51
|
Klinger SC, Siupka P, Nielsen MS. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters. MEMBRANES 2015; 5:288-306. [PMID: 26154780 PMCID: PMC4584283 DOI: 10.3390/membranes5030288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN.
Collapse
Affiliation(s)
- Stine C Klinger
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Piotr Siupka
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Morten S Nielsen
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
52
|
Mehmedbasic A, Christensen SK, Nilsson J, Rüetschi U, Gustafsen C, Poulsen ASA, Rasmussen RW, Fjorback AN, Larson G, Andersen OM. SorLA complement-type repeat domains protect the amyloid precursor protein against processing. J Biol Chem 2014; 290:3359-76. [PMID: 25525276 DOI: 10.1074/jbc.m114.619940] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SorLA is a neuronal sorting receptor that is genetically associated with Alzheimer disease. SorLA interacts directly with the amyloid precursor protein (APP) and affects the processing of the precursor, leading to a decreased generation of the amyloid-β peptide. The SorLA complement-type repeat (CR) domains associate in vitro with APP, but the precise molecular determinants of SorLA·APP complex formation and the mechanisms responsible for the effect of binding on APP processing have not yet been elucidated. Here, we have generated protein expression constructs for SorLA devoid of the 11 CR-domains and for two SorLA mutants harboring substitutions of the fingerprint residues in the central CR-domains. We generated SH-SY5Y cell lines that stably express these SorLA variants to study the binding and processing of APP using co-immunoprecipitation and Western blotting/ELISAs, respectively. We found that the SorLA CR-cluster is essential for interaction with APP and that deletion of the CR-cluster abolishes the protection against APP processing. Mutation of identified fingerprint residues in the SorLA CR-domains leads to changes in the O-linked glycosylation of APP when expressed in SH-SY5Y cells. Our results provide novel information on the mechanisms behind the influence of SorLA activity on APP metabolism by controlling post-translational glycosylation in the Golgi, suggesting new strategies against amyloidogenesis in Alzheimer disease.
Collapse
Affiliation(s)
- Arnela Mehmedbasic
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Sofie K Christensen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Jonas Nilsson
- the Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Ulla Rüetschi
- the Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Camilla Gustafsen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Annemarie Svane Aavild Poulsen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Rikke W Rasmussen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Anja N Fjorback
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| | - Göran Larson
- the Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Olav M Andersen
- From the Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience Nordic-EMBL Partnership (DANDRITE), Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 AarhusC, Denmark and
| |
Collapse
|
53
|
Massa F, Devader C, Lacas-Gervais S, Béraud-Dufour S, Coppola T, Mazella J. Impairement of HT29 Cancer Cells Cohesion by the Soluble Form of Neurotensin Receptor-3. Genes Cancer 2014; 5:240-249. [PMID: 25221642 PMCID: PMC4162136 DOI: 10.18632/genesandcancer.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022] Open
Abstract
The neurotensin (NT) receptor-3 (NTSR3), also called sortilin is a multifunctional protein localized at the intracellular and plasma membrane level. The extracellular domain of NTSR3 (sNTSR3) is released by shedding from several cell lines including colonic cancer cells. This soluble protein acts as an active ligand through its ability to bind, to be internalized in the human adenocarcinoma epithelial HT29 cells and to stimulate the PI3 kinase pathway. The aim of this study was to investigate cellular responses induced by sNTSR3 in HT29 cells. The cellular functions of sNTSR3 were monitored by immunofluocytochemistry, electron microscopy and quantitative PCR in order to characterize the cell shape and the expression of adhesion proteins. We evidenced that sNTSR3 significantly regulates the cellular morphology as well as the cell-cell and the cell-matrix adherens properties by decreasing the expession of several integrins and by modifying the structure of desmosomes. Altogether, these properties lead to an increase of cell detachment upon sNTSR3 treatment on HT29, HCT116 and SW620 cancer cells. Our results indicate that sNTSR3 may induce the first phase of a process which weaken HT29 epithelial properties including desmosome architecture, cell spreading, and initiation of cell separation, all events which could be responsible for cancer metastasis.
Collapse
Affiliation(s)
- Fabienne Massa
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice-Sophia Antipolis, Valbonne, France
| | - Christelle Devader
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice-Sophia Antipolis, Valbonne, France
| | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Appliquée, Université de Nice-Sophia Antipolis, Nice, France
| | - Sophie Béraud-Dufour
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice-Sophia Antipolis, Valbonne, France
| | - Thierry Coppola
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice-Sophia Antipolis, Valbonne, France
| | - Jean Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice-Sophia Antipolis, Valbonne, France
| |
Collapse
|
54
|
Quistgaard EM, Grøftehauge MK, Madsen P, Pallesen LT, Christensen B, Sørensen ES, Nissen P, Petersen CM, Thirup SS. Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin. Protein Sci 2014; 23:1291-300. [PMID: 24985322 DOI: 10.1002/pro.2512] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 12/16/2022]
Abstract
Sortilin is a multifunctional receptor involved in sorting and apoptosis. We have previously reported a 2.0-Å structure of the Vps10 ectodomain in complex with one of its ligands, the tridecapeptide neurotensin. Here we set out to further characterize the structural properties of sortilin and its interaction with neurotensin. To this end, we have determined a new 2.7 Å structure using a crystal grown with a 10-fold increased concentration of neurotensin. Here a second peptide fragment was observed within the Vps10 β-propeller, which may in principle either represent a second molecule of neurotensin or the N-terminal part of the molecule bound at the previously identified binding site. However, in vitro binding experiments strongly favor the latter hypothesis. Neurotensin thus appears to bind with a 1:1 stoichiometry, and whereas the N-terminus does not bind on its own, it enhances the affinity in context of full-length neurotensin. We conclude that the N-terminus of neurotensin probably functions as an affinity enhancer for binding to sortilin by engaging the second binding site. Crystal packing differs partly from the previous structure, which may be due to variations in the degree and pattern of glycosylations. Consequently, a notable hydrophobic loop, not modeled previously, could now be traced. A computational analysis suggests that this and a neighboring loop may insert into the membrane and thus restrain movement of the Vps10 domain. We have, furthermore, mapped all N-linked glycosylations of CHO-expressed human sortilin by mass spectrometry and find that their locations are compatible with membrane insertion of the hydrophobic loops.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics, MIND Centre, Aarhus University, Gustav Wieds Vej 10C, DK 8000, Aarhus C, Denmark; Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Wilson CM, Naves T, Vincent F, Melloni B, Bonnaud F, Lalloué F, Jauberteau MO. Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. J Cell Sci 2014; 127:3983-97. [PMID: 25037567 DOI: 10.1242/jcs.149336] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transfer of exosomes containing both genetic and protein materials is necessary for the control of the cancer cell microenvironment to promote tumor angiogenesis. The nature and function of proteins found in the exosomal cargo, and the mechanism of their action in membrane transport and related signaling events are not clearly understood. In this study, we demonstrate, in human lung cancer A549 cells, that the exosome release mechanism is closely linked to the multifaceted receptor sortilin (also called neurotensin receptor 3). Sortilin is already known to be important for cancer cell function. Here, we report for the first time its role in the assembly of a tyrosine kinase complex and subsequent exosome release. This new complex (termed the TES complex) is found in exosomes and results in the linkage of the two tyrosine kinase receptors TrkB (also known as NTRK2) and EGFR with sortilin. Using in vitro models, we demonstrate that this sortilin-containing complex exhibits a control on endothelial cells and angiogenesis activation through exosome transfer.
