51
|
Lithgow P, Takamatsu H, Werling D, Dixon L, Chapman D. Correlation of cell surface marker expression with African swine fever virus infection. Vet Microbiol 2013; 168:413-9. [PMID: 24398227 PMCID: PMC3969584 DOI: 10.1016/j.vetmic.2013.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
The expression of surface markers on African swine fever virus (ASFV) infected cells was evaluated to assess their involvement in infection. Previous findings indicated CD163 expression was correlated with ASFV susceptibility. However, in this study the expression of porcine CD163 on cell lines did not increase the infection rate of these cells indicating other factors are likely to be important in determining susceptibility to infection. On adherent porcine bone marrow (pBM) cells the expression of CD45 was strongly correlated with infection. CD163 and CD203a expression correlated at intermediate levels with infection, indicating cells expressing these markers could become infected but were not preferentially infected by the virus. Most of the cells expressing MHCII were infected, indicating that they may be preferentially infected although expression of MHCII was not essential for infection and a large percentage of the infected cells were MHCII negative. CD16 showed a marked decrease in expression following infection and significantly lower levels of infected cells were shown to express CD16. Altogether these results suggest CD163 may be involved in ASFV infection but it may not be essential; the results also highlight the importance of other cell markers which requiring further investigation.
Collapse
Affiliation(s)
- Pamela Lithgow
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, United Kingdom
| | - Haru Takamatsu
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, United Kingdom
| | - Dirk Werling
- Royal Veterinary College, Hawkshead Lane, Hertfordshire AL9 7TA, United Kingdom
| | - Linda Dixon
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, United Kingdom
| | - Dave Chapman
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, United Kingdom.
| |
Collapse
|
52
|
Prostaglandin E 2 Does Not Modulate CCR7 Expression and Functionality after Differentiation of Blood Monocytes into Macrophages. Int J Inflam 2013; 2013:918016. [PMID: 24298392 PMCID: PMC3835491 DOI: 10.1155/2013/918016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022] Open
Abstract
Previously, we demonstrated that prostaglandin E2 (PGE2) induces C-C chemokine receptor type 7 (CCR7) expression on human monocytes, which stimulates their subsequent migration in response to the CCR7 natural ligands CCL19 and CCL21. In this study, we determined whether PGE2 affects CCR7 expression on macrophages. Flow cytometric analysis and chemotaxis assays were performed on Mono Mac-1-derived macrophage (MDMM-1) as well as unpolarized monocyte-derived macrophages (MDMs) to determine the CCR7 expression and functionality in the presence of PGE2. Data revealed that a MDMM-1 exhibited markedly downregulated CCR7 expression and functionality that were partially restored by treatment with PGE2. In MDMs, we observed a drastic downregulation of CCR7 expression and functionality that were unaffected following PGE2 treatment. Our data indicate that monocyte differentiation induces the loss of CCR7 expression and that PGE2 is unable to modulate CCR7 expression and functionality as shown previously in monocytes.
Collapse
|
53
|
Knetter SM, Tuggle CK, Wannemuehler MJ, Ramer-Tait AE. Organic barn dust extract exposure impairs porcine macrophage function in vitro: implications for respiratory health. Vet Immunol Immunopathol 2013; 157:20-30. [PMID: 24275039 DOI: 10.1016/j.vetimm.2013.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022]
Abstract
Respiratory diseases are responsible for a significant amount of animal morbidity and mortality in the swine industry, including the majority of nursery and grower/finisher deaths. Innate immunity, including the maintenance of lung macrophage health and function, is an important defense mechanism against respiratory pathogens and their associated losses. Chronic exposure of swine industry workers to airborne barn dust results in significant predisposition to airway diseases and impairment of alveolar macrophage (AMφ) function. Because of their importance in maintaining normal respiratory function, this study was designed to evaluate the impact of barn dust on swine macrophages. As measures of macrophage function, we evaluated the activation of NF-κB, cytokine production, cell surface marker expression and the phagocytic and antibacterial capabilities of porcine macrophages after in vitro exposure to an organic swine barn dust extract (ODE). ODE treatment induced AMφ secretion of both pro- and anti-inflammatory cytokines, suggesting a complex activation profile. Additionally, ODE induced expression of genes (TLR2, NOD2) involved in sensing Gram-positive bacteria, a major component of barn dust. ODE exposure also enhanced the expression of several cell surface markers of activation, including a receptor for the porcine reproductive and respiratory syndrome virus. Moreover, two key functions of AMϕ, phagocytosis and bacterial killing, were impaired after exposure to ODE. Treatment with ODE for the first 72 h of differentiation also inhibited the ability of monocyte-derived macrophages to translocate NF-κB to the nucleus following endotoxin stimulation. Taken together, these results demonstrate, for the first time, that organic dust extract exposure negatively affects pig macrophage activation and function, potentially enhancing host susceptibility to a variety of respiratory infections.
Collapse
Affiliation(s)
- Susan M Knetter
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
54
|
Fishbourne E, Hutet E, Abrams C, Cariolet R, Le Potier MF, Takamatsu HH, Dixon LK. Increase in chemokines CXCL10 and CCL2 in blood from pigs infected with high compared to low virulence African swine fever virus isolates. Vet Res 2013; 44:87. [PMID: 24083897 PMCID: PMC3832245 DOI: 10.1186/1297-9716-44-87] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Modulation of the expression of chemokines and chemokine receptors in whole blood was compared following infection of pigs with high and low virulence isolates of African swine fever virus. Levels of mRNAs for CCL2, CCL3L1, CCL4, CXCL10, CCR1 and CCR5 were significantly increased in at least one time point following infection in two experiments and CCL5, CCR9 and CXCR4 mRNA were significantly increased in one of the experiments. The results showed that greatest fold increases in mRNAs for CXCL10 and CCL2 were observed following infection of pigs. CXCL10 mRNA was increased by up to 15 fold in infected compared to uninfected pigs. CXCL10 protein was also detected in serum from pigs infected with the high virulence Benin 97/1 isolate. Levels of CCL2 mRNA were increased in pigs infected with high virulence Benin 97/1 isolate compared to low virulence OURT88/3 isolate and this correlated with an increase of greater than 30 fold in levels of CCL2 protein detected in serum from pigs infected with this isolate. An increase in overall chemotaxis active compounds in defibrinated plasma samples from Benin 97/1 infected pigs was observed at 3 days post-infection (dpi) and a decrease by 7 dpi as measured by chemotaxis assay using normal pig leucocytes in vitro. Increased levels of CXCL10 may either contribute to the activation of lymphocyte priming toward the Th1 phenotype or induction of T lymphocyte apoptosis. Increased levels of CCL2, a chemoattractant for macrophages, may result in increased recruitment of monocytes from bone marrow thus increasing the pool of cells susceptible to infection.
