51
|
Abstract
Heterocysts of the cyanobacterium
Anabaena flos-aquae
retina gas vacuoles for several days after differentiation. It is demonstrated that the rate of gas diffusion into a heterocyst that is near an overlying gas phase can be determined approximately from observations on the rate of gas pressure rise required to collapse 50% of its gas vacuoles. The mean permeability coefficient (
α
) of heterocysts O
2
and N
2
was found to be 0.3
s
-1
. From this it was calculated that the average permeability (
k
) of the heterocyst surface layer is about 0.4 μm
s
-1
(within a factor of 2). This is probably within the range that could be provided by a few layers of the 26-C glycolipids in the heterocyst envelope. It is likely, but not proven, that the main route for gas diffusion is through the envelope rather than through the terminal pores of the heterocyst. From measurements of cell nitrogen content (2.7 pg). doubling time (3 days) and heterocyst: vegetative cell ratio (1:24) it was calculated that the average heterocyst fixed 5.9 x 10
-18
mol N
2
s
-1
; this must equal the diffusion rate of N
2
inside the average heterocyst that was 22% below the outside air-saturated concentration. the maximum N
2
fixation rate allowed by the estimated permeability coefficeint would be 2.7 x 10
-17
mol
s
-1
per heterocyst, slightly greater than the maximum calcualted N
2
fixation rate. The observed permeability coefficient is low enough for the oxygen concentration in the heterocyst to be maintained close to zero by the probable rate of respiration, providing an anaerobic environment for nitrogenase. The rate of O
2
diffusion will limit the N
2
-fixation rate in the dark by limiting the rate at which ATP is supplied by oxidative phosphorylation.
Collapse
|
52
|
|
53
|
Abstract
The properties of the newly discovered vanadium nitrogenase are compared with those of the better-known molybdenum nitrogenase and some aspects of the physiology of the latter are discussed. Both nitrogenases have dimeric Fe proteins of relative molecular mass (
M
r
)
ca
. 65 000 containing a single [4Fe-4S] cluster. These act as MgATP-activated electron transfer agents to the MoFe or VaFe proteins, which include the substrate binding and reducing site. Both enzymes reduce H
+
to H
2
, N
2
to NH
3
and C
2
H
2
to C
2
H
4
, but the vanadium enzyme is less efficient in the last two reactions. The MoFe protein is an α
2
β
2
tetramer of
M
r
ca
. 220 000 and containing 2 Mo atoms and about 30 Fe atoms and S
2-
ions per molecule. The VaFe protein has a similar polypeptide structure and may also have an additional, small (M
r
~ 6000) ferredoxin-like subunit. Current preparations contain 2 Va atoms and about 20 Fe atoms and S
2-
ions in a molecule of
M
r
ca
. 210 000. The active site of the MoFe protein is an iron-molybdenum cofactor of unknown structure and complex biosynthesis. The Lowe-Thorneley model for nitrogenase function is summarized. Ferredoxins or flavodoxins are the physiological electron carriers to molybdenum nitrogenase. Many aerobic diazotrophs have an uptake hydrogenase to recycle the electrons and energy wasted by the obligate H
2
evolution that accompanies N
2
fixation. Both nitrogenases are damaged by O
2
, but many diazotrophs are aerobes or generate O
2
from photosynthesis. Some of the complexities of the interactions between O
2
and N
2
-fixation are discussed.
Collapse
|
54
|
Lanzilotta WN, Seefeldt LC. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Biochemistry 1996; 35:16770-6. [PMID: 8988014 DOI: 10.1021/bi962286j] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The reduction of substrates catalyzed by nitrogenase requires electron transfer between the iron (Fe) protein and the molybdenum-iron (MoFe) protein in a reaction that is coupled to the hydrolysis of MgATP. The [4Fe-4S] cluster of the Fe protein transfers one electron ultimately to the M-clusters (FeMoco) of the MoFe protein for substrate reduction, with the P-clusters ([8Fe-(7/8)S]) of the MoFe protein as proposed electron transfer intermediates. This work presents direct EPR evidence for primary electron transfer from the [4Fe-4S] cluster of the Fe protein to the P-clusters of the MoFe protein in a reaction that requires the MgATP-bound state of the Fe protein. An oxidized state of the MoFe protein was prepared in which the P-clusters were oxidized by 2 equiv of electrons to the P2+ state. In this oxidation state, the M-clusters (S = 3/2) and the P(2+-clusters (S > or = 3) are paramagnetic and can be observed by perpendicular and parallel mode EPR, providing the opportunity to follow electron transfer from the Fe protein to either cluster type in the MoFe protein. Electron transfer from the reduced [4Fe-4S]1+ cluster of two different Fe proteins to the P2+ clusters of the MoFe protein was observed by the disappearance of the [4Fe-4S]1+ cluster EPR signal and the conversion of the MoFe protein P-clusters from the P2+ to the P1+ oxidation state. In the first case, stoichiometric quantities of the wild-type Fe protein transferred one electron to the P-clusters only in the presence of MgATP. MgADP would not support this electron transfer reaction. In the second case, an altered Fe protein (L127 delta) that is in a conformation resembling the MgATP-bound state was found to transfer an electron to the P-clusters in the absence of MgATP. These results suggest that the first electron transferred from the Fe protein goes to the P-cluster and that the MgATP-bound protein conformation of the Fe protein, not MgATP hydrolysis, is required for this electron transfer reaction.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA
| | | |
Collapse
|
55
|
Eady RR. Structureminus signFunction Relationships of Alternative Nitrogenases. Chem Rev 1996; 96:3013-3030. [PMID: 11848850 DOI: 10.1021/cr950057h] [Citation(s) in RCA: 543] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert R. Eady
- Nitrogen Fixation Laboratory, John Innes Institute, Colney Lane Norwich NR4 7UH U.K
| |
Collapse
|
56
|
Affiliation(s)
- Barbara K. Burgess
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717-3900, and Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | | |
Collapse
|
57
|
Affiliation(s)
- James B. Howard
- Department of Biochemistry, 435 Delaware Street, University of Minnesota, Minneapolis, Minnesota 55455, and Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
58
|
