51
|
The 11β-hydroxysteroid dehydrogenase type 1 inhibitor protects against the insulin resistance and hepatic steatosis in db/db mice. Eur J Pharmacol 2016; 788:140-151. [PMID: 27242185 DOI: 10.1016/j.ejphar.2016.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/13/2023]
Abstract
Glucocorticoids (GCs) metabolism is regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). When GCs are present in excess, they can impair glucose-dependent insulin sensitivity. We have previously synthesized several curcumin analogues, of which four compounds were selective inhibitors of 11β-HSD1. Here, we present data supporting that the 11β-hydroxysteroid dehydrogenase type 1 inhibitor (H8) inhibits insulin resistance and ameliorates hepatic steatosis in db/db mice. We compared glucose and lipid metabolism in db/db mice with or without administration of H8, which significantly decreased fasting blood glucose levels and protected against insulin resistance and hepatic steatosis compared to when glucose and lipid metabolism were measured following curcumin administration. The hepatic enzyme was reduced significantly in the plasma samples from db/db mice which were treated with H8. Serum corticosterone (active) levels, which are regulated by 11β-HSD1 were reduced when mice received H8. H8 administration suppressed phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-pase) expression, which are related to gluconeogenesis and enhanced glucose transporter 4 (GLUT4) protein content in liver. Treatment with H8 improved obesity and metabolic disorders, such as insulin resistance and hepatic steatosis by suppressing activity of 11β-HSD1, suggesting that H8 might be a beneficial drug for the treatment of obesity and Type-2 diabetes (T2D).
Collapse
|
52
|
Nielsen ST, Harder-Lauridsen NM, Benatti FB, Wedell-Neergaard AS, Lyngbæk MP, Møller K, Pedersen BK, Krogh-Madsen R. The effect of 8 days of strict bed rest on the incretin effect in healthy volunteers. J Appl Physiol (1985) 2016; 120:608-14. [DOI: 10.1152/japplphysiol.00821.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Bed rest and physical inactivity are the consequences of hospital admission for many patients. Physical inactivity induces changes in glucose metabolism, but its effect on the incretin effect, which is reduced in, e.g., Type 2 diabetes, is unknown. To investigate how 8 days of strict bed rest affects the incretin effect, 10 healthy nonobese male volunteers underwent 8 days of strict bed rest. Before and after the intervention, all volunteers underwent an oral glucose tolerance test (OGTT) followed by an intravenous glucose infusion (IVGI) on the following day to mimic the blood glucose profile from the OGTT. Blood glucose, serum insulin, serum C-peptide, plasma incretin hormones [glucagon-like peptide (GLP-1) and glucose-dependent insulinotropic peptide (GIP)], and serum glucagon were measured serially during both the OGTT and the IVGI. The incretin effect is calculated as the relative difference between the area under the curve for the insulin response during the OGTT and that of the corresponding IVGI, respectively. Concentrations of glucose, insulin, C-peptide, and GIP measured during the OGTT were higher after the bed rest intervention (all P < 0.05), whereas there was no difference in the levels of GLP-1 and Glucagon. Bed rest led to a mean loss of 2.4 kg of fat-free mass, and induced insulin resistance evaluated by the Matsuda index, but did not affect the incretin effect ( P = 0.6). In conclusion, 8 days of bed rest induces insulin resistance, but we did not see evidence of an associated change in the incretin effect.
Collapse
Affiliation(s)
- Signe Tellerup Nielsen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nina Majlund Harder-Lauridsen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Braga Benatti
- Rheumatology Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anne-Sophie Wedell-Neergaard
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mark Preben Lyngbæk
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Abstract
Sepsis predisposes to disordered metabolism and dysglycemia; the latter is a broad term that includes hyperglycemia, hypoglycemia, and glycemic variability. Dysglycemia is a marker of illness severity. Large randomized controlled trials have provided considerable insight into the optimal blood glucose targets for critically ill patients with sepsis. However, it may be that the pathophysiologic consequences of dysglycemia are dynamic throughout the course of a septic insult and also altered by premorbid glycemia. This review highlights the relevance of hyperglycemia, hypoglycemia, and glycemic variability in patients with sepsis with an emphasis on a rational approach to management.
Collapse
Affiliation(s)
- Mark P Plummer
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide 5000, Australia; Department of Critical Care Services, Royal Adelaide Hospital, North Terrace, Adelaide 5000, Australia.
| | - Adam M Deane
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide 5000, Australia; Department of Critical Care Services, Royal Adelaide Hospital, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
54
|
Fu X, Wen M, Han X, Yanagita T, Xue Y, Wang J, Xue C, Wang Y. Effect and potential mechanism of action of sea cucumber saponins on postprandial blood glucose in mice. Biosci Biotechnol Biochem 2016; 80:1081-7. [PMID: 26932154 DOI: 10.1080/09168451.2016.1153950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Postprandial blood glucose control is the major goal in the treatment of diabetes. Here, we investigated the effect of sea cucumber saponins (SCSs) on postprandial blood glucose levels. SCS inhibited yeast as well as rat intestinal α-glucosidase activity in a dose-dependent manner and showed better inhibition of yeast α-glucosidases compared to the positive control. Further studies were performed using ICR mice treated with SCS and starch or SCS alone by oral gavage. Unexpectedly, SCS increased postprandial blood glucose levels a short time (1 h) after oral gavage. The serum corticosterone (CORT) level showed a consistent correlation with glucose levels. In vitro experiments confirmed that SCS treatment increased the secretion of CORT in the Y1 adrenal cell line. Overall, these studies demonstrated that SCS gavage could inhibit α-glucosidase activity but cannot attenuate postprandial blood glucose level within short time periods. The underlying mechanisms are probably related to increased serum CORT levels.
Collapse
Affiliation(s)
- Xueyuan Fu
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| | - Min Wen
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| | - Xiuqing Han
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| | - Teruyoshi Yanagita
- b Faculty of Health and Social Welfare Sciences, Department of Health and Nutrition Sciences , Nishikyushu University , Saga , Japan
| | - Yong Xue
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| | - Jingfeng Wang
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| | - Changhu Xue
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| | - Yuming Wang
- a College of Food Science and Engineering, Ocean University of China , Qingdao , China
| |
Collapse
|
55
|
Regulation of Glucose Homeostasis by Glucocorticoids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215992 DOI: 10.1007/978-1-4939-2895-8_5] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are steroid hormones that regulate multiple aspects of glucose homeostasis. Glucocorticoids promote gluconeogenesis in liver, whereas in skeletal muscle and white adipose tissue they decrease glucose uptake and utilization by antagonizing insulin response. Therefore, excess glucocorticoid exposure causes hyperglycemia and insulin resistance. Glucocorticoids also regulate glycogen metabolism. In liver, glucocorticoids increase glycogen storage, whereas in skeletal muscle they play a permissive role for catecholamine-induced glycogenolysis and/or inhibit insulin-stimulated glycogen synthesis. Moreover, glucocorticoids modulate the function of pancreatic α and β cells to regulate the secretion of glucagon and insulin, two hormones that play a pivotal role in the regulation of blood glucose levels. Overall, the major glucocorticoid effect on glucose homeostasis is to preserve plasma glucose for brain during stress, as transiently raising blood glucose is important to promote maximal brain function. In this chapter we will discuss the current understanding of the mechanisms underlying different aspects of glucocorticoid-regulated mammalian glucose homeostasis.
Collapse
|
56
|
Gerards MC, Tervaert ECC, Hoekstra JBL, Vriesendorp TM, Gerdes VEA. Physician's attitudes towards diagnosing and treating glucocorticoid induced hyperglycaemia: Sliding scale regimen is still widely used despite guidelines. Diabetes Res Clin Pract 2015; 109:246-52. [PMID: 26055758 DOI: 10.1016/j.diabres.2015.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/04/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
AIMS Treatment with glucocorticoids for neoplasms and inflammatory disorders is frequently complicated by glucocorticoid induced hyperglycaemia (GCIH). GCIH is associated with adverse outcomes and its treatment has short term and long term benefits. Currently, treatment targets and modalities depend on local protocols and habits of individual clinicians. We explored current practice of screening and treatment of GCIH in patients receiving glucocorticoid pulse therapy. METHODS A factorial survey with written case vignettes. All vignette patients received glucocorticoid pulse therapy. Other characteristics (e.g., indication for glucocorticoid therapy, pre-existent diabetes) varied. The survey was held between November 2013 and May 2014 on 2 nationwide conferences and in hospitals across The Netherlands. Pulmonologists and internists expressed their level of agreement with statements on ordering capillary glucose testing and treatment initiation. RESULTS Respondents ordered screening for GCIH in 85% of vignette patients and initiated treatment in 56%. When initiating treatment, respondents opt for sliding scale insulin in 62% of patients. Sliding scale insulin was more frequently prescribed in patients with pre-existent insulin dependent diabetes (OR 2.4, CI 1.3-4.2) and by residents (vs. specialists, OR 2.1, CI 1.2-3.5). Sixty-nine percent of clinicians experienced a lack of guidelines for GCIH. CONCLUSIONS Clinicians have a strong tendency to screen for GCIH but subsequent initiation of treatment was low. Sliding scale insulin is still widely used in episodic GCIH despite evidence against its effectiveness. This may be due to lacking evidence on feasible treatment options for GCIH.
