based therapy and chemotherapy, which are suppressed by GSH, and may further enhance the synergistic effect of GSH-restrained therapy.
Collapse
Affiliation(s)
- Jie Yu
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Hua Xiao
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zuo Yang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Chaoqiang Qiao
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Bin Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Qian Jia
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Zhongdi Wang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Xiaofei Wang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Ruili Zhang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Zhongliang Wang
- Engineering Research Center of Molecular and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, 100071, P. R. China
| |
Collapse
|
98
|
Magnetic field-assisted aligned patterning in an alginate-silk fibroin/nanocellulose composite for guided wound healing. Carbohydr Polym 2022; 287:119321. [DOI: 10.1016/j.carbpol.2022.119321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
99
|
Cao Y, Mo F, Liu Y, Liu Y, Li G, Yu W, Liu X. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal-organic-framework using personal glucose meter. Biosens Bioelectron 2022; 198:113819. [PMID: 34836711 DOI: 10.1016/j.bios.2021.113819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022]
Abstract
Personal glucose meter (PGM) is one of the most commercially available POC (point-of-care) devices for monitoring the level of glucose reliably, yet its non-glucose quantification ability is limited since such strategy needs ingenious interface design and tedious enzyme conjugation. Herein, we constructed a portable and sensitive platform that can detect non-glucose target by combining enzyme-encapsulated zeolitic imidazole framework-90 (ZIF-90) with personal glucose meter. ZIF-90 is an ideal carrier and susceptor due to the extraordinary capability of packaging enzyme and stimuli-responsiveness. We selected adenosine-5'-triphosphate (ATP) as the target model of non-glucose analytes. Upon ATP-induced decomposition of MOF, the released enzyme (glucose oxidase or invertase) catalyzed substrate and gave rise to the change of the glucose concentration for PGM assay. This method determined ATP with a remarkably sensitivity of 233 nM and effective recovery in real serum samples. Our strategy provides a facile and practical approach for measuring the non-glucose target using PGM, and could potentially be applied in bimolecular detection in point-of-care diagnosis.
Collapse
Affiliation(s)
- Yunzhe Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Fengye Mo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yahua Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Animal, Plant and Foodstuffs Inspection Center of Tianjin Customs, Tianjin, 300461, PR China
| | - Yu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Department of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wenqian Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
100
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|