Yousafzai FK, Buck M, Smith BE. Isolation and characterization of nitrogenase MoFe protein from the mutant strain pHK17 of Klebsiella pneumoniae in which the two bridging cysteine residues of the P-clusters are replaced by the non-coordinating amino acid alanine. Biochem J 1996; 318 ( Pt 1):111-8. [PMID: 8761459 PMCID: PMC1217595 DOI: 10.1042/bj3180111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitrogenase MoFe protein (Kp1) from the mutant strain pHK17 or Klebsiella pneumoniae has been purified to give three catalytically active fractions. In this mutant, each of the two bridging cysteine ligands to the P-clusters, alpha-Cys-89 and beta-Cys-94, has been replaced by a non-coordinating residue, alanine. SDS/PAGE and earlier native gels showed that the three fractions retained the normal alpha 2 beta 2 tetrameric form of wild-type Kp1; therefore we conclude that in each of the fractions the subunits are folded differently, thus resulting in different surface charges and allowing separation of the fractions on ion-exchange chronatography. Earlier EPR and magnetic CD data had shown that the mutant fractions contain P-clusters, and thus the mutated residues are not as essential for maintaining the integrity of the P-clusters as they appear from the X-ray structure. The specific activity of each of the three fractions was less than that of wild-type Kp1, the most active fraction having only 50% of wild-type activity. No change in substrate specificity or in the relative distribution of electrons to various substrates was found. The relationship between ATP hydrolysis and substrate-reducing activity, the EPR spectra of the S = 3/2 spin state of the iron-molybdenum cofactor (FeMoco) and the pH profile of acetylene-reduction activities of the three fractions did not differ significantly from those exhibited by wild-type Kp1. The specific activities of the three mutant fractions and of wild-type Kp1 were linearly proportional to the intensity of the S = 3/2 EPR signal from the FeMoco centres. This implies that those molecules of the three mutant fractions and the wild-type protein that contain EPR-active FeMoco are fully active, i.e. that the Cys to Ala substitution of the P-cluster ligands does not affect the specific activity of the protein. This in turn implies that the P-clusters are not directly associated with the rate-limiting step in enzyme turnover. We conclude that the lower specific activities of the mutant fractions are observed because the fractions are mixtures of species containing a full complement of FeMoco and P-clusters and species lacking some or all of these clusters. On the basis of the Mo contents and EPR spectroscopy of the mutant fractions, we propose that the loss of the P-clusters causes (i) the physical loss or inhibition of binding of some FeMoco; (ii) the EPR and catalytic inactivation of some FeMoco; and/or (iii) the incorporation of a FeMoco-like species into the FeMoco site of the mutant molecules.
Collapse
Affiliation(s)
- F K Yousafzai
- Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
59
|
Ryle MJ, Lanzilotta WN, Seefeldt LC. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Biochemistry 1996; 35:9424-34. [PMID: 8755721 DOI: 10.1021/bi9608572] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleotide binding to the nitrogenase iron (Fe) protein results in a lowering of the redox potential of its [4Fe-4S] cluster by over 100 mV, and this is thought to be essential for electron transfer to the molybdenum-iron (MoFe) protein for substrate reduction. This work presents evidence for an important role of the strictly conserved phenylalanine at position 135, located near the [4Fe-4S] cluster of nitrogenase Fe protein, in defining both the redox potential and the nucleotide-induced changes in the redox potential of the [4Fe-4S] cluster. Phe 135 was changed by means of site-directed mutagenesis to the amino acids Tyr (F135Y), Ile (F135I), Trp (F135W), and His (F135H), and the altered proteins were purified to homogeneity. Minor changes in the UV/visible and EPR spectra arising from the [4Fe-4S] cluster were detected in the altered proteins, while dramatic changes were observed in the visible region circular dichroism (CD) spectrum, suggesting that Phe 135 contributes significantly to the chiroptical properties of the [4Fe-4S] cluster. Likewise, significant changes in the redox potentials of the Phe altered Fe proteins were observed, with shifts of +50 to +120 mV compared to the redox potential of the wild-type Fe protein (-300 mV). The shifts in redox potential for the altered Fe proteins appeared to correlate with changes in isotropically shifted proton NMR resonances assigned to cluster ligands. All of the Phe 135 altered Fe proteins were found to bind either MgADP or MgATP, while the reduced and oxidized states of the F135W and F135H altered Fe proteins had significantly higher affinities for binding MgATP when compared to the wild-type Fe protein. While MgATP binding to the wild-type and Phe 135 altered Fe proteins resulted in approximately -100 mV shifts in the redox potentials for all proteins, MgADP binding resulted in only -30 to -50 mV shifts for the altered proteins compared to a -160 mV shift for the wild-type Fe protein. The current results suggest that Phe 135 is important in defining the redox potential of the [4Fe-4S] cluster in the Fe protein and influences the MgADP (but not MgATP) induced modulation of the redox potential.
Collapse
Affiliation(s)
- M J Ryle
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322-0300, USA
| | | | | |
Collapse
|
60
|
Demadis KD, Malinak SM, Coucouvanis D. Catalytic Reduction of Hydrazine to Ammonia with MoFe(3)S(4)-Polycarboxylate Clusters. Possible Relevance Regarding the Function of the Molybdenum-Coordinated Homocitrate in Nitrogenase. Inorg Chem 1996; 35:4038-4046. [PMID: 11666602 DOI: 10.1021/ic960098b] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic function of the previously synthesized and characterized [(L)MoFe(3)S(4)Cl(3)](2)(-)(,3)(-) clusters (L = tetrachlorocatecholate, citrate, citramalate, methyliminodiacetate, nitrilotriacetate, thiodiglycolate) and of the [MoFe(3)S(4)Cl(3)(thiolactate)](2)(4)(-) and [(MoFe(3)S(4)Cl(4))(2)(&mgr;-oxalate)](4)(-) clusters in the reduction of N(2)H(4) to NH(3) is reported. In the catalytic reduction, which is carried out at ambient temperature and pressure, cobaltocene and 2,6-lutidinium chloride are supplied externally as electron and proton sources, respectively. In experiments where the N(2)H(4) to the [(L)MoFe(3)S(4)Cl(3)](n)()(-) catalyst ratio is 100:1, and over a period of 30 min, the reduction proceeds to 92% completion for L = citrate, 66% completion for L = citramalate, and 34% completion for L = tetrachlorocatecholate. The [Fe(4)S(4)Cl(4)](2)(-) cluster is totally inactive and gives only background ammonia measurements. Inhibition studies with PEt(3) and CO as inhibitors show a dramatic decrease in the catalytic efficiency. These results are consistent with results obtained previously in our laboratory and strongly suggest that N(2)H(4) activation and reduction occur at the Mo site of the [(L)MoFe(3)S(4)Cl(3)](2)(-)(, 3)(-) clusters. A possible pathway for the N(2)H(4) reduction on a single metal site (Mo) and a possible role for the carboxylate ligand are proposed. The possibility that the Mo-bound polycarboxylate ligand acts as a proton delivery "shuttle" during hydrazine reduction is considered.
