51
|
Abstract
The proliferative--or new-tissue formation--phase of wound healing is complex. This article examines the changes that occur to cells during this stage and the effect on the extracellular matrix environment.
Collapse
Affiliation(s)
- P Stephens
- Department of Oral Surgery, Medicine and Pathology, University of Wales College of Medicine, Dental School, Heath Park, Cardiff, UK.
| | | |
Collapse
|
52
|
De Angelis T, Noè A, Chatterjee M, Mulholland J. Stromelysin-1 activation correlates with invasiveness in squamous cell carcinoma. J Invest Dermatol 2002; 118:759-66. [PMID: 11982752 DOI: 10.1046/j.1523-1747.2002.01755.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of selected metalloproteinases and tissue inhibitors of metalloproteinases (TIMP) was examined in three squamous cell carcinoma (SCC) cell lines (FaDu, SiHa, A431) and a keratinocyte cell line (HaCaT) to determine which metalloproteinases function in SCC invasiveness. A Matrigel invasion assay was used to assess invasiveness of the cell lines. Only the FaDu cell line showed invasiveness in this assay, and invasion of Matrigel by FaDu cells was inhibited by treatment with the metalloproteinase inhibitor, batimastat. No correlation was found between mRNA expression for matrilysin, stromelysins 1-3, TIMP-1, or TIMP-3 and secretion of these proteins, indicating that the extracellular activity of these molecules is regulated post-transcriptionally. The SCC cell lines differed from the HaCaT line in that matrilysin and TIMP-1 proteins were detected in conditioned medium from all SCC cell lines, but not in medium from HaCaT cells. Only the invasive cell line, FaDu, released active stromelysin-1 into the culture medium. These results indicate that while matrilysin contributes to the invasive phenotype, activation of stromelysin-1 is a key regulatory step for invasiveness in SCC cells.
Collapse
Affiliation(s)
- Tiziana De Angelis
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
53
|
Ware LB, Matthay MA. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol 2002; 282:L924-40. [PMID: 11943656 DOI: 10.1152/ajplung.00439.2001] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence indicates that the epithelial-specific growth factors keratinocyte growth factor (KGF), fibroblast growth factor (FGF)-10, and hepatocyte growth factor (HGF) play important roles in lung development, lung inflammation, and repair. The therapeutic potential of these growth factors in lung disease has yet to be fully explored. KGF has been best studied and has impressive protective effects against a wide variety of injurious stimuli when given as a pretreatment in animal models. Whether this protective effect could translate to a treatment effect in humans with acute lung injury needs to be investigated. FGF-10 and HGF may also have therapeutic potential, but more extensive studies in animal models are needed. Because HGF lacks true epithelial specificity, it may have less potential than KGF and FGF-10 as a targeted therapy to facilitate lung epithelial repair. Regardless of their therapeutic potential, studies of the unique roles played by these growth factors in the pathogenesis and the resolution of acute lung injury and other lung diseases will continue to enhance our understanding of the complex pathophysiology of inflammation and repair in the lung.
Collapse
Affiliation(s)
- Lorraine B Ware
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
54
|
Nishino K, Yamanouchi K, Naito K, Tojo H. Matrix metalloproteinases regulate mesonephric cell migration in developing XY gonads which correlates with the inhibition of tissue inhibitor of metalloproteinase-3 by Sry. Dev Growth Differ 2002; 44:35-43. [PMID: 11869290 DOI: 10.1046/j.1440-169x.2002.00618.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mouse, the sex determining gene Sry, on the Y chromosome, controls testis differentiation during embryogenesis. Following Sry expression, indifferent XY gonads increase their size relative to XX gonads and form cord-like structures with the adjacent mesonephros, providing XY gonad somatic cells. This mesonephric cell migration is known to depend on Sry, but the molecular mechanism of mesonephric cell migration remains unknown. In this study, it was shown that cells expressing Sry induced proliferation of mesonephric cells migrating into male gonads, and inhibited expression of the tissue inhibitor of metalloproteinases (TIMP)-3 gene, which is the endogenous inhibitor of matrix metalloproteinases (MMP). In addition, the mesonephric cell migration was blocked by a chemically synthesized inhibitor of MMP in a gonad/mesonephros organ co-culture system with enhanced green fluorescent protein transgenic embryos. The findings indicate that MMP may play a critical role in mesonephric cell migration, and the function of MMP may be regulated by a Sry-TIMP-3 cascade. These findings are an important clue for the elucidation of testicular formation in developing gonads.