Collapse
Affiliation(s)
- Emma Fishbourne
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK.
| | | | | | | | | | | | | |
Collapse
|
55
|
Abrams CC, Goatley L, Fishbourne E, Chapman D, Cooke L, Oura CA, Netherton CL, Takamatsu HH, Dixon LK. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virology 2013; 443:99-105. [PMID: 23725691 PMCID: PMC3709090 DOI: 10.1016/j.virol.2013.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/03/2013] [Accepted: 04/26/2013] [Indexed: 11/01/2022]
Abstract
African swine fever virus (ASFV) causes an acute haemorrhagic disease of domestic pigs against which there is no effective vaccine. The attenuated ASFV strain OUR T88/3 has been shown previously to protect vaccinated pigs against challenge with some virulent strains including OUR T88/1. Two genes, DP71L and DP96R were deleted from the OUR T88/3 genome to create recombinant virus OUR T88/3ΔDP2. Deletion of these genes from virulent viruses has previously been shown to reduce ASFV virulence in domestic pigs. Groups of 6 pigs were immunised with deletion virus OUR T88/3ΔDP2 or parental virus OUR T88/3 and challenged with virulent OUR T88/1 virus. Four pigs (66%) were protected by inoculation with the deletion virus OUR T88/3ΔDP2 compared to 100% protection with the parental virus OUR T88/3. Thus the deletion of the two genes DP71L and DP96R from OUR T88/3 strain reduced its ability to protect pigs against challenge with virulent virus.
Collapse
Affiliation(s)
- Charles C Abrams
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Komura T, Sakai Y, Honda M, Takamura T, Wada T, Kaneko S. ER stress induced impaired TLR signaling and macrophage differentiation of human monocytes. Cell Immunol 2013; 282:44-52. [PMID: 23665674 DOI: 10.1016/j.cellimm.2013.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/13/2013] [Accepted: 04/14/2013] [Indexed: 11/16/2022]
Abstract
Endoplasmic reticulum (ER) stress causes impairment of the intracellular protein synthesis machinery, affecting various organ functions and homeostasis systems, including immunity. We found that ER stress induced by the N-linked glycosylation inhibitor, tunicamycin, caused susceptibility to apoptosis in the human monocytic cell line, THP-1 cells. Importantly, prior to tunicamycin-induced apoptosis, the proinflammatory response to toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS) stimulation was attenuated with respect to the expression of the proinflammatory cytokines. This impaired expression of proinflammatory cytokines was a consequence of the inhibition of NF-κB activation. Moreover, tunicamycin-induced ER stress disturbed the differentiation of THP-1 cells into macrophages induced by phorbol-12-myristate-13-acetate treatment. We also confirmed that ER stress affected the response of primary human monocytes to TLR ligand and their ability to differentiate into macrophages. These data suggest that ER stress imposes an important pathological insult to the immune system, affecting the crucial functions of monocytes.
Collapse
Affiliation(s)
- Takuya Komura
- Disease Control and Homeostasis, Kanazawa University, 13-1, Takaramachi, Kanazawa 920-8641, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Lannes N, Summerfield A. Regulation of porcine plasmacytoid dendritic cells by cytokines. PLoS One 2013; 8:e60893. [PMID: 23577175 PMCID: PMC3620061 DOI: 10.1371/journal.pone.0060893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/04/2013] [Indexed: 11/25/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the most potent producers of type-I interferon (IFN) and represent the main interferon (IFN)-α source in response to many viruses. Considering the important roles played by type I IFN's, not only as antiviral effectors but also as potent alarming cytokine of the immune system, we investigated how such responses are regulated by various cytokines. To this end, we stimulated enriched pDC in the presence or absence of particular cytokines with a strong activator, CpG DNA, or a weak activator of pDC, foot-and-mouth disease virus (FMDV). Alternatively, we pre-incubated pDC for 16 h before stimulation. The pro-inflammatory cytokines tested Interleukin (IL)-6, IL17A, tumour necrosis factor (TNF)-α did not influence IFN-α responses except TNF-α, which promoted responses induced by FMDV. The haematopoietic cytokines Fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) had enhancing effects on pDC activation at least in one of the protocols tested. IFN-β and IFN-γ were the most potent at enhancing FMDV-induced IFN-α, up to 10-fold. Interestingly, also the Th2 cytokine IL-4 was an efficient promoter of pDC activity, while IL-10 was the only negative regulator of IFN-α in pDC identified. The cytokines enhancing IFN-α responses also promoted pDC survival in cell culture with the exception of GM-CSF. Taken together this work illustrates how the cytokine network can influence pDC activation, a knowledge of relevance for improving vaccines and therapeutic interventions during virus infections, cancers and autoimmune diseases in which pDC play a role.