Collapse
|
61
|
Lanzilotta WN, Fisher K, Seefeldt LC. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Biochemistry 1996; 35:7188-96. [PMID: 8679547 DOI: 10.1021/bi9603985] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MgA TP hydrolysis has been proposed to be absolutely required for electron transfer from the nitrogenase iron (Fe) protein to the molybdenum-iron (MoFe) protein. This work presents evidence for primary electron transfer from the Azotobacter vinelandii nitrogenase Fe protein to the MoFe protein in the absence of MgATP hydrolysis. Deletion of an amino acid (Leu 127) in a signal transduction pathway in the Fe protein resulted in an Fe protein conformation resembling the MgATP-bound state. This altered Fe protein (L127delta) was found to bind to the MoFe protein in the absence of MgATP, forming a tight protein complex. Both steady state and stopped-flow transient kinetic measurements suggest that two L127delta Fe proteins bind to one MoFe protein with an extremely high affinity. From pre-steady state kinetic determinations of the rate of complex dissociation, the affinity was found to be at least 350 times tighter than that of the wild-type A. vinelandii nitrogenase complex and at least 20 times tighter than that of the heterologous Clostridium pasteurianum Fe protein-A. vinelandii MoFe protein complex. The L127delta Fe protein-MoFe protein complex was isolated by gel filtration liquid chromatography. Scanning densitometry of an SDS gel of the complex isolated from the gel filtration column revealed a stoichiometry of 1.7 L 127 delta Fe proteins bound per MoFe protein. The L 127 delta Fe protein was found to transfer a single electron from its [4Fe-4S] cluster to the MoFe protein at a rate of 0.2s-1. This compares with the MgATP dependent electron transfer rate of 140 s-1 observed for transfer of an electron from the wild-type Fe protein to the MoFe protein. No substrate reduction (H+ or C2H2) was detected when wild-type MoFe protein was complemented with L 127 delta Fe protein. The MgATP-independent electron transfer from the L 127 delta Fe protein to the MoFe protein required active MoFe protein and was not inhibited by MgADP. EPR spectroscopy of the complex was employed to confirm the electron transfer reaction. These results show that Fe protein in a conformation resembling the MgATP-bound state can transfer at least one electron to the MoFe protein without the need for MgATP hydrolysis.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA
| | | | | |
Collapse
|
62
|
Allen RM, Chatterjee R, Ludden PW, Shah VK. The requirement of reductant for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Biol Chem 1996; 271:4256-60. [PMID: 8626771 DOI: 10.1074/jbc.271.8.4256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A source of reductant is routinely added to the in vitro iron-molybdenum cofactor (FeMo-co) synthesis assay, although a requirement for reductant has not been established. This report demonstrates that the addition of reductant to the in vitro FeMo-co synthesis system is not required when Azotobacter vinelandii cell-free extract is prepared in buffer that lacks added reductant. The addition of reductant is required, however, if the A. vinelandii cell-free extract is chemically oxidized prior to addition to the assay. These results might suggest that extracts of A. vinelandii contain a physiological source of reductant that functions in the in vitro synthesis of FeMo-co. It is possible that the proteins required for FeMo-co biosynthesis (e.g. NIFNE and dinitrogenase reductase) are at the appropriate redox state to function in the in vitro reaction in the extract that is free of added reductant but not in the chemically oxidized extract. It is also possible that dinitrogenase reductase and/or NIFNE (both Fe-S proteins required for FeMo-co synthesis) might catalyze the reductant-dependent reaction for FeMo-co synthesis. Dithionite, Ti(III) citrate, and NADH are able to serve as the source of reductant for in vitro FeMo-co biosynthesis.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
63
|
Cameron LM, Hales BJ. Unusual Effect of CO on C2H2 Reduction by V Nitrogenase from Azotobacter vinelandii. J Am Chem Soc 1996. [DOI: 10.1021/ja953124y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linda M. Cameron
- Department of Chemistry, Louisiana State University Baton Rouge, Louisiana 70803-1804
| | - Brian J. Hales
- Department of Chemistry, Louisiana State University Baton Rouge, Louisiana 70803-1804
| |
Collapse
|
64
|
Christie PD, Lee HI, Cameron LM, Hales BJ, Orme-Johnson WH, Hoffman BM. Identification of the CO-Binding Cluster in Nitrogenase MoFe Protein by ENDOR of57Fe Isotopomers. J Am Chem Soc 1996. [DOI: 10.1021/ja961289g] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Peters JW, Fisher K, Newton WE, Dean DR. Involvement of the P cluster in intramolecular electron transfer within the nitrogenase MoFe protein. J Biol Chem 1995; 270:27007-13. [PMID: 7592949 DOI: 10.1074/jbc.270.45.27007] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nitrogenase is the catalytic component of biological nitrogen fixation, and it is comprised of two component proteins called the Fe protein and MoFe protein. The Fe protein contains a single Fe4S4 cluster, and the MoFe protein contains two metallocluster types called the P cluster (Fe8S8) and FeMo-cofactor (Fe7S9Mo-homocitrate). During turnover, electrons are delivered one at a time from the Fe protein to the MoFe protein in a reaction coupled to component-protein association-dissociation and MgATP hydrolysis. Under conditions of optimum activity, the rate of component-protein dissociation is rate-limiting. The Fe protein's Fe4S4 cluster is the redox entity responsible for intermolecular electron delivery to the MoFe protein, and FeMo-cofactor provides the substrate reduction site. In contrast, the role of the P cluster in catalysis is not well understood although it is believed to be involved in accumulating electrons delivered from the Fe protein and brokering their intramolecular delivery to the substrate reduction site. A nitrogenase component-protein docking model, which is based on the crystallographic structures of the component proteins and which pairs the 2-fold symmetric surface of the Fe protein with the exposed surface of the MoFe protein's pseudosymmetric alpha beta interface, is now available. During component-protein interaction, this model places the P cluster between the Fe protein's Fe4S4 cluster and FeMo-cofactor, which implies that the P cluster is involved in mediating intramolecular electron transfer between the clusters. In the present study, evidence supporting this idea was obtained by demonstrating that it is possible to alter the rate of substrate reduction by perturbing the polypeptide environment between the P cluster and FeMo-cofactor without necessarily disrupting the metallocluster polypeptide environments or altering component-protein interaction.
