51
|
Murphy RM, Snow RJ, Lamb GD. μ-Calpain and calpain-3 are not autolyzed with exhaustive exercise in humans. Am J Physiol Cell Physiol 2006; 290:C116-22. [PMID: 16107503 DOI: 10.1152/ajpcell.00291.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
μ-calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that μ-calpain becomes proteolytically active in the presence of 2–200 μM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+concentration levels ([Ca2+]i; ∼1 μM) than the levels at which μ-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 μM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for μ-calpain, and both calpains displayed a seemingly higher Ca2+sensitivity in human than in rat muscle homogenates, with ∼15% autolysis observed after 1-min exposure to 2.5 μM Ca2+in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]ilevel in rat muscle. During muscle activity, [Ca2+]imay transiently peak in the range found to autolyze μ-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s “all-out” cycling, n = 8; and 70% V̇o2 peakuntil fatigue, n = 3) on the amount of autolyzed μ-calpain or calpain-3 in human muscle. No significant autolysis of μ-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]ithat occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo.
Collapse
Affiliation(s)
- Robyn M Murphy
- Dept. of Zoology, La Trobe Univ., Victoria 3086, Australia.
| | | | | |
Collapse
|
52
|
Geesink GH, Taylor RG, Koohmaraie M. Calpain 3/p94 is not involved in postmortem proteolysis1,2. J Anim Sci 2005; 83:1646-52. [PMID: 15956473 DOI: 10.2527/2005.8371646x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on the correlation between expression and/or autolysis of calpain and postmortem proteolysis in muscle have provided conflicting evidence regarding the possible role of calpain 3 in postmortem tenderization of meat. Thus, the objective of this research was to test the effect of postmortem storage on proteolysis and structural changes in muscle from normal and calpain 3 knockout mice. Knockout mice (n = 6) were sacrificed along with control mice (n = 6). Hind limbs were removed and stored at 4 degrees C; muscles were dissected at 0, 1, and 3 d postmortem and subsequently analyzed individually for degradation of desmin. Pooled samples for each storage time and mouse type were analyzed for degradation of nebulin, dystrophin, vinculin, and troponin-T. In a separate experiment, hind-limb muscles from knockout (n = 4) and control mice (n = 4) were analyzed for structural changes at 0 and 7 d postmortem using light microscopy. As an index of structural changes, fiber detachment, cracked or broken fibers, and the appearance of space between sarcomeres were quantified. Cumulatively, the results of the first experiment indicated that postmortem proteolysis of muscle occurred similarly in control and in calpain 3 knockout mice. Desmin degradation did not differ (P > 0.99), and there were no indications that degradation of nebulin, dystrophin, vinculin, and troponin-T were affected by the absence of calpain 3 in postmortem muscle. Structural changes were affected by time postmortem (P < 0.05), but not by the absence of calpain 3 from the muscles. In conclusion, these results indicate that calpain 3 plays a minor role, if any, in postmortem proteolysis in muscle.
Collapse
Affiliation(s)
- G H Geesink
- CCL Research, Veghel, NL-5462, The Netherlands
| | | | | |
Collapse
|
53
|
Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ. Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet 2005; 14:2125-34. [PMID: 15961411 DOI: 10.1093/hmg/ddi217] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations in the non-lysosomal cysteine protease calpain 3 cause limb-girdle muscular dystrophy type 2A (LGMD2A). Our previous studies of the calpain 3 knockout mouse (C3KO) suggested a role for calpain 3 in sarcomere formation and remodeling. Calpain 3 may mediate remodeling by cleavage and release of myofibrillar proteins, targeting them for ubiquitination and proteasomal degradation. Loss of proper protein turnover may be the basis for this muscle disease. To test this hypothesis in vivo, we used an experimental model of hindlimb unloading and reloading that has been shown to induce sarcomere remodeling. We showed that the rate of atrophy and especially the rate of growth are decreased in C3KO muscles under conditions promoting sarcomere remodeling. In wild-type mice, an elevated level of ubiquitinated proteins was observed during muscle reloading, which is presumably necessary to remove atrophy-specific and damaged proteins. This increase in ubiquitination correlated with an increase in calpain 3 expression. C3KO muscles did not show any increase in ubiquitination at the reloading stage, suggesting that calpain 3 is necessary for ubiquitination and that it acts upstream of the ubiquitination machinery. We found upregulation of heat shock proteins in C3KO muscles following challenge with a physiological condition that requires highly increased protein degradation. Furthermore, old C3KO mice show evidence of insoluble protein aggregate formation in skeletal muscles. These studies suggest that accumulation of aged and damaged proteins can lead to cellular toxicity and a cell stress response in C3KO muscles, and that these characteristics are pathological features of LGMD2A.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology and Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7334, USA
| | | | | | | |
Collapse
|
54
|
Ravulapalli R, Diaz B, Campbell R, Davies P. Homodimerization of calpain 3 penta-EF-hand domain. Biochem J 2005; 388:585-91. [PMID: 15660530 PMCID: PMC1138966 DOI: 10.1042/bj20041821] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/24/2004] [Accepted: 01/21/2005] [Indexed: 01/27/2023]
Abstract
Calpains 1 and 2 are heterodimeric proteases in which large (relative molecular mass M(r) 80000) and small (M(r) 28000) subunits are linked through their respective PEF (penta-EF-hand) domains. The skeletal muscle-specific calpain 3 is believed not to form a heterodimer with the small subunit but might homodimerize through its PEF domain. Size-exclusion chromatography and analytical ultracentrifugation of the recombinant PEF domain of calpain 3 show that it forms a stable homodimer that does not dissociate on dilution. Molecular modelling suggests that there would be no barriers to the dimerization of the whole enzyme through the PEF domains. This orientation would place the catalytic centres at opposite ends of the dimer.
Collapse
Affiliation(s)
| | - Beatriz Garcia Diaz
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Robert L. Campbell
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Peter L. Davies
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
55
|
Verburg E, Murphy RM, Stephenson DG, Lamb GD. Disruption of excitation-contraction coupling and titin by endogenous Ca2+-activated proteases in toad muscle fibres. J Physiol 2005; 564:775-90. [PMID: 15746171 PMCID: PMC1464466 DOI: 10.1113/jphysiol.2004.082180] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effects of elevated, physiological levels of intracellular free [Ca(2+)] on depolarization-induced force responses, and on passive and active force production by the contractile apparatus in mechanically skinned fibres of toad iliofibularis muscle. Excitation-contraction (EC) coupling was retained after skinning and force responses could be elicited by depolarization of the transverse-tubular (T-) system. Raising the cytoplasmic [Ca(2+)] to approximately 1 microm or above for 3 min caused an irreversible reduction in the depolarization-induced force response by interrupting the coupling between the voltage sensors in the T-system and the Ca(2+) release channels in the sarcoplasmic reticulum. This uncoupling showed a steep [Ca(2+)] dependency, with 50% uncoupling at approximately 1.9 microm Ca(2+). The uncoupling occurring with 2 microm Ca(2+) was largely prevented by the calpain inhibitor leupeptin (1 mm). Raising the cytoplasmic [Ca(2+)] above 1 microm also caused an irreversible decline in passive force production in stretched skinned fibres in a manner graded by [Ca(2+)], though at a much slower relative rate than loss of coupling. The progressive loss of passive force could be rapidly stopped by lowering [Ca(2+)] to 10 nm, and was almost completely inhibited by 1 mm leupeptin but not by 10 microm calpastatin. Muscle homogenates preactivated by Ca(2+) exposure also evidently contained a diffusible factor that caused damage to passive force production in a Ca(2+)-dependent manner. Western blotting showed that: (a) calpain-3 was present in the skinned fibres and was activated by the Ca(2+)exposure, and (b) the Ca(2+) exposure in stretched skinned fibres resulted in proteolysis of titin. We conclude that the disruption of EC coupling occurring at elevated levels of [Ca(2+)] is likely to be caused at least in part by Ca(2+)-activated proteases, most likely by calpain-3, though a role of calpain-1 is not excluded.