Collapse
Affiliation(s)
- Cornelia M Wilson
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr Raymond Marcland, 87025 Limoges CEDEX-France
| | - Thomas Naves
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr Raymond Marcland, 87025 Limoges CEDEX-France
| | - François Vincent
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr Raymond Marcland, 87025 Limoges CEDEX-France Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87000 Limoges CEDEX-France
| | - Boris Melloni
- Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87000 Limoges CEDEX-France
| | - François Bonnaud
- Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87000 Limoges CEDEX-France
| | - Fabrice Lalloué
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr Raymond Marcland, 87025 Limoges CEDEX-France
| | - Marie-Odile Jauberteau
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr Raymond Marcland, 87025 Limoges CEDEX-France
| |
Collapse
|
56
|
Carlo AS, Nykjaer A, Willnow TE. Sorting receptor sortilin-a culprit in cardiovascular and neurological diseases. J Mol Med (Berl) 2014; 92:905-11. [PMID: 24838608 DOI: 10.1007/s00109-014-1152-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022]
Abstract
Sortilin is a sorting receptor that directs target proteins, such as growth factors, signaling receptors, and enzymes, to their destined location in secretory or endocytic compartments of cells. The activity of sortilin is essential for proper function of not only neurons but also non-neuronal cell types, and receptor (dys)function emerges as a major cause of malignancies, including hypercholesterolemia, retinal degeneration, neuronal cell loss in stroke and spinal cord injury, or Alzheimer's disease and other neurodegenerative disorders. In this article, we describe the molecular mechanisms of sortilin action in protein sorting and signaling and how modulation of receptor function may offer novel therapeutic strategies for treatment of common diseases of the cardiovascular and nervous systems.
Collapse
Affiliation(s)
- Anne-Sophie Carlo
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | | | | |
Collapse
|
57
|
Oetjen S, Mahlke C, Hermans-Borgmeyer I, Hermey G. Spatiotemporal expression analysis of the growth factor receptor SorCS3. J Comp Neurol 2014; 522:3386-402. [PMID: 24715575 DOI: 10.1002/cne.23606] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
SorCS3 is a member of the Vps10p-D receptor family. These type I transmembrane proteins are regarded as sorting receptors, and some family members modulate signal transduction pathways by acting as co-receptors. SorCS3 binds the nerve growth factor (NGF) and platelet-derived growth factor (PDGF-BB), but the functional implications of these interactions are poorly understood. Here we demonstrate that SorCS3 is almost exclusively expressed in the nervous system and is localized to vesicular structures. By using in situ hybridization, we analyze SorCS3 dynamic expression during embryonic and postnatal development and compare the expression pattern with those of the homologous genes SorCS1 and SorCS2. SorCS3 transcripts are widely distributed in the nervous system but are absent from the embryonic cerebral cortex. SorCS3 expression marks thalamic nuclei at embryonic and early postnatal stages. However, during postnatal development and in the adult, a switch in the localization of SorCS3 transcripts was observed. At these stages forebrain structures, such as the hippocampus and the cerebral cortex, show most prominent expression. The developmental expression pattern of SorCS3 is in accordance with the proposed function as a receptor for growth factors or morphogenic signals. On the cellular level, we demonstrate that the SorCS3 cytoplasmic domain targets receptors to the Golgi apparatus, vesicular structures, and the cell surface. In neurons, receptors are localized to vesicles in the soma and dendrites. Moreover, we show that the SorCS3 cytoplasmic domain conveys internalization through canonical endocytic motifs in an adaptor protein 2 (AP-2)-dependent way. This is in agreement with a proposed function as a neuronal sorting receptor.
Collapse
Affiliation(s)
- Sandra Oetjen
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | | | | | | |
Collapse
|
58
|
Tsukamoto S, Takeuchi M, Kawaguchi T, Togasaki E, Yamazaki A, Sugita Y, Muto T, Sakai S, Takeda Y, Ohwada C, Sakaida E, Shimizu N, Nishii K, Jiang M, Yokote K, Bujo H, Nakaseko C. Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes. Exp Mol Med 2014; 46:e89. [PMID: 24699135 PMCID: PMC3944444 DOI: 10.1038/emm.2013.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 02/05/2023] Open
Abstract
LR11, also known as SorLA or SORL1, is a type-I membrane protein from which a large extracellular part, soluble LR11 (sLR11), is released by proteolytic shedding on cleavage with a disintegrin and metalloproteinase 17 (ADAM17). A shedding mechanism is presumed to have a key role in the functions of LR11, but the evidence for this has not yet been demonstrated. Tetraspanin CD9 has been recently shown to regulate the ADAM17-mediated shedding of tumor necrosis factor-α and intercellular adhesion molecule-1 on the cell surface. Here, we investigated the role of CD9 on the shedding of LR11 in leukocytes. LR11 was not expressed in THP-1 monocytes, but it was expressed and released in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages (PMA/THP-1). Confocal microscopy showed colocalization of LR11 and CD9 proteins on the cell surface of PMA/THP-1. Ectopic neo-expression of CD9 in CCRF-SB cells, which are LR11-positive and CD9-negative, reduced the amount of sLR11 released from the cells. In contrast, incubation of LR11-transfected THP-1 cells with neutralizing anti-CD9 monoclonal antibodies increased the amount of sLR11 released from the cells. Likewise, the PMA-stimulated release of sLR11 increased in THP-1 cells transfected with CD9-targeted shRNAs, which was negated by treatment with the metalloproteinase inhibitor GM6001. These results suggest that the tetraspanin CD9 modulates the ADAM17-mediated shedding of LR11 in various leukemia cell lines and that the association between LR11 and CD9 on the cell surface has an important role in the ADAM17-mediated shedding mechanism.
Collapse
Affiliation(s)
- Shokichi Tsukamoto
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Takeuchi
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeharu Kawaguchi
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emi Togasaki
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsuko Yamazaki
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasumasa Sugita
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Muto
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shio Sakai
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan [3] Division of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Yusuke Takeda
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chikako Ohwada
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naomi Shimizu
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan [3] Division of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Keigo Nishii
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Medical Center Sakura Hospital, Sakura, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University Medical Center Sakura Hospital, Sakura, Japan
| | - Chiaki Nakaseko
- 1] Department of Hematology, Chiba University Hospital, Chiba, Japan [2] Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
59
|
Fujimura K, Ebinuma H, Fukamachi I, Ohwada C, Kawaguchi T, Shimizu N, Takeuchi M, Sakaida E, Jiang M, Nakaseko C, Bujo H. Circulating LR11 is a novel soluble-receptor marker for early-stage clinical conditions in patients with non-Hodgkin's lymphoma. Clin Chim Acta 2014; 430:48-54. [DOI: 10.1016/j.cca.2013.12.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/18/2013] [Accepted: 12/26/2013] [Indexed: 11/26/2022]
|
60
|
Shimizu N, Nakaseko C, Jiang M, Nishii K, Yokote K, Iseki T, Higashi M, Tamaru J, Schneider WJ, Bujo H. G-CSF induces the release of the soluble form of LR11, a regulator of myeloid cell mobilization in bone marrow. Ann Hematol 2014; 93:1111-22. [DOI: 10.1007/s00277-014-2033-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022]
|
61
|
Abstract
Sortilin and sorCS1 [sortilin-related Vps10p (vacuolar protein sorting/targeting protein 10) domain-containing receptor 1], both members of the Vps10p-D (Vps10p-domain) receptor family, are synthesized as precursor proteins and are converted into their mature form by enzymatic cleavage of a short N-terminal propeptide. SorCS1 does not bind its propeptide, but sortilin is able to bind not just its own propeptide, but also that of sorCS1. In the present study we show that the propeptide region of sorCS1 contains two separate sites for binding to sortilin and that only one of these sites is removed from human (as opposed to mouse) sorCS1 during processing. This leaves mature human sorCS1 with a sortilin-binding N-terminus, which allows formation of a complex between the two receptors in solution and on cell membranes. Furthermore, we find that the interaction with sorCS1 has a pronounced effect on sortilin's ability to mediate the cellular uptake of alternative ligands, and to hamper its facilitation of CNTF (ciliary neutrophic factor) signalling and the induction of phosphorylated STAT3 (signal transducer and activator of transcription 3). Thus the present study reveals a novel regulatory mechanism and suggest an entirely new role for sorCS1 as a modulator of sortilin function.