Collapse
Affiliation(s)
- J W Peters
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
66
|
Homer MJ, Dean DR, Roberts GP. Characterization of the gamma protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii. J Biol Chem 1995; 270:24745-52. [PMID: 7559591 DOI: 10.1074/jbc.270.42.24745] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dinitrogenase, the enzyme capable of catalyzing the reduction of N2, is a heterotetramer (alpha 2 beta 2) and contains the iron-molybdenum cofactor (FeMo-co) at the active site of the enzyme. Mutant strains unable to synthesize FeMo-co accumulate an apo form of dinitrogenase, which is enzymatically inactive but can be activated in vitro by the addition of purified FeMo-co. Apodinitrogenase from certain mutant strains of Azotobacter vinelandii has a subunit composition of alpha 2 beta 2 gamma 2. The gamma subunit has been implicated as necessary for the efficient activation of apodinitrogenase in vitro. Characterization of gamma protein in crude extracts and partially pure fractions has suggested that it is a chaperone-insertase required by apodinitrogenase for the insertion of FeMo-co. These are three major forms of gamma protein detectable by Western analysis of native gels. An apodinitrogenase-associated form is found in extracts of nifB or nifNE strains and dissociates from the apocomplex upon addition of purified FeMo-co. A second form of gamma protein is unassociated with other proteins and exists as a homodimer. Both of these forms of gamma protein can be converted to a third form by the addition of purified FeMo-co. This conversion requires the addition of active FeMo-co and correlates with the incorporation of iron into gamma protein. Crude extracts that contain this form of gamma protein are capable of donating FeMo-co to apodinitrogenase, thereby activating the apodinitrogenase. These data support a model in which gamma protein is able to interact with both FeMo-co and apodinitrogenase, facilitate FeMo-co insertion into apodinitrogenase, and then dissociate from the activated dinitrogenase complex.
Collapse
Affiliation(s)
- M J Homer
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
67
|
Roll JT, Shah VK, Dean DR, Roberts GP. Characteristics of NIFNE in Azotobacter vinelandii strains. Implications for the synthesis of the iron-molybdenum cofactor of dinitrogenase. J Biol Chem 1995; 270:4432-7. [PMID: 7876209 DOI: 10.1074/jbc.270.9.4432] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The products of the nifN and nifE genes of Azotobacter vinelandii function as a 200-kDa alpha 2 beta 2 tetramer (NIFNE) in the synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase, the enzyme system required for biological nitrogen fixation. NIFNE was purified using a modification of the published protocol. Immunoblot analysis of anoxic native gels indicated that distinct forms of NIFNE accumulate in strains deficient in either NIFB (delta nifB::kan delta nifDK) or NIFH (delta nifHDK). During the purification of NIFNE from the delta nifHDK mutant, its mobility in these gels changed, becoming similar to that of NIFNE from the delta nifB::kan delta nifDK mutant. While NIFB activity initially co-purified with the NIFNE activity from the delta nifHDK mutant, further purification of NIFNE activity resulted in the loss of the co-purifying NIFB activity; this loss correlated with the change in NIFNE mobility on native gels. These results suggest that the form of NIFNE accumulated in the delta nifHDK mutant is associated with NIFB activity in crude extract but loses this association during NIFNE purification. Addition of the purified metabolic product of NIFB, termed NifB-co, to either NIFNE purified from the delta nifHDK strain or to the NIFNE in crude extract of the delta nifB::kan delta nifDK strain caused a change in the mobility of NIFNE on anoxic native gels to that of the form accumulated in a delta nifHDK mutant. These results support a model where both NifB-co and dinitrogenase reductase participate in FeMo-co synthesis through NIFNE, which serves as a scaffold for this process.
Collapse
Affiliation(s)
- J T Roll
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
68
|
Sellmann D, Hofmann T, Knoch F. Transition metal complexes with sulfur ligands CVI. Phosphine and azido [Fe(L)(‘NHS4’)] complexes; structural characterization of the key complex [Fe(‘NHS4’)]·THF (L=PMe3, PBu3, PMe2Ph, PMePh2, N3−; ‘NHS4’2−=dianion of 2,2′-bis-(2-mercaptophenylthio)diethylamine). Inorganica Chim Acta 1994. [DOI: 10.1016/0020-1693(94)04017-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
69
|
Chatterjee R, Allen RM, Shah VK, Ludden PW. Nucleotide and divalent cation specificity of in vitro iron-molybdenum cofactor synthesis. J Bacteriol 1994; 176:2747-50. [PMID: 8169227 PMCID: PMC205418 DOI: 10.1128/jb.176.9.2747-2750.1994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nucleotide and divalent cation requirements of the in vitro iron-molybdenum cofactor (FeMo-co) synthesis system have been compared with those of substrate reduction by nitrogenase. The FeMo-co synthesis system specifically requires ATP, whereas both 1,N6-etheno-ATP and 2'-deoxy-ATP function in place of ATP in substrate reduction (M. F. Weston, S. Kotake, and L. C. Davis, Arch. Biochem. Biophys. 225:809-817, 1983). Mn2+, Ca2+, and Fe2+ substitute for Mg2+ to various extents in in vitro FeMo-co synthesis, whereas Ca2+ is ineffective in substrate reduction by nitrogenase. The observed differences in the nucleotide and divalent cation specificities suggest a role(s) for the nucleotide and divalent cation in in vitro FeMo-co synthesis that is distinct from their role(s) in substrate reduction.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
70
|
Conradson SD, Burgess BK, Newton WE, Di Cicco A, Filipponi A, Wu ZY, Natoli CR, Hedman B, Hodgson KO. Selenol binds to iron in nitrogenase iron-molybdenum cofactor: an extended x-ray absorption fine structure study. Proc Natl Acad Sci U S A 1994; 91:1290-3. [PMID: 8108404 PMCID: PMC43143 DOI: 10.1073/pnas.91.4.1290] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The biological N2-fixation reaction is catalyzed by the enzyme nitrogenase. The metal cluster active site of this enzyme, the iron-molybdenum cofactor (FeMoco), can be studied either while bound within the MoFe protein component of nitrogenase or after it has been extracted into N-methylformamide. The two species are similar but not identical. For example, the addition of thiophenol or selenophenol to isolated FeMoco causes its rather broad S = 3/2 electron paramagnetic resonance signal to sharpen and more closely approach the signal exhibited by protein-bound FeMoco. The nature of this thiol/selenol binding site has been investigated by using Se-K edge extended x-ray absorption fine structure (EXAFS) to study selenophenol ligated to FeMoco, and the results are reported here. EXAFS data analysis at the ligand Se-K edge was performed with a set of software, GNXAS, that provides for direct calculation of the theoretical EXAFS signals and least-squares fits to the experimental data. Data analysis results show definitively that the selenol (and by inference thiol) binds to Fe at a distance of 2.4 A. In contrast, unacceptable fits are obtained with either Mo or S as the liganded atom (instead of Fe). These results provide quantitative details about an exchangeable thiol/selenol binding site on FeMoco in its isolated, solution state and establish an Fe atom as the site of this reaction. Furthermore, the utility of ligand-based EXAFS as a probe of coordination in polynuclear metal clusters is demonstrated.