Collapse
Affiliation(s)
- Koichiro Nishino
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
55
|
Gallucci RM, Sugawara T, Yucesoy B, Berryann K, Simeonova PP, Matheson JM, Luster MI. Interleukin-6 treatment augments cutaneous wound healing in immunosuppressed mice. J Interferon Cytokine Res 2001; 21:603-9. [PMID: 11559438 DOI: 10.1089/10799900152547867] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been postulated that the inflammatory response that occurs after cutaneous wounding is a prerequisite for healing and that inflammatory cytokines, such as interleukin-6 (IL-6) are involved in this process. We showed previously that IL-6-deficient mice display delayed wound healing, which could be reversed by administration of a murine IL-6 expression plasmid or recombinant murine IL-6 (rMuIL-6). In the present study, we observed that delayed cutaneous wound healing, which occurs as a result of glucocorticoid-induced immunosuppression, can also be reversed by rMuIL-6, as evidenced by epithelialization, granulation tissue formation, and wound closure. In vehicle control mice, rMuIL-6 did not augment healing but rather delayed the process. Immunochemical studies indicated that the expression of matrix metalloproteinase-10 (MMP-10) was increased in dexamethasone-treated mice and that rMuIL-6 treatment reduced its expression, indicating that IL-6 may influence dermal matrix formation and, specifically, collagen synthesis. These results demonstrate that IL-6 can restore abnormal wound repair that occurs in immunodeficiency and suggest its use as a potential therapy.
Collapse
Affiliation(s)
- R M Gallucci
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, NIOSH/CDCP, 1095 Willowdale Road, Morgantown, WV 26505-2888, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Das SJ, Olsen I. Up-regulation of keratinocyte growth factor and receptor: a possible mechanism of action of phenytoin in wound healing. Biochem Biophys Res Commun 2001; 282:875-81. [PMID: 11352631 DOI: 10.1006/bbrc.2001.4621] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of studies suggest that keratinocyte growth factor (KGF) plays a major part in reepithelialisation after injury, via binding to the specific KGF receptor (KGFR). Several pharmacological agents, including the anti-epileptic drug phenytoin (PHT), have been widely used clinically to promote wound healing. Although the mechanism of action of PHT in this process is still not well understood, it is possible that the activity of PHT in wound healing is mediated via KGF and the KGFR. In the present study, using the enzyme-linked immunosorbant assay and flow cytometry we have shown that PHT increases KGF secretion and KGFR expression by more than 150% in gingival fibroblasts and epithelial cells, respectively. Moreover, semi-quantitative reverse transcriptase-polymerase chain reaction analysis showed that PHT also markedly increased both KGF and KGFR gene transcription by these cells. Our findings thus suggest that the wound healing activity of PHT in vivo may be mediated, at least partly, via KGF and its receptor.
Collapse
Affiliation(s)
- S J Das
- Department of Periodontology, Eastman Dental Institute for Oral Health Care Sciences, University College London, University of London, 256 Gray's Inn Road, London, WC1X 8LD, United Kingdom
| | | |
Collapse
|
57
|
Andreadis ST, Hamoen KE, Yarmush ML, Morgan JR. Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J 2001. [DOI: 10.1096/fsb2fj000324com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stylianos T. Andreadis
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital Harvard Medical School and Shriners Burns Hospital Boston Massachusetts 02114 USA
| | - Karen E. Hamoen
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital Harvard Medical School and Shriners Burns Hospital Boston Massachusetts 02114 USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital Harvard Medical School and Shriners Burns Hospital Boston Massachusetts 02114 USA
| | - Jeffrey R. Morgan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital Harvard Medical School and Shriners Burns Hospital Boston Massachusetts 02114 USA
| |
Collapse
|
58
|
Andreadis ST, Hamoen KE, Yarmush ML, Morgan JR. Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J 2001; 15:898-906. [PMID: 11292649 DOI: 10.1096/fj.00-0324com] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Keratinocyte growth factor (KGF) is a paracrine mediator of epithelial cell growth. To examine the direct effects of KGF on the morphogenesis of the epidermis, we generated skin equivalents in vitro by seeding human keratinocytes on the papillary surface of acellular dermis and raising them up to the air-liquid interface. KGF was either added exogenously or expressed by keratinocytes via a recombinant retrovirus encoding KGF. KGF induced dramatic changes to the 3-dimensional organization of the epidermis including pronounced hyperthickening, crowding, and elongation of the basal cells, flattening of the rete ridges, and a ripple-like pattern in the junction of stratum corneum and granular layers. Quantitative immunostaining for the proliferation antigen, Ki67, revealed that in addition to increasing basal proliferation, KGF extended the proliferative compartment by inducing suprabasal cell proliferation. KGF also induced expression of the integrin alpha 5 beta 1 and delayed expression of keratin 10 and transglutaminase. However, barrier formation of the epidermis was not disrupted. These results demonstrate for the first time that a single growth factor can alter the 3-dimensional organization and proliferative function of an in vitro epidermis. In addition to new strategies for tissue engineering, such a well-defined system will be useful for analyzing growth factor effects on the complex links between cell proliferation, cell movement and differentiation within a stratified tissue.