Collapse
Affiliation(s)
| | | | | | | | - V E A Gerdes
- Slotervaart Hospital, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Katsuyama T, Sada KE, Namba S, Watanabe H, Katsuyama E, Yamanari T, Wada J, Makino H. Risk factors for the development of glucocorticoid-induced diabetes mellitus. Diabetes Res Clin Pract 2015; 108:273-9. [PMID: 25765669 DOI: 10.1016/j.diabres.2015.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/09/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the incidence of glucocorticoid-induced diabetes mellitus (GC-DM) by repeated measurements of the postprandial glucose and detect predictors for the development of GC-DM. METHODS Inpatients with rheumatic or renal disease who received glucocorticoid therapy were enrolled in this study. We compared the clinical and laboratory parameters of the GC-DM group with the non-GC-DM group and performed a multivariate analysis to identify risk factors. RESULTS During a four-week period, 84 of the 128 patients (65.6%) developed GC-DM. All patients were diagnosed based on the detection of postprandial hyperglycemia. The GC-DM group had an older age (65.2 vs. 50.4 years, p<0.0001), higher levels of fasting plasma glucose (93.3 vs. 89.0mg/dl, p=0.027) and HbA1c (5.78 vs. 5.50%, 39.7 vs. 36.6 mmol/mol, p=0.001) and lower eGFR values (54.0 vs. 77.1 ml/min/1.73 m(2), p=0.0003) than the non-GC-DM group. According to the multivariate analysis, an older age (more than or equal to 65 years), higher HbA1c level (more than or equal to 6.0%) and lower eGFR (<40 ml/min/1.73m(2)) were identified as independent risk factors for GC-DM (OR 2.95, 95% CI 1.15-7.92, OR: 3.05, 95% CI 1.11-9.21, OR: 3.42, 95% CI: 1.22-10.8, respectively). The risk ratio for the development of GC-DM in the patients with at least one of these three risk factors was 2.28. The dose of glucocorticoids was not statistically related to the development of GC-DM. CONCLUSIONS Patients with an older age, higher HbA1c level and lower eGFR require close monitoring for the development of GC-DM, regardless of the dose of glucocorticoids being administered.
Collapse
Affiliation(s)
- Takayuki Katsuyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | - Ken-Ei Sada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan.
| | - Sayaka Namba
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | - Haruki Watanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | - Eri Katsuyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | - Toshio Yamanari
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | - Jun Wada
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| |
Collapse
|
58
|
Rafacho A, Ortsäter H, Nadal A, Quesada I. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol 2014; 223:R49-62. [PMID: 25271217 DOI: 10.1530/joe-14-0373] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are broadly prescribed for numerous pathological conditions because of their anti-inflammatory, antiallergic and immunosuppressive effects, among other actions. Nevertheless, GCs can produce undesired diabetogenic side effects through interactions with the regulation of glucose homeostasis. Under conditions of excess and/or long-term treatment, GCs can induce peripheral insulin resistance (IR) by impairing insulin signalling, which results in reduced glucose disposal and augmented endogenous glucose production. In addition, GCs can promote abdominal obesity, elevate plasma fatty acids and triglycerides, and suppress osteocalcin synthesis in bone tissue. In response to GC-induced peripheral IR and in an attempt to maintain normoglycaemia, pancreatic β-cells undergo several morphofunctional adaptations that result in hyperinsulinaemia. Failure of β-cells to compensate for this situation favours glucose homeostasis disruption, which can result in hyperglycaemia, particularly in susceptible individuals. GC treatment does not only alter pancreatic β-cell function but also affect them by their actions that can lead to hyperglucagonaemia, further contributing to glucose homeostasis imbalance and hyperglycaemia. In addition, the release of other islet hormones, such as somatostatin, amylin and ghrelin, is also affected by GC administration. These undesired GC actions merit further consideration for the design of improved GC therapies without diabetogenic effects. In summary, in this review, we consider the implication of GC treatment on peripheral IR, islet function and glucose homeostasis.
Collapse
Affiliation(s)
- Alex Rafacho
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| | - Henrik Ortsäter
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| | - Angel Nadal
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| | - Ivan Quesada
- Department of Physiological SciencesCenter of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, BrazilDepartment of Clinical Science and EducationSödersjukhuset, Karolinska Institutet, SE-11883 Stockholm, SwedenInstitute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM)Miguel Hernández University, University Avenue s/n, 03202, Elche, Spain
| |
Collapse
|
59
|
McGillick EV, Morrison JL, McMillen IC, Orgeig S. Intrafetal glucose infusion alters glucocorticoid signaling and reduces surfactant protein mRNA expression in the lung of the late-gestation sheep fetus. Am J Physiol Regul Integr Comp Physiol 2014; 307:R538-45. [PMID: 24990855 DOI: 10.1152/ajpregu.00053.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Increased circulating fetal glucose and insulin concentrations are potential inhibitors of fetal lung maturation and may contribute to the pathogenesis of respiratory distress syndrome (RDS) in infants of diabetic mothers. In this study, we examined the effect of intrafetal glucose infusion on mRNA expression of glucose transporters, insulin-like growth factor signaling, glucocorticoid regulatory genes, and surfactant proteins in the lung of the late-gestation sheep fetus. The numerical density of the cells responsible for producing surfactant was determined using immunohistochemistry. Glucose infusion for 10 days did not affect mRNA expression of glucose transporters or IGFs but did decrease IGF-1R expression. There was reduced mRNA expression of the glucocorticoid-converting enzyme HSD11B-1 and the glucocorticoid receptor, potentially reducing glucocorticoid responsiveness in the fetal lung. Furthermore, surfactant protein (SFTP) mRNA expression was reduced in the lung following glucose infusion, while the number of SFTP-B-positive cells remained unchanged. These findings suggest the presence of a glucocorticoid-mediated mechanism regulating delayed maturation of the surfactant system in the sheep fetus following glucose infusion and provide evidence for the link between abnormal glycemic control during pregnancy and the increased risk of RDS in infants of uncontrolled diabetic mothers.
Collapse
Affiliation(s)
- Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia; and
| | - Sandra Orgeig
- Molecular and Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
60
|
Gjessing PF, Hagve M, Fuskevåg OM, Revhaug A, Irtun Ø. Single-dose carbohydrate treatment in the immediate preoperative phase diminishes development of postoperative peripheral insulin resistance. Clin Nutr 2014; 34:156-64. [PMID: 24656290 DOI: 10.1016/j.clnu.2014.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/21/2014] [Accepted: 02/27/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS Preoperative oral carbohydrate (CHO) treatment is known to reduce postoperative insulin resistance, but the necessity of a preoperative evening dose is uncertain. We investigated the effect of single-dose CHO treatment two hours before surgery on postoperative insulin sensitivity. METHODS Thirty two pigs (∼ 30 kg) were randomized to 4 groups (n = 8) followed by D-[6,6-(2)H2] glucose infusion and hyperinsulinemic-euglycemic step clamping. Two groups received a morning drink of 25 g carbohydrate (CHO/surgery and CHO/control). Animals in the other two groups were fasted overnight (fasting/surgery and fasting/control). Counter-regulatory hormones, free fatty acids (FFA) and liver and muscle glycogen content were measured serially. RESULTS Glucose infusion rates needed to maintain euglycemia were higher after CHO/surgery than fasting/surgery during low (8.54 ± 0.82 vs. 6.15 ± 0.27 mg/kg/min, P < 0.05), medium (17.26 ± 1.08 vs. 14.02 ± 0.56 mg/kg/min, P < 0.02) and high insulin clamping (19.83 ± 0.95 vs. 17.16 ± 0.58 mg/kg/min, P < 0.05). The control groups exhibited identical insulin sensitivity. Compared to their respective controls, insulin-stimulated whole-body glucose disposal was significantly reduced after fasting/surgery (-41%, P < 0.001), but not after CHO/surgery (-16%, P = 0.180). CHO reduced FFA perioperatively (P < 0.05) and during the clamp procedures (P < 0.02), but did not affect hepatic insulin sensitivity, liver and muscle glycogen content or counter-regulatory hormone profiles. A strong negative correlation between peripheral insulin sensitivity and mean cortisol levels was seen in fasted (R = -0.692, P = 0.003), but not in CHO loaded pigs. CONCLUSIONS Single-dose preoperative CHO treatment is sufficient to reduce postoperative insulin resistance, possibly due to the antilipolytic effects and antagonist properties of preoperative hyperinsulinemia on the suppressant actions of cortisol on carbohydrate oxidation.