Collapse
Affiliation(s)
- S D Conradson
- Department of Chemistry, Stanford University, CA 94305
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Biological nitrogen fixation is catalyzed by the nitrogenase enzyme system which consists of two metalloproteins, the iron (Fe-) protein and the molybdenum-iron (MoFe-) protein. Together, these proteins mediate the ATP-dependent reduction of dinitrogen to ammonia. Recent crystallographic analyses of Fe-protein and MoFe-protein have revealed the polypeptide fold and the structure and organization of the unusual metal centers in nitrogenase. These structure provide a molecular framework for addressing the mechanism of the nitrogenase-catalyzed reaction. General features of the nitrogenase system, including conformational coupling of nucleotide hydrolysis, aspects of the cluster structures, and the general spatial organization of redox centers within the protein subunits, are relevant to a wide range of biochemical systems.
Collapse
Affiliation(s)
- J Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
72
|
Richards AJ, Lowe DJ, Richards RL, Thomson AJ, Smith BE. Electron-paramagnetic-resonance and magnetic-circular-dichroism studies of the binding of cyanide and thiols to the thiols to the iron-molybdenum cofactor from Klebsiella pneumoniae nitrogenase. Biochem J 1994; 297 ( Pt 2):373-8. [PMID: 8297344 PMCID: PMC1137839 DOI: 10.1042/bj2970373] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FeMoco, a low-M(r) metal cluster of probable composition Fe7MoS9 complexed with homocitrate, has been extracted with N-methylformamide from the MoFe protein of the nitrogenase enzyme from Klebsiella pneumoniae. The binding of cyanide and thiols to the FeMoco cluster in its paramagnetic S = 3/2 oxidation level has been studied by low-temperature e.p.r. and magnetic-circular-dichroism (m.c.d.) spectroscopies. Cyanide binds to isolated FeMoco at more than one site, and causes changes in the g values form g = 4.6, 3.2, 2.0 to g = 4.29, 3.82, 2.02 E.p.r. competition studies indicate that one cyanide can be displaced by thiolate from one type of site. The form of the low-temperature m.c.d. spectrum is little changed by ligand binding, thus the basic cluster structure remains intact. However, when benzenethiol is bound, a new intense band (lambda 387 nm) is observed, indicating the generation of an increased ligand-to-cluster charge-transfer interaction.
Collapse
Affiliation(s)
- A J Richards
- School of Chemical Sciences, University of East Anglia, Norwich U.K
| | | | | | | | | |
Collapse
|
73
|
Allen RM, Chatterjee R, Madden MS, Ludden PW, Shah VK. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Crit Rev Biotechnol 1994; 14:225-49. [PMID: 7954845 DOI: 10.3109/07388554409079834] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase is a unique molybdenum-containing prosthetic group that has been proposed to form an integral part of the active site of dinitrogenase. In Klebsiella pneumoniae, at least six nif (nitrogen fixation) gene products are required for the biosynthesis of FeMo-co, including NIFB, NIFNE, NIFH, NIFQ, and NIFV. An in vitro system for the synthesis of FeMo-co, which requires MgATP, molybdate, homocitrate, and at least the products of nifN, E, B, and H, has provided an enzymatic assay for the purification of many of the gene products required for FeMo-co biosynthesis. Although the structure of the cofactor has been solved recently, much about the biosynthetic pathway remains unknown. This article reviews what is known about the various components required for FeMo-co biosynthesis.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
| | | | | | | | | |
Collapse
|
74
|
In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of NIFB protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42235-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
75
|
Allen R, Homer M, Chatterjee R, Ludden P, Roberts G, Shah V. Dinitrogenase reductase- and MgATP-dependent maturation of apodinitrogenase from Azotobacter vinelandii. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49514-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
76
|
Dean DR, Bolin JT, Zheng L. Nitrogenase metalloclusters: structures, organization, and synthesis. J Bacteriol 1993; 175:6737-44. [PMID: 8226614 PMCID: PMC206795 DOI: 10.1128/jb.175.21.6737-6744.1993] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- D R Dean
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | |
Collapse
|
77
|
Huang HQ, Kofford M, Simpson FB, Watt GD. Purification, composition, charge, and molecular weight of the FeMo cofactor from Azotobacter vinelandii nitrogenase. J Inorg Biochem 1993; 52:59-75. [PMID: 8228979 DOI: 10.1016/0162-0134(93)85623-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A procedure has been developed for purifying NMF and NMF/DMF solutions of the FeMo cofactor (FeMoco) derived from the molybdenum iron protein of nitrogenase. This procedure consists of anaerobic chromatography of FeMoco solutions on two consecutive anaerobic molecular sizing columns followed by electrophoretic migration through a third sizing column. FeMoco prepared by this procedure is homogeneous as evidenced by chromatographic, electrophoretic, and compositional criteria. The minimal elemental composition was found to be MoFe6S6 using chemical colorimetric, inductively coupled plasma (ICP), and proton induced x-ray emission (PIXE) analytical procedures. Molecular weight measurements of NMF and DMF solutions of FeMoco using calibrated columns containing various molecular sizing matrices gave values of 1395 +/- 130 daltons for the molecular weight of FeMoco. The measured MW of FeMoco is about twice the value expected from the minimal stoichiometry, suggesting that FeMoco may exist as Mo2Fe12S12 in NMF and DMF solutions. The charge of FeMoco in its EPR silent state was determined to be 2- per Mo by passing NMF solutions of FeMoco containing excess salts of Na+, K+, Rb+, and Mg2+ through long columns equilibrated with pure NMF and then measuring the M/Mo ratio of the emerging FeMoco. Decomposition of purified FeMoco by acid or O2-exposure followed by exhaustive methylation or silanation of the resulting mixture failed to yield any methylated or silanated homocitric acid as measured by tandem gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS procedure applied to standard homocitric acid samples and various controls readily detects methylated homocitric acid at the sub-nanomole level. We conclude that the minimum molecular formula for active oxidized (EPR silent) FeMoco in NMF and in NMF-DMF mixtures is [Mo2Fe12S12]4-, but that other small organic anions such as NMF- may be present.