Collapse
Affiliation(s)
- Nils Lannes
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| |
Collapse
|
58
|
Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Muñoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 2012; 173:42-57. [PMID: 23262167 PMCID: PMC7114420 DOI: 10.1016/j.virusres.2012.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
Viruses have adapted to evolve complex and dynamic interactions with their host cell. The viral entry mechanism determines viral tropism and pathogenesis. The entry of African swine fever virus (ASFV) is dynamin-dependent and clathrin-mediated, but other pathways have been described such as macropinocytosis. During endocytosis, ASFV viral particles undergo disassembly in various compartments that the virus passes through en route to the site of replication. This disassembly relies on the acid pH of late endosomes and on microtubule cytoskeleton transport. ASFV interacts with several regulatory pathways to establish an optimal environment for replication. Examples of these pathways include small GTPases, actin-related signaling, and lipid signaling. Cellular cholesterol, the entire cholesterol biosynthesis pathway, and phosphoinositides are central molecular networks required for successful infection. Here we report new data on the conformation of the viral replication site or viral factory and the remodeling of the subcellular structures. We review the virus-induced regulation of ER stress, apoptosis and autophagy as key mechanisms of cell survival and determinants of infection outcome. Finally, future challenges for the development of new preventive strategies against this virus are proposed on the basis of current knowledge about ASFV-host interactions.
Collapse
Affiliation(s)
- Covadonga Alonso
- Dpto. de Biotecnología, INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra. de Coruña Km 7.5, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
59
|
Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS One 2012; 7:e48853. [PMID: 23133661 PMCID: PMC3486801 DOI: 10.1371/journal.pone.0048853] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 10/02/2012] [Indexed: 11/22/2022] Open
Abstract
Here we analyzed the dependence of African swine fever virus (ASFV) infection on the integrity of the endosomal pathway. Using confocal immunofluorescence with antibodies against viral capsid proteins, we found colocalization of incoming viral particles with early endosomes (EE) during the first minutes of infection. Conversely, viral capsid protein was not detected in acidic late endosomal compartments, multivesicular bodies (MVBs), late endosomes (LEs) or lysosomes (LY). Using an antibody against a viral inner core protein, we found colocalization of viral cores with late compartments from 30 to 60 minutes postinfection. The absence of capsid protein staining in LEs and LYs suggested that virus desencapsidation would take place at the acid pH of these organelles. In fact, inhibitors of intraluminal acidification of endosomes caused retention of viral capsid staining virions in Rab7 expressing endosomes and more importantly, severely impaired subsequent viral protein production. Endosomal acidification in the first hour after virus entry was essential for successful infection but not thereafter. In addition, altering the balance of phosphoinositides (PIs) which are responsible of the maintenance of the endocytic pathway impaired ASFV infection. Early infection steps were dependent on the production of phosphatidylinositol 3-phosphate (PtdIns3P) which is involved in EE maturation and multivesicular body (MVB) biogenesis and on the interconversion of PtdIns3P to phosphatidylinositol 3, 5-biphosphate (PtdIns(3,5)P2). Likewise, GTPase Rab7 activity should remain intact, as well as processes related to LE compartment physiology, which are crucial during early infection. Our data demonstrate that the EE and LE compartments and the integrity of the endosomal maturation pathway orchestrated by Rab proteins and PIs play a central role during early stages of ASFV infection.
Collapse
|
60
|
Valente RC, Araujo EG, Rumjanek VM. Ouabain inhibits monocyte activation in vitro: prevention of the proinflammatory mCD14(+)/CD16(+) subset appearance and cell-size progression. J Exp Pharmacol 2012; 4:125-40. [PMID: 27186125 PMCID: PMC4863552 DOI: 10.2147/jep.s35507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Classically described as a potent inhibitor of the sodium-potassium adenosine triphosphatase enzyme, ouabain has been further shown to act as an effective immunomodulator in mammals. Recently, our group showed that this hormone downregulates membrane CD14 (mCD14) in human monocytes, though it is not known whether monocyte activation status could modify ouabain influence. Hence, we aimed to investigate ouabain effect during monocyte activation in vitro, analyzing mCD14, CD16 and CD69 expression in total monocytes after two periods of adhesion (2 hours and 24 hours) or in small and large monocyte subpopulations separately. Ouabain (100 nM) inhibited monocyte-size increase, characteristic of activation, only when added to cells immediately after 2 hours’ adhesion. Moreover, downregulation of both mCD14 and CD16 expression by ouabain was more effective in small monocytes and in cells after 2 hours’ adhesion. Since monocytes after 24 hours’ adhesion showed no lack of ouabain binding and no CD69 upregulation, it seems that ouabain is somehow incapable of triggering an appropriate cell-signaling induction once monocytes become activated. Furthermore, though p38 MAPK activation was crucial for the impairment in cell-size progression induced by ouabain, its inhibition did not alter ouabain-induced CD69 upregulation, suggesting that other molecules may participate in the response to this hormone by monocytes. Our data suggest that ouabain inhibits monocyte activation in vitro, preventing both cell-size increase and the appearance of the proinflammatory mCD14+/CD16+ subpopulation. Thus, the findings suggest that individuals suffering from disorders commonly associated with high ouabain plasma levels, like hypertension, may present defective monocyte activation under inflammation or infection.
Collapse
Affiliation(s)
- Raphael C Valente
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth G Araujo
- Departamento de Neurobiologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Lannes N, Python S, Summerfield A. Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses. Vet Res 2012; 43:64. [PMID: 22934974 PMCID: PMC3479418 DOI: 10.1186/1297-9716-43-64] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/23/2012] [Indexed: 01/26/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly infectious member of the Picornaviridae inducing an acute disease of cloven-hoofed species. Vaccine-induced immune protection correlates with the presence of high levels of neutralizing antibodies but also opsonising antibodies have been proposed as an important mechanism of the immune response contributing to virus clearance by macrophages and leading to the production of type-I interferon (IFN) by plasmacytoid dendritic cells (pDC). The present study demonstrates that the opsonising antibody titres mediating enhanced IFN-α responses in pDC were similar to neutralizing titres, when antigenically related viruses from the same serotype were employed. However, sera cross-reacted also with non-neutralized isolates of multiple serotypes, when tested in this assay. Both uncomplexed virus and immune complexed virus stimulated pDC via Toll-like receptor 7. An additional finding of potential importance for strain-specific differences in virulence and/or immunogenicity was that pDC activation by FMDV strongly differed between viral isolates. Altogether, our results indicate that opsonising antibodies can have a broader reactivity than neutralizing antibodies and may contribute to antiviral responses induced against antigenically distant viruses.