Collapse
Affiliation(s)
- Petter Fosse Gjessing
- Department of Digestive Surgery, University Hospital of North Norway, Tromsø, Norway; Laboratory of Surgical Research, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.
| | - Martin Hagve
- Laboratory of Surgical Research, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Ole-Martin Fuskevåg
- Department of Laboratory Medicine, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Arthur Revhaug
- Department of Digestive Surgery, University Hospital of North Norway, Tromsø, Norway; Laboratory of Surgical Research, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Øivind Irtun
- Department of Digestive Surgery, University Hospital of North Norway, Tromsø, Norway; Laboratory of Surgical Research, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
61
|
Paredes S, Ribeiro L. Cortisol: the villain in Metabolic Syndrome? Rev Assoc Med Bras (1992) 2014; 60:84-92. [DOI: 10.1590/1806-9282.60.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022] Open
Abstract
Objective This article reviews the state of the art regarding the association between glucocorticoid actions and both obesity and insulin resistance, two main features of the metabolic syndrome. Methods A methodological assessment of the literature on PubMed and SciELO databases was conducted by using the following terms: stress, metabolic syndrome, glucocorticoids, obesity, insulin resistance, hypothalamic-pituitary-adrenal-axis and 11β-hydroxysteroid dehydrogenase. Results Chronic stress, mainly through hypothalamic-pituitary-adrenal axis dysregulation, promotes the accumulation of visceral fat. Reciprocally, obesity promotes a systemic low-grade inflammation state, mediated by increased adipokine secretion, which can chronically stimulate and disturb stress system. This vicious cycle, probably initiated by visceral adipose tissue dysfunction, might be the trigger for the development of metabolic syndrome. Conclusion Given the strong evidences linking glucocorticoid release, obesity and type 2 diabetes, better understanding of the mechanisms underlying this connection might be useful for prevention and treatment of the metabolic syndrome.
Collapse
|
62
|
Maniam J, Antoniadis C, Morris MJ. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes. Front Endocrinol (Lausanne) 2014; 5:73. [PMID: 24860550 PMCID: PMC4026717 DOI: 10.3389/fendo.2014.00073] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
Abstract
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress-response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be addressed.
Collapse
Affiliation(s)
- Jayanthi Maniam
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Christopher Antoniadis
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
- *Correspondence: Margaret J. Morris, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia e-mail:
| |
Collapse
|
63
|
Perez A, Jansen-Chaparro S, Saigi I, Bernal-Lopez MR, Miñambres I, Gomez-Huelgas R. Glucocorticoid-induced hyperglycemia. J Diabetes 2014; 6:9-20. [PMID: 24103089 DOI: 10.1111/1753-0407.12090] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/17/2013] [Accepted: 09/12/2013] [Indexed: 12/19/2022] Open
Abstract
Corticosteroid-induced hyperglycemia is a common medical problem that can lead to frequent emergency room visits, hospital admissions and prolonged hospital stay, in addition to the well known morbidity associated with hyperglycemia. However, the diagnosis and treatment of corticosteroid-induced hyperglycemia is surprisingly undervalued by most professionals, probably because of the lack of quality studies to determine specific strategies of action. In the present review, we discuss the pathophysiology of corticosteroid-induced hyperglycemia, focusing on diverse patterns of hyperglycemia induced by the different formulations, and provide clues for diagnosis based on the duration of treatment and the administration schedule of corticosteroids. We propose a treatment strategy based on both the pathophysiology of the process and the mechanism of action of different corticosteroids, and take into account dosing and administration timing to predict the duration of therapy. Finally, we propose treatment goals that differ slightly between the transient and continuous use of corticosteroids based on evidence from clinical practice guidelines of diabetes care both in ambulatory and hospital settings.
Collapse
Affiliation(s)
- Antonio Perez
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i San Pau, Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
64
|
Harris D, Barts A, Connors J, Dahl M, Elliott T, Kong J, Keane T, Thompson D, Stafford S, Ur E, Sirrs S. Glucocorticoid-induced hyperglycemia is prevalent and unpredictable for patients undergoing cancer therapy: an observational cohort study. ACTA ACUST UNITED AC 2013; 20:e532-8. [PMID: 24311953 DOI: 10.3747/co.20.1499] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients with cancer are often treated with glucocorticoids (gcs) as part of therapy, which may cause hyperglycemia. We sought to define the prevalence of, and risk factors for, hyperglycemia in this setting. METHODS Adult patients taking gc as part of therapy protocols for primary brain tumour or metastasis, for lymphoma, or for bone marrow transplant (bmt) were screened with random glucometer measurements taken at least 3 hours after the last dose gcs. RESULTS We screened 90 patients [44.4% women, 55.6% men; mean age: 59.6 years (range: 25-82 years); mean body mass index (bmi): 26.4 kg/m(2) (range: 15.8-45.3 kg/m(2))] receiving gc as part of cancer treatment. Mean total daily gc dose in the group was 238.5 mg (range: 30-1067 mg) hydrocortisone equivalents. Hyperglycemia (glucose ≥ 8.0 mmol/L) was found in 58.9% (53 of 90), and diabetes mellitus (dm)-range hyperglycemia (glucose ≥ 11.1 mmol/L) in 18.9% (17 of 90). The mean time from gc ingestion to glucometer testing was 5.5 hours (range: 3-20 hours). Presence of hyperglycemia did not correlate with traditional dm risk factors such as age, sex, bmi, and personal or family history of dm. A longer interval from gc dose to testing (p < 0.05), a higher gc dose (p = 0.04), and a shorter interval between the preceding meal and testing (p = 0.02) were risk factors for hyperglycemia in some patient groups. CONCLUSIONS Glucocorticoid-induced hyperglycemia is common in patients undergoing cancer treatment and cannot be predicted by traditional risk factors for dm. We recommend that all cancer patients receiving gc be screened for hyperglycemia at least 4-6 hours after gc administration.
Collapse
Affiliation(s)
- D Harris
- Division of Endocrinology, University of British Columbia, Vancouver, BC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013; 380:65-78. [PMID: 23523966 DOI: 10.1016/j.mce.2013.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 01/28/2023]
Abstract
In the past decades, glucocorticoid (GC) hormones and their cognate, intracellular receptor, the glucocorticoid receptor (GR), have been well established as critical checkpoints in mammalian energy homeostasis. Whereas many aspects in healthy nutrient metabolism require physiological levels and/or action of GC, aberrant GC/GR signalling has been linked to severe metabolic dysfunction, including obesity, insulin resistance and type 2 diabetes. Consequently, studies of the molecular mechanisms within the GC signalling axis have become a major focus in biomedical research, up-to-date particularly focusing on systemic glucose and lipid handling. However, with the availability of novel high throughput technologies and more sophisticated metabolic phenotyping capabilities, as-yet non-appreciated, metabolic functions of GC have been recently discovered, including regulatory roles of the GC/GR axis in protein and bile acid homeostasis as well as metabolic inter-organ communication. Therefore, this review summarises recent advances in GC/GR biology, and summarises findings relevant for basic and translational metabolic research.
Collapse
Affiliation(s)
- Adam J Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | | |
Collapse
|
66
|
Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 2013; 380:79-88. [PMID: 23523565 PMCID: PMC4893778 DOI: 10.1016/j.mce.2013.03.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/01/2013] [Accepted: 03/03/2013] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) exert key metabolic influences on skeletal muscle. GCs increase protein degradation and decrease protein synthesis. The released amino acids are mobilized from skeletal muscle to liver, where they serve as substrates for hepatic gluconeogenesis. This metabolic response is critical for mammals' survival under stressful conditions, such as fasting and starvation. GCs suppress insulin-stimulated glucose uptake and utilization and glycogen synthesis, and play a permissive role for catecholamine-induced glycogenolysis, thus preserving the level of circulating glucose, the major energy source for the brain. However, chronic or excess exposure of GCs can induce muscle atrophy and insulin resistance. GCs convey their signal mainly through the intracellular glucocorticoid receptor (GR). While GR can act through different mechanisms, one of its major actions is to regulate the transcription of its primary target genes through genomic glucocorticoid response elements (GREs) by directly binding to DNA or tethering onto other DNA-binding transcription factors. These GR primary targets trigger physiological and pathological responses of GCs. Much progress has been made to understand how GCs regulate protein and glucose metabolism. In this review, we will discuss how GR primary target genes confer metabolic functions of GCs, and the mechanisms governing the transcriptional regulation of these targets. Comprehending these processes not only contributes to the fundamental understanding of mammalian physiology, but also will provide invaluable insight for improved GC therapeutics.