Collapse
|
62
|
The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab 2014; 19:310-8. [PMID: 24506872 DOI: 10.1016/j.cmet.2013.12.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/02/2013] [Accepted: 12/12/2013] [Indexed: 12/23/2022]
Abstract
Circulating PCSK9 destines low-density lipoprotein receptor for degradation in lysosomes, resulting in increased LDL cholesterol. Accordingly, it is an attractive drug target for hypercholesterolemia, and results from clinical trials are promising. While the physiological role of PCSK9 in cholesterol metabolism is well described, its complex mechanism of action remains poorly understood, although it is known to depend on intracellular trafficking. We here identify sortilin, encoded by the hypercholesterolemia-risk gene SORT1, as a high-affinity sorting receptor for PCSK9. Sortilin colocalizes with PCSK9 in the trans-Golgi network and facilitates its secretion from primary hepatocytes. Accordingly, sortilin-deficient mice display decreased levels of circulating PCSK9, while sortilin overexpression in the liver confers increased plasma PCSK9. Furthermore, circulating PCSK9 and sortilin were positively correlated in a human cohort of healthy individuals, suggesting that sortilin is involved in PCSK9 secretion in humans. Taken together, our findings establish sortilin as a critical regulator of PCSK9 activity.
Collapse
|
63
|
Abstract
The sortilin family of Vps10p-domain receptors includes sortilin, SorLA, and SorCS1-3. These type-I transmembrane receptors predominate in distinct neuronal tissues, but expression is also present in certain specialized non-neuronal cell populations including hepatocytes and cells of the immune system. The biology of sortilins is complex as they participate in both cell signaling and in intracellular protein sorting. Sortilins function physiologically in signaling by pro- and mature neurotrophins in neuronal viability and functionality. Recent genome-wide association studies have linked members to neurological disorders such as Alzheimer's disease and bipolar disorder and outside the nervous system to development of coronary artery disease and type-2 diabetes. Particularly well described are the receptor functions in neuronal signaling by pro- (proNT) and mature (NT) neurotrophins and in the processing/metabolism of amyloid precursor protein (APP).
Collapse
Affiliation(s)
- S Glerup
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and The Lundbeck Foundation Research Center MIND, Department of Biomedicine, University of Aarhus, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | |
Collapse
|
64
|
Nishii K, Nakaseko C, Jiang M, Shimizu N, Takeuchi M, Schneider WJ, Bujo H. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells. J Biol Chem 2013; 288:11877-86. [PMID: 23486467 DOI: 10.1074/jbc.m112.442491] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche.
Collapse
Affiliation(s)
- Keigo Nishii
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Willnow TE, Andersen OM. Sorting receptor SORLA – a trafficking path to avoid Alzheimer disease. J Cell Sci 2013; 126:2751-60. [DOI: 10.1242/jcs.125393] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Excessive proteolytic breakdown of the amyloid precursor protein (APP) to neurotoxic amyloid β peptides (Aβ) by secretases in the brain is a molecular cause of Alzheimer disease (AD). According to current concepts, the complex route whereby APP moves between the secretory compartment, the cell surface and endosomes to encounter the various secretases determines its processing fate. However, the molecular mechanisms that control the intracellular trafficking of APP in neurons and their contribution to AD remain poorly understood. Here, we describe the functional elucidation of a new sorting receptor SORLA that emerges as a central regulator of trafficking and processing of APP. SORLA interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network and early endosomes, thereby restricting delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. Defects in SORLA and its interacting adaptors result in transport defects and enhanced amyloidogenic processing of APP, and represent important risk factors for AD in patients. As discussed here, these findings uncovered a unique regulatory pathway for the control of neuronal protein transport, and provide clues as to why defects in this pathway cause neurodegenerative disease.
Collapse
|
66
|
Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins. Mol Neurobiol 2012; 45:379-87. [PMID: 22297619 DOI: 10.1007/s12035-012-8236-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/12/2012] [Indexed: 12/24/2022]
Abstract
Sortilin and SorLA are members of the Vps10p domain receptor family, the Sortilins, which comprise five type I transmembrane receptors differentially expressed in neuronal tissues of the central and peripheral nervous system. Since the identification of sortilin in 1997, members of this receptor family are recognized as sorting receptors primarily in the trans-Golgi network, interacting with a wide range of ligands comprising other transmembrane receptors as well as soluble proteins from neurotrophic factors to enzymes targeted for lysosomes. Specifically, the involvement of sortilin in neutrophin signaling in healthy and injured neurons is increasingly recognized, as well as the impact of SorLA on the cellular processing of amyloid precursor protein, an important component in Alzheimer's disease. The current understanding of these issues as well as the recent recognition of a molecular link between sortilin and frontotemporal dementia is addressed in this present review.
Collapse
|
67
|
Skeldal S, Sykes AM, Glerup S, Matusica D, Palstra N, Autio H, Boskovic Z, Madsen P, Castrén E, Nykjaer A, Coulson EJ. Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis. J Biol Chem 2012; 287:43798-809. [PMID: 23105113 DOI: 10.1074/jbc.m112.374710] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotrophins comprise a group of neuronal growth factors that are essential for the development and maintenance of the nervous system. However, the immature pro-neurotrophins promote apoptosis by engaging in a complex with sortilin and the p75 neurotrophin receptor (p75(NTR)). To identify the interaction site between sortilin and p75(NTR), we analyzed binding between chimeric receptor constructs and truncated p75(NTR) variants by co-immunoprecipitation experiments, surface plasmon resonance analysis, and FRET. We found that complex formation between sortilin and p75(NTR) relies on contact points in the extracellular domains of the receptors. We also determined that the interaction critically depends on an extracellular juxtamembrane 23-amino acid sequence of p75(NTR). Functional studies further revealed an important regulatory function of the sortilin intracellular domain in p75(NTR)-regulated intramembrane proteolysis and apoptosis. Thus, although the intracellular domain of sortilin does not contribute to p75(NTR) binding, it does regulate the rates of p75(NTR) cleavage, which is required to mediate pro-neurotrophin-stimulated cell death.