Collapse
Affiliation(s)
- S T Andreadis
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and Shriners Burns Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
59
|
Lohi J, Wilson CL, Roby JD, Parks WC. Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem 2001; 276:10134-44. [PMID: 11121398 DOI: 10.1074/jbc.m001599200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have cloned a new human matrix metalloproteinase (MMP-28, epilysin) from human keratinocyte and testis cDNA libraries. Like most MMPs, epilysin contains a signal sequence, a prodomain with a PRCGVTD sequence, a zinc-binding catalytic domain with an HEIGHTLGLTH sequence, and a hemopexin-like domain. In addition, epilysin has a furin activation sequence (RRKKR) but has no transmembrane sequence. The exon-intron organization and splicing pattern of epilysin differ from that of other MMP genes. It has only 8 exons, and 5 exons are spliced at sites not used by other MMPs. Another novel feature of epilysin is that exon 4 is alternatively spliced to a transcript that does not encode the N-terminal half of the catalytic domain. Northern hybridization of tissue RNA indicated that epilysin is expressed at high levels in testis and at lower levels in lungs, heart, colon, intestine, and brain. RNase protection assay with various cell lines indicated that epilysin was selectively expressed in keratinocytes. Recombinant epilysin degraded casein in a zymography assay, and its proteolytic activity was inhibited by EDTA and by batimastat, a selective MMP inhibitor. Immunohistochemical staining showed expression of epilysin protein in the basal and suprabasal epidermis of intact skin. In injured skin, prominent staining for epilysin was seen in basal keratinocytes both at and some distance from the wound edge, a pattern that is quite distinct from that of other MMPs expressed during tissue repair. These findings suggest that this new MMP functions in several tissues both in tissue homeostasis and in repair.
Collapse
Affiliation(s)
- J Lohi
- Departments of Pediatrics (Allergy and Pulmonary Medicine) and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
60
|
Kerkelä E, Ala-aho R, Lohi J, Grénman R, M-Kähäri V, Saarialho-Kere U. Differential patterns of stromelysin-2 (MMP-10) and MT1-MMP (MMP-14) expression in epithelial skin cancers. Br J Cancer 2001; 84:659-69. [PMID: 11237387 PMCID: PMC2363801 DOI: 10.1054/bjoc.2000.1634] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Revised: 10/03/2000] [Accepted: 10/18/2000] [Indexed: 11/23/2022] Open
Abstract
Co-expression of several members of the matrix metalloproteinase (MMP) family is characteristic of human malignant tumours. To investigate the role of stromelysin-2 (MMP-10) in growth and invasion of skin tumours, we studied cutaneous carcinomas with high metastatic capacity (squamous cell carcinomas, SCCs), only locally destructive tumours (basal cell carcinomas, BCCs) and pre-malignant lesions (Bowen's disease and actinic keratosis) using in situ hybridization. Expression of MMP-10 was compared with that of stromelysin-1 (MMP-3) and of MT1-MMP, the expression of which has been shown to correlate with tumour invasiveness. MMP-10 was expressed in 13/21 SSCs and 11/19 BCCs only in epithelial laminin-5 positive cancer cells, while premalignant lesions were entirely negative. MT1-MMP mRNA was detected in 19/21 SCCs both in epithelial cancer cells and stromal fibroblasts and in 14/18 BCCs only in fibroblasts. The level of MMP-10 was upregulated in a cutaneous SCC cell line (UT-SCC-7) by transforming growth factor-alpha and keratinocyte growth factor, and by interferon-gamma in combination with transforming growth factor-beta1 and tumour necrosis factor-alpha both in UT-SCC-7 and HaCaT cells. Our results show that MMP-10 expression does not correlate with the invasive behaviour of tumours as assessed by their histology and MT1-MMP expression, but may be induced by the wound healing and inflammatory matrix remodelling events associated with skin tumours.