Collapse
Affiliation(s)
- Taiyi Kuo
- Department of Nutritional Science & Toxicology, University of California at Berkeley, Berkeley, CA 94720, United States
- Graduate Program of Endocrinology, University of California at Berkeley, Berkeley, CA 94720, United States
| | - Charles A. Harris
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, United States
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, United States
| | - Jen-Chywan Wang
- Department of Nutritional Science & Toxicology, University of California at Berkeley, Berkeley, CA 94720, United States
- Graduate Program of Endocrinology, University of California at Berkeley, Berkeley, CA 94720, United States
- Corresponding author. Address: Department of Nutritional Science and Toxicology, 315 Morgan Hall, University of California at Berkeley, Berkeley, CA 94720-3104, United States. Tel.: +1 510 643 1039. (J.-C. Wang)
| |
Collapse
|
67
|
Metabolic Signatures of Kidney Yang Deficiency Syndrome and Protective Effects of Two Herbal Extracts in Rats Using GC/TOF MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:540957. [PMID: 24159348 PMCID: PMC3789486 DOI: 10.1155/2013/540957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 11/25/2022]
Abstract
Kidney Yang Deficiency Syndrome (KDS-Yang), a typical condition in Chinese medicine, shares similar clinical signs of the glucocorticoid withdrawal syndrome. To date, the underlying mechanism of KDS-Yang has been remained unclear, especially at the metabolic level. In this study, we report a metabolomic profiling study on a classical model of KDS-Yang in rats induced by hydrocortisone injection to characterize the metabolic transformation using gas chromatography/time-of-flight mass spectrometry. WKY1, a polysaccharide extract from Astragalus membranaceus and Lycium barbarum, and WKY2, an aqueous extract from a similar formula containing Astragalus membranaceus, Lycium barbarum, Morinda officinalis, Taraxacum mongolicum, and Cinnamomum cassia presl, were used separately for protective treatments of KDS-Yang. The changes of serum metabolic profiles indicated that significant alterations of key metabolic pathways in response to abrupt hydrocortisone perturbation, including decreased energy metabolism (lactic acid, acetylcarnitine), lipid metabolism (free fatty acids, 1-monolinoleoylglycerol, and cholesterol), gut microbiota metabolism (indole-3-propionic acid), biosynthesis of catecholamine (norepinephrine), and elevated alanine metabolism, were attenuated or normalized with different degrees by the pretreatment of WKY1 or WKY2, which is consistent with the observations in which the two herbal agents could ameliorate biochemical markers of serum cortisone, adrenocorticotropic (ACTH), and urine 17-hydroxycorticosteroids (17-OHCS).
Collapse
|
68
|
Gathercole LL, Lavery GG, Morgan SA, Cooper MS, Sinclair AJ, Tomlinson JW, Stewart PM. 11β-Hydroxysteroid dehydrogenase 1: translational and therapeutic aspects. Endocr Rev 2013; 34:525-55. [PMID: 23612224 DOI: 10.1210/er.2012-1050] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) interconverts the inactive glucocorticoid cortisone and its active form cortisol. It is widely expressed and, although bidirectional, in vivo it functions predominantly as an oxoreductase, generating active glucocorticoid. This allows glucocorticoid receptor activation to be regulated at a prereceptor level in a tissue-specific manner. In this review, we will discuss the enzymology and molecular biology of 11β-HSD1 and the molecular basis of cortisone reductase deficiencies. We will also address how altered 11β-HSD1 activity has been implicated in a number of disease states, and we will explore its role in the physiology and pathologies of different tissues. Finally, we will address the current status of selective 11β-HSD1 inhibitors that are in development and being tested in phase II trials for patients with the metabolic syndrome. Although the data are preliminary, therapeutic inhibition of 11β-HSD1 is also an exciting prospect for the treatment of a variety of other disorders such as osteoporosis, glaucoma, intracranial hypertension, and cognitive decline.
Collapse
Affiliation(s)
- Laura L Gathercole
- School of Clinical and Experimental Medicine, University of Birmingham, Queen Elizabeth Hospital, Edgbaston B15 2TH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
69
|
Winnick JJ, Ramnanan CJ, Saraswathi V, Roop J, Scott M, Jacobson P, Jung P, Basu R, Cherrington AD, Edgerton DS. Effects of 11β-hydroxysteroid dehydrogenase-1 inhibition on hepatic glycogenolysis and gluconeogenesis. Am J Physiol Endocrinol Metab 2013; 304:E747-56. [PMID: 23403942 PMCID: PMC3625750 DOI: 10.1152/ajpendo.00639.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the effect of prolonged 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibition on basal and hormone-stimulated glucose metabolism in fasted conscious dogs. For 7 days prior to study, either an 11β-HSD1 inhibitor (HSD1-I; n = 6) or placebo (PBO; n = 6) was administered. After the basal period, a 4-h metabolic challenge followed, where glucagon (3×-basal), epinephrine (5×-basal), and insulin (2×-basal) concentrations were increased. Hepatic glucose fluxes did not differ between groups during the basal period. In response to the metabolic challenge, hepatic glucose production was stimulated in PBO, resulting in hyperglycemia such that exogenous glucose was required in HSD-I (P < 0.05) to match the glycemia between groups. Net hepatic glucose output and endogenous glucose production were decreased by 11β-HSD1 inhibition (P < 0.05) due to a reduction in net hepatic glycogenolysis (P < 0.05), with no effect on gluconeogenic flux compared with PBO. In addition, glucose utilization (P < 0.05) and the suppression of lipolysis were increased (P < 0.05) in HSD-I compared with PBO. These data suggest that inhibition of 11β-HSD1 may be of therapeutic value in the treatment of diseases characterized by insulin resistance and excessive hepatic glucose production.
Collapse
Affiliation(s)
- J. J. Winnick
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - C. J. Ramnanan
- 2Department of Cellular and Molecular Medicine, University of Ottawa School of Medicine, Ottawa, Ontario, Canada;
| | - V. Saraswathi
- 3Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| | - J. Roop
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - M. Scott
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - P. Jacobson
- 4Abbott Laboratories, Chicago, Illinois; and
| | - P. Jung
- 4Abbott Laboratories, Chicago, Illinois; and
| | - R. Basu
- 5Department of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - A. D. Cherrington
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - D. S. Edgerton
- 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
70
|
Colvin ES, Ma HY, Chen YC, Hernandez AM, Fueger PT. Glucocorticoid-induced suppression of β-cell proliferation is mediated by Mig6. Endocrinology 2013; 154:1039-46. [PMID: 23384834 PMCID: PMC3578994 DOI: 10.1210/en.2012-1923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glucocorticoids can cause steroid-induced diabetes or accelerate the progression to diabetes by creating systemic insulin resistance and decreasing functional β-cell mass, which is influenced by changes in β-cell function, growth, and death. The synthetic glucocorticoid agonist dexamethasone (Dex) is deleterious to functional β-cell mass by decreasing β-cell function, survival, and proliferation. However, the mechanism by which Dex decreases β-cell proliferation is unknown. Interestingly, Dex induces the transcription of an antiproliferative factor and negative regulator of epidermal growth factor receptor signaling, Mig6 (also known as gene 33, RALT, and Errfi1). We, therefore, hypothesized that Dex impairs β-cell proliferation by increasing the expression of Mig6 and thereby decreasing downstream signaling of epidermal growth factor receptor. We found that Dex induced Mig6 and decreased [(3)H]thymidine incorporation, an index of cellular replication, in mouse, rat, and human islets. Using adenovirally delivered small interfering RNA targeted to Mig6 in rat islets, we were able to limit the induction of Mig6 upon exposure to Dex, compared with islets treated with a control virus, and completely rescued the Dex-mediated impairment in replication. We demonstrated that both Dex and overexpression of Mig6 attenuated the phosphorylation of ERK1/2 and blocked the G(1)/S transition of the cell cycle. In conclusion, Mig6 functions as a molecular brake for β-cell proliferation during glucocorticoid treatment in β-cells, and thus, Mig6 may be a novel target for preventing glucocorticoid-induced impairments in functional β-cell mass.
Collapse
Affiliation(s)
- E Scott Colvin
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
71
|
Vivas D, Bernardo E, Palacios-Rubio J, Fernández-Ortiz A. How to Manage Hyperglycemia in an Acute Coronary Syndrome Patient. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2013; 15:93-103. [DOI: 10.1007/s11936-012-0215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
72
|
Kusenda M, Kaske M, Piechotta M, Locher L, Starke A, Huber K, Rehage J. Effects of Dexamethasone-21-Isonicotinate on Peripheral Insulin Action in Dairy Cows 5 days after Surgical Correction of Abomasal Displacement. J Vet Intern Med 2012. [DOI: 10.1111/jvim.12010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- M. Kusenda
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - M. Kaske
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - M. Piechotta
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - L. Locher
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - A. Starke
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - K. Huber
- Department of Physiology; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| | - J. Rehage
- Clinic for Cattle; University of Veterinary Medicine Hannover; 30173 Hannover Germany
| |
Collapse
|
73
|
Ghaisas MM, Ahire YS, Dandawate PR, Gandhi SP, Mule M. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice. Indian J Pharm Sci 2012; 73:601-7. [PMID: 23112392 PMCID: PMC3480743 DOI: 10.4103/0250-474x.100232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 01/19/2023] Open
Abstract
In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia.