Collapse
Affiliation(s)
- Sune Skeldal
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sakai S, Nakaseko C, Takeuchi M, Ohwada C, Shimizu N, Tsukamoto S, Kawaguchi T, Jiang M, Sato Y, Ebinuma H, Yokote K, Iwama A, Fukamachi I, Schneider WJ, Saito Y, Bujo H. Circulating soluble LR11/SorLA levels are highly increased and ameliorated by chemotherapy in acute leukemias. Clin Chim Acta 2012; 413:1542-8. [DOI: 10.1016/j.cca.2012.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/21/2012] [Accepted: 06/21/2012] [Indexed: 01/30/2023]
|
69
|
Abstract
The Alzheimer's disease (AD)-associated amyloid-β protein precursor (AβPP) is cleaved by α-, β-, and presenilin (PS)/γ-secretases through sequential regulated proteolysis. These proteolytic events control the generation of the pathogenic amyloid-β (Aβ) peptide, which excessively accumulates in the brains of individuals afflicted by AD. A growing number of additional proteins cleaved by PS/γ-secretase continue to be discovered. Similarly to AβPP, most of these proteins are type-I transmembrane proteins involved in vital signaling functions regulating cell fate, adhesion, migration, neurite outgrowth, or synaptogenesis. All the identified proteins share common structural features, which are typical for their proteolysis. The consequences of the PS/γ-secretase-mediated cleavage on the function of many of these proteins are largely unknown. Here, we review the current literature on the proteolytic processing mediated by the versatile PS/γ-secretase complex. We begin by discussing the steps of AβPP processing and PS/γ-secretase complex composition and localization, which give clues to how and where the processing of other PS/γ-secretase substrates may take place. Then we summarize the typical features of PS/γ-secretase-mediated protein processing. Finally, we recapitulate the current knowledge on the possible physiological function of PS/γ-secretase-mediated cleavage of specific substrate proteins.
Collapse
Affiliation(s)
- Annakaisa Haapasalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
70
|
Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 2012; 35:261-70. [DOI: 10.1016/j.tins.2012.01.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
|
71
|
Pardossi-Piquard R, Checler F. The physiology of the β-amyloid precursor protein intracellular domain AICD. J Neurochem 2011; 120 Suppl 1:109-124. [PMID: 22122663 DOI: 10.1111/j.1471-4159.2011.07475.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The amyloid-β precursor protein (βAPP) undergoes several cleavages by enzymatic activities called secretases. Numerous studies aimed at studying the biogenesis and catabolic fate of Aβ peptides, the proteinaceous component of the senile plaques that accumulate in Alzheimer's disease-affected brains. Relatively recently, another secretase-mediated β-APP-derived catabolite called APP IntraCellular Domain (AICD) entered the game. Whether AICD corresponded to a biologically inert by-pass product of βAPP processing or whether it could harbor its own function remained questionable. In this study, we review the mechanisms by which AICD is generated and how its production is regulated. Furthermore, we discuss the degradation mechanism underlying its rapid catabolic fate. Finally, we review putative AICD-related functions and more particularly, the numerous studies indicating that AICD could translocate to the nucleus and control at a transcriptional level, the expression of a series of proteins involved in various functions including the control of cell death and Aβ degradation.
Collapse
Affiliation(s)
- Raphaëlle Pardossi-Piquard
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université de Nice Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire UMR6097 CNRS, Equipe labellisée Fondation pour la Recherche Médicale, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
72
|
Raines SM, Richards OC, Schneider LR, Schueler KL, Rabaglia ME, Oler AT, Stapleton DS, Genové G, Dawson JA, Betsholtz C, Attie AD. Loss of PDGF-B activity increases hepatic vascular permeability and enhances insulin sensitivity. Am J Physiol Endocrinol Metab 2011; 301:E517-26. [PMID: 21673305 PMCID: PMC3174531 DOI: 10.1152/ajpendo.00241.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatic vasculature is not thought to pose a permeability barrier for diffusion of macromolecules from the bloodstream to hepatocytes. In contrast, in extrahepatic tissues, the microvasculature is critically important for insulin action, because transport of insulin across the endothelial cell layer is rate limiting for insulin-stimulated glucose disposal. However, very little is known concerning the role in this process of pericytes, the mural cells lining the basolateral membrane of endothelial cells. PDGF-B is a growth factor involved in the recruitment and function of pericytes. We studied insulin action in mice expressing PDGF-B lacking the proteoglycan binding domain, producing a protein with a partial loss of function (PDGF-B(ret/ret)). Insulin action was assessed through measurements of insulin signaling and insulin and glucose tolerance tests. PDGF-B deficiency enhanced hepatic vascular transendothelial transport. One outcome of this change was an increase in hepatic insulin signaling. This correlated with enhanced whole body glucose homeostasis and increased insulin clearance from the circulation during an insulin tolerance test. In obese mice, PDGF-B deficiency was associated with an 80% reduction in fasting insulin and drastically reduced insulin secretion. These mice did not have significantly higher glucose levels, reflecting a dramatic increase in insulin action. Our findings show that, despite already having a high permeability, hepatic transendothelial transport can be further enhanced. To the best of our knowledge, this is the first study to connect PDGF-B-induced changes in hepatic sinusoidal transport to changes in insulin action, demonstrating a link between PDGF-B signaling and insulin sensitivity.
Collapse
|
73
|
Evans SF, Irmady K, Ostrow K, Kim T, Nykjaer A, Saftig P, Blobel C, Hempstead BL. Neuronal brain-derived neurotrophic factor is synthesized in excess, with levels regulated by sortilin-mediated trafficking and lysosomal degradation. J Biol Chem 2011; 286:29556-67. [PMID: 21730062 DOI: 10.1074/jbc.m111.219675] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neuronal differentiation, synaptic plasticity, and morphology, and modest changes in BDNF levels results in complex behavioral phenotypes. BDNF levels and intracellular localization in neurons are regulated by multiple mechanisms, including use of distinct promoters, mRNA and protein transport, and regulated cleavage of proBDNF to mature BDNF. Sortilin is an intracellular chaperone that binds to the prodomain of BDNF to traffic it to the regulated secretory pathway. However, sortilin binds to numerous ligands and plays a major role in mannose 6-phosphate receptor-independent transport of lysosomal hydrolases utilizing motifs in the intracellular domain that mediate trafficking from the Golgi and late endosomes. Sortilin is modified by ectodomain shedding, although the biological implications of this are not known. Here we demonstrate that ADAM10 is the preferred protease to cleave sortilin in the extracellular stalk region, to release the ligand binding sortilin ectodomain from the transmembrane and cytoplasmic domains. We identify sortilin shedding at the cell surface and in an intracellular compartment. Both sortilin and BDNF are trafficked to and degraded by the lysosome in neurons, and this is dependent upon the sortilin cytoplasmic tail. Indeed, expression of the sortilin ectodomain, which corresponds to the domain released after shedding, impairs lysosomal targeting and degradation of BDNF. These findings characterize the regulation of sortilin shedding and identify a novel mechanism by which sortilin ectodomain shedding acts as a regulatory switch for delivery of BDNF to the secretory pathway or to the lysosome, thus modulating the bioavailability of endogenous BDNF.