Collapse
MESH Headings
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Adhesion Molecules/metabolism
- Fibroblasts/metabolism
- Growth Substances/pharmacology
- Humans
- In Situ Hybridization
- Keratosis/genetics
- Keratosis/metabolism
- Matrix Metalloproteinase 10
- Matrix Metalloproteinase 3/biosynthesis
- Matrix Metalloproteinase 3/genetics
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- RNA, Messenger/biosynthesis
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- Kalinin
Collapse
Affiliation(s)
- E Kerkelä
- Department of Dermatology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
61
|
Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: a possible mechanism of basement membrane and integrin alterations. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:723-34. [PMID: 11159210 PMCID: PMC1850323 DOI: 10.1016/s0002-9440(10)64015-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously described decreased immunostaining of nidogen-1/entactin; laminin chains alpha1, alpha5, beta1,gamma1; and epithelial integrin alpha3beta1 in human diabetic retinopathy (DR) corneas. Here, using 142 human corneas, we tested whether these alterations might be caused by decreased gene expression levels or increased degradation. By semiquantitative reverse transcription-polymerase chain reaction, gene expression levels of the alpha1, alpha5, and beta1 laminin chains; nidogen-1/entactin; integrin alpha3 and beta1 chains in diabetic and DR corneal epithelium were similar to normal. Thus, the observed basement membrane and integrin changes were unlikely to occur because of a decreased synthesis. mRNA levels of matrix metalloproteinase-10 (MMP-10/stromelysin-2) were significantly elevated in DR corneal epithelium and stroma, and of MMP-3/stromelysin-1, in DR corneal stroma. No such elevation was seen in keratoconus corneas. These data were confirmed by immunostaining, zymography, and Western blotting. mRNA levels of five other proteinases and of three tissue inhibitors of MMPs were similar to normal in diabetic and DR corneal epithelium and stroma. The data suggest that alterations of laminins, nidogen-1/entactin, and epithelial integrin in DR corneas may occur because of an increased proteolytic degradation. MMP-10 overexpressed in the diabetic corneal epithelium seems to be the major contributor to the observed changes in DR corneas. Such alterations may bring about epithelial adhesive abnormalities clinically seen in diabetic corneas.
Collapse
|
62
|
Beer HD, Gassmann MG, Munz B, Steiling H, Engelhardt F, Bleuel K, Werner S. Expression and function of keratinocyte growth factor and activin in skin morphogenesis and cutaneous wound repair. J Investig Dermatol Symp Proc 2000; 5:34-9. [PMID: 11147673 DOI: 10.1046/j.1087-0024.2000.00009.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reepithelialization and granulation tissue formation during cutaneous wound repair are mediated by a wide variety of growth and differentiation factors. Recent studies from our laboratory provided evidence for an important role of keratinocyte growth factor (KGF) in the repair of the injured epithelium and for a novel function of the transforming growth factor-beta superfamily member activin in granulation tissue formation. KGF is weakly expressed in human skin, but is strongly upregulated in dermal fibroblasts after skin injury. Its binding to a transmembrane receptor on keratinocytes induces proliferation and migration of these cells. Furthermore, KGF has been shown to protect epithelial cells from the toxic effects of reactive oxygen species. We have identified a series of KGF-regulated genes that are likely to play a role in these processes. In addition to KGF, activin seems to be a novel player in wound healing. Activin expression is hardly detectable in nonwounded skin, but this factor is highly expressed in redifferentiating keratinocytes of the hyperproliferative wound epithelium as well as in cells of the granulation tissue. To gain insight into the role of activin in wound repair, we generated transgenic mice that overexpress activin in basal keratinocytes of the epidermis. These mice were characterized by a hyperthickened epidermis and by dermal fibrosis. Most importantly, overexpression of activin strongly enhanced the process of granulation tissue formation, demonstrating a novel and important role of activin in cutaneous wound repair.