Collapse
Affiliation(s)
- M M Ghaisas
- Department of Pharmacology, Indira College of Pharmacy, Tathawade, Pune-411 033, India
| | | | | | | | | |
Collapse
|
74
|
Huang HM, Chandramouli V, Ismail-Beigi F, Muzic RF. Hyperglycemia-induced stimulation of glucose transport in skeletal muscle measured by PET-[18F]6FDG and [18F]2FDG. Physiol Meas 2012; 33:1661-73. [PMID: 22986442 DOI: 10.1088/0967-3334/33/10/1661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A physiologically based model proposed by our group has been developed to assess glucose transport and phosphorylation in skeletal muscle. In this study, we investigated whether our model has the ability to detect a glucose-induced increase in glucose transport in skeletal muscle. In particular, we used small-animal positron emission tomography (PET) data obtained from [18F]6-fluoro-6-deoxy-D-glucose ([18F]6FDG). A 2 h PET scan was acquired following a bolus injection of [18F]6FDG in rats currently under euglycemic or hyperglycemic conditions, while somatostatin was infused during both conditions in order to prevent a rise in the endogenous plasma insulin concentration. We were thus able to assess the effect of hyperglycemia per se. For a comparison of radiopharmaceuticals, additional rats were studied under the same conditions, using [18F]2-fluoro-2-deoxy-D-glucose ([18F]2FDG). When [18F]6FDG was used, the time-activity curves (TACs) for skeletal muscle had distinctly different shapes during euglycemic and hyperglycemic conditions. This was not the case with [18F]2FDG. For both [18F]6FDG and [18F]2FDG, the model detects increases in both interstitial and intracellular glucose concentrations, increases in the maximal velocity of glucose transport and increases in the rate of glucose transport, all in response to hyperglycemia. In contrast, there was no increase in the maximum velocity of glucose phosphorylation or in the glucose phosphorylation rate. Our model-based analyses of the PET data, obtained with either [18F]6FDG or [18F]2FDG, detect physiological changes consistent with established behavior. Moreover, based on differences in the TAC shapes, [18F]6FDG appears to be superior to [18F]2FDG for evaluating the effect of hyperglycemia on glucose metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
75
|
Zhao JP, Bao J, Wang XJ, Jiao HC, Song ZG, Lin H. Altered gene and protein expression of glucose transporter1 underlies dexamethasone inhibition of insulin-stimulated glucose uptake in chicken muscles. J Anim Sci 2012; 90:4337-45. [PMID: 22859751 DOI: 10.2527/jas.2012-5100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A study was performed to characterize the effects of dexamethasone (DEX) and insulin administration on gene expression of glucose transporters (GLUT) in chicken (Gallus gallus domesticus) skeletal muscles and in cultured embryonic myoblasts. Three groups of 1-wk-old male chickens were randomly subjected to one of the following treatments for 7 d: DEX (a subcutaneous injection of 1 mg/kg BW, twice daily at 0800 h and 2000 h), controls (injected with saline), and pair-fed controls (restricted to the same feed intake as for the DEX treatment). Expressions of GLUT-1, GLUT-3, GLUT-8, and 18S rRNA mRNA were determined by quantitative reverse transcription PCR in the pectoralis major (PM) and biceps femoris (BF) muscles. Using chicken embryonic myoblasts (CEM), the interaction between DEX (200 nM) and insulin (100 nM) administration was evaluated on GLUT gene and GLUT-1 protein expressions and 2-deoxy-D-[1, 2-(3)H]-glucose (2-DG) uptake. Myoblasts were incubated with serum-free medium for 3 h in the presence or absence of insulin (0, 0.02, 0.1, 0.5, and 2.5 μM). Although GLUT-1 is not considered an insulin-responsive GLUT in mammals, this study shows that insulin stimulated 2-DG uptake and GLUT-1 mRNA and protein expression in CEM (P < 0.0001), suggesting that both are regulated in chicken skeletal muscle. Dexamethasone inhibited insulin-stimulated glucose uptake in CEM (P < 0.0001), likely accounting for insulin resistance in skeletal muscles. The results of the present study indicate that the altered GLUT-1 gene and protein expression may contribute to the insulin resistance induced by DEX treatment in chicken muscles.
Collapse
Affiliation(s)
- J P Zhao
- Department of Animal Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | |
Collapse
|
76
|
Hirano K, Isogawa A, Tada M, Isayama H, Takahara N, Miyabayashi K, Mizuno S, Mohri D, Kawakubo K, Sasaki T, Kogure H, Yamamoto N, Sasahira N, Toda N, Nagano R, Yagioka H, Yashima Y, Hamada T, Ito Y, Koike K. Long-term prognosis of autoimmune pancreatitis in terms of glucose tolerance. Pancreas 2012; 41:691-695. [PMID: 22249131 DOI: 10.1097/mpa.0b013e31823bcdee] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Glucose intolerance is often observed in autoimmune pancreatitis (AIP), although its long-term prognosis after steroid treatment (ST) is still unclear. METHODS A total of 47 patients with AIP were enrolled. On the basis of the change in hemoglobin A1c (HbA1c) and the use of diabetic medication, prognosis was classified into 3 categories, namely, "improved," "aggravated," and "unchanged." The relation between the result of an initial glucagon tolerance test (ΔCPR) and the later use of insulin during maintenance ST was examined in 20 patients. The transitions of homeostasis model assessment β cell and insulin resistance (HOMA-β and HOMA-R) were analyzed in 16 patients. RESULTS Glucose tolerance was improved in 6 patients (13%), aggravated in 9 patients (19%), and unchanged in 32 patients (68%). All patients with ΔCPR less than 0.6 ng/mL were obliged to use insulin even after long-term observation, whereas all patients with ΔCPR more than 1.0 ng/mL were free from insulin therapy. Moreover, HOMA-β showed significant improvement after ST (43.9% → 56.0% in median, P = 0.030), and HOMA-R showed significant aggravation (1.30 → 1.78, P = 0.039). CONCLUSIONS Glucose tolerance that is too severely damaged may not recover fully even after ST. Thus, ST should be performed to preserve insulin secretion at the early stage of AIP.
Collapse
Affiliation(s)
- Kenji Hirano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A 2012; 109:11160-5. [PMID: 22733784 DOI: 10.1073/pnas.1111334109] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes.
Collapse
|
78
|
Roose S, Deuschle M. Depression and cardiovascular disorders. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:541-556. [PMID: 22608643 DOI: 10.1016/b978-0-444-52002-9.00032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Steven Roose
- Department of Psychiatry, Columbia University, New York, NY, USA
| | | |
Collapse
|
79
|
Abstract
Stress hyperglycemia (SH) commonly occurs during critical illness in children. The historical view that SH is beneficial has been questioned in light of evidence that demonstrates the association of SH with worse outcomes. In addition to intrinsic changes in glucose metabolism and development of insulin resistance, specific intensive care unit (ICU) practices may influence the development of SH during critical illness. Mechanical ventilation, vasoactive infusions, renal replacement therapies, cardiopulmonary bypass and extracorporeal life support, therapeutic hypothermia, prolonged immobility, nutrition support practices, and the use of medications are all known to mediate development of SH in critical illness. Tight glucose control (TGC) to manage SH has emerged as a promising therapy to improve outcomes in critically ill adults, but results have been inconclusive. Large variations in ICU practices across studies likely resulted in inconsistent results. Future studies of TGC need to take into account the impact of commonly used ICU practices and, ideally, standardize protocols in an attempt to improve the accuracy of conclusions from such studies.
Collapse
Affiliation(s)
- Vijay Srinivasan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
80
|
Abstract
Hyperglycemia commonly occurs in acutely ill patients who receive nutrition support, even in patients without a history of diabetes. The traditional view that stress hyperglycemia may be a beneficial adaptive response has been replaced by data linking hyperglycemia with increased morbidity and mortality in critically ill populations. Initial randomized studies to control stress hyperglycemia with intensive insulin infusion reported dramatic decreases in infectious complications and decreased mortality. However, recent large multicenter trials have reported that intensive insulin therapy designed to normalize blood glucose resulted in an unacceptable increase in the incidence of hypoglycemia. Review of the methods, protocols, and nutrition provided during these randomized studies is crucial to understanding the different conclusions reached and how these results may be used to influence protocols in intensive care units today. Evidence is reviewed and practical considerations are provided for nutrition support regimens to minimize stress hypoglycemia and assist glucose management.