Collapse
Affiliation(s)
- Sarah Felice Evans
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Wu X, Ye Y, Rosell R, Amos CI, Stewart DJ, Hildebrandt MAT, Roth JA, Minna JD, Gu J, Lin J, Buch SC, Nukui T, Ramirez Serrano JL, Taron M, Cassidy A, Lu C, Chang JY, Lippman SM, Hong WK, Spitz MR, Romkes M, Yang P. Genome-wide association study of survival in non-small cell lung cancer patients receiving platinum-based chemotherapy. J Natl Cancer Inst 2011; 103:817-25. [PMID: 21483023 PMCID: PMC3096796 DOI: 10.1093/jnci/djr075] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interindividual variation in genetic background may influence the response to chemotherapy and overall survival for patients with advanced-stage non-small cell lung cancer (NSCLC). METHODS To identify genetic variants associated with poor overall survival in these patients, we conducted a genome-wide scan of 307,260 single-nucleotide polymorphisms (SNPs) in 327 advanced-stage NSCLC patients who received platinum-based chemotherapy with or without radiation at the University of Texas MD Anderson Cancer Center (the discovery population). A fast-track replication was performed for 315 patients from the Mayo Clinic followed by a second validation at the University of Pittsburgh in 420 patients enrolled in the Spanish Lung Cancer Group PLATAX clinical trial. A pooled analysis combining the Mayo Clinic and PLATAX populations or all three populations was also used to validate the results. We assessed the association of each SNP with overall survival by multivariable Cox proportional hazard regression analysis. All statistical tests were two-sided. RESULTS SNP rs1878022 in the chemokine-like receptor 1 (CMKLR1) was statistically significantly associated with poor overall survival in the MD Anderson discovery population (hazard ratio [HR] of death = 1.59, 95% confidence interval [CI] = 1.32 to 1.92, P = 1.42 × 10(-6)), in the PLATAX clinical trial (HR of death = 1.23, 95% CI = 1.00 to 1.51, P = .05), in the pooled Mayo Clinic and PLATAX validation (HR of death = 1.22, 95% CI = 1.06 to 1.40, P = .005), and in pooled analysis of all three populations (HR of death = 1.33, 95% CI = 1.19 to 1.48, P = 5.13 × 10(-7)). Carrying a variant genotype of rs10937823 was associated with decreased overall survival (HR of death = 1.82, 95% CI = 1.42 to 2.33, P = 1.73 × 10(-6)) in the pooled MD Anderson and Mayo Clinic populations but not in the PLATAX trial patient population (HR of death = 0.96, 95% CI = 0.69 to 1.35). CONCLUSION These results have the potential to contribute to the future development of personalized chemotherapy treatments for individual NSCLC patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Area Under Curve
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Chemotherapy, Adjuvant
- Female
- Genome-Wide Association Study
- Genotype
- Humans
- Kaplan-Meier Estimate
- Linkage Disequilibrium
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Staging
- Organoplatinum Compounds/administration & dosage
- Polymorphism, Single Nucleotide
- Proportional Hazards Models
- ROC Curve
- Radiotherapy, Adjuvant
- Receptors, Chemokine/genetics
- Reproducibility of Results
- Smoking/adverse effects
- Smoking/epidemiology
- Treatment Outcome
Collapse
Affiliation(s)
- Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 2011; 68:654-67. [PMID: 21092856 DOI: 10.1016/j.neuron.2010.09.034] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2010] [Indexed: 12/12/2022]
Abstract
VIDEO ABSTRACT The most common inherited form of Frontotemporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation and exhibits TDP-43 plus ubiquitin aggregates. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein is unclear. Here, we examined PGRN binding to the cell surface. PGRN binds to cortical neurons via its C terminus, and unbiased expression cloning identifies Sortilin (Sort1) as a binding site. Sort1⁻/⁻ neurons exhibit reduced PGRN binding. In the CNS, Sortilin is expressed by neurons and PGRN is most strongly expressed by activated microglial cells after injury. Sortilin rapidly endocytoses and delivers PGRN to lysosomes. Mice lacking Sortilin have elevations in brain and serum PGRN levels of 2.5- to 5-fold. The 50% PGRN decrease causative in FTLD-TDP cases is mimicked in GRN+/⁻ mice, and is fully normalized by Sort1 ablation. Sortilin-mediated PGRN endocytosis is likely to play a central role in FTLD-TDP pathophysiology.
Collapse
Affiliation(s)
- Fenghua Hu
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Tsuchiya Y, Hatakeyama H, Emoto N, Wagatsuma F, Matsushita S, Kanzaki M. Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes. J Biol Chem 2010; 285:34371-81. [PMID: 20805226 DOI: 10.1074/jbc.m110.128520] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated saturated FFAs including palmitate (C16:0) are a primary trigger for peripheral insulin resistance characterized by impaired glucose uptake/disposal in skeletal muscle, resulting from impaired GLUT4 translocation in response to insulin. We herein demonstrate that palmitate induces down-regulation of sortilin, a sorting receptor implicated in the formation of insulin-responsive GLUT4 vesicles, via mechanisms involving PKC and TNF-α-converting enzyme, but not p38, JNK, or mitochondrial reactive oxygen species generation, leading to impaired GLUT4 trafficking in C2C12 myotubes. Intriguingly, unsaturated FFAs such as palmitoleate (C16:1) and oleate (C18:1) had no such detrimental effects, appearing instead to effectively reverse palmitate-induced impairment of insulin-responsive GLUT4 recycling along with restoration of sortilin abundance by preventing aberrant PKC activation. On the other hand, shRNA-mediated reduction of sortilin in intact C2C12 myotubes inhibited insulin-induced GLUT4 recycling without dampening Akt phosphorylation. We found that the peroxisome proliferator-activated receptor γ agonist troglitazone prevented the palmitate-induced sortilin reduction and also ameliorated insulin-responsive GLUT4 recycling without altering the palmitate-evoked insults on signaling cascades; neither highly phosphorylated PKC states nor impaired insulin-responsive Akt phosphorylation was affected. Taken together, our data provide novel insights into the pathogenesis of PKC-dependent insulin resistance with respect to insulin-responsive GLUT4 translocation, which could occur not only through defects of insulin signaling but also via a reduction of sortilin, which directly controls trafficking/sorting of GLUT4 in skeletal muscle cells. In addition, our data suggest the insulin-sensitizing action of peroxisome proliferator-activated receptor γ agonists to be at least partially mediated through the restoration of proper GLUT4 trafficking/sorting events governed by sortilin.
Collapse
Affiliation(s)
- Yo Tsuchiya
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
78
|
Paudyal A, Damrau C, Patterson VL, Ermakov A, Formstone C, Lalanne Z, Wells S, Lu X, Norris DP, Dean CH, Henderson DJ, Murdoch JN. The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear. BMC DEVELOPMENTAL BIOLOGY 2010; 10:87. [PMID: 20704721 PMCID: PMC2930600 DOI: 10.1186/1471-213x-10-87] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/12/2010] [Indexed: 11/25/2022]
Abstract
Background The planar cell polarity (PCP) signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins. Results We report the identification of a new N-ethyl-N-nitrosourea (ENU)-induced mutant with craniorachischisis, which we have named chuzhoi (chz). We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lp and Celsr1Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants. Conclusions The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation differentially affects the expression levels of the two Ptk7 protein isoforms and, while some Ptk7 protein can still be detected at the membrane, chuzhoi mutants demonstrate a significant reduction in membrane localization of Ptk7 protein. This mutant provides a useful tool to allow future studies aimed at understanding the molecular function of Ptk7.