Collapse
Affiliation(s)
- H D Beer
- Institute of Cell Biology, Swiss Federal Institute of Technology, Zürich
| | | | | | | | | | | | | |
Collapse
|
63
|
Birkedal-Hansen B, Pavelic ZP, Gluckman JL, Stambrook P, Li YQ, Stetler-Stevenson WG. MMP and TIMP gene expression in head and neck squamous cell carcinomas and adjacent tissues. Oral Dis 2000; 6:376-82. [PMID: 11355270 DOI: 10.1111/j.1601-0825.2000.tb00130.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To compare the frequency of gene expression of matrix metalloproteinases (MMP) stromelysins -1, -2 and -3 (MMP-3, -10, and -11), matrilysin (MMP-7), MTI-MMP (MMP-14), and of TIMPs (Tissue Inhibitors of MMPs) -1, -2, -3 and -4 in head and neck squamous cell carcinomas with those of matched adjacent normal tissues. MATERIALS AND METHODS The present study included 20 surgically removed head and neck squamous cell carcinomas, seven of which were accompanied by matched adjacent oral mucosa excised from the border of the specimens outside the tumor area. RNA isolated from tumors and control samples was subjected to RT-PCR using primers specific for MMP-3, -7, -10, -11 and -14 and for TIMPs -1, -2, -3, and -4. RESULTS Our findings demonstrate that each of the five MMP genes studied were expressed in essentially all the tumors, while the adjacent marginal tissue samples showed a more varied picture: while stromelysin-3 was located to a majority of the marginal samples, matrilysin was expressed in four of seven adjacent samples, stromelysin-1 and MTI-MMP genes were each expressed in three of these samples, and stromelysin-2 transcript was only expressed in two marginal tissue samples. Whereas TIMP-1 and TIMP-2 transcripts were identified in all tumor and adjacent tissue samples studied, TIMP-3 was expressed, albeit often at low levels, in 17 of 20 tumor samples but only in three of seven adjacent tissues. The novel TIMP-4 gene was not expressed at all. CONCLUSIONS Specific MMP (MMP-3, -7, -10, -14) and TIMP-3 transcripts observed in head and neck squamous cell carcinomas compared to their frequency in specimens of matching tissues provide important information about expression of extracellular matrix degrading enzymes and their tissue inhibitors in head and neck carcinomas.
Collapse
Affiliation(s)
- B Birkedal-Hansen
- Matrix Extracellular Pathology Section, Laboratory of Pathology, DCS, NCI, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Rechardt O, Elomaa O, Vaalamo M, Pääkkönen K, Jahkola T, Höök-Nikanne J, Hembry RM, Häkkinen L, Kere J, Saarialho-Kere U. Stromelysin-2 is upregulated during normal wound repair and is induced by cytokines. J Invest Dermatol 2000; 115:778-87. [PMID: 11069614 DOI: 10.1046/j.1523-1747.2000.00135.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stromelysin-2 is a matrix metalloproteinase that degrades in vitro several protein components relevant to wound repair such as collagens III and IV, gelatin, nidogen, laminin-1, proteoglycans, and elastin. Furthermore, it can activate other matrix metalloproteinases, such as collagenase-1 (matrix metalloproteinase-1) and collagenase-2 (matrix metalloproteinase-8), as well as 92 kDa gelatinase. The aim of this study was to determine in a large variety of wounds (normally healing dermal and mucosal wounds, suction blisters, ex vivo cultures, diabetic, decubitus, rheumatic, and venous ulcers) and keratinocyte cultures, which factors contribute to stromelysin-2 expression and how it is induced in relation to other matrix metalloproteinases. Our results show that stromelysin-2 mRNA and protein are upregulated later (at 3 d) than matrix metalloproteinase-1 in normally healing wounds and ex vivo explants, in which stromelysin-2 is invariably expressed by keratinocytes migrating over dermal matrix. The number of keratinocytes expressing stromelysin-2 was greatest in chronic inflamed diabetic and venous ulcers compared with rheumatoid and decubitus ulcers, six of which had no signal. In keratinocyte cultures, tumor necrosis factor-alpha, epidermal growth factor, and transforming growth factor-beta1 induced stromelysin-2 expression as measured by quantitative reverse transcriptase-polymerase chain reaction, whereas different matrices did not upregulate the mRNA. Immunostaining demonstrated stromal transforming growth factor-beta1 in contact with the stromelysin-2-positive keratinocytes. Our results suggest that stromelysin-2 expression is important for the normal repair process and is upregulated by cytokines rather than cell-matrix interactions. Stromelysin-2 is most likely to participate in the remodeling of the newly formed basement membrane, and is not overexpressed in retarded wound healing.