Collapse
Affiliation(s)
- Joe Krenitsky
- Division of Gastroenterology and Hepatology, University of Virginia Health System, Charlottesville, VA 22908-0673, USA.
| |
Collapse
|
81
|
Cai Y, Song Z, Wang X, Jiao H, Lin H. Dexamethasone-induced hepatic lipogenesis is insulin dependent in chickens (Gallus gallus domesticus). Stress 2011; 14:273-81. [PMID: 21294661 DOI: 10.3109/10253890.2010.543444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatic lipogenesis-induced de novo by glucocorticoids (GCs) is associated with the development of obesity and diabetes mellitus. The interaction of GCs and insulin in the regulation of hepatic lipogenesis remains unclear. The effect of exogenous GC administration on hepatic lipogenesis and fat deposition was studied in broiler chickens (Gallus gallus domesticus), and the role of insulin in the effect of GCs on hepatic lipogenesis was evaluated. Dexamethasone (DEX, 2 mg/kg body mass (BM)) administration for 3-d resulted in BM loss and increased liver and cervical adipose tissue mass compared to control and pair-fed counterparts. DEX treatment significantly (P < 0.05) increased plasma level of insulin in either the fed or fasting state, whereas plasma glucose level was only increased in the fed state. In fasted chickens, DEX treatment significantly (P < 0.01) upregulated the hepatic mRNA levels of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). In the fed state, the mRNA levels of ACC and FAS were not significantly influenced by DEX treatment, nor was FAS activity. In cultured primary hepatocytes, combined DEX and insulin significantly upregulated the transcription of the genes for FAS (1.34-fold) and malic enzyme (1.72-fold). By contrast, the expression of sterol response element-binding protein-1 (SREBP-1) was significantly upregulated by insulin (1.67-fold) regardless of DEX. In abdominal adipose tissue, DEX treatment had no significant (P>0.05) effect on the activities and transcription of FAS. The expressions of lipoprotein lipase and peroxisome proliferator-activated receptor-γ were not significantly (P>0.05) affected by DEX treatment in either the fasting or fed state. The results indicate that DEX increased hepatic de novo lipogenesis via the increased activity and expression of lipogenic enzymes. Insulin-activated gene expression for SREBP-1 is suggested to be involved in stress-augmented hepatic lipogenesis.
Collapse
Affiliation(s)
- Yuanli Cai
- Department of Animal Science, Shandong Agricultural UniversityTaian, Shandong, 271018, People's Republic of China
| | | | | | | | | |
Collapse
|
82
|
Chen F, Zhu Y, Tang X, Sun Y, Jia W, Sun Y, Han X. Dynamic regulation of PDX-1 and FoxO1 expression by FoxA2 in dexamethasone-induced pancreatic β-cells dysfunction. Endocrinology 2011; 152:1779-88. [PMID: 21385937 DOI: 10.1210/en.2010-1048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcription factors forkhead box (Fox)O1 and pancreatic and duodenal homeobox-1 (PDX-1) are involved in dexamethasone (DEX)-induced dysfunction in pancreatic β-cells. However, the molecular mechanism underlying the regulation of FoxO1 and PDX-1 expression in β-cells treated with DEX is not fully understood. In this study, we found that DEX markedly increased FoxO1 mRNA and protein expression, whereas it decreased PDX-1 mRNA and protein expression in a dose- and time-dependent manner. Further study showed that FoxA2 was involved in regulation of FoxO1 and PDX-1 expression in DEX-induced pancreatic β-cells dysfunction. Interestingly, we demonstrated for the first time that FoxA2 could bind to the FoxO1 gene promoter and positively regulate FoxO1 expression. Moreover, we found that DEX increased the activity of FoxA2 binding to the FoxO1 promoter but decreased the activity of FoxA2 binding to the PDX-1 promoter of RINm5F cells. Knockdown of FoxA2 by RNA interference inhibited FoxO1 expression and restored PDX-1 expression in pancreatic β-cells treated with DEX. However, DEX had no effect on the expression of FoxA2. Together, the results of the present study demonstrated that FoxA2 could dynamically regulate FoxO1 and PDX-1 expression in pancreatic β-cells treated with DEX, which provides new important information on the transcriptional regulation of FoxO1 and PDX-1 in DEX-induced pancreatic β-cells. Inhibition of FoxA2 can effectively protect β-cells against DEX-induced dysfunction.
Collapse
Affiliation(s)
- Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | |
Collapse
|
83
|
Pathophysiological aspects of hyperglycemia in children with meningococcal sepsis and septic shock: a prospective, observational cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R44. [PMID: 21276273 PMCID: PMC3221973 DOI: 10.1186/cc10006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/29/2010] [Accepted: 01/31/2011] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The objective of this study was to investigate the occurrence of hyperglycemia and insulin response in critically ill children with meningococcal disease in the intensive care unit of an academic children's hospital. METHODS Seventy-eight children with meningococcal disease were included. The group was classified into shock non-survivors, shock survivors and sepsis survivors. There were no sepsis-only non-survivors. The course of laboratory parameters during 48 hours was assessed. Insulin sensitivity and β-cell function on admission were investigated by relating blood glucose level to insulin level and C-peptide level and by homeostasis model assessment (HOMA) [β-cell function (HOMA-%B) and insulin sensitivity (HOMA-%S)]. RESULTS On admission, hyperglycemia (glucose >8.3 mmol/l) was present in 33% of the children. Shock and sepsis survivors had higher blood glucose levels compared with shock non-survivors. Blood glucose level on admission correlated positively with plasma insulin, C-peptide, cortisol, age and glucose intake. Multiple regression analysis revealed that both age and plasma insulin on admission were significantly related to blood glucose. On admission, 62% of the hyperglycemic children had overt insulin resistance (glucose >8.3 mmol/l and HOMA-%S <50%); 17% had β-cell dysfunction (glucose >8.3 mmol/l and HOMA-%B <50%) and 21% had both insulin resistance and β-cell dysfunction. Hyperglycemia was present in 11% and 8% of the children at 24 and 48 hours after admission, respectively. CONCLUSIONS Children with meningococcal disease often show hyperglycemia on admission. Both insulin resistance and β-cell dysfunction play a role in the occurrence of hyperglycemia. Normalization of blood glucose levels occurs within 48 hours, typically with normal glucose intake and without insulin treatment.
Collapse
|
84
|
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inert cortisone to physiologically active cortisol, functioning to enhance local cortisol action beyond what would be predicted based on simple plasma exposures. Adipose tissue overexpression of 11β-HSD1 in rodents to levels observed in human obesity can lead to a near complete metabolic syndrome phenotype, and inhibition of 11β-HSD1 has been proposed to be of potential therapeutic benefit to patients with type 2 diabetes mellitus (T2DM). Recently published clinical results with the selective 11β-HSD1 inhibitor, INCB13739, have, for the first time, provided evidence substantiating this hypothesis, and suggest that 11β-HSD1 activity may be important in regulating glycaemia and cardiometabolic risk. In patients with T2DM failing metformin monotherapy, INCB13739 treatment achieves significant reductions in haemoglobin A1c (HbA1c) and fasting plasma glucose (FPG), and when present improves hyperlipidaemia and hypertriglyceridaemia. Interestingly, these positive effects are observed primarily in subjects categorized as obese (body mass index, BMI > 30 kg/m²) and not in subjects categorized as overweight (BMI ≤ 30 kg/m²), underscoring the likely importance of adipose tissue 11β-HSD1 activity to the cardiometabolic sequelae of obesity. This review summarizes the therapeutic rationale for 11β-HSD1 inhibition, and describes in detail the metabolic and endocrinologic changes observed in patients with T2DM treated with INCB13739.
Collapse
Affiliation(s)
- G Hollis
- Incyte Corporation, Wilmington, DE 19880, USA
| | | |
Collapse
|
85
|
Henein HY, Younan SM, Rashed LA, Fakhry A. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats. J Adv Res 2011. [DOI: 10.1016/j.jare.2010.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
86
|
Boersma G, Benthem L, van Dijk G, Steimer TJ, Scheurink AJW. Pharmacological treatment of hyperinsulineamia in rats depends on coping style. Eur J Pharmacol 2010; 654:122-7. [PMID: 21185824 DOI: 10.1016/j.ejphar.2010.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/04/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
Passive and proactive coping styles are associated with marked differences in behavioral and neuroendocrine responses. Previous studies revealed that the passive individuals are more prone to hyperinsulinemia. Likewise, we hypothesize that different coping styles may require different drugs to treat this. We tested this by treating passive and proactive rats (Roman Low Avoidance and Roman High Avoidance rats respectively) with either Rosiglitazone or with RU486. After eight days of treatment we performed and intravenous glucose tolerance test (IVGTT) and we compared the insulin and glucose levels with those measured during the IVGTT at baseline. Rosiglitazone improved insulin levels during an IVGTT in both passive and proactive coping styles. RU486, however, lowered insulin levels only in rats with a passive coping style. This study suggests that insight in the neuroendocrine differences between passive and proactive coping styles may provide an extra impulse to improve treatment of insulin resistance, since it allows the application of drugs targeted at the individual.