Collapse
Affiliation(s)
- Anju Paudyal
- MRC Harwell, Mammalian Genetics Unit, Harwell, Oxon OX11 0RD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci 2009; 66:2677-89. [PMID: 19434368 PMCID: PMC11115710 DOI: 10.1007/s00018-009-0043-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/24/2022]
Abstract
The family of mammalian type-I transmembrane receptors containing a Vps10p domain contains five members, Sortilin, SorCS1, SorCS2, SorCS3, and SorLA. The common characteristic of these receptors is an N-terminal Vps10p domain, which either represents the only module of the luminal/extracellular moiety or is combined with additional domains. Family members play roles in protein transport and signal transduction. The individual receptors bind and internalize a variety of ligands, such as neuropeptides and trophic factors, and Sortilin and SorLA mediate trans-Golgi network-to-endosome sorting. Their prominent neuronal expression, several of the identified ligands, and recent results support the notion that members of this receptor family have important functions in neurogenesis, plasticity-related processes, and functional maintenance of the nervous system. For instance, it has been demonstrated that Sortilin partakes in the transduction of proapoptotic effects, and there is converging biochemical and genetic evidence that implies that SorLA is an Alzheimer's disease risk factor.
Collapse
Affiliation(s)
- Guido Hermey
- Institute of Molecular and Cellular Cognition, Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany.
| |
Collapse
|
80
|
Reiss K, Saftig P. The "a disintegrin and metalloprotease" (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 2008; 20:126-37. [PMID: 19049889 DOI: 10.1016/j.semcdb.2008.11.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/29/2008] [Accepted: 11/06/2008] [Indexed: 01/06/2023]
Abstract
There is an exciting increase of evidence that members of the disintegrin and metalloprotease (ADAM) family critically regulate cell adhesion, migration, development and signalling. ADAMs are involved in "ectodomain shedding" of various cell surface proteins such as growth factors, receptors and their ligands, cytokines, and cell adhesion molecules. The regulation of these proteases is complex and still poorly understood. Studies in ADAM knockout mice revealed their partially redundant roles in angiogenesis, neurogenesis, tissue development and cancer. ADAMs usually trigger the first step in regulated intramembrane proteolysis leading to activation of intracellular signalling pathways and the release of functional soluble ectodomains.
Collapse
Affiliation(s)
- Karina Reiss
- Biochemical Institute, Christian-Albrecht-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| | | |
Collapse
|
81
|
VPS10P-domain receptors — regulators of neuronal viability and function. Nat Rev Neurosci 2008; 9:899-909. [DOI: 10.1038/nrn2516] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
82
|
Jiang M, Bujo H, Ohwaki K, Unoki H, Yamazaki H, Kanaki T, Shibasaki M, Azuma K, Harigaya K, Schneider WJ, Saito Y. Ang II-stimulated migration of vascular smooth muscle cells is dependent on LR11 in mice. J Clin Invest 2008; 118:2733-46. [PMID: 18618022 DOI: 10.1172/jci32381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/21/2008] [Indexed: 11/17/2022] Open
Abstract
Medial-to-intimal migration of SMCs is critical to atherosclerotic plaque formation and remodeling of injured arteries. Considerable amounts of the shed soluble form of the LDL receptor relative LR11 (sLR11) produced by intimal SMCs enhance SMC migration in vitro via upregulation of urokinase-type plasminogen activator receptor (uPAR) expression. Here, we show that circulating sLR11 is a novel marker of carotid intima-media thickness (IMT) and that targeted disruption of the LR11 gene greatly reduces intimal thickening of arteries through attenuation of Ang II-induced migration of SMCs. Serum concentrations of sLR11 were positively correlated with IMT in dyslipidemic subjects, and multivariable regression analysis suggested sLR11 levels as an index of IMT, independent of classical atherosclerosis risk factors. In Lr11-/- mice, femoral artery intimal thickness after cuff placement was decreased, and Ang II-stimulated migration and attachment of SMCs from these mice were largely abolished. In isolated murine SMCs, sLR11 caused membrane ruffle formation via activation of focal adhesion kinase/ERK/Rac1 accompanied by complex formation between uPAR and integrin alphavbeta3, a process accelerated by Ang II. Overproduction of sLR11 decreased the sensitivity of Ang II-induced activation pathways to inhibition by an Ang II type 1 receptor blocker in mice. Thus, we demonstrate a requirement for sLR11 in Ang II-induced SMC migration and propose what we believe is a novel role for sLR11 as a biomarker of carotid IMT.
Collapse
Affiliation(s)
- Meizi Jiang
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Fauchais AL, Lalloué F, Lise MC, Boumediene A, Preud'homme JL, Vidal E, Jauberteau MO. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. THE JOURNAL OF IMMUNOLOGY 2008; 181:3027-38. [PMID: 18713973 DOI: 10.4049/jimmunol.181.5.3027] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a major neuronal growth factor, is also known to exert an antiapoptotic effect in myeloma cells. Whereas BDNF secretion was described in B lymphocytes, the ability of B cells to produce sortilin, its transport protein, was not previously reported. We studied BDNF production and the expression of its receptors, tyrosine protein kinase receptor B and p75 neurotrophin receptor in the human pre-B, mature, and plasmacytic malignant B cell lines under normal and stress culture conditions (serum deprivation, Fas activation, or their combination). BDNF secretion was enhanced by serum deprivation and exerted an antiapoptotic effect, as demonstrated by neutralization experiments with antagonistic Ab. The precursor form, pro-BDNF, also secreted by B cells, decreases under stress conditions in contrast to BDNF production. Stress conditions induced the membranous expression of p75 neurotrophin receptor and tyrosine protein kinase receptor B, maximal in mature B cells, contrasting with the sequestration of both receptors in normal culture. By blocking Ab and small interfering RNA, we evidenced that BDNF production and its survival function are depending on sortilin, a protein regulating neurotrophin transport in neurons, which was not previously described in B cells. Therefore, in mature B cell lines, an autocrine BDNF production is up-regulated by stress culture conditions and exerts a modulation of apoptosis through the sortilin pathway. This could be of importance to elucidate certain drug resistances of malignant B cells. In addition, primary B lymphocytes contained sortilin and produced BDNF after mitogenic activation, which suggests that sortilin and BDNF might be implicated in the survival and activation of normal B cells also.