Collapse
Affiliation(s)
- Nils Lannes
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
| | | | | |
Collapse
|
62
|
Vázquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martín-Acebes MA. Acid-dependent viral entry. Virus Res 2012; 167:125-37. [PMID: 22683298 DOI: 10.1016/j.virusres.2012.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022]
Abstract
Virus infection of host cells requires that entry into the cell results in efficient genome release leading to translation and replication. These initial steps revolving around the entry and genomic release processes are crucial for viral progeny generation. Despite the variety of receptors used by viruses to initiate entry, evidence from both enveloped and non-enveloped viral infections is highlighting the important role played by intracellular acidic compartments in the entry of many viruses. These compartments provide connecting nodes within the endocytic network, presenting multiple viral internalization pathways. Endosomal compartments employing an internal acidic pH can trigger molecular mechanisms leading to disassembly of viral particles, thus providing appropriate genome delivery. Accordingly, viruses have evolved to select optimal intracellular conditions for promoting efficient genome release, leading to propagation of the infectious agent. This review will address the implications of cellular compartment involvement in virus infectious processes, and the roles played by the viruses' own machinery, including pH sensing mechanisms and the methodologies applied for studying acid-dependent viral entry into host cells.
Collapse
Affiliation(s)
- Angela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
63
|
Sorensen NS, Boas U, Heegaard PMH. Enhancement of Muramyldipeptide (MDP) Immunostimulatory Activity by Controlled Multimerization on Dendrimers. Macromol Biosci 2011; 11:1484-90. [DOI: 10.1002/mabi.201100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/19/2011] [Indexed: 12/11/2022]
|
64
|
Ordás MC, Cuesta A, Mercado L, Bols NC, Tafalla C. Viral hemorrhagic septicaemia virus (VHSV) up-regulates the cytotoxic activity and the perforin/granzyme pathway in the rainbow trout RTS11 cell line. FISH & SHELLFISH IMMUNOLOGY 2011; 31:252-259. [PMID: 21642001 DOI: 10.1016/j.fsi.2011.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 05/30/2023]
Abstract
A survey of immune-relevant genes that might be up-regulated in response to viral hemorrhagic septicaemia virus (VHSV) in the rainbow trout monocyte-macrophage cell line, RTS11, unexpectedly revealed an increased expression of perforin (PRF) and granzyme (GRZ) genes, which represent components of the major cytotoxic pathway. The natural killer-enhancing factor (NKEF), also known to modulate cytotoxic activity, was up-regulated at the gene but strikingly down-regulated at protein level. The expression of these genes was not affected in head kidney leukocytes (HKLs) infected with VHSV, leading us to evaluate the potential cytotoxic activity of RTS11 and HKLs. For the first time, the cytotoxic activity of RTS11 against xenogeneic targets has been demonstrated, although this was modest relative to HKLs. Yet the activity in RTS11 was significantly increased by VHSV, as in HKLs. This cytotoxic activity elicited by viral infection appeared to require viral gene expression because inactivated VHSV failed to increase RTS11 cytotoxic activity. As for other immune functions, RTS11 cells provide a model for further studying cytotoxic activities of fish monocyte-macrophages.
Collapse
Affiliation(s)
- M C Ordás
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130, Madrid, Spain
| | | | | | | | | |
Collapse
|
65
|
Suter R, Summerfield A, Thomann-Harwood LJ, McCullough KC, Tratschin JD, Ruggli N. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes. Vaccine 2010; 29:1491-503. [PMID: 21184857 DOI: 10.1016/j.vaccine.2010.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease. Spreading of the challenge virus in the host is however not completely abolished. Parameters that are critical for immunogenicity of CSF-VRP are not well characterized. Considering the importance of type I interferon (IFN-α/β) to immune defence development, we generated IFN-α/β-inducing VRP to determine how this would influence vaccine efficacy. We also evaluated the effect of co-expressing granulocyte macrophage colony-stimulating factor (GM-CSF) in the vaccine context. The VRP were capable of long-term replication in cell culture despite the presence of IFN-α/β. In vivo, RNA replication was essential for the induction of an immune response. IFN-α/β-inducing and GM-CSF-expressing CSF-VRP were similar to unmodified VRP in terms of antibody and peripheral T-cell responses, and in reducing the blood levels of challenge virus RNA. Importantly, the IFN-α/β-inducing VRP did show increased efficacy over the unmodified VRP in terms of B-cell and T-cell responses, when tested with secondary immune responses by in vitro restimulation assay.
Collapse
Affiliation(s)
- Rolf Suter
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | | | | | | | | | | |
Collapse
|
66
|
Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 2010; 5:e8668. [PMID: 20084270 PMCID: PMC2800192 DOI: 10.1371/journal.pone.0008668] [Citation(s) in RCA: 838] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/21/2009] [Indexed: 12/12/2022] Open
Abstract
Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.