Collapse
Affiliation(s)
- Gretha Boersma
- Department of Neuroendocrinology, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
87
|
Rose AJ, Vegiopoulos A, Herzig S. Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. J Steroid Biochem Mol Biol 2010; 122:10-20. [PMID: 20170729 DOI: 10.1016/j.jsbmb.2010.02.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/14/2009] [Accepted: 02/10/2010] [Indexed: 12/21/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids and their cognate, intracellular receptor, the glucocorticoid receptor have been characterized as critical checkpoints in the delicate hormonal control of energy homeostasis in mammals. Whereas physiological levels of glucocorticoids are required for proper metabolic control, aberrant glucocorticoid action has been linked to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Based on its importance for human health, studies of the molecular mechanisms of within the glucocorticoid signaling axis have become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the glucocorticoid receptor pathway has been proven to be of substantial value for the development of novel therapies in the treatment of chronic metabolic disorders. Therefore, this review focuses on the consequences of endogenous and experimental modulation of glucocorticoid receptor expression for metabolic homeostasis and dysregulation, particularly emphasizing tissue-specific contributions of the glucocorticoid pathway to the control of energy metabolism.
Collapse
Affiliation(s)
- Adam J Rose
- Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
88
|
Mitrou P, Raptis SA, Dimitriadis G. Insulin action in hyperthyroidism: a focus on muscle and adipose tissue. Endocr Rev 2010; 31:663-79. [PMID: 20519325 DOI: 10.1210/er.2009-0046] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hyperthyroidism leads to an enhanced demand for glucose, which is primarily provided by increased rates of hepatic glucose production due to increased gluconeogenesis (in the fasting state) and increased Cori cycle activity (in the late postprandial and fasting state). Adipose tissue lipolysis is increased in the fasting state, resulting in increased production of glycerol and nonesterified fatty acids. Under these conditions, increased glycerol generated by lipolysis and increased amino acids generated by proteolysis are used as substrates for gluconeogenesis. Increased nonesterified fatty acid levels are necessary to stimulate gluconeogenesis and provide substrate for oxidation in other tissues (such as muscle). In the postprandial period, insulin-stimulated glucose uptake by the skeletal muscle has been found to be normal or increased, mainly due to increased blood flow. Under hyperthyroid conditions, insulin-stimulated rates of glycogen synthesis in skeletal muscle are decreased, whereas there is a preferential increase in the rates of lactate formation vs. glucose oxidation leading to increased Cori cycle activity. In hyperthyroidism, the Cori cycle could be considered as a large substrate cycle; by maintaining a high flux through it, a dynamic buffer of glucose and lactate is provided, which can be used by other tissues as required. Moreover, lipolysis is rapidly suppressed to normal after the meal to facilitate the disposal of glucose by the insulin-resistant muscle. This ensures the preferential use of glucose when available and helps to preserve fat stores.
Collapse
Affiliation(s)
- Panayota Mitrou
- Hellenic National Center for Research, Prevention, and Treatment of Diabetes Mellitus and Its Complications, 10675 Athens, Greece
| | | | | |
Collapse
|
89
|
Duehlmeier R, Hacker A, Widdel-Bigdely A, Engelhardt WV, Sallmann HP. Insulin stimulates GLUT4 translocation in the semitendinosus muscle of Shetland ponies. Vet J 2010; 184:176-81. [DOI: 10.1016/j.tvjl.2009.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 02/07/2023]
|
90
|
Campbell JE, Király MA, Atkinson DJ, D'souza AM, Vranic M, Riddell MC. Regular exercise prevents the development of hyperglucocorticoidemia via adaptations in the brain and adrenal glands in male Zucker diabetic fatty rats. Am J Physiol Regul Integr Comp Physiol 2010; 299:R168-76. [PMID: 20393161 DOI: 10.1152/ajpregu.00155.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We determined the effects of voluntary wheel running on the hypothalamic-pituitary-adrenal (HPA) axis, and the peripheral determinants of glucocorticoids action, in male Zucker diabetic fatty (ZDF) rats. Six-week-old euglycemic ZDF rats were divided into Basal, Sedentary, and Exercise groups (n = 8-9 per group). Basal animals were immediately killed, whereas Sedentary and Exercising rats were monitored for 10 wk. Basal (i.e., approximately 0900 AM in the resting state) glucocorticoid levels increased 2.3-fold by week 3 in Sedentary rats where they remained elevated for the duration of the study. After an initial elevation in basal glucocorticoid levels at week 1, Exercise rats maintained low glucocorticoid levels from week 3 through week 10. Hyperglycemia was evident in Sedentary animals by week 7, whereas Exercising animals maintained euglycemia throughout. At the time of death, the Sedentary group had approximately 40% lower glucocorticoid receptor (GR) content in the hippocampus, compared with the Basal and Exercise groups (P < 0.05), suggesting that the former group had impaired negative feedback regulation of the HPA axis. Both Sedentary and Exercise groups had elevated ACTH compared with Basal rats, indicating that central drive of the axis was similar between groups. However, Sedentary, but not Exercise, animals had elevated adrenal ACTH receptor and steroidogenic acute regulatory protein content compared with the Basal animals, suggesting that regular exercise protects against elevations in glucocorticoids by a downregulation of adrenal sensitivity to ACTH. GR and 11beta-hydroxysteroid dehydrogenase type 1 content in skeletal muscle and liver were similar between groups, however, GR content in adipose tissue was elevated in the Sedentary groups compared with the Basal and Exercise (P < 0.05) groups. Thus, the gradual elevations in glucocorticoid levels associated with the development of insulin resistance in male ZDF rats can be prevented with regular exercise, likely because of adaptations that occur primarily in the adrenal glands.
Collapse
Affiliation(s)
- Jonathan E Campbell
- School of Kinesiology and Health Science, Faculty of Health, Muscle Health Research Centre, York University, Canada
| | | | | | | | | | | |
Collapse
|
91
|
Morton NM. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol Cell Endocrinol 2010; 316:154-64. [PMID: 19804814 DOI: 10.1016/j.mce.2009.09.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 12/11/2022]
Abstract
The metabolic abnormalities found associated with high blood glucocorticoid levels (e.g. rare Cushing's syndrome) include insulin-resistance, visceral obesity, hypertension, dyslipidaemia and an increased risk of cardiovascular diseases. The same constellation of abnormalities is found in the highly prevalent idiopathic obesity/insulin-resistance (metabolic)-syndrome. It is now apparent that tissue-specific changes in cortisol metabolism explain these parallels rather than altered blood cortisol levels. Primary among these changes is increased intracellular glucocorticoid reactivation, catalysed by the enzyme 11beta-hydroxysteroid dehydrogenase type (HSD)-1 in obese adipose tissue. Liver, skeletal muscle, endocrine pancreas, blood vessels and leukocytes express 11beta-HSD1 and their potential role in metabolic disease is discussed. The weight of evidence, much of it gained from animal models, suggests that therapeutic inhibition of 11beta-HSD1 will be beneficial in most cellular contexts, with clinical trials supportive of this concept.
Collapse
Affiliation(s)
- Nicholas Michael Morton
- Molecular Metabolism Group after University of Edinburgh, Centre for Cardiovascular Sciences, Edinburgh, United Kingdom.
| |
Collapse
|
92
|
Nakken GN, Jacobs DL, Thomson DM, Fillmore N, Winder WW. Effects of excess corticosterone on LKB1 and AMPK signaling in rat skeletal muscle. J Appl Physiol (1985) 2009; 108:298-305. [PMID: 19959768 DOI: 10.1152/japplphysiol.00906.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cushing's syndrome is characterized by marked central obesity and insulin insensitivity, effects opposite those seen with chronic AMP-activated protein kinase (AMPK) activation. This study was designed to determine whether chronic exposure to excess glucocorticoids influences LKB1/AMPK signaling in skeletal muscle. Corticosterone pellets were implanted subcutaneously in rats (hypercorticosteronemia, Hypercort) for 2 wk. Controls were sham operated and fed ad libitum or were sham operated and food restricted (pair-weighted group, Pair) to produce body weights similar to Hypercort rats. At the end of the 2-wk treatment period, rats were anesthetized, and the right gastrocnemius-plantaris (gastroc) and soleus muscles were removed. Left muscles were removed after electrical stimulation for 5 min. No significant differences were noted between treatment groups in ATP, creatine phosphate, or LKB1 activity. The alpha- and beta-subunit isoforms were not significantly influenced in gastroc by corticosterone treatment. Expression of the gamma3-subunit decreased, and gamma1- and gamma2-subunit expression increased. Both alpha2-AMPK and alpha1-AMPK activities were increased in the gastroc in response to electrical stimulation, but the magnitude of the increase was less for alpha2 in the Hypercort rats. Despite elevated plasma insulin and elevated plasma leptin in the Hypercort rats, phosphorylation of TBC1D1 was lower in both resting and stimulated muscle compared with controls. Malonyl-CoA content was elevated in gastroc muscles of resting Hypercort rats. These changes in response to excess glucocorticoids could be responsible, in part, for the decrease in insulin sensitivity and adiposity seen in Cushing's syndrome.