Collapse
Affiliation(s)
- Esther Verburg
- Department of Zoology, La Trobe University, Bundoora, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
56
|
Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 2005; 36:285-93. [PMID: 15261484 DOI: 10.1016/j.ceca.2004.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Indexed: 12/15/2022]
Abstract
From rodents to primates, transient global brain ischemia is a well known cause of delayed neuronal death of the vulnerable neurons including cornu Ammonis 1 (CA1) pyramidal cells of the hippocampus. Previous reports using the rodent experimental paradigm indicated that apoptosis is a main contributor to such ischemic neuronal death. In primates, however, the detailed molecular mechanism of ischemic neuronal death still remains obscure. Recent data suggest that necrosis rather than apoptosis appear to be the crucial component of the damage to the nervous system during human ischemic injuries and neurodegenerative diseases. Currently, necrotic neuronal death mediated by Ca2+-dependent cysteine proteases, is becoming accepted to underlie the pathology of neurodegenerative conditions from the nematode Caenorhabditis elegans to primates. This paper reviews the role of cysteine proteases such as caspase, calpain and cathepsin in order to clarify the mechanism of ischemic neuronal death being triggered by the unspecific digestion of lysosomal proteases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
57
|
Abstract
Calpains are calcium-modulated proteases which respond to Ca2+ signals by removing limited portions of protein substrates, thereby irreversibly modifying their function(s). Members of this protease family are present in a variety of organisms ranging from mammals to plants; some of them are ubiquitously expressed, while others are tissue specific. Although calpains are apparently involved in a multitude of physiological and pathological events, their functions are still poorly understood. In two cases, however, the alteration of a member of the calpain family has been clearly identified as being responsible for a human disease: the loss of function of calpain 3 causes limb girdle muscular dystrophy type 2A, and mutations in the gene coding for calpain 10 have been shown to correlate with non-insulin-dependent diabetes.
Collapse
Affiliation(s)
- Donata Branca
- Dipartimento di Chimica Biologica, Università di Padova and Venetian Institute of Molecular Medicine, Viale G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|
58
|
Homma K, Kikuno RF, Nagase T, Ohara O, Nishikawa K. Alternative Splice Variants Encoding Unstable Protein Domains Exist in the Human Brain. J Mol Biol 2004; 343:1207-20. [PMID: 15491607 DOI: 10.1016/j.jmb.2004.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/30/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Alternative splicing has been recognized as a major mechanism by which protein diversity is increased without significantly increasing genome size in animals and has crucial medical implications, as many alternative splice variants are known to cause diseases. Despite the importance of knowing what structural changes alternative splicing introduces to the encoded proteins for the consideration of its significance, the problem has not been adequately explored. Therefore, we systematically examined the structures of the proteins encoded by the alternative splice variants in the HUGE protein database derived from long (>4 kb) human brain cDNAs. Limiting our analyses to reliable alternative splice junctions, we found alternative splice junctions to have a slight tendency to avoid the interior of SCOP domains and a strong statistically significant tendency to coincide with SCOP domain boundaries. These findings reflect the occurrence of some alternative splicing events that utilize protein structural units as a cassette. However, 50 cases were identified in which SCOP domains are disrupted in the middle by alternative splicing. In six of the cases, insertions are introduced at the molecular surface, presumably affecting protein functions, while in 11 of the cases alternatively spliced variants were found to encode pairs of stable and unstable proteins. The mRNAs encoding such unstable proteins are much less abundant than those encoding stable proteins and tend not to have corresponding mRNAs in non-primate species. We propose that most unstable proteins encoded by alternative splice variants lack normal functions and are an evolutionary dead-end.
Collapse
Affiliation(s)
- Keiichi Homma
- Laboratory of Gene-Product Informatics, Center for Information Biology-DNA Data Bank of Japan, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
59
|
Hosfield CM, Elce JS, Jia Z. Activation of Calpain by Ca2+: Roles of the Large Subunit N-terminal and Domain III–IV Linker Peptides. J Mol Biol 2004; 343:1049-53. [PMID: 15476820 DOI: 10.1016/j.jmb.2004.08.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 08/13/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
The calpains are a family of cysteine proteases with closely related amino acid sequences, but a wide range of Ca(2+) requirements (K(d)). For m-calpain, K(d) is approximately 325microM, for mu-calpain it is approximately 50microM, and for calpain 3 it is not strictly known but may be approximately 0.1microM. On the basis of previous structure determination of m-calpain we postulated that two regions of the calpain large subunits, the N-terminal peptide (residues 1-20) and a domain III-IV linker peptide (residues 514-530 in m-calpain) were important in defining K(d). The mutations Lys10Thr in the N-terminal peptide, and Glu517Pro in the domain linker peptide, reduced K(d) of m-calpain by 30% and 42%, respectively, revealing that these two regions are functionally important. The increased Ca(2+)-sensitivity of these mutants demonstrate that the Lys10-Asp148 salt link and the short beta-sheet interaction involving Glu517 are factors contributing to the high K(d) of m-calpain. Though these two regions are physically remote from the active site and Ca(2+)-binding site, they play significant roles in regulating the response of calpain to Ca(2+). Differences in these interactions in mu-calpain and in calpain 3 are also consistent with their progressively lower K(d) values.
Collapse
|
60
|
Ahuja P, Perriard E, Perriard JC, Ehler E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 2004; 117:3295-306. [PMID: 15226401 DOI: 10.1242/jcs.01159] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contractile tissue of the heart is composed of individual cardiomyocytes. During mammalian embryonic development, heart growth is achieved by cell division while at the same time the heart is already exerting its essential pumping activity. There is still some debate whether the proliferative activity is carried out by a less differentiated, stem cell-like type of cardiomyocytes or whether embryonic cardiomyocytes are able to perform both of these completely different dynamic tasks, contraction and cell division. Our analysis of triple-stained specimen of cultured embryonic cardiomyocytes and of whole mount preparations of embryonic mouse hearts by confocal microscopy revealed that differentiated cardiomyocytes are indeed able to proliferate. However, to go through cell division, a disassembly of the contractile elements, the myofibrils, has to take place. This disassembly occurs in two steps with Z-disk and thin (actin)-filament-associated proteins getting disassembled before disassembly of the M-bands and the thick (myosin) filaments happens. After cytokinesis reassembly of the myofibrillar proteins to their mature cross-striated pattern can be seen. Another interesting observation was that the cell-cell contacts remain seemingly intact during division, probably reflecting the requirement of intact integration sites of the individual cells in the contractile tissue. Our results suggest that embryonic cardiomyocytes have developed an interesting strategy to deal with their major cytoskeletal elements, the myofibrils, during mitosis. The complex disassembly-reassembly process might also provide a mechanistic explanation, why cardiomyocytes cede to divide postnatally.