Collapse
Affiliation(s)
- Marc Daigneault
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Julie A. Preston
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Marriott
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Moira K. B. Whyte
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
Sánchez‐Vizcaíno JM, Martínez‐López B, Martínez‐Avilés M, Martins C, Boinas F, Vialc L, Michaud V, Jori F, Etter E, Albina E, Roger F. Scientific review on African Swine Fever. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Carlos Martins
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Fernando Boinas
- Faculdade de Medicina Veterinaria, Universidade Técnica de Lisboa, (FMV‐UTL)
| | - Laurence Vialc
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Vincent Michaud
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Ferran Jori
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Eric Etter
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - Emmanuel Albina
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| | - François Roger
- Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD)
| |
Collapse
|
68
|
Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence. Arch Virol 2009; 154:1441-50. [DOI: 10.1007/s00705-009-0466-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
|
69
|
Basta S, Gerber H, Schaub A, Summerfield A, McCullough KC. Cellular processes essential for African swine fever virus to infect and replicate in primary macrophages. Vet Microbiol 2009; 140:9-17. [PMID: 19632793 DOI: 10.1016/j.vetmic.2009.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The macrophage (Mø) is an essential immune cell for innate immunity. Such cells are targeted by African swine fever virus (ASFV). The early phases of infection with ASFV have been previously characterized in non-leukocyte cells such as Vero cells. Here, we report on several additional key parameters that ASFV utilizes during the infection of primary Mø. Related to virus infection, we established that receptor-mediated endocytosis of the virus by Mø is not the exclusive means of entry to infect the host cells. Analysis of the ensuing processes identified divalent cation-dependent activities to be particularly important, relating to the virus requirement for microtubule assembly needed for endocytic and endosomal processing. Actin-dependent endocytosis and endocytic flux involving microtubule activity are also implicated, pointing to entry via phagocytosis. Subsequently, the virus avoids terminal degradation by circumventing mature lysosome activities, including autophagosome-lysosome delivery. Nevertheless, the replicative cycle is apparently dependent on certain lysosomal functions, i.e. activities sensitive to propylamine are essential for the virus, whereas vinblastine- and leupeptin-sensitive functions only partially influence viral replication. The present work has identified cellular processes essential for ASFV to infect and replicate in the macrophage. These findings will improve our understanding of the cellular pathways employed by viruses infecting immune scavenger cells.
Collapse
Affiliation(s)
- Sameh Basta
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada.
| | | | | | | | | |
Collapse
|
70
|
Ezquerra A, Revilla C, Alvarez B, Pérez C, Alonso F, Domínguez J. Porcine myelomonocytic markers and cell populations. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:284-298. [PMID: 18586052 DOI: 10.1016/j.dci.2008.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/03/2008] [Accepted: 06/03/2008] [Indexed: 05/26/2023]
Abstract
This review focuses in what is currently known about swine myeloid markers, the expression and function of these receptors in the biology of porcine myelomonocytic cells, the regulation of their expression along the different developmental stages of these cells and their utility to investigate the heterogeneity of monocyte and macrophage populations. Although the number of monoclonal antibodies recognizing surface antigens expressed on either swine granulocytes or monocytes is low compared with those available for human or mouse, they have contributed significantly to study the members of myeloid lineages in this species, allowing to discriminate different maturation stages of these cells in bone marrow and to reveal the heterogeneity of blood monocytes and tissue macrophages. Porcine myeloid cells share many similarities with humans, highlighting the relevance of the pig as a biomedical model.
Collapse
Affiliation(s)
- A Ezquerra
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, km 7.5, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
71
|
Lei L, Xiong Y, Chen J, Yang JB, Wang Y, Yang XY, Chang CCY, Song BL, Chang TY, Li BL. TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. J Lipid Res 2009; 50:1057-67. [PMID: 19189937 DOI: 10.1194/jlr.m800484-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) are present in atherosclerotic lesions. TNF-alpha regulates expression of multiple genes involved in various stages of atherosclerosis, and it exhibits proatherosclerotic and antiatherosclerotic properties. ACAT catalyzes the formation of cholesteryl esters (CE) in monocytes/macrophages, and it promotes the foam cell formation at the early stage of atherosclerosis. We hypothesize that TNF-alpha may be involved in regulating the ACAT gene expression in monocytes/macrophages. In this article, we show that in cultured, differentiating human monocytes, TNF-alpha enhances the expression of the ACAT1 but not ACAT2 gene, increases the cholesteryl ester accumulation, and promotes the lipid-laden cell formation. Several other proinflammatory cytokines tested do not affect the ACAT1 gene expression. The stimulation effect is consistent with a receptor-dependent process, and is blocked by using nuclear factor-kappa B (NF-kappa B) inhibitors. A functional and unique NF-kappa B element located within the human ACAT1 gene proximal promoter is required to mediate the action of TNF-alpha. Our data demonstrate that TNF-alpha, through the NF-kappa B pathway, specifically enhances the expression of human ACAT1 gene to promote the CE-laden cell formation from the differentiating monocytes, and our data support the hypothesis that TNF-alpha is proatherosclerotic during early phase of lesion development.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Bergamin F, Vincent IE, Summerfield A, McCullough KC. Essential role of antigen-presenting cell-derived BAFF for antibody responses. Eur J Immunol 2007; 37:3122-30. [PMID: 17935087 DOI: 10.1002/eji.200636791] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Antigen-presenting cells (APC) are directly involved in survival, growth and differentiation of naive B cells and in immunoglobulin class switch recombination. Less is known about the contribution of APC to memory B cell responses. We employed an in vitro model to investigate the secondary humoral response against foot-and-mouth disease virus, with cells from a natural host of the virus - the pig. This response is T cell-dependent. Under conditions of limited T cell help, defined as a low T-to-B cell ratio or by the replacement of T cells with interleukin-2 only, the antibody response was dependent on APC. These included monocytes and monocyte-derived DC, but not plasmacytoid DC. APC mediated their help through soluble factors, particularly soluble B cell-activating factor belonging to the TNF family (BAFF). Our results suggest that the 'ménage à trois' concept, saying that both APC and T cells have a direct effect in B cell activation, is also valid for secondary B cell responses, and imply an important role for BAFF under conditions that might be physiologically relevant in secondary lymphoid organs.