Collapse
Affiliation(s)
- G Nathan Nakken
- Dept. of Physiology and Developmental Biology, Brigham Young Univ., Provo, Utah 84602, USA
| | | | | | | | | |
Collapse
|
93
|
Van Cromphaut S. Hyperglycaemia as part of the stress response: the underlying mechanisms. Best Pract Res Clin Anaesthesiol 2009; 23:375-86. [DOI: 10.1016/j.bpa.2009.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
94
|
Cai Y, Song Z, Zhang X, Wang X, Jiao H, Lin H. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus). Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:164-9. [PMID: 19393339 DOI: 10.1016/j.cbpc.2009.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 11/29/2022]
Abstract
Effect of dexamethasone (DEX, a synthetic glucocorticoid) on lipid metabolism in broiler chickens (Gallus gallus domesticus) was investigated. Male Arbor Acres chickens (1 wk old, n=30) were injected with DEX or saline for 1 wk, and a pair-fed group was included. DEX administration resulted in enhanced lipid deposition in adipose tissues. Plasma insulin increased about 3.3 fold in DEX injected chickens as against the control and hepatic triglyceride was higher as compared with the pair-fed chickens. In DEX injected chickens, the hepatic activities of malic enzyme (ME) and fatty acid synthetase (FAS) were significantly increased, while the mRNA levels of acetyl CoA carboxylase (ACC), ME, and FAS were significantly up-regulated, compared with the control. Although the mRNA levels of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor-gamma (PPARgamma) and adipose triglyceride lipase (ATGL) genes in adipose tissue were not affected by DEX injection, ME activity and mRNA levels in abdominal fat pad of chickens treated with DEX are higher than those of control chickens. The results indicated that the increased hepatic de novo lipogenesis and in turn, the increased circulating lipid flux contributes to the augmented fat deposition in adipose tissues and liver in DEX-challenged chickens. The results suggest that glucocorticoids together with the induced hyperinsulinemia should be responsible for the up-regulated hepatic lipogenesis.
Collapse
Affiliation(s)
- Yuanli Cai
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | | | | | | | | | | |
Collapse
|
95
|
Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-González G. Role of aldosterone and angiotensin II in insulin resistance: an update. Clin Endocrinol (Oxf) 2009; 71:1-6. [PMID: 19138313 DOI: 10.1111/j.1365-2265.2008.03498.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of the Renin-Angiotensin-Aldosterone system (RAAS) on the development of insulin resistance and cardiovascular disease is an area of growing interest. Most of the deleterious actions of the RAAS on insulin sensitivity appear to be mediated through activation of the Angiotensin II (Ang II) Receptor type 1 (AT(1)R) and increased production of mineralocorticoids. The underlying mechanisms leading to impaired insulin sensitivity remain to be fully elucidated, but involve increased production of reactive oxygen species and oxidative stress. Both experimental and clinical studies also implicate aldosterone in the development of insulin resistance, hypertension, endothelial dysfunction, cardiovascular tissue fibrosis, remodelling, inflammation and oxidative stress. There is abundant evidence linking aldosterone, through non-genomic actions, to defective intracellular insulin signalling, impaired glucose homeostasis and systemic insulin resistance not only in skeletal muscle and liver but also in cardiovascular tissue. Blockade of the different components of the RAAS, in particular Ang II and AT(1)R, results in attenuation of insulin resistance, glucose homeostasis, as well as decreased cardiovascular disease morbidity and mortality. These beneficial effects go beyond to those expected with isolated control of hypertension. This review focuses on the role of Ang II and aldosterone in the pathogenesis of insulin resistance, as well as in clinical relevance of RAAS blockade in the prevention and treatment of the metabolic syndrome and cardiovascular disease.
Collapse
Affiliation(s)
- Guido Lastra-Lastra
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Ciudad Universitaria, National University of Colombia School of Medicine, Bogotá, Colombia.
| | | | | | | | | |
Collapse
|
96
|
Abstract
Results of randomised controlled trials of tight glycaemic control in hospital inpatients might vary with population and disease state. Individualised therapy for different hospital inpatient populations and identification of patients at risk of hyperglycaemia might be needed. One risk factor that has received much attention is the presence of pre-existing diabetes. So-called stress hyperglycaemia is usually defined as hyperglycaemia resolving spontaneously after dissipation of acute illness. The term generally refers to patients without known diabetes, although patients with diabetes might also develop stress hyperglycaemia-a fact overlooked in many studies comparing hospital inpatients with or without diabetes. Investigators of several studies have suggested that patients with stress hyperglycaemia are at higher risk of adverse consequences than are those with pre-existing diabetes. We describe classification of stress hyperglycaemia, mechanisms of harm, and management strategies.
Collapse
|
97
|
Abstract
Results of randomised controlled trials of tight glycaemic control in hospital inpatients might vary with population and disease state. Individualised therapy for different hospital inpatient populations and identification of patients at risk of hyperglycaemia might be needed. One risk factor that has received much attention is the presence of pre-existing diabetes. So-called stress hyperglycaemia is usually defined as hyperglycaemia resolving spontaneously after dissipation of acute illness. The term generally refers to patients without known diabetes, although patients with diabetes might also develop stress hyperglycaemia-a fact overlooked in many studies comparing hospital inpatients with or without diabetes. Investigators of several studies have suggested that patients with stress hyperglycaemia are at higher risk of adverse consequences than are those with pre-existing diabetes. We describe classification of stress hyperglycaemia, mechanisms of harm, and management strategies.
Collapse
|
98
|
Li L, Thompson LH, Zhao L, Messina JL. Tissue-specific difference in the molecular mechanisms for the development of acute insulin resistance after injury. Endocrinology 2009; 150:24-32. [PMID: 18801909 PMCID: PMC2630903 DOI: 10.1210/en.2008-0742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute insulin resistance occurs after injury, hemorrhage, infection, and critical illness. However, little is known about the development of this acute insulin-resistant state. In the current study, we found that insulin resistance develops rapidly in skeletal muscle, with the earliest insulin signaling defects at 60 min. However, defects in insulin signaling were measurable even earlier in liver, by as soon as 15 min after hemorrhage. To begin to understand the mechanisms for the development of acute insulin resistance, serine phosphorylation of insulin receptor substrate (IRS)-1 and c-Jun N-terminal kinase phosphorylation/activation was investigated. These markers (and possible contributors) of insulin resistance were increased in the liver after hemorrhage but not measurable in skeletal muscle. Because glucocorticoids are important counterregulatory hormones responsible for glucose homeostasis, a glucocorticoid synthesis inhibitor, metyrapone, and a glucocorticoid receptor antagonist, RU486, were administered to adult rats prior to hemorrhage. In the liver, the defects of insulin signaling after hemorrhage, including reduced tyrosine phosphorylation of the insulin receptor and IRS-1, association between IRS-1 and phosphatidylinositol 3-kinase and serine phosphorylation of Akt in response to insulin were not altered by pretreatment of rats with metyrapone or RU486. In contrast, hemorrhage-induced defects in insulin signaling were dramatically reversed in skeletal muscle, indicating a prevention of insulin resistance in muscle. These results suggest that distinct mechanisms for hemorrhage-induced acute insulin resistance are present in these two tissues and that glucocorticoids are involved in the rapid development of insulin resistance in skeletal muscle, but not in the liver, after hemorrhage.
Collapse
Affiliation(s)
- Li Li
- Department of Pathology, Division of Molecular and Cellular Pathology, The University of Alabama at Birmingham, 1670 University Boulevard, Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
99
|
Briede J, Stivrina M, Stoldere D, Vigante B, Duburs G. Effect of cerebrocrast on body and organ weights, food and water intake, and urine output of normal rats. Cell Biochem Funct 2008; 26:908-15. [DOI: 10.1002/cbf.1525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
100
|
Yi SS, Hwang IK, Chun MS, Kim YN, Kim IY, Lee IS, Seong JK, Yoon YS. Glucocorticoid receptor changes associate with age in the paraventricular nucleus of type II diabetic rat model. Neurochem Res 2008; 34:851-8. [PMID: 18758953 DOI: 10.1007/s11064-008-9836-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 08/12/2008] [Indexed: 12/25/2022]
Abstract
Diabetes is a metabolic disorder that is associated with the dysregulation of a number of systems within the body. In the present study, we investigated glucocorticoid receptor (GR) immunoreactivity and its protein levels in the paraventricular nuclei of 4-, 12-, 20- and 30-week-old Zucker diabetic fatty (fa/fa, ZDF) and in Zucker lean control (fa/+ or +/+, ZLC) rats, because the progressive induction of diabetes is detectable in this model after 7 weeks of age and chronic diabetic conditions are maintained after 12 weeks of age. GR immunoreactivity was detected in parvocellular paraventricular nuclei and this and GR protein levels were exponentially increased according to the ages. In particular, GR immunoreactivities and protein levels were markedly more increased in 30-week-old ZDF rats than in age-matched ZLC group and in younger ZDF group. The present study suggests that GR immunoreactivity and its protein level is associated with a degenerative phenotype in the hypothalamus of from 12-weeks old in the ZDF rat type II diabetes model.
Collapse
Affiliation(s)
- Sun Shin Yi
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|