Collapse
Affiliation(s)
- O Rechardt
- Departments of Dermatology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Welsh DA, Summer WR, Dobard EP, Nelson S, Mason CM. Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model. Am J Respir Crit Care Med 2000; 162:1081-6. [PMID: 10988134 DOI: 10.1164/ajrccm.162.3.9908099] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mechanical ventilation has been shown to produce lung injury characterized by noncardiogenic pulmonary edema. Keratinocyte growth factor (KGF) is a heparin-binding growth factor that causes alveolar type II pneumocyte hyperplasia. KGF pretreatment and the resultant pneumocyte hyperplasia reduce fluid flux in models of lung injury. We utilized the isolated perfused rat lung model to produce lung injury by varying tidal volume and the level of positive end-expiratory pressure during mechanical ventilation. Pretreatment with KGF attenuated ventilator-induced lung injury (VILI). This was demonstrated by lower wet-to-dry lung weight ratios and less lung water accumulation in the KGF group. Further, KGF prevented the decline in dynamic compliance and alveolar protein accumulation in VILI. KGF pretreatment reduced alveolar accumulation of intravascularly administered fluorescein isothiocyanate-labeled high-molecular-weight dextran. Thus, pretreatment with KFG attenuates injury in this ex vivo model of VILI via mechanisms that prevent increases in permeability.
Collapse
Affiliation(s)
- D A Welsh
- Department of Medicine, Louisiana State University Medical Center, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
66
|
Beer HD, Fässler R, Werner S. Glucocorticoid-regulated gene expression during cutaneous wound repair. VITAMINS AND HORMONES 2000; 59:217-39. [PMID: 10714241 DOI: 10.1016/s0083-6729(00)59008-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucocorticoids exert a deleterious effect on the wound healing process, which has been suggested to result from the anti-inflammatory action of these steroids. In addition, recent studies have demonstrated that glucocorticoids regulate the expression of various genes at the wound site which are likely to encode key players in the wound repair process. Using a murine full-thickness excisional wound healing model, we analyzed the effect of dexamethasone on the expression of various cytokines, growth factors, enzymes, and extracellular matrix molecules in normal and wounded skin. We demonstrate that the proinflammatory cytokines interleukin-1 alpha and -beta, tumor necrosis factor alpha, keratinocyte growth factor, transforming growth factors beta 1, beta 2, and beta 3 and their receptors, platelet-derived growth factors and their receptors, tenascin-C, stromelysin-2, macrophage metalloelastase, and enzymes involved in the generation of nitric oxide are targets of glucocorticoid action in wounded skin. These results indicate that anti-inflammatory steroids inhibit wound repair at least in part by influencing the expression of these key regulatory molecules.
Collapse
Affiliation(s)
- H D Beer
- Institute of Cell Biology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
67
|
Abstract
During repair, many different matrix metalloproteinases are produced by multiple cell types residing in various compartments within the wound environment. This diversity of enzymes, coupled with discreet cellular expression, implies that different matrix metalloproteinases serve different functions, acting on a variety of substrates, during wound healing. With few exceptions, however, the actual function and spectrum of functions of matrix metalloproteinases in vivo is not known. Even with the advent of genetically defined animal models, few studies have rigorously addressed the substrates and role of matrix metalloproteinases in wound repair. Before we can understand the role of matrix metalloproteinases in ulceration and disease, we need to determine the function these enzymes serve in normal tissues and repair.
Collapse
Affiliation(s)
- W C Parks
- Department of Pediatrics, Washington University School of Medicine, St.Louis, MO 63110, USA.
| |
Collapse
|
68
|
Bajaj-Elliott M, Poulsom R, Pender SL, Wathen NC, MacDonald TT. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia. J Clin Invest 1998; 102:1473-80. [PMID: 9788959 PMCID: PMC508996 DOI: 10.1172/jci2792] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia.
Collapse
Affiliation(s)
- M Bajaj-Elliott
- Department of Paediatric Gastroenterology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | |
Collapse
|
69
|
Abstract
Growth factors such as TGF-beta, PDGF and FGF are thought to play important roles in wound healing. However, their biological activity and signal transduction during wound repair remain poorly understood. Growth factors are often ligands for receptor tyrosine kinase and receptor serine/threonine kinases. With recent advances in signal transduction by receptor kinases, we are beginning to understand the underlying mechanism of how growth factors may regulate cutaneous wound repair. In this paper, we will describe the pharmacological effects of growth factors on wound healing, and discuss the potential underlying signaling mechanisms. Thus, we hope to provide the basis for designing more specific therapeutics for wound healing in the near future.