Collapse
Affiliation(s)
- Fabio Bergamin
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | | | | |
Collapse
|
73
|
Stevenson LS, Gilpin DF, Douglas A, McNeilly F, McNair I, Adair BM, Allan GM. T lymphocyte epitope mapping of porcine circovirus type 2. Viral Immunol 2007; 20:389-98. [PMID: 17931109 DOI: 10.1089/vim.2006.0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunoreactive T lymphocyte epitopes within the ORF1, ORF2, and ORF 3 products of porcine circovirus type 2 (PCV2) were mapped. For this, overlapping linear 20-mer peptides were synthesized and tested for their ability to induce T lymphocyte proliferation in porcine peripheral blood mononuclear cells (PBMCs) isolated from experimentally PCV2-infected pigs. After a preliminary screening of 31 (ORF1), 23 (ORF2), and 10 (ORF3) peptides using PBMCs from 4 PCV2-infected pigs, none of the peptides appeared to be immunoreactive (stimulation index [SI] : 2) in all four pigs. Only 14 peptides appeared to be immunoreactive in 3 of the 4 pigs. These peptides were designated as immunodominant in the preliminary screening and selected for further analysis. The immunodominant peptides were resynthesized and purified by high-performance liquid chromatography and tested for their ability to induce T lymphocyte proliferation in PBMCs from another three PCV2-infected pigs. None of the immunodominant peptides appeared to be immunoreactive in all three pigs of the second screening. Only three peptides appeared to be immunoreactive in two of three pigs, two encoded by PCV2 ORF1 (amino acid residues 81-100 and 201-220) and one encoded by PCV2 ORF3 (amino acid residues 31-50), and were therefore considered to be immunodominant in both screenings. Although peptides encoded by ORF2 appeared to show the highest immunoreactivity in some pigs, none of these peptides displayed immunodominance in both screenings. In summary, the present study indicates that the T lymphocyte responses to PCV2 are primarily directed toward epitopes of the nonstructural proteins of ORF1 and ORF3.
Collapse
Affiliation(s)
- Leanne S Stevenson
- Department of Veterinary Science, Queen's University Belfast, Belfast BT4 3SD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
74
|
Tafalla C, Sanchez E, Lorenzen N, DeWitte-Orr SJ, Bols NC. Effects of viral hemorrhagic septicemia virus (VHSV) on the rainbow trout (Oncorhynchus mykiss) monocyte cell line RTS-11. Mol Immunol 2007; 45:1439-48. [PMID: 17928055 DOI: 10.1016/j.molimm.2007.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
The effect of viral hemorrhagic septicemia virus (VHSV) was studied on the established rainbow trout (Oncorhynchus mykiss) monocyte/macrophage-like cell line RTS11. The virus was not able to complete its replication cycle as infectious viral particles were not released from the cells. However, in RTS11, the virus was capable of producing mRNA from at least its N and G genes. At the protein level, only N protein was detected 2 days post-infection, whereas a faint band corresponding to the G protein was also observed after 5 days post-infection. These results suggest an interruption of viral protein translation at some point. The expression of N mRNA was significantly inhibited in cells pre-treated with Poly I:C, but not affected by 2-aminopurine (2-AP), an inhibitor of the dsRNA-dependent protein kinase (PKR), thus indicating that PKR has no effect on mRNA expression directly. However, when cells were preincubated with Poly I:C in the presence of 2-AP, the levels of N mRNA were restored suggesting that Poly I:C can limit viral transcription through an antiviral mechanism dependent of PKR. The effect of VHSV on the expression of transcripts for different immune genes was determined, but significant induction was found only for genes related to the type I interferon (IFN) response, such as IFN-1 and -2 and the three Mx isoforms. Heat-inactivated virus failed to induce IFN-1 and -2, suggesting that early events in the VHSV life cycle were necessary for the type I IFN response. Poly I:C alone also induced transcripts for the antiviral Mx proteins. Prior exposure of RTS11 to VHSV did not prevent Poly I:C from inducing transcripts for Mx1, Mx2 and Mx3. Perhaps the failure of VHSV to disable antiviral mechanisms in RTS11 accounts for the aborted infections.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | |
Collapse
|
75
|
Guzylack-Piriou L, Bergamin F, Gerber M, McCullough KC, Summerfield A. Plasmacytoid dendritic cell activation by foot-and-mouth disease virus requires immune complexes. Eur J Immunol 2006; 36:1674-83. [PMID: 16783856 DOI: 10.1002/eji.200635866] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Natural IFN-producing cells (NIPC), also called plasmacytoid dendritic cells, represent an essential component of the innate immune defense against infection. Despite this, not much is known about the pathways involved in their activation by non-enveloped viruses. The present study demonstrates that the non-enveloped foot-and-mouth disease virus (FMDV) cannot stimulate IFN-alpha responses in NIPC, unless complexed with FMDV-specific immunoglobulins. Stimulation of NIPC with such immune complexes employs FcgammaRII ligation, leading to strong secretion of IFN-alpha. In contrast to the stimulation of NIPC by many enveloped viruses, FMDV induction of IFN-alpha production requires live virus. It is necessary for the virus to initiate its replicative cycle. Moreover, it is an abortive replication, as witnessed by the decrease of dsRNA levels and viral titers with time post infection. Sensitivity of the NIPC stimulation to wortmannin and chloroquin, but not leupeptin, indicates an essential role for the pre-lysosomal stage endosomal compartment. In conclusion, the present study demonstrates that immune complexes provide the means for a non-interferogenic virus to induce IFN-alpha responses by NIPC. This indicates an important link between NIPC and antibodies in immune responses against non-enveloped viruses such as FMDV.