Collapse
Affiliation(s)
- H Q Huang
- Department of Biology, Xiamen University, PRC
| | | | | | | |
Collapse
|
78
|
Eliezer D, Frank P, Gillis N, Newton W, Doniach S, Hodgson K. Small-angle x-ray scattering studies of the iron-molybdenum cofactor from Azotobacter vinelandii nitrogenase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36878-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
79
|
Shukla R, Bharadwaj PK. A convenient route to iron(III)-thiolates: Synthesis and characterization of low-spin (S = ) iron(III) complexes having the chromophore FeN2S*2S2 (S* = thioether). Polyhedron 1993. [DOI: 10.1016/s0277-5387(00)81470-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Pau RN, Eldridge ME, Lowe DJ, Mitchenall LA, Eady RR. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochem J 1993; 293 ( Pt 1):101-7. [PMID: 8392330 PMCID: PMC1134325 DOI: 10.1042/bj2930101] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nitrogenase-3 of Azotobacter vinelandii is synthesized under conditions of molybdenum and vanadium deficiency. The minimal metal requirement for its synthesis, and its metal content, indicated that the only transition metal in nitrogenase-3 was iron [Chisnell, Premakumar and Bishop (1988) J. Bacteriol. 170, 27-33; Pau, Mitchenall and Robson (1989) J. Bacteriol. 171, 124-129]. A new species of nitrogenase-3 has been purified from a strain of A. vinelandii (RP306) lacking structural genes for the Mo- and V-nitrogenases and containing a mutation which enables nitrogenase-3 to be synthesized in the presence of molybdenum. SDS/PAGE showed that component 1 contained a 15 kDa polypeptide which N-terminal amino acid sequence determination showed to be encoded by anfG. This confirms that nitrogenase-3, like V-nitrogenase, comprises three subunits. Preparations of the nitrogenase-3 from strain RP306 contained 24 Fe atoms and 1 Mo atom per molecule. Characterization of the cofactor centre of the enzyme by e.p.r. spectroscopy and an enzymic cofactor assay, together with stimulation of the growth of strain RP306 by Mo, showed that nitrogenase-3 can incorporate the Mo-nitrogenase cofactor (FeMoco) to form a functional enzyme. The specific activities (nmol of product produced/min per mg of protein) determined from activity titration curves were: under N2, NH3 formation 110, with concomitant H2 evolution of 220; under argon, H2 evolution 350; under 10% acetylene (C2H2) in argon, ethylene (C2H4) 58, ethane (C2H6) 26, and concomitant H2 evolution 226. The rate of formation of C2H6 was non-linear, and the C2H6/C2H4 ratio strongly dependent on the ratio of nitrogenase components.
Collapse
Affiliation(s)
- R N Pau
- AFRC Institute of Plant Science Research, Nitrogen Fixation Laboratory, University of Sussex, Brighton, U.K
| | | | | | | | | |
Collapse
|
81
|
Rodríguez-Quiñones F, Bosch R, Imperial J. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 1993; 175:2926-35. [PMID: 8491713 PMCID: PMC204610 DOI: 10.1128/jb.175.10.2926-2935.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity.
Collapse
Affiliation(s)
- F Rodríguez-Quiñones
- Institut d'Estudis Avançats, Consejo Superior de Investigaciones Cientificas, Universitat de les Illes Balears, Ctra. de Valldemossa, Palma de Mallorca, Spain
| | | | | |
Collapse
|
82
|
Fisher K, Lower DJ, Pau RN. Klebsiella pneumoniae nitrogenase MoFe protein: chymotryptic proteolysis affects function by limited cleavage of the beta-chain and provides high-specific-activity MoFe protein. Biochem J 1993; 291 ( Pt 1):309-14. [PMID: 8385937 PMCID: PMC1132518 DOI: 10.1042/bj2910309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteinase treatment with chymotrypsin has been used to probe the structure of native Klebsiella pneumoniae nitrogenase MoFe protein (Kp1). Reaction with chymotrypsin did not bleach Kp1, suggesting that it did not destroy the metal centres, and the Mo and Fe contents of Kp1 were unchanged. High ratios of chymotrypsin to Kp1 (1:1 by mass) cleaved the beta-chain of Kp1 to give 44 and 14 kDa polypeptides, which N-terminal amino acid sequence analysis showed to be derived from cleavage at residue beta-Phe124. A mutant MoFe protein, Kp1Met-124, in which beta-Phe124 is replaced by methionine, was not cleaved by chymotrypsin. Under non-denaturing conditions, the 'nicked' beta-chain of the wild-type protein remained associated with the alpha-chain. The alpha-chain was not cleaved by the proteinase treatment. Fission of the wild-type beta-chain was accompanied by loss of enzyme activity, loss of intensity of the g = 3.7 e.p.r. signal derived from dithionite-reduced FeMoco and by changes in the visible spectrum. The e.p.r. spectra of potassium ferricyanide-oxidized native and digested Kp1 show differences in the signals between g = 1.6 and 2.0. After prolonged treatment, the final specific activity of Kp1 was about 25 +/- 5% of the initial activity. This corresponded to 25 +/- 5% of the beta-chain which was resistant to proteolytic action. Brief treatment of Kp1 with a lower concentration of chymotrypsin (chymotrypsin/Kp1 ratio = 1:10 by mass, for 10 min) preferentially cleaved high-molecular-mass polypeptides that routinely contaminate preparations of Kp1 prepared by standard procedures. Treatment with chymotrypsin followed by gel filtration to remove the proteinase and cleaved protein fragments can therefore be used to increase significantly the specific activity of Kp1 preparations and remove contaminating activities, such as the ATPase activity of myokinase.
Collapse
Affiliation(s)
- K Fisher
- Agricultural and Food Research Council, Institute of Plant Science Research, University of Sussex, Brighton, U.K
| | | | | |
Collapse
|
83
|
Rees DC, Chan MK, Kim J. Structure and Function of Nitrogenase. ADVANCES IN INORGANIC CHEMISTRY 1993. [DOI: 10.1016/s0898-8838(08)60182-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
An Integrated, Interdisciplinary Approach to Understanding the Chemistry of Nitrogenases. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/978-94-017-2416-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
85
|
Electrophoretic studies on the assembly of the nitrogenase molybdenum-iron protein from the Klebsiella pneumoniae nifD and nifK gene products. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35937-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
86
|
Scott D, Dean D, Newton W. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88656-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
87
|
Affiliation(s)
- W H Orme-Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
88
|
Abstract
Structural models for the nitrogenase FeMo-cofactor and P-clusters are proposed based on crystallographic analysis of the nitrogenase molybdenum-iron (MoFe)-protein from Azotobacter vinelandii at 2.7 angstrom resolution. Each center consists of two bridged clusters; the FeMo-cofactor has 4Fe:3S and 1Mo:3Fe:3S clusters bridged by three non-protein ligands, and the P-clusters contain two 4Fe:4S clusters bridged by two cysteine thiol ligands. Six of the seven Fe sites in the FeMo-cofactor appear to have trigonal coordination geometry, including one ligand provided by a bridging group. The remaining Fe site has tetrahedral geometry and is liganded to the side chain of Cys alpha 275. The Mo site exhibits approximate octahedral coordination geometry and is liganded by three sulfurs in the cofactor, two oxygens from homocitrate, and the imidazole side chain of His alpha 442. The P-clusters are liganded by six cysteine thiol groups, two which bridge the two clusters, alpha 88 and beta 95, and four which singly coordinate the remaining Fe sites, alpha 62, alpha 154, beta 70, and beta 153. The side chain of Ser beta 188 may also coordinate one iron. The polypeptide folds of the homologous alpha and beta subunits surrounding the P-clusters are approximately related by a twofold rotation that may be utilized in the binding interactions between the MoFe-protein and the nitrogenase Fe-protein. Neither the FeMo-cofactor nor the P-clusters are exposed to the surface, suggesting that substrate entry, electron transfer, and product release must involve a carefully regulated sequence of interactions between the MoFe-protein and Fe-protein of nitrogenase.