Collapse
Affiliation(s)
- W J Kim
- New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
70
|
DeCarlo AA, Grenett HE, Harber GJ, Windsor LJ, Bodden MK, Birkedal-Hansen B, Birkedal-Hansen H. Induction of matrix metalloproteinases and a collagen-degrading phenotype in fibroblasts and epithelial cells by secreted Porphyromonas gingivalis proteinase. J Periodontal Res 1998; 33:408-20. [PMID: 9842506 DOI: 10.1111/j.1600-0765.1998.tb02337.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Periodontitis is characterized by advancement of a narrow band of epithelium (1-10 cells wide) through the collagenous periodontal ligament in response to bacterial accumulation and infection. A modulating role by epithelial cells in the progression of periodontitis was hypothesized due to the close proximity of the advancing epithelium to both the etiological bacteria and to the collagen fibers of the ligament. We demonstrate that rat mucosal epithelial cells and human fibroblasts are similarly stimulated to degrade a collagen type I cellular substrate by thiol-dependent activity released by the major periodontal pathogen Porphyromonas gingivalis. A purified, extracellular bacterial thiol-proteinase from P. gingivalis ATCC 33277 stimulated mucosal epithelial cells to upregulate expression of collagenase and stromelysin, and to degrade a collagen type I fibril matrix. Stimulation of the epithelial cells with this purified proteinase was associated with morphological changes in the cells and with accumulation of secreted latent procollagenase throughout the culture medium. Release of active collagenase was minimal and collagen degradation by the epithelial cells was discreet and localized subcellularly suggesting the possibility that activation of secreted procollagenase was cell-associated. We conclude that a collagen-degrading phenotype can be stimulated in relatively quiescent mucosal epithelial cells and fibroblasts by the presence of bacterial proteinase. These experiments suggest roles for the P. gingivalis thiol-proteinase and the epithelial cell in the pathogenesis of periodontal disease and demonstrate the potential for dysregulation of extracellular matrix remodeling events during healing of other bacterially infected wounds.
Collapse
Affiliation(s)
- A A DeCarlo
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 1998; 242:201-10. [PMID: 9665817 DOI: 10.1006/excr.1998.4049] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During cutaneous wound healing a number of migratory and remodeling events occur that require the action of matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs). In this study, we analyzed the temporal and spatial expression patterns of these molecules during the healing of murine excisional skin wounds. Our data imply that defined phases of repair rely on distinct repertoires of MMP activity and TIMP counterregulation. Reepithelialization was found to be associated with active production of collagenase, 92-kDa gelatinase, and stromelysins-1 and -2 by distinct subpopulations of keratinocytes at the migrating border. Notably, no TIMP transcripts were expressed in the epidermis, but TIMP-1 expression in the wound colocalized with expression of collagenase, 92-kDa gelatinase, and stromelysin-1, albeit in distinct cells. Concomitant with the formation of an extensive hyperproliferative epithelium, TIMP-1 transcripts accumulated at the mesenchymal/epidermal border of the granulation tissue. During later phases of wound repair, we observed an increase in 72-kDa gelatinase and MT1-MMP expression, whereby the transcripts of these colocalizing MMPs were detected exclusively and at high levels in the granulation tissue. At completion of reepithelialization, the expression levels of the MMPs and TIMP-1 seen in epidermal and dermal compartments declined to near-basal levels, whereas the macrophage-specific metalloelastase (MME) reached maximum expression. In reepithelialized wound tissue, MME transcripts were detected in deep layers of reconstituted dermis and seemed to cluster around vascular structures. Systemic glucocorticoid treatment, which is known to result in impaired wound healing, led to a nearly complete shut-off of MME expression. These observations imply an additional role of macrophage-related proteolysis, independent of its classical roles during earlier, inflammatory phases of cutaneous wound repair.