Collapse
|
76
|
Van Gucht S, Van Reeth K, Nauwynck H, Pensaert M. Porcine reproductive and respiratory syndrome virus infection increases CD14 expression and lipopolysaccharide-binding protein in the lungs of pigs. Viral Immunol 2005; 18:116-26. [PMID: 15802956 DOI: 10.1089/vim.2005.18.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a respiratory virus of swine that plays an important role in multifactorial respiratory disease. European strains of PRRSV cause mild or no respiratory signs on their own, but can sensitize the lungs for the production of proinflammatory cytokines and respiratory signs upon exposure to bacterial lipopolysaccharides (LPS). The inflammatory effect of LPS depends on the binding to the LPS receptor complex. Therefore, we quantified the levels of CD14 expression and LPS-binding protein (LBP) in the lungs of pigs throughout a PRRSV infection. Twenty-four gnotobiotic pigs were inoculated intranasally with PRRSV (10(6) 50% tissue culture infectious doses per pig, Lelystad strain) or phosphate-buffered saline (PBS), and euthanized 1-52 days later. Lungs were examined for CD14 expression (immunofluorescence and image analysis), LBP (ELISA), and virus replication. PRRSV infection caused a clear increase of CD14 expression from 3 to 40 days post-inoculation (DPI) and LBP from 7 to 14 DPI. Both parameters peaked at 9-10 DPI (40 and 14 times higher than PBS control pigs, respectively) and were correlated tightly with virus replication in the lungs. Double immunofluorescence labelings demonstrated that resident macrophages expressed little CD14 and that the increase of CD14 expression in the PRRSV-infected lungs was probably due to infiltration of highly CD14-positive monocytes in the interstitium. As both CD14 and LBP potentiate the inflammatory effects of LPS, their increase in the lungs could explain why PRRSV sensitizes the lungs for the production of proinflammatory cytokines and respiratory signs upon exposure to LPS.
Collapse
Affiliation(s)
- Steven Van Gucht
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|
77
|
Dixon LK, Abrams CC, Bowick G, Goatley LC, Kay-Jackson PC, Chapman D, Liverani E, Nix R, Silk R, Zhang F. African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol 2004; 100:117-34. [PMID: 15207450 DOI: 10.1016/j.vetimm.2004.04.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
African swine fever virus (ASFV) can cause an acutely fatal haemorrhagic fever in domestic pigs although in its natural hosts, warthogs, bushpigs and the soft tick vector, Ornithodoros moubata, ASFV causes inapparent persistent infections. The virus is a large, cytoplasmic, double-stranded DNA virus which has a tropism for macrophages. As it is the only member of the Asfarviridae family, ASFV encodes many novel genes not encoded by other virus families. The ability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, shows that the virus has effective mechanisms to evade host defence systems. This review focuses on recent progress made in understanding the function of ASFV-encoded proteins, which are involved in modulating the host response to infection. Growing evidence suggests that a major strategy used by the virus is to modulate signalling pathways in infected macrophages, thus interfering with the expression of a large number of immunomodulatory genes. One potent immunomodulatory protein, A238L, inhibits both activation of the host NFkappaB transcription factor and inhibits calcineurin phosphatase activity. Calcineurin-dependent pathways, including activation of the NFAT transcription factor, are therefore inhibited. Another ASFV-encoded protein, CD2v, resembles the host CD2 protein, which is expressed on T cells and NK cells. This virus protein causes the adsorption of red blood cells around virus-infected cells and extracellular virus particles. Expression of the CD2v protein aids virus dissemination in pigs and the protein also has a role in impairing bystander lymphocyte function. This may be mediated either by a direct interaction of CD2v extracellular domain with ligands on lymphocytes or by an indirect mechanism involving interaction of the CD2v cytoplasmic tail with host proteins involved in signalling or trafficking pathways. Two ASFV proteins, an IAP and a Bcl2 homologue, inhibit apoptosis in infected cells and thus facilitate production of progeny virions. The prediction is that half to two-thirds of the approximately 150 genes encoded by ASFV are not essential for replication in cells but have an important role for virus survival and transmission in its hosts. These genes provide an untapped repository, and will be valuable tools for deciphering not only how the virus manipulates the host response to infection to avoid elimination, but also useful for understanding important host anti-viral mechanisms. In addition, they may provide leads for discovery of novel immunomodulatory drugs.
Collapse
Affiliation(s)
- Linda K Dixon
- Institute for Animal Health Pirbright Lab., Ash Road, Pirbright, Woking, Surrey GU24 ONF, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Guzylack-Piriou L, Balmelli C, McCullough KC, Summerfield A. Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-alpha, tumour necrosis factor-alpha and interleukin-12. Immunology 2004; 112:28-37. [PMID: 15096181 PMCID: PMC1782461 DOI: 10.1111/j.1365-2567.2004.01856.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Natural interferon-producing cells (NIPC), also referred to as immature plasmacytoid dendritic cells (PDC), constitute a small population of leucocytes secreting high levels of type I interferons in response to certain danger signals. Amongst these signals are those from DNA containing unmethylated CpG motifs. The present work demonstrated that the CpG oligonucleotides (CpG-ODN) 2216, D32 and D19 induce high amounts of interferon-alpha (IFN-alpha), tumour-necrosis factor-alpha (TNF-alpha) and interleukin (IL)-12 in porcine peripheral blood mononuclear cells (PBMCs). Swine workshop cluster 3 (SWC3)1ow CD4high cells, with high IL-3-binding activity, representing NIPC, were the exclusive cytokine-producing cells responding to the CpG-ODN. These cells did not express CD6, CD8 or CD45RA. Importantly, monocyte-derived DC did not respond to CpG-ODN by secretion of IFN-alpha or TNF-alpha or by the up-regulation of costimulatory molecule expression. CpG-ODN up-regulated MHC class II and CD80\86 expression on the NIPC, but were unable to promote NIPC survival. Interestingly, certain CpG-ODN, incapable of inducing NIPC to secrete IFN-alpha or up-regulate MHC class II and CD80\86, did promote NIPC viability. Taken together, the influence of CpG-ODN on porcine NIPC, monocytes and myeloid DCs relates to that observed with their human equivalents. These results represent an important basis for the application of CpG-ODN as adjuvants for the formulation of novel vaccines and demonstrate the importance of the pig as an alternative animal model for this approach.