Collapse
|
84
|
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a fascinating family of transmembrane and secreted proteins with important roles in regulating cell phenotype via their effects on cell adhesion, migration, proteolysis and signalling. Though all ADAMs contain metalloproteinase domains, in humans only 13 of the 21 genes in the family encode functional proteases, indicating that at least for the other eight members, protein–protein interactions are critical aspects of their biological functions. The functional ADAM metalloproteinases are involved in “ectodomain shedding” of diverse growth factors, cytokines, receptors and adhesion molecules. The archetypal activity is shown by ADAM-17 (tumour necrosis factor-α convertase, TACE), which is the principal protease involved in the activation of pro-TNF-α, but whose sheddase functions cover a broad range of cell surface molecules. In particular, ADAM-17 is required for generation of the active forms of Epidermal Growth Factor Receptor (EGFR) ligands, and its function is essential for the development of epithelial tissues. Several other ADAMs have important sheddase functions in particular tissue contexts. Another major family member, ADAM-10, is a principal player in signalling via the Notch and Eph/ephrin pathways. For a growing number of substrates, foremost among them being Notch, cleavage by ADAM sheddases is essential for their subsequent “regulated intramembrane proteolysis” (RIP), which generates cleaved intracellular domains that translocate to the nucleus and regulate gene transcription. Several ADAMs play roles in spermatogenesis and sperm function, potentially by effecting maturation of sperm and their adhesion and migration in the uterus. Other non-catalytic ADAMs function in the CNS via effects on guidance mechanisms. The ADAM family are thus fundamental to many control processes in development and homeostasis, and unsurprisingly they are also linked to pathological states when their functions are dysregulated, including cancer, cardiovascular disease, asthma, Alzheimer’s disease. This review will provide an overview of current knowledge of the human ADAMs, discussing their structure, function, regulation and disease involvement.
Collapse
Affiliation(s)
- Dylan R Edwards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | |
Collapse
|
85
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
86
|
Moss ML, Sklair-Tavron L, Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. ACTA ACUST UNITED AC 2008; 4:300-9. [PMID: 18414459 DOI: 10.1038/ncprheum0797] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/19/2008] [Indexed: 12/13/2022]
Abstract
The success of agents that inhibit tumor necrosis factor (TNF), such as infliximab, adalimumab and etanercept, has led to a desire for orally available small molecules that have a better safety profile and are less costly to produce than current agents. One target for anti-TNF therapy that is currently under investigation is TNF-converting enzyme, which promotes the release of soluble TNF from its membrane-bound precursor. Inhibitors of this enzyme with drug-like properties have been made and tested in the clinic. These inhibitors include TMI-005 and BMS-561392, both of which have entered into phase II clinical trials. This article summarizes preclinical and clinical findings regarding the use of inhibitors of TNF-converting enzyme for the treatment of rheumatoid arthritis.
Collapse
|
87
|
Nielsen MS, Keat SJ, Hamati JW, Madsen P, Gutzmann JJ, Engelsberg A, Pedersen KM, Gustafsen C, Nykjaer A, Gliemann J, Hermans-Borgmeyer I, Kuhl D, Petersen CM, Hermey G. Different motifs regulate trafficking of SorCS1 isoforms. Traffic 2008; 9:980-94. [PMID: 18315530 DOI: 10.1111/j.1600-0854.2008.00731.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type I transmembrane protein SorCS1 is a member of the Vps10p-domain receptor family comprised of Sortilin, SorLA and SorCS1, -2 and -3. Current information indicates that Sortilin and SorLA mediate intracellular protein trafficking and sorting, but little is known about the cellular functions of the SorCS subgroup. SorCS1 binds platelet-derived growth factor-BB (PDGF-BB) and is expressed in isoforms differing only in their cytoplasmic domains. Here, we identify two novel isoforms of mouse SorCS1 designated m-SorCS1c and -d. In situ hybridization revealed a combinatorial expression pattern of the variants in brain and embryonic tissues. We demonstrate that among the mouse variants, only SorCS1c mediates internalization and that the highly conserved SorCS1c is internalized through a canonical tyrosine-based motif. In contrast, human SorCS1a, whose cytoplasmic domain is completely different from mouse SorCS1a, is internalized through a DXXLL motif. We report that the human SorCS1a cytoplasmic domain interacts with the alphaC/sigma2 subunits of the adaptor protein (AP)-2 complex, and internalization of human SorCS1a and -c is mediated by AP-2. Our results suggest that the endocytic isoforms target internalized cargo to lysosomes but are not engaged in Golgi-endosomal transport to a significant degree.
Collapse
Affiliation(s)
- Morten S Nielsen
- MIND center, Department of Medical Biochemistry, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol 2007; 27:6842-51. [PMID: 17646382 PMCID: PMC2099242 DOI: 10.1128/mcb.00815-07] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SorLA/LR11 (250 kDa) is the largest and most composite member of the Vps10p-domain receptors, a family of type 1 proteins preferentially expressed in neuronal tissue. SorLA binds several ligands, including neurotensin, platelet-derived growth factor-bb, and lipoprotein lipase, and via complex-formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its cytoplasmic tail mediates efficient Golgi body-endosome transport, as well as AP-2 complex-dependent endocytosis. Functional sorting sites were mapped to an acidic cluster-dileucine-like motif and to a GGA binding site in the C terminus. Experiments in permanently or transiently AP-1 mu1-chain-deficient cells established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged in retraction of the receptor from endosomes.
Collapse
Affiliation(s)
- Morten S Nielsen
- The MIND-Center, Department of Medical Biochemistry, Ole Worms Allé, Bldg 1170, University of Aarhus, 8000, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Goodarzi MO, Lehman DM, Taylor KD, Guo X, Cui J, Quiñones MJ, Clee SM, Yandell BS, Blangero J, Hsueh WA, Attie AD, Stern MP, Rotter JI. SORCS1: a novel human type 2 diabetes susceptibility gene suggested by the mouse. Diabetes 2007; 56:1922-9. [PMID: 17426289 DOI: 10.2337/db06-1677] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A small number of susceptibility genes for human type 2 diabetes have been identified by candidate gene analysis or positional cloning. Genes found to influence diabetes or related traits in mice are likely to be susceptibility genes in humans. SorCS1 is the gene identified as responsible for the mouse chromosome 19 T2dm2 quantitative trait locus for fasting insulin levels, acting via impaired insulin secretion and increased islet disruption in obese females. Genes that impair compensatory insulin secretion in response to obesity-induced insulin resistance may be particularly relevant to human diabetes. Thus, we sought to determine whether variation in the human SORCS1 gene was associated with diabetes-related traits. RESEARCH DESIGN AND METHODS We assessed the contribution of variation in SORCS1 to human insulin-related traits in two distinct Mexican-American cohorts. One cohort (the Mexican-American Coronary Artery Disease [MACAD] cohort) consisted of nondiabetic individuals, allowing assessment of genetic association with subclinical intermediate insulin-related traits; the second cohort (the San Antonio Family Diabetes Study [SAFADS]) contained individuals with diabetes, allowing association analyses with overt disease. RESULTS We first found association of SORCS1 single nucleotide polymorphisms and haplotypes with fasting insulin levels and insulin secretion in the MACAD cohort. Similar to our results in the mice, the genetic association was strongest in overweight women. We then observed association with diabetes risk and age at diagnosis in women of the SAFADS cohort. CONCLUSIONS Identification of SORCS1 as a novel gene affecting insulin secretion and diabetes risk is likely to provide important insight into the biology of obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Mark O Goodarzi