Collapse
Affiliation(s)
- J Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
89
|
Madden MS, Krezel AM, Allen RM, Ludden PW, Shah VK. Plausible structure of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci U S A 1992; 89:6487-91. [PMID: 1631147 PMCID: PMC49526 DOI: 10.1073/pnas.89.14.6487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A plausible structure of the iron-molybdenum cofactor of nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1] is presented based on altered substrate reduction properties of dinitrogenase containing homocitrate analogs within the cofactor. Alterations on each carbon of the four-carbon homocitrate backbone were correlated with altered substrate reduction properties of dinitrogenase containing these analogs. Altered substrate reduction properties are the basis for a model in which homocitrate is oriented about two cubane metal clusters.
Collapse
Affiliation(s)
- M S Madden
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | | | |
Collapse
|
90
|
The dependence on iron availability of allocation of iron to nitrogenase components in Klebsiella pneumoniae and Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50437-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
91
|
Affiliation(s)
- B E Smith
- AFCR IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, England
| | | |
Collapse
|
92
|
Fisher K, Lowe DJ, Thorneley RN. Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Biochem J 1991; 279 ( Pt 1):81-5. [PMID: 1656943 PMCID: PMC1151549 DOI: 10.1042/bj2790081] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The pre-steady-state kinetics of H2 evolution from Klebsiella pneumoniae nitrogenase functioning at 23 degrees C, pH 7.4, under conditions of extremely low electron flux through the MoFe-protein exhibited a lag phase of several minutes duration. The approach to a steady-state rate of H2 evolution was accompanied by a 50% decrease in the amplitude of the MoFe-protein e.p.r. signal. These kinetics have been simulated using our published kinetic model for nitrogenase [Lowe & Thorneley (1984) Biochem. J. 224, 877-886], which was developed using data obtained with nitrogenase functioning at high electron fluxes. The e.p.r. data showed that the rate of complex-formation between reduced Fe-protein and the MoFe-protein (k+1 = 5 x 10(7) M-1.s-1) is the same for the resting (E0) and one-electron-reduced (E1H) states of the MoFe-protein. Stopped-flow spectrophotometry also showed that electron transfer from the Fe-protein to the MoFe-protein in states E0 and E1H occurs at the same rate (kobs. = 140 s-1). These data support our previous assumption that the rate constants that define the 'Fe-protein cycle' are independent of the level of reduction of the MoFe-protein.
Collapse
Affiliation(s)
- K Fisher
- AFRC Institute of Plant Science Research, Nitrogen Fixation Laboratory, University of Sussex, Brighton, U.K
| | | | | |
Collapse
|
93
|
Madden MS, Paustian TD, Ludden PW, Shah VK. Effects of homocitrate, homocitrate lactone, and fluorohomocitrate on nitrogenase in NifV- mutants of Azotobacter vinelandii. J Bacteriol 1991; 173:5403-5. [PMID: 1885520 PMCID: PMC208251 DOI: 10.1128/jb.173.17.5403-5405.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Azotobacter vinelandii DJ71, which contains a mutation in the nifV gene, was derepressed for nitrogenase in the presence of homocitrate. When dinitrogenase was isolated from this culture, it was found to be identical to the wild-type dinitrogenase. However, when the same NifV- strain was derepressed in the presence of erythrofluorohomocitrate, a homocitrate analog which produces a nitrogenase with wild-type properties in vitro, the isolated dinitrogenase was characteristic of the NifV- enzyme. These data show that homocitrate, but not fluorohomocitrate, is utilized by NifV- mutant cells. Fluorohomocitrate does not inhibit the uptake of homocitrate because the wild-type phenotype resulted when both compounds were added to the medium during nitrogenase derepression. Homocitrate lactone failed to cure the NifV- phenotype.
Collapse
Affiliation(s)
- M S Madden
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
94
|
Thomann H, Bernardo M, Newton WE, Dean DR. N coordination of FeMo cofactor requires His-195 of the MoFe protein alpha subunit and is essential for biological nitrogen fixation. Proc Natl Acad Sci U S A 1991; 88:6620-3. [PMID: 11607203 PMCID: PMC52139 DOI: 10.1073/pnas.88.15.6620] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy, a pulsed electron spin resonance technique, was used to analyze the N coordination of the iron-molybdenum (FeMo) cofactor contained within the nitrogenase MoFe protein. Comparison of spectra obtained from whole cells and purified MoFe protein established that the N coordination of the FeMo cofactor provided by the MoFe-protein polypeptide matrix can be unambiguously recognized in whole cells. ESEEM spectra of altered MoFe proteins, which were produced in certain mutant strains of Azotobacter vinelandii, showed that the N coordination to FeMo cofactor requires His-195 of the MoFe protein alpha subunit. Moreover, this requirement for His-195 was shown to be essential for biological nitrogen fixation.