Collapse
|
79
|
Mayer D, Thayer TM, Hofmann MA, Tratschin JD. Establishment and characterisation of two cDNA-derived strains of classical swine fever virus, one highly virulent and one avirulent. Virus Res 2004; 98:105-16. [PMID: 14659557 DOI: 10.1016/j.virusres.2003.08.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The virulence of classical swine fever virus (CSFV) strains including established laboratory strains as well as field isolates ranges from avirulent to highly virulent. Here, we describe the construction and characterisation of two cDNA-derived CSFV strains, each corresponding to one of these extremes. The recombinant virus vEy-37 caused acute disease indistinguishable from that provoked by infection with the highly virulent parent strain Eystrup. In contrast, vRiems-3, a molecular clone of the CSFV vaccine strain Riems, was avirulent and induced protective immunity in pigs. After repeated passage of vEy-37 in porcine kidney SK-6 cells adaptive mutations in the E(rns) gene were observed. The respective reconstructed mutant virus grew to titres that were almost 4log units higher when compared to vEy-37. The mutation in the E(rns) gene had only a minor effect on the virulence of the virus. The complete genomic sequences of the two CSFV strains, Eystrup and Riems, have been deposited in GenBank (accession number AF326963 for CSFV Eystrup, AY259122 for CSFV Riems/IVI).
Collapse
Affiliation(s)
- Daniel Mayer
- Institute of Virology and Immunoprophylaxis, CH-3147 Mittelhäusern, Switzerland.
| | | | | | | |
Collapse
|
80
|
Vincent IE, Carrasco CP, Herrmann B, Meehan BM, Allan GM, Summerfield A, McCullough KC. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 2004; 77:13288-300. [PMID: 14645585 PMCID: PMC296043 DOI: 10.1128/jvi.77.24.13288-13300.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) play crucial roles in innate and adaptive immune responses, rendering them critical targets for virus infections. Porcine circovirus type 2 (PCV2) is associated with the development of postweaning multisystemic wasting syndrome (PMWS) in piglets. We demonstrate here that 80 to 90% of monocyte-derived and bone marrow-derived DCs interact with PCV2 similar to the early stages of an infection. There was no evidence for virus replication, but the virus did persist in DCs without loss of infectivity nor the induction of cell death. This could reflect an abortive infection, but there was no evidence of virus uncoating-the infectivity remained intact for at least 5 days. Alternatively, the results may reflect DC endocytosis of antigenic material. However, there was no modulation of DC surface major histocompatibility complex class I and class II, CD80/86, CD25, CD16, or CD14. Furthermore, infected DC did not transmit virus to syngeneic T lymphocytes, even when the latter were activated. Such coculture did not induce PCV2 replication or death of the lymphocytes or DCs. These results demonstrate that PCV2 can persist in DCs in the absence of virus replication or degradation. Such a silent virus infection presents a novel mechanism of not only immune evasion but also escaping the DC degradation pathway. Because of their migratory capacity, infection of DCs thus provides a potent vehicle for transport of the virus throughout the host without the need for replication. In addition, the lymphopenia seen in PMWS is not a direct effect of the virus on lymphocytes but would require additional events, as proposed by others.
Collapse
Affiliation(s)
- I E Vincent
- Institute of Virology and Immunoprophylaxis, Mittelhäusern CH-3147, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
81
|
Gilpin DF, McCullough K, Meehan BM, McNeilly F, McNair I, Stevenson LS, Foster JC, Ellis JA, Krakowka S, Adair BM, Allan GM. In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet Immunol Immunopathol 2003; 94:149-61. [PMID: 12909411 DOI: 10.1016/s0165-2427(03)00087-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Porcine circovirus type 2 (PCV2) nucleic acid and/or antigens are consistently observed in cells of monocytic morphology in lesions of pigs affected by post-weaning multisystemic wasting syndrome (PMWS). In this study, PCV2 antigen was detected in the cytoplasm of monocytes, pulmonary macrophages (PMs) and monocyte-derived macrophages exposed to the virus in vitro, by immunofluorescence analysis (IFA) and the phenotype of these cells confirmed by detection of monocytic cell surface markers using flow cytometry. Viral antigen was not observed in lymphocytic cells. Replication of the virus in PMs was investigated further by comparison to that observed in the continuous pig kidney cell line (PK15A) using quantitative virus titration, quantitative PCR and by the detection of double stranded DNA intermediates of viral replication by Southern blotting analyses. Although increases in viral DNA and levels of infectious virus progeny and the presence of replicative intermediates, indicative of viral replication, were observed in PK15A cells, no such changes were observed in PMs in spite of the fact that infectious virus, viral antigen and viral DNA persisted in the cells for at least the duration of the experiment. These results suggest that in vivo, monocytic cells may not represent the primary target for PCV2 replication.
Collapse
MESH Headings
- Animals
- Antigens, Viral/immunology
- Blotting, Southern/veterinary
- Cell Division/immunology
- Circoviridae Infections/immunology
- Circoviridae Infections/veterinary
- Circoviridae Infections/virology
- Circovirus/genetics
- Circovirus/immunology
- Circovirus/physiology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Flow Cytometry/veterinary
- Fluorescent Antibody Technique, Direct/veterinary
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/virology
- Polymerase Chain Reaction
- Swine
- Swine Diseases/immunology
- Swine Diseases/virology
- Virus Replication
- Wasting Syndrome/immunology
- Wasting Syndrome/veterinary
- Wasting Syndrome/virology
Collapse
Affiliation(s)
- D F Gilpin
- Department of Veterinary Science, Queens University Belfast, Stoney Road, Stormont, Belfast, BT4 3SD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol 2003; 77:7645-54. [PMID: 12805464 PMCID: PMC164809 DOI: 10.1128/jvi.77.13.7645-7654.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV) replicates efficiently