- Cedars-Sinai Medical Center, Division of Endocrinology, Diabetes, and Metabolism, 8700 Beverly Blvd., Becker B-131, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Ohwaki K, Bujo H, Jiang M, Yamazaki H, Schneider WJ, Saito Y. A Secreted Soluble Form of LR11, Specifically Expressed in Intimal Smooth Muscle Cells, Accelerates Formation of Lipid-Laden Macrophages. Arterioscler Thromb Vasc Biol 2007; 27:1050-6. [PMID: 17332490 DOI: 10.1161/atvbaha.106.137091] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Macrophages play a key role in lipid-rich unstable plaque formation and interact with intimal smooth muscle cells (SMCs) in early and progressive stages of atherosclerosis. LR11 (also called sorLA), a member of low-density lipoprotein receptor family, is highly and specifically expressed in intimal SMCs, and causes urokinase-type plasminogen activator receptor-mediated degradation of extracellular matrices. Here we investigated whether the secreted soluble form of LR11 (solLR11) enhances adhesion, migration, and lipid accumulation in macrophages using animal models and cultured systems. METHODS AND RESULTS Immunohistochemistry showed solLR11 expression in thickened intima of balloon-denuded rat artery. Macrophage infiltration into the cuff-injured artery was markedly reduced in LR11-deficient mice. In vitro functional assays using THP-1-derived macrophages showed that solLR11 (1 microg/mL) significantly increased acetylated low-density lipoprotein uptake by THP-1 cells and cell surface levels of scavenger receptor SR-A 1.7- and 2.8-fold, respectively. SolLR11 dose-dependently increased the migration activity of THP-1 macrophages and adhesion to extracellular matrices 2.0- and 2.1-fold, respectively, at 1 microg/mL. These effects of solLR11 were almost completely inhibited by a neutralizing anti-urokinase-type plasminogen activator receptor antibody. CONCLUSION SolLR11, secreted from intimal SMCs, regulates adhesion, migration, and lipid accumulation in macrophages through activation of urokinase-type plasminogen activator receptor. The formation of lipid-laden macrophages in atherosclerotic plaques possibly is regulated by SolLR11 of intimal SMCs.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Cell Adhesion/physiology
- Cell Movement
- Cells, Cultured
- Humans
- Immunohistochemistry
- Lipoproteins, LDL/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Male
- Membrane Transport Proteins/biosynthesis
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nerve Tissue Proteins
- Rats
- Rats, Wistar
- Receptors, LDL/biosynthesis
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Kenji Ohwaki
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
Inbred mouse strains provide genetic diversity comparable to that of the human population. Like humans, mice have a wide range of diabetes-related phenotypes. The inbred mouse strains differ in the response of their critical physiological functions, such as insulin sensitivity, insulin secretion, beta-cell proliferation and survival, and fuel partitioning, to diet and obesity. Most of the critical genes underlying these differences have not been identified, although many loci have been mapped. The dramatic improvements in genomic and bioinformatics resources are accelerating the pace of gene discovery. This review describes how mouse genetics can be used to discover diabetes-related genes, summarizes how the mouse strains differ in their diabetes-related phenotypes, and describes several examples of how loci identified in the mouse may directly relate to human diabetes.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
92
|
Nikolova G, Strilic B, Lammert E. The vascular niche and its basement membrane. Trends Cell Biol 2006; 17:19-25. [PMID: 17129728 DOI: 10.1016/j.tcb.2006.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/20/2006] [Accepted: 11/15/2006] [Indexed: 12/13/2022]
Abstract
Over the past few years, scientists have realized that many cellular and developmental processes, including pancreatic beta-cell growth and differentiation, stem cell and progenitor cell proliferation and cancer cell metastasis, occur in what are known as 'vascular niches'. Despite increasing numbers of reports on these niches, few common mechanisms have been identified to explain their various effects. Here, we define the term 'vascular niche' and suggest that a common and conserved feature of this niche is to provide a basement membrane to cells that are unable to form their own. We further propose that these cells require a vascular niche when they retain a high degree of plasticity.
Collapse
Affiliation(s)
- Ganka Nikolova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | | | | |
Collapse
|
93
|
Nyborg AC, Ladd TB, Zwizinski CW, Lah JJ, Golde TE. Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol Neurodegener 2006; 1:3. [PMID: 16930450 PMCID: PMC1513133 DOI: 10.1186/1750-1326-1-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022] Open
Abstract
Background The mammalian Vps10p sorting receptor family is a group of 5 type I membrane homologs (Sortilin, SorLA, and SorCS1-3). These receptors bind various cargo proteins via their luminal Vps10p domains and have been shown to mediate a variety of intracellular sorting and trafficking functions. These proteins are highly expressed in the brain. SorLA has been shown to be down regulated in Alzheimer's disease brains, interact with ApoE, and modulate Aβ production. Sortilin has been shown to be part of proNGF mediated death signaling that results from a complex of Sortilin, p75NTR and proNGF. We have investigated and provide evidence for γ-secretase cleavage of this family of proteins. Results We provide evidence that these receptors are substrates for presenilin dependent γ-secretase cleavage. γ-Secretase cleavage of these sorting receptors is inhibited by γ-secretase inhibitors and does not occur in PS1/PS2 knockout cells. Like most γ-secretase substrates, we find that ectodomain shedding precedes γ-secretase cleavage. The ectodomain cleavage is inhibited by a metalloprotease inhibitor and activated by PMA suggesting that it is mediated by an α-secretase like cleavage. Conclusion These data indicate that the α- and γ-secretase cleavages of the mammalian Vps10p sorting receptors occur in a fashion analogous to other known γ-secretase substrates, and could possibly regulate the biological functions of these proteins.
Collapse
Affiliation(s)
- Andrew C Nyborg
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Thomas B Ladd
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - Craig W Zwizinski
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | - James J Lah
- Department of Neurology, Center for Neurodegenerative Disease, Emory University, Whitehead Biomedical Research Building, 615 Michael Street, Suite 505, Atlanta, GA 30322, USA
| | - Todd E Golde
- Department of Neuroscience, Mayo Clinic Jacksonville, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| |
Collapse
|
94
|
Clee SM, Yandell BS, Schueler KM, Rabaglia ME, Richards OC, Raines SM, Kabara EA, Klass DM, Mui ETK, Stapleton DS, Gray-Keller MP, Young MB, Stoehr JP, Lan H, Boronenkov I, Raess PW, Flowers MT, Attie AD. Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 2006; 38:688-93. [PMID: 16682971 DOI: 10.1038/ng1796] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 04/06/2006] [Indexed: 11/08/2022]
Abstract
We previously mapped the type 2 diabetes mellitus-2 locus (T2dm2), which affects fasting insulin levels, to distal chromosome 19 in a leptin-deficient obese F2 intercross derived from C57BL/6 (B6) and BTBR T+ tf/J (BTBR) mice. Introgression of a 7-Mb segment of the B6 chromosome 19 into the BTBR background (strain 1339A) replicated the reduced insulin linked to T2dm2. The 1339A mice have markedly impaired insulin secretion in vivo and disrupted islet morphology. We used subcongenic strains derived from 1339A to localize the T2dm2 quantitative trait locus (QTL) to a 242-kb segment comprising the promoter, first exon and most of the first intron of the Sorcs1 gene. This was the only gene in the 1339A strain for which we detected amino acid substitutions and expression level differences between mice carrying B6 and BTBR alleles of this insert, thereby identifying variation within the Sorcs1 gene as underlying the phenotype associated with the T2dm2 locus. SorCS1 binds platelet-derived growth factor, a growth factor crucial for pericyte recruitment to the microvasculature, and may thus have a role in expanding or maintaining the islet vasculature. Our identification of the Sorcs1 gene provides insight into the pathway underlying the pathophysiology of obesity-induced type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|