Collapse
Affiliation(s)
- Preeti Ahuja
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, 8093 Zurich
| | | | | | | |
Collapse
|
61
|
Ilian MA, Bekhit AEDA, Stevenson B, Morton JD, Isherwood P, Bickerstaffe R. Up- and down-regulation of longissimus tenderness parallels changes in the myofibril-bound calpain 3 protein. Meat Sci 2004; 67:433-45. [DOI: 10.1016/j.meatsci.2003.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/18/2003] [Accepted: 11/18/2003] [Indexed: 10/26/2022]
|
62
|
Diaz BG, Moldoveanu T, Kuiper MJ, Campbell RL, Davies PL. Insertion sequence 1 of muscle-specific calpain, p94, acts as an internal propeptide. J Biol Chem 2004; 279:27656-66. [PMID: 15073171 DOI: 10.1074/jbc.m313290200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The physiological role of the skeletal muscle-specific calpain 3, p94, is presently unknown, but defects in its gene cause limb girdle muscular dystrophy type 2A. This calcium-dependent cysteine protease resembles the large subunit of m-calpain but with three unique additional sequences: an N-terminal region (NS), and two insertions (IS1 and IS2). The latter two insertions have been linked to the chronic instability of the whole enzyme both in vivo and in vitro. We have shown previously that the core of p94 comprising NS, domains I and II, and IS1 is stable as a recombinant protein in the absence of Ca(2+) and undergoes autolysis in its presence. Here we show that p94I-II cannot hydrolyze an exogenous substrate before autolysis but is increasingly able to do so when autolysis proceeds for several hours. This gain in activity is caused by cleavage of IS1 during autolysis because a deletion mutant lacking the NS region (p94I-II DeltaNS) shows the same activation profile. Similarly, the calpain inhibitors E-64 and leupeptin have almost no inhibitory effect on substrate hydrolysis by p94I-II soon after calcium addition but cause complete inhibition when autolysis progresses for several hours. As autolysis proceeds, there is release of the internal IS1 peptide, but the two portions of the core remain tightly associated. Modeling of p94I-II suggests that IS1 contains an amphipathic alpha-helix flanked by extended loops. The latter are the targets of autolysis and limited digestion by exogenous proteases. The presence and location of the alpha-helix in recombinant IS1 were confirmed by circular dichroism and by the introduction of a L286P helix-disrupting mutation. Within p94I-II, L286P caused premature autoproteolysis of the enzyme. IS1 is an elaboration of a loop in domain II near the active site, and it acts as an internal autoinhibitory propeptide, blocking the active site of p94 from substrates and inhibitors.
Collapse
Affiliation(s)
- Beatriz Garcia Diaz
- Department of Biochemistry and the Protein Engineering Network of Centres of Excellence, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
63
|
Ilian MA, Bekhit AEDA, Bickerstaffe R. Does the newly discovered calpain 10 play a role in meat tenderization during post-mortem storage? Meat Sci 2004; 66:317-27. [DOI: 10.1016/s0309-1740(03)00106-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Revised: 04/22/2003] [Accepted: 04/22/2003] [Indexed: 11/16/2022]
|
64
|
Ilian MA, Bekhit AED, Bickerstaffe R. The relationship between meat tenderization, myofibril fragmentation and autolysis of calpain 3 during post-mortem aging. Meat Sci 2004; 66:387-97. [DOI: 10.1016/s0309-1740(03)00125-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 03/04/2003] [Accepted: 04/22/2003] [Indexed: 10/27/2022]
|
65
|
Ilian MA, Bickerstaffe R, Greaser ML. Postmortem changes in myofibrillar-bound calpain 3 revealed by immunofluorescence microscopy. Meat Sci 2004; 66:231-40. [DOI: 10.1016/s0309-1740(03)00096-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 04/10/2003] [Accepted: 04/11/2003] [Indexed: 01/17/2023]
|
66
|
Fanin M, Nascimbeni AC, Fulizio L, Trevisan CP, Meznaric-Petrusa M, Angelini C. Loss of calpain-3 autocatalytic activity in LGMD2A patients with normal protein expression. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1929-36. [PMID: 14578192 DOI: 10.1016/s0002-9440(10)63551-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The diagnosis of limb girdle muscular dystrophy (LGMD) type 2A (due to mutations in the gene encoding for calpain-3) is currently based on protein analysis, but mutant patients with normal protein expression have also been identified. In this study we investigated 150 LGMD patients with normal calpain-3 protein expression, identified gene mutations by an allele-specific polymerase chain reaction test, and analyzed the mutant calpain-3 catalytic activity. Four different mutations were found in eight patients (5.5%): a frame-shifting deletion (550 A del) and three missense (R490Q, R489Q, R490W). Patients with normal calpain-3 protein expression on Western blot are a considerable proportion (20%) of our total LGMD2A population. While in control muscle the calpain-3 Ca(++)-dependent autocatalytic activity was evident within 5 minutes and was prevented by ethylene diaminetetraacetic acid, in all mutant patient samples the protein was not degraded, indicating that the normal autocatalytic function had been lost. By this new functional test, we show that conventional protein diagnosis fails to detect some mutant proteins, and prove the pathogenetic role of R490Q, R489Q, R490W missense mutations. We suggest that these mutations impair protein activity by affecting interdomain protein interaction, or reduce autocatalytic activity by lowering the Ca(++) sensitivity.
Collapse
Affiliation(s)
- Marina Fanin
- Department of Neurological and Psychiatric Sciences, University of Padua, via Giustiniani 5, 35128 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
67
|
Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I. Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 2003; 23:9127-35. [PMID: 14645524 PMCID: PMC309685 DOI: 10.1128/mcb.23.24.9127-9135.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 08/06/2003] [Accepted: 09/16/2003] [Indexed: 01/24/2023] Open
Abstract
Calpain 3 (Capn3) is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. This enigmatic protease has many unique features among the calpain family and, importantly, mutations in Capn3 have been shown to be responsible for limb girdle muscular dystrophy type 2A. Here we demonstrate that the Capn3 activation mechanism is similar to the universal activation of caspases and corresponds to an autolysis within the active site of the protease. We undertook a search for substrates in immature muscle cells, as several lines of evidence suggest that Capn3 is mostly in an inactive state in muscle and needs a signal to be activated. In this model, Capn3 proteolytic activity leads to disruption of the actin cytoskeleton and disorganization of focal adhesions through cleavage of several endogenous proteins. In addition, we show that titin, a previously identified Capn3 partner, and filamin C are further substrates of Capn3. Finally, we report that Capn3 colocalizes in vivo with its substrates at various sites along cytoskeletal structures. We propose that Capn3-mediated cleavage produces an adaptive response of muscle cells to external and/or internal stimuli, establishing Capn3 as a muscle cytoskeleton regulator.