Collapse
Affiliation(s)
- H Thomann
- Exxon Research and Engineering Co., Annandale, NJ 08801, USA
| | | | | | | |
Collapse
|
95
|
Transition metal complexes with sulfur ligands LXIII. π-Electron delocalization and partial ruthenium sulfur multiple bonding in ruthenium bis-1,2-benzenedithiolate complexes: X-ray structure analyses and redox chemistry of [Ru(‘S2’)2(PMe3)2]n (n=0, −1; ‘S2’2−=1,2-benzenedithiolate(2−)). Inorganica Chim Acta 1991. [DOI: 10.1016/s0020-1693(00)85420-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
96
|
Dilworth MJ, Eady RR. Hydrazine is a product of dinitrogen reduction by the vanadium-nitrogenase from Azotobacter chroococcum. Biochem J 1991; 277 ( Pt 2):465-8. [PMID: 1859374 PMCID: PMC1151257 DOI: 10.1042/bj2770465] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the enzymic reduction of N2 to NH3 by Mo-nitrogenase, free hydrazine (N2H4) is not detectable, but an enzyme-bound intermediate can be made to yield N2H4 by quenching the enzyme during turnover [Thorneley, Eady & Lowe (1978) Nature (London) 272, 557-558]. In contrast, we show here that the V-nitrogenase of Azotobacter chroococcum produces a small but significant amount of free N2H4 (up to 0.5% of the electron flux resulting in N2 reduction) as a product of the reduction of N2. The amount of N2H4 formed increased 15-fold on increasing the assay temperature from 20 degrees C to 40 degrees C. Activity cross-reactions between nitrogenase components of Mo- and V-nitrogenases showed that the formation of free N2H4 was associated with the VFe protein. These data provide the first direct evidence for an enzyme intermediate at the four-electron-reduced level during the reduction of N2 by V-nitrogenase.
Collapse
Affiliation(s)
- M J Dilworth
- School of Biological and Environmental Sciences, Murdoch University, Western Australia
| | | |
Collapse
|
97
|
May HD, Dean DR, Newton WE. Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit. Biochem J 1991; 277 ( Pt 2):457-64. [PMID: 1650185 PMCID: PMC1151256 DOI: 10.1042/bj2770457] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regions surrounding the three strictly conserved cysteine residues (positions 70, 95 and 153) in the beta-subunit of the Azotobacter vinelandii nitrogenase MoFe protein have been proposed to provide P-cluster environments [Dean, Setterquist, Brigle, Scott, Laird & Newton (1990) Mol. Microbiol. 4, 1505-1512]. In the present study, each of these cysteine residues was individually substituted by either serine or alanine by site-directed mutagenesis of the nifK gene, which encodes the MoFe protein beta-subunit. A mutant strain for which the codon for Cys-153 is removed was also isolated. Significant structural or functional roles are indicated for the cysteine residues at positions 70 and 95, where substitution by either serine or alanine eliminates diazotrophic growth of the resulting strains and abolishes or markedly decreases both MoFe-protein acetylene-reduction activity and the intensity of the whole-cell S = 3/2 e.p.r. signal. Changes introduced at position 153 have various effects on the functional properties of the enzyme. The strains produced either by deletion of the Cys-153 residue or its substitution by serine exhibit only a moderate decrease in diazotrophic growth and MoFe-protein activity and no loss of the whole-cell e.p.r.-signal intensity. In contrast, substitution by alanine eliminates diazotrophic growth and very markedly decreases both MoFe-protein activity and e.p.r.-signal intensity. These results are interpreted in terms of a metallocluster-driven protein rearrangement. After purification of the altered MoFe protein, in which serine replaces Cys-153, an investigation of its catalytic and spectroscopic properties confirms that neither the FeMo cofactor, i.e. the substrate-reduction site, nor the component-protein interaction site has been affected. Instead, these data indicate a disruption in electron transfer within the MoFe protein, which is consistent with a role for this residue (and region) at the P clusters.
Collapse
Affiliation(s)
- H D May
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | |
Collapse
|
98
|
Howard JB, Rees DC. Perspectives on non-heme iron protein chemistry. ADVANCES IN PROTEIN CHEMISTRY 1991; 42:199-280. [PMID: 1793006 DOI: 10.1016/s0065-3233(08)60537-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J B Howard
- Department of Biochemistry, University of Minnesota School of Medicine, Minneapolis 55455
| | | |
Collapse
|
99
|
Downs DM, Ludden PW, Shah VK. Synthesis of the iron-molybdenum cofactor of nitrogenase is inhibited by a low-molecular-weight metabolite of Klebsiella pneumoniae. J Bacteriol 1990; 172:6084-9. [PMID: 2211526 PMCID: PMC526933 DOI: 10.1128/jb.172.10.6084-6089.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The in vitro synthesis of the iron-molybdenum cofactor nitrogenase was inhibited by a low-molecular-weight factor. This inhibitory factor was present in the membrane extracts of wild-type and nif mutant strains of Klebsiella pneumoniae that were grown under conditions that either repressed or derepressed nitrogenase expression. In vitro, the inhibition was specific for the NifB protein. Addition of this factor to K. pneumoniae cells at various times during nif derepression decreased nitrogenase activity, presumably through inhibition of iron-molybdenum cofactor synthesis. The inhibitor was purified by solvent extraction and chromatography on DEAE-cellulose, silica gel, and aluminum oxide columns.
Collapse
Affiliation(s)
- D M Downs
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
100
|
Li JG, Tal S, Robinson AC, Dang V, Burgess BK. Analysis of Azotobacter vinelandii strains containing defined deletions in the nifD and nifK genes. J Bacteriol 1990; 172:5884-91. [PMID: 2120192 PMCID: PMC526908 DOI: 10.1128/jb.172.10.5884-5891.1990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Strains of Azotobacter vinelandii which contain defined deletions within the nifD and nifK genes which encode, respectively, the alpha and beta subunits of the MoFe protein of nitrogenase were analyzed. When synthesized without its partner, the beta subunit accumulated as a soluble beta 4 tetramer. In contrast, when the alpha subunit was present without its partner, it accumulated primarily as an insoluble aggregate. The solubility of this protein was increased by the presence of a form of the beta subunit which contained a large internal deletion, such that the alpha subunit could participate in the assembly of small amounts of an alpha 2 beta 2 holoprotein. When synthesized alone, the beta subunit was remarkably stable, even when the protein contained a large internal deletion. The alpha subunit, however, was much more rapidly degraded than the beta subunit, both when it was synthesized alone in its native background and when it was synthesized with its beta subunit partner in a foreign background. Antibodies raised against purified alpha 2 beta 2 MoFe protein recognized epitopes only on the nondenatured beta subunit and not on the nondenatured alpha subunit. Our findings that all epitopes for the alpha2beta2 tetramer appeared to be on the beta subunit, that the beta subunit assembled into beta4 tetramers, and that the alpha subunit alone was very insoluble, combined with the previous finding that the Fe protein binds to the beta subunit (A. H. Willing, M. M. Georgiadis, D. C. Rees, and J. B. Howard, J. Biol. Chem. 264:8499-8503, 1989) all suggest that the beta subunit has a more surface location than the alpha subunit in the alpha2beta2 tetramer.
Collapse
Affiliation(s)
- J G Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | | | | | |
Collapse
|