Collapse
Affiliation(s)
- M Madlener
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
72
|
Vaalamo M, Karjalainen-Lindsberg ML, Puolakkainen P, Kere J, Saarialho-Kere U. Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 152:1005-14. [PMID: 9546361 PMCID: PMC1858229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed expression of matrix metalloproteinases is involved in wound healing in various organs. We have previously demonstrated enhanced expression of collagenase-1, stromelysin-1, matrilysin, and tissue inhibitor of metalloproteinases (TIMP-1) in gastrointestinal ulcerations. To further define the role of matrix-degrading enzymes and their inhibitors in intestinal inflammation and ulcerations, the expression of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (HME, MMP-12), and TIMP-3 mRNAs was studied using in situ hybridization and immunohistochemistry in 38 samples representing ulcerative colitis, Crohn's disease, ischemic colitis, and normal intestine. As controls for normally healing intestinal wounds, 12 postoperative samples of rat experimental jejunal anastomoses were also examined. The colitis types studied did not essentially differ in their MMP expression. We found stromelysin-2 mRNA in laminin-5-positive and Ki-67-negative enterocytes bordering the ulcerations. HME was abundantly expressed by macrophages in the vicinity of shedding mucosal epithelium and beneath the necrotic surface of the ulcers. Collagenase-3 and TIMP-3 were expressed by fibroblast-like cells deeper in the remodeling intestinal wall. Expression for stromelysin-2 and collagenase-3 was observed in granulation tissue, but not the epithelium, of the rat anastomoses. Our results suggest a role for stromelysin-2 in epithelial migration and for metalloelastase in macrophage movement and epithelial cell shedding.
Collapse
Affiliation(s)
- M Vaalamo
- Department of Dermatology, Helsinki University Central Hospital, Finland
| | | | | | | | | |
Collapse
|
73
|
Shukla A, Dubey MP, Srivastava R, Srivastava BS. Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem Biophys Res Commun 1998; 244:434-9. [PMID: 9514941 DOI: 10.1006/bbrc.1998.8286] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated growth factors and other cellular proteins as being important in the healing process. In this study, we have investigated the differential expression of proteins in wound tissues of normal and chronic animal models. Proteins were identified by specific antibodies, partial N-terminal amino acid sequence, and molecular weight homology. In normal wound tissues de novo synthesis of a heat shock protein, platelet derived growth factor (PDGF), and fibroblast growth factor (FGF) was induced within 24 h of skin injury. Proteins resembling vascular endothelial growth factor, receptors for PGDF, FGF, and epidermal growth factor, were synthesized. The elevated synthesis declined to a basal level in 7 to 14 days after skin injury which coincided with healing of wounds. These changes occurred only in wound site tissues but not in distal tissues. In contrast, the chronic wounds presented a different picture. The expressions of these proteins were either delayed or inhibited. This suggested the role of these proteins during normal and chronic wound healing. The proteins which were down regulated in chronic wounds may be used in the management of wounds and exploited as targets for therapeutic development.
Collapse
Affiliation(s)
- A Shukla
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
74
|
Abstract
Recently, we demonstrated a biphasic induction of the epithelial broad-spectrum matrix metalloproteinase (MMP) stromelysin-2 during cutaneous wound healing. Now we have generated a murine wound cDNA libary and have used it to isolate the putative cDNA of this murine matrix metalloproteinase. The predicted sequence of the protein shows 76 and 89% identity with its human and rat analogues, respectively. Stromelysin-2 and stromelysin-1 transcripts were both detected at very low levels in the lung and the heart of adult Balb/c mice, whereas stromelysin-2 mRNA expression alone was found at comparatively high levels in the small intestine, a tissue characterized by continuous epithelial renewal. Recombinant forms of murine stromelysin-1 and -2 produced in transfected COS cells were secreted and could be induced to undergo autocatalytic processing by addition of the organomercurial salt 4-aminophenylmercuric acetate (APMA).
Collapse
Affiliation(s)
- M Madlener
- Max-Plank-Institue für Biochemie, Martinsried, Germany
| | | |
Collapse
|
75
|
Coulombe PA. Towards a molecular definition of keratinocyte activation after acute injury to stratified epithelia. Biochem Biophys Res Commun 1997; 236:231-8. [PMID: 9240415 DOI: 10.1006/bbrc.1997.6945] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While in recent years we have come to increasingly appreciate the multifaceted role of skin, probably none of these novel contributions is as vital as its barrier function, inferred centuries ago. In human skin this function is fulfilled nearly entirely by the epidermis, a thin stratified squamous epithelium made up primarily of keratinocytes and located at the skin surface. Disruption of the integrity of epidermis triggers a homeostatic response involving blood-derived elements and resident skin cell types that is designed to rapidly restore a functional epithelial lining over the wound site. This article is focused on the process of recruitment of keratinocytes from intact skin tissue at the proximal wound edges to participate in re-epithelialization.
Collapse
Affiliation(s)
- P A Coulombe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
76
|
Abstract
The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
Collapse
Affiliation(s)
- P Martin
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|