Collapse
Affiliation(s)
- Mathieu Taveau
- Généthon, CNRS UMR-8115, 1 rue de l'Internationale, 91000 Evry, France
| | | | | | | | | | | |
Collapse
|
68
|
Ono Y, Kakinuma K, Torii F, Irie A, Nakagawa K, Labeit S, Abe K, Suzuki K, Sorimachi H. Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94/calpain 3. J Biol Chem 2003; 279:2761-71. [PMID: 14594950 DOI: 10.1074/jbc.m308789200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p94 (also called calpain 3) is the skeletal muscle-specific calpain and is considered to be a "modulator protease" in various cellular processes. Analysis of p94 at the protein level is an urgent issue because the loss of p94 protease activity causes limb-girdle muscular dystrophy type 2A. In this study, we enzymatically characterized one alternatively spliced variant of p94, p94:exons 6(-)15(-)16(-) (p94delta), which lacks two of the p94-specific insertion sequences. In contrast to p94, which has hardly been studied enzymatically due to its rapid, thorough, and apparently Ca(2+)-independent autolytic activity, p94delta was stably expressed in COS and insect cells. p94delta showed Ca(2+)-dependent caseinolytic and autolytic activities and an inhibitor spectrum similar to those of the conventional calpains. However, calpastatin did not inhibit p94delta and is a substrate for p94delta, which is consistent with the properties of p94, presenting p94 as a possible regulator of the conventional calpain system. We also established a semi-quantitative fluorescence resonance energy transfer assay using the calpastatin sequence specifically to measure p94 activity. This method detects the activity of COS-expressed p94 and p94delta, suggesting that it has potential to evaluate p94 activity in vivo and in the diagnosis of limb-girdle muscular dystrophy type 2A.
Collapse
Affiliation(s)
- Yasuko Ono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
De Tullio R, Stifanese R, Salamino F, Pontremoli S, Melloni E. Characterization of a new p94-like calpain form in human lymphocytes. Biochem J 2003; 375:689-96. [PMID: 12882647 PMCID: PMC1223710 DOI: 10.1042/bj20030706] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 07/17/2003] [Accepted: 07/25/2003] [Indexed: 11/17/2022]
Abstract
Human circulating PBMC (peripheral blood mononuclear cells) contain three calpain isoforms distinguishable on the basis of their chromatographic properties. Two of these proteases belong to the ubiquitous calpain subfamily, corresponding to the classical mu- and m-calpain forms. The third, which shows peculiar activating and regulatory properties, is an alternatively spliced calpain 3 (p94) form. This new calpain differs from calpain 3 in that it has lost IS1 insertion and exon 15, a lysine-rich sequence regarded as a nuclear translocation signal. PBMC p94-calpain undergoes activation and inactivation without the accumulation of a low-Ca2+-requiring form that is typical of the classical activation processes of mu- and m-calpain. Furthermore, it differs from the ubiquitous forms in that it displays a lower sensitivity to calpastatin. On the basis of these selective properties, it can be postulated that PBMC p94-calpain can be activated in response to specific stimuli that are not effective on the other calpain isoenzymes. The enzyme is preferentially expressed in B- and T-lymphocytes, whereas it is poorly expressed in natural killer cells and almost undetectable in polymorphonuclear cells. This distribution might reflect the specific function of this protease, which is preferentially present in cells devoted to the production of the humoral, rather than to the cellular, immune response.
Collapse
Affiliation(s)
- Roberta De Tullio
- Department of Experimental Medicine, Biochemistry Section, and Excellence Center for Biomedical Research, University of Genova Viale Benedetto XV, 1, 16132 Genova, Italy
| | | | | | | | | |
Collapse
|
70
|
Guyon JR, Kudryashova E, Potts A, Dalkilic I, Brosius MA, Thompson TG, Beckmann JS, Kunkel LM, Spencer MJ. Calpain 3 cleaves filamin C and regulates its ability to interact with ?- and ?-sarcoglycans. Muscle Nerve 2003; 28:472-83. [PMID: 14506720 DOI: 10.1002/mus.10465] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calpain 3 (C3) is the only muscle-specific member of the calcium-dependent protease family. Although neither its physiological function nor its in vivo substrates are known, C3 must be an important protein for normal muscle function as mutations in the C3 gene result in limb-girdle muscular dystrophy type 2A. Previous reports have shown that the ubiquitous calpains (mu and m) proteolyze filamins in nonmuscle cells. This observation suggests that the muscle-specific filamin C (FLNC) is a good candidate substrate for C3. Binding studies using recombinant proteins establish that recombinant C3 and native FLNC can interact. When these two proteins are translated in vitro and incubated together, C3 cleaves the C-terminal portion of FLNC. Cleavage is specific as C3 fails to cleave FLNC lacking its C-terminal hinge and putative dimerization domains. Cotransfection experiments in COS-7 cells confirm that C3 can cleave the C-terminus of FLNC in live cells. The C-terminus of FLNC has been shown to bind the cytoplasmic domains of both delta- and gamma-sarcoglycan. Removal of the last 127 amino acids from FLNC, a protein that mimics FLNC after C3 cleavage, abolishes this interaction with the sarcoglycans. These studies confirm that C3 can cleave FLNC in vitro and suggest that FLNC may be an in vivo substrate for C3, functioning to regulate protein-protein interactions with the sarcoglycans. Thus, calpain-mediated remodeling of cytoskeletal-membrane interactions, such as those that occur during myoblast fusion and muscle repair, may involve regulation of FLNC-sarcoglycan interactions.
Collapse
Affiliation(s)
- Jeffrey R Guyon
- Howard Hughes Medical Institute at Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
Collapse
Affiliation(s)
- Darrell E Goll
- Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
72
|
Banerjee R, Francis SE, Goldberg DE. Food vacuole plasmepsins are processed at a conserved site by an acidic convertase activity in Plasmodium falciparum. Mol Biochem Parasitol 2003; 129:157-65. [PMID: 12850260 DOI: 10.1016/s0166-6851(03)00119-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intraerythrocytic Plasmodium falciparum digests vast amounts of hemoglobin within an acidic food vacuole (FV). Four homologous aspartic proteases participate in hemoglobin degradation within the FV. Plasmepsin (PM) I and II are thought to initiate degradation of the native hemoglobin molecule. PM IV and histo-aspartic protease (HAP) act on denatured globin further downstream in the pathway. PM I and II have been shown to be synthesized as zymogens and activated by proteolytic removal of a propiece. In this study, we have determined that the proteolytic processing of FV plasmepsins occurs immediately after a conserved Leu-Gly dipeptidyl motif with uniform kinetics and pH and inhibitor sensitivities. We have developed a cell-free in vitro processing assay that generates correctly processed plasmepsins. Our data suggest that proplasmepsin processing is not autocatalytic, but rather is mediated by a separate processing enzyme. This convertase requires acidic conditions and is blocked only by the calpain inhibitors, suggesting that it may be an atypical calpain-like protease.
Collapse
Affiliation(s)
- Ritu Banerjee
- Departments of Medicine and Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Box 8230, 660 South Euclid Ave, St Louis, MO 63110, USA
| | | | | |
Collapse
|
73
|
König N, Raynaud F, Feane H, Durand M, Mestre-Francès N, Rossel M, Ouali A, Benyamin Y. Calpain 3 is expressed in astrocytes of rat and Microcebus brain. J Chem Neuroanat 2003; 25:129-36. [PMID: 12663060 DOI: 10.1016/s0891-0618(02)00102-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcium-dependent protease calpain is involved in numerous functions, including the control of cell survival, plasticity and motility. Whereas the isoforms calpain 1 and 2 have been described as ubiquitously expressed enzymes, calpain 3 has been called "muscle-specific", although trace amounts of calpain 3 mRNA have been detected by Northern blot in brain homogenates. In this study, we validated antibodies raised either against the peptides that were specific for a given isoform or the peptides present in all the three isoforms. We then used the anti-calpain 3 antibodies together with antibodies directed against cell-type-specific proteins to determine by double- and triple-labelling immunocytochemistry if the protease is expressed in specific cell populations of rat as well as lesser mouse lemur (Microcebus murinus) brain. Calpain 3 was almost exclusively found in cells displaying astrocyte morphology. These cells, most of which co-expressed glial fibrillary acidic protein, were particularly numerous close to the striatal subventricular zone (where numerous neurones forming the rostral migratory stream (RMS) towards the olfactory bulbs are generated) and the RMS itself. Other immunoreactive cells were found close to the pial surface of the forebrain, in the corpus callosum and in the dentate gyrus. Calpain 3 may be involved in astrocyte plasticity and/or motility.
Collapse
Affiliation(s)
- Norbert König
- EPHE Biologie Cellulaire Quantitative, INSERM EMI 12/Univ. Montpellier 2, CC 103, Place E. Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Rey MA, Davies PL. The protease core of the muscle-specific calpain, p94, undergoes Ca2+-dependent intramolecular autolysis. FEBS Lett 2002; 532:401-6. [PMID: 12482600 DOI: 10.1016/s0014-5793(02)03722-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limb girdle muscular dystrophy type 2A is linked to a skeletal muscle-specific calpain isoform known as p94. Isolation of the intact 94-kDa enzyme has been difficult to achieve due to its rapid autolysis, and uncertainty has arisen over its Ca2+-dependence for activity. We have expressed a C-terminally truncated form of the enzyme that comprises the protease core (domains I and II) along with its insertion sequence, IS1, and N-terminal leader sequence, NS. This 47-kDa p94I-II mini-calpain was stable during purification. In the presence of Ca2+, p94I-II cleaved itself within the NS and IS1 sequences. Mapping of the autolysis sites showed that NS and IS1 have the potential to be removed without damage to the protease core. Ca2+-dependent autolysis must be an intramolecular event because the inactive p94I-II C129S mutant was not cleaved by incubation with wild-type p94I-II. In addition, the rate of autolysis of p94I-II was independent of the concentration of the enzyme.
Collapse
Affiliation(s)
- Michelle A Rey
- Department of Biochemistry and Protein Engineering Network of Centres of Excellence Queen's University, K7L 3N6, Kingston, ON, Canada
| | | |
Collapse
|
75
|
Féasson L, Stockholm D, Freyssenet D, Richard I, Duguez S, Beckmann JS, Denis C. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 2002; 543:297-306. [PMID: 12181300 PMCID: PMC2290467 DOI: 10.1113/jphysiol.2002.018689] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The molecular events by which eccentric muscle contractions induce muscle damage and remodelling remain largely unknown. We assessed whether eccentric exercise modulates the expression of proteinases (calpains 1, 2 and 3, proteasome, cathepsin B+L), muscle structural proteins (alpha-sarcoglycan and desmin), and the expression of the heat shock proteins Hsp27 and alphaB-crystallin. Vastus lateralis muscle biopsies from twelve healthy male volunteers were obtained before, immediately after, and 1 and 14 days after a 30 min downhill treadmill running exercise. Eccentric exercise induced muscle damage as evidenced by the analysis of muscle pain and weakness, creatine kinase serum activity, myoglobinaemia and ultrastructural analysis of muscle biopsies. The calpain 3 mRNA level was decreased immediately after exercise whereas calpain 2 mRNA level was increased at day 1. Both mRNA levels returned to control values by day 14. By contrast, cathepsin B+L and proteasome enzyme activities were increased at day 14. The alpha-sarcoglycan protein level was decreased immediately after exercise and at day 1, whereas the desmin level peaked at day 14. alphaB-crystallin and Hsp27 protein levels were increased at days 1 and 14. Our results suggest that the differential expression of calpain 2 and 3 mRNA levels may be important in the process of exercise-induced muscle damage, whereas expression of alpha-sarcoglycan, desmin, alphaB-crystallin and Hsp27 may be essentially involved in the subsequent remodelling of myofibrillar structure. This remodelling response may limit the extent of muscle damage upon a subsequent mechanical stress.
Collapse
Affiliation(s)
- L Féasson
- Laboratoire de Physiologie et Physiopathologie de l' Exercice et du Handicap, Faculté de Médecine, Saint Etienne, France.
| | | | | | | | | | | | | |
Collapse
|
76
|
Spencer MJ, Guyon JR, Sorimachi H, Potts A, Richard I, Herasse M, Chamberlain J, Dalkilic I, Kunkel LM, Beckmann JS. Stable expression of calpain 3 from a muscle transgene in vivo: immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation. Proc Natl Acad Sci U S A 2002; 99:8874-9. [PMID: 12084932 PMCID: PMC124391 DOI: 10.1073/pnas.132269299] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2002] [Indexed: 11/18/2022] Open
Abstract
Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development.
Collapse
Affiliation(s)
- M J Spencer
- Department of Pediatrics, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Fukiage C, Nakajima E, Ma H, Azuma M, Shearer TR. Characterization and regulation of lens-specific calpain Lp82. J Biol Chem 2002; 277:20678-85. [PMID: 11904300 DOI: 10.1074/jbc.m200697200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eye tissues contain splice variants of muscle-preferred p94 (calpain 3), such as lens-specific Lp82 and Lp85, retina-specific Rt88, and cornea-specific Cn94. The purpose of the present experiment was to analyze the activation and regulation of the best characterized p94 splice variant, Lp82. Recombinant rat Lp82 (rLp82) was expressed using the baculovirus system, purified with Ni-NTA affinity and DEAE-ion exchange chromatographies, and characterized by SDS-PAGE, casein zymography, and immunoblotting. After incubation with calcium, rLp82 autolyzed into two major fragments at approximately 60 and 22 kDa. Sequencing of the autolytic fragments showed loss of three amino acids from the N terminus and cleavage near the IS2 region. Also, Lp82 and calpain 2 were found to hydrolyze each other. Calpastatin inhibited calpain 2 activity, but not Lp82. Homology modeling suggested that the lack of inhibition of Lp82 by calpastatin was due to molecular clashes at the unique AX1 region of Lp82. Lp82 also hydrolyzed calpastatin. These results suggested that Lp82 might regulate other calpain activities and cause hydrolysis of substrates such as crystallins during lens cataract formation.
Collapse
Affiliation(s)
- Chiho Fukiage
- Department of Oral Molecular Biology and Ophthalmology, Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | | | | | | | |
Collapse
|
78
|
Kaneko T, Yamashima T, Tohma Y, Nomura M, Imajoh-Ohmi S, Saido TC, Nakao M, Saya H, Yamamoto H, Yamashita J. Calpain-dependent proteolysis of merlin occurs by oxidative stress in meningiomas: a novel hypothesis of tumorigenesis. Cancer 2001; 92:2662-72. [PMID: 11745202 DOI: 10.1002/1097-0142(20011115)92:10<2662::aid-cncr1620>3.0.co;2-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The purpose of this study is to indicate that oxidative stress may contribute to occurrence of meningiomas. Recently, it was reported that aside from the neurofibromatosis type 2 (NF2) gene mutations, the calpain-dependent proteolysis of the NF2 gene product, merlin might be closely related to the development of certain NF2-related tumors. Although meningiomas are well known to occur more frequently in aged persons, it still remains unknown why calpain activation occurs predominantly in them. Because the production of free radicals with aging might be one of the causes of calpain activation especially in leptomeningeal cells being devoid of blood supply, the authors examined the relations between mu-calpain activation and merlin proteolysis induced by the oxidative stress. METHODS The authors examined 12 patient-derived sporadic meningiomas and their primary cultured cells. Malignant glioma cell line (U-251MG), which had no relation to NF2, was used as a control. They were exposed to hydrogen peroxide (H2O2) for 1 hour. After oxidative stress, they were examined by Western blot and immunofluorescence microscopic analyses. RESULTS Despite the consistent expressions of activated mu-calpain in 11 of 12 meningioma tissues, this calpain activation completely disappeared after culture; instead the full-length merlin appeared again in 8 of 11 cases. The treatment of cultured cells with hydrogen peroxide induced both mu-calpain-dependent cleavage of merlin and reduction of an intrinsic calpain inhibitor calpastatin. Such proteolysis was significantly blocked by a specific calpain inhibitor, Z-LLal. The full-length merlin was immunocytochemically colocalized with activated mu-calpain at the plasma membrane, and, after mu-calpain activation, the fragment of merlin translocated to the perinuclear cytoplasm or into the nucleus. CONCLUSIONS These findings suggest that oxidative stress-induced activation of mu-calpain causes proteolysis of merlin conceivably to impair cell adhesion and/or contact inhibition of meningioma cells.
Collapse
Affiliation(s)
- T Kaneko
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Jia Z, Petrounevitch V, Wong A, Moldoveanu T, Davies PL, Elce JS, Beckmann JS. Mutations in calpain 3 associated with limb girdle muscular dystrophy: analysis by molecular modeling and by mutation in m-calpain. Biophys J 2001; 80:2590-6. [PMID: 11371436 PMCID: PMC1301447 DOI: 10.1016/s0006-3495(01)76229-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by selective atrophy of the proximal limb muscles. Its occurrence is correlated, in a large number of patients, with defects in the human CAPN3 gene, a gene that encodes the skeletal muscle-specific member of the calpain family, calpain 3 (or p94). Because calpain 3 is difficult to study due to its rapid autolysis, we have developed a molecular model of calpain 3 based on the recently reported crystal structures of m-calpain and on the high-sequence homology between p94 and m-calpain (47% sequence identity). On the basis of this model, it was possible to explain many LGMD2A point mutations in terms of calpain 3 inactivation, supporting the idea that loss of calpain 3 activity is responsible for the disease. The majority of the LGMD2A mutations appear to affect domain/domain interaction, which may be critical in the assembly and the activation of the multi-domain calpain 3. In particular, we suggest that the flexibility of protease domain I in calpain 3 may play a critical role in the functionality of calpain 3. In support of the model, some clinically observed calpain 3 mutations were generated and analyzed in recombinant m-calpain. Mutations of residues forming intramolecular domain contacts caused the expected loss of activity, but mutations of some surface residues had no effect on activity, implying that these residues in calpain 3 may interact in vivo with other target molecules. These results contribute to an understanding of structure-function relationships and of pathogenesis in calpain 3.
Collapse
Affiliation(s)
- Z Jia
- Department of Biochemistry, Queen's University and The Protein Engineering Network of Centres of Excellence, Kingston, Ontario K7L 3N6, Canada.
| | | | | | | | | | | | | |
Collapse
|
80
|
Tournu C, Obled A, Roux MP, Ferrara M, Omura S, Béchet DM. Glucose regulates protein catabolism in ras-transformed fibroblasts through a lysosomal-dependent proteolytic pathway. Biochem J 2001; 357:255-61. [PMID: 11415457 PMCID: PMC1221949 DOI: 10.1042/0264-6021:3570255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transformed cells are exposed to heterogeneous microenvironments, including low D-glucose (Glc) concentrations inside tumours. The regulation of protein turnover is commonly impaired in many types of transformed cells, but the role of Glc in this regulation is unknown. In the present study we demonstrate that Glc controls protein turnover in ras-transformed fibroblasts (KBALB). The regulation by Glc of protein breakdown was correlated with modifications in the levels of lysosomal cathepsins B, L and D, while autophagic sequestration and non-lysosomal proteolytic systems (m- and mu-calpains and the zeta-subunit of the proteasome) remained unaffected. Lactacystin, a selective inhibitor of the proteasome, depressed proteolysis, but did not prevent its regulation by Glc. The sole inhibition of the cysteine endopeptidases (cathepsins B and L, and calpains) by E-64d [(2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester] was also not sufficient to alter the effect of Glc on proteolysis. The Glc-dependent increase in proteolysis was, however, prevented after optimal inhibition of lysosomal cysteine and aspartic endopeptidases by methylamine. We conclude that, in transformed cells, Glc plays a critical role in the regulation of protein turnover and that the lysosomal proteolytic capacity is mainly responsible for the control of intracellular proteolysis by Glc.
Collapse
Affiliation(s)
- C Tournu
- UR 238, Unité de Nutrition Cellulaire et Moléculaire, Centre de Recherche en Nutrition Humaine, Institut National de la Recherche Agronomique, 63122 St Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
81
|
Ilian MA, Morton JD, Bekhit AE, Roberts N, Palmer B, Sorimachi H, Bickerstaffe R. Effect of preslaughter feed withdrawal period on longissimus tenderness and the expression of calpains in the ovine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:1990-1998. [PMID: 11308358 DOI: 10.1021/jf0010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The objective was to study the role of calpains in meat tenderness. Lambs were fasted for various periods of time to generate differences in meat tenderness and to determine in tandem the expression of calpain 1, calpain 2, calpain 3, and calpastatin. The assumption has been that increased calpain expression associated with an increase in tenderness indicates a role for calpain in the tenderization process and vice versa. Fasting lambs for 1 day caused a significant improvement in longissimus (LD) tenderness compared to the control. Correlations between the tenderness of the LD and the expression of the calpains and calpastatin were significant for calpains 1 and 3 but not for calpain 2 or calpastatin. Consequently, this study supports a role for calpains 1 and 3, but not for calpain 2, in the tenderization of the LD from fasted lambs during post-mortem aging.
Collapse
Affiliation(s)
- M A Ilian
- Molecular Biotechnology Group, Animal and Food Sciences Division, P.O. Box 84, Lincoln University, Canterbury, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
82
|
McElhinny AS, Labeit S, Gregorio CC. Probing the functional roles of titin ligands in cardiac myofibril assembly and maintenance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:67-86; discussion 86-8. [PMID: 10987067 DOI: 10.1007/978-1-4615-4267-4_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcomeres of cardiac muscle are comprised of numerous proteins organized in an elegantly precise order. The exact mechanism of how these proteins are assembled into myofibrils during heart development is not yet understood, although existing in vitro and in vivo model systems have provided great insight into this complex process. It has been proposed by several groups that the giant elastic protein titin acts as a "molecular template" to orchestrate sarcomeric organization during myofibrillogenesis. Titin's highly modular structure, composed of both repeating and unique domains that interact with a wide spectrum of contractile and regulatory ligands, supports this hypothesis. Recent functional studies have provided clues to the physiological significance of the interaction of titin with several titin-binding proteins in the context of live cardiac cells. Improved models of cardiac myofibril assembly, along with the application of powerful functional studies in live cells, as well as the characterization of additional titin ligands, is likely to reveal surprising new functions for the titin third filament system.
Collapse
Affiliation(s)
- A S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, USA
| | | | | |
Collapse
|
83
|
Paul-Pletzer K, Palnitkar SS, Jimenez LS, Morimoto H, Parness J. The skeletal muscle ryanodine receptor identified as a molecular target of [3H]azidodantrolene by photoaffinity labeling. Biochemistry 2001; 40:531-42. [PMID: 11148048 DOI: 10.1021/bi001502s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dantrolene is a skeletal muscle relaxant which acts by inhibiting intracellular Ca(2+) release from sarcoplasmic reticulum (SR). It is used primarily in the treatment of malignant hyperthermia (MH), a pharmacogenetic sensitivity to volatile anesthetics resulting in massive intracellular Ca(2+) release. Determination of the site and mechanism of action of dantrolene should contribute to the understanding of the regulation of intracellular Ca(2+) release in skeletal muscle. Photoaffinity labeling of porcine SR with [(3)H]azidodantrolene, a photoactivatable analogue of dantrolene, has identified a 160 kDa SR protein with immunologic cross-reactivity to skeletal muscle ryanodine receptor (RyR) as a possible target [Palnitkar et al. (1999) J. Med. Chem. 42, 1872-1880]. Here we demonstrate specific, AMP-PCP-enhanced, [(3)H]azidodantrolene photolabeling of both the RyR monomer and a 160 or 172 kDa protein in porcine and rabbit SR, respectively. The 160/172 kDa protein is shown to be the NH(2)-terminus of the RyR cleaved from the monomer by an endogenous protease activity consistent with that of n-calpain. MALDI-mass spectrometric analysis of the porcine 160 kDa protein identifies it as the 1400 amino acid NH(2)-terminal fragment of the skeletal muscle RyR reportedly generated by n-calpain [Shevchenko et al. (1998) J. Membr. Biol. 161, 33-34]. Immunoprecipitation of solubilized, [(3)H]azidodantrolene-photolabeled SR protein reveals that the cleaved 160/172 kDa protein remains associated with the C-terminal, 410 kDa portion of the RyR. [(3)H]Dantrolene binding to both the intact and the n-calpain-cleaved channel RyR is similarly enhanced by AMP-PCP. n-Calpain cleavage of the RyR does not affect [(3)H]dantrolene binding in the presence of AMP-PCP, but depresses drug binding in the absence of nucleotide. These results demonstrate that the NH(2)-terminus of the RyR is a molecular target for dantrolene, and suggest a regulatory role for both n-calpain activity and ATP in the interaction of dantrolene with the RyR in vivo.
Collapse
Affiliation(s)
- K Paul-Pletzer
- Department of Anesthesia, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
84
|
Tang H, Cheung WM, Ip FC, Ip NY. Identification and characterization of differentially expressed genes in denervated muscle. Mol Cell Neurosci 2000; 16:127-40. [PMID: 10924256 DOI: 10.1006/mcne.2000.0864] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Denervation results in a series of changes in skeletal muscle. To elucidate the molecular basis underlying these changes, it is important to identify the profile of altered gene expression in skeletal muscle following nerve injury. In the present study, we have examined the differentially expressed genes in denervated gastrocnemius muscle using RNA fingerprinting by arbitrarily primed PCR. Eight differentially expressed mRNA transcripts have been identified. A bilateral regulatory profile can be observed for the up-regulated genes in both denervated and contralateral control muscle following unilateral sciatic nerve injury. The temporal expression profiles of the denervation-regulated genes in muscle during development, together with their dependency on nerve activity, suggest potential functional roles following nerve injury in vivo. In particular, the identification of two apoptosis-related genes in denervated muscle provides molecular evidence that the apoptotic process is likely to be involved in the intricate changes that lead to muscle atrophy. Our findings not only allow the identification of novel genes, but also suggest possible functions for some known genes in muscle following nerve injury. Taken together, these findings provide important insights into our understanding of the molecular events in denervated muscle and suggest that the differentially expressed genes may play potential roles during muscle denervation and regeneration.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Northern
- Calpain/genetics
- Carrier Proteins/genetics
- Cloning, Molecular
- Cytokines/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Glutamate-Ammonia Ligase/genetics
- Male
- Muscle Denervation
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/enzymology
- Muscle Proteins/genetics
- Muscle, Skeletal/cytology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/genetics
- Nerve Crush
- Nicotinamide Phosphoribosyltransferase
- Phosphopyruvate Hydratase/genetics
- Polymerase Chain Reaction/methods
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Regeneration/genetics
- Sciatic Nerve/drug effects
- Sciatic Nerve/injuries
- Sciatic Nerve/physiology
- TNF Receptor-Associated Factor 2
- Tetrodotoxin/pharmacology
- Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
Collapse
Affiliation(s)
- H Tang
- Shanghai Research Center of Life Science and Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
85
|
Davydov IV, Varshavsky A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem 2000; 275:22931-41. [PMID: 10783390 DOI: 10.1074/jbc.m001605200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. We used an expression-cloning screen to search for mouse proteins that are degraded by the ubiquitin/proteasome-dependent N-end rule pathway in a reticulocyte lysate. One substrate thus identified was RGS4, a member of the RGS family of GTPase-activating proteins that down-regulate specific G proteins. A determinant of the RGS4 degradation signal (degron) was located at the N terminus of RGS4, because converting cysteine 2 to either glycine, alanine, or valine completely stabilized RGS4. Radiochemical sequencing indicated that the N-terminal methionine of the lysate-produced RGS4 was replaced with arginine. Since N-terminal arginine is a destabilizing residue not encoded by RGS4 mRNA, we conclude that the degron of RGS4 is generated through the removal of N-terminal methionine and enzymatic arginylation of the resulting N-terminal cysteine. RGS16, another member of the RGS family, was also found to be an N-end rule substrate. RGS4 that was transiently expressed in mouse L cells was short-lived in these cells. However, the targeting of RGS4 for degradation in this in vivo setting involved primarily another degron, because N-terminal variants of RGS4 that were stable in reticulocyte lysate remained unstable in L cells.
Collapse
Affiliation(s)
- I V Davydov
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
86
|
Busquets S, García-Martínez C, Alvarez B, Carbó N, López-Soriano FJ, Argilés JM. Calpain-3 gene expression is decreased during experimental cancer cachexia. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:5-9. [PMID: 10806331 DOI: 10.1016/s0304-4165(00)00050-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Yoshida AH-130 rat ascites hepatoma is a model system for studying the mechanisms involved in the protein hypercatabolism associated with cancer cachexia. The present study was aimed at investigating if the calpain-3 gene expression in skeletal muscle was affected by tumor growth. The results presented clearly show that calpain-3 gene expression is considerably reduced in experimental cancer cachexia, while there is a reciprocal change in the expression of the ubiquitin-dependent proteolytic system and in the ubiquitous m-calpain. The results, observed during cancer cachexia, suggest a potential counterregulatory role of calpain-3 in muscle proteolysis.
Collapse
Affiliation(s)
- S Busquets
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
87
|
Branca D, Gugliucci A, Bano D, Brini M, Carafoli E. Expression, partial purification and functional properties of themuscle-specific calpain isoform p94. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:839-46. [PMID: 10504417 DOI: 10.1046/j.1432-1327.1999.00817.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The muscle-specific calpain isoform p94 has high propensity to autocatalytic degradation, thus no significant amounts of the intact active protein have been available so far. As a result, aspects like its regulation (via Ca2+ and other factors) and its intracellular localization are unknown or obscure. In this work, large amounts of human p94 have been produced in insect cells using a recombinant baculovirus expression system. Although most of the protease was recovered in an insoluble and catalytically inactive form, the soluble fraction contained amounts of intact active p94 adequate for its characterization. His-tagged recombinant p94, obtained by the same expression system, was partially purified as an active product. Both the unmodified and the partially purified His-tagged p94 bound calcium with high affinity, and their autolytic activity required Ca2+. The sensitivity of the catalytic activity of the recombinant protease to Ca2+ was very high. In fact, p94 in soluble cell extracts autolysed to a significant extent even in the presence of submicromolar Ca2+ levels. Thus, in analogy to what demonstrated for the ubiquitous m- and micro-calpain isoforms, intracellular Ca2+ might be one of the factors controlling the activity of this muscle-specific calpain isoform.
Collapse
Affiliation(s)
- D Branca
- Department of Biological Chemistry, University of Padova, Italy
| | | | | | | | | |
Collapse
|
88
|
Nakamura Y, Fukiage C, Ma H, Shih M, Azuma M, Shearer TR. Decreased sensitivity of lens-specific calpain Lp82 to calpastatin inhibitor. Exp Eye Res 1999; 69:155-62. [PMID: 10433852 DOI: 10.1006/exer.1998.0686] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of the present investigation was to test three calpain inhibitors (recombinant calpastatin domain I, E64, and SJA6017) against Lp82 calpain in rat lenses. Lp82 is a lens-specific isoenzyme from the calpain super family of calcium-activated, cysteine proteases (EC 34.22.17). Lp82 and m-calpain proteolytic activities and protein levels were measured by casein zymography and immunoblotting. Activity of endogenous Lp82 against vimentin was also tested by in vitro incubation of rat lens soluble and insoluble fractions with calcium. Most of the Lp82 activity could be inhibited by irreversible inhibitor E64 and reversible inhibitor SJA6017. However, a major finding of the present investigation was that Lp82 in the soluble and insoluble fractions of the lens was less sensitive to inhibition by recombinant domain I from the endogenous tissue inhibitor of ubiquitous calpains, calpastatin, than m-calpain. By using recombinant calpastatin to inhibit endogenous lens m-calpain, we were able to demonstrate the first example of a substrate for Lp82, vimentin. These data suggest that Lp82-induced proteolysis in rodent lenses may occur even in the presence of calpastatin.
Collapse
Affiliation(s)
- Y Nakamura
- Research Laboratories, Senju Pharmaceutical Co., Ltd., 1-5-4 Murotani, Nishi-ku, Kobe, 651-2241, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Herasse M, Ono Y, Fougerousse F, Kimura E, Stockholm D, Beley C, Montarras D, Pinset C, Sorimachi H, Suzuki K, Beckmann JS, Richard I. Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events. Mol Cell Biol 1999; 19:4047-55. [PMID: 10330145 PMCID: PMC104364 DOI: 10.1128/mcb.19.6.4047] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1998] [Accepted: 03/03/1999] [Indexed: 11/20/2022] Open
Abstract
Calpain 3 is a nonlysosomal cysteine protease whose biological functions remain unknown. We previously demonstrated that this protease is altered in limb girdle muscular dystrophy type 2A patients. Preliminary observations suggested that its gene is subjected to alternative splicing. In this paper, we characterize transcriptional and posttranscriptional events leading to alterations involving the NS, IS1, and IS2 regions and/or the calcium binding domains of the mouse calpain 3 gene (capn3). These events can be divided into three groups: (i) splicing of exons that preserve the translation frame, (ii) inclusion of two distinct intronic sequences between exons 16 and 17 that disrupt the frame and would lead, if translated, to a truncated protein lacking domain IV, and (iii) use of an alternative first exon specific to lens tissue. In addition, expression of these isoforms seems to be regulated. Investigation of the proteolytic activities and titin binding abilities of the translation products of some of these isoforms clearly indicated that removal of these different protein segments affects differentially the biochemical properties examined. In particular, removal of exon 6 impaired the autolytic but not fodrinolytic activity and loss of exon 16 led to an increased titin binding and a loss of fodrinolytic activity. These results are likely to impact our understanding of the pathophysiology of calpainopathies and the development of therapeutic strategies.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Brain/metabolism
- Calpain/genetics
- Calpain/metabolism
- Carrier Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- Connectin
- DNA Primers
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/metabolism
- Humans
- In Situ Hybridization
- Introns
- Isoenzymes
- Lens, Crystalline/anatomy & histology
- Lens, Crystalline/metabolism
- Mice
- Mice, Inbred BALB C
- Microfilament Proteins/metabolism
- Models, Genetic
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Smooth/metabolism
- Myocardium/metabolism
- Peptide Fragments/metabolism
- Protein Kinases/metabolism
- RNA Processing, Post-Transcriptional
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- M Herasse
- Généthon, CNRS URA 1922, 91000 Evry, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Jones SW, Parr T, Sensky PL, Scothern GP, Bardsley RG, Buttery PJ. Fibre type-specific expression of p94, a skeletal muscle-specific calpain. J Muscle Res Cell Motil 1999; 20:417-24. [PMID: 10531622 DOI: 10.1023/a:1005572125827] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Members of the calpain proteinase family are present in all mammalian cells, although a novel calpain 94 kDa isoform is found almost exclusively in skeletal muscle. p94 is difficult to purify from muscle and recombinant p94 autolyses rapidly when expressed in COS cells. However, in vivo the enzyme may be stabilised by interaction with titin, which has two well-characterised binding sites for p94 at the N2- and M-lines. Both these titin subdomains are subject to muscle-specific alternative splicing, which could be related to p94 expression level or stability in muscles of different fibre type. In this study, porcine longissimus dorsi (LD), trapezius (TZ) and adductor longus (AL) were characterised as fast, intermediate and slow using commercially available specific anti-human fast- and slow-myosin heavy chain mAbs and also by conventional histochemistry. p94 was quantified both in whole muscle preparations and single fibres by western blotting using an anti-p94 antiserum generated by expressing a recombinant p94 sequence as a GST fusion protein antigen. SDS PAGE and immunoblotting revealed a single band of approximately 94 kDa with identical mobility in all muscle and fibre preparations. The intensity of the 94 kDa band was greater in LD (22 +/- 1.7 densitometric units mean +/- SEM, n = 3) than TZ and AL (10 +/- 2.3 and 6 +/- 0.9 units, respectively). Expressed as a ratio relative to actin immunoreactivity, p94 is present in all types of single fibres isolated from TZ, but at a significantly lower level (P < 0.01) in slow type I (0.08 +/- 0.01, n = 9), compared to fast IIA/IIB fibres (0.22 +/- 0.02, n = 26). No evidence was seen for rapid or variable rate of p94 degradation in either type of fibre. These data suggest a positive correlation between p94 expression level and fast glycolytic characteristics in porcine muscle.
Collapse
Affiliation(s)
- S W Jones
- Division of Nutritional Biochemistry, School of Biological Sciences, University of Nottingham, Loughborough, Leicestershire, UK
| | | | | | | | | | | |
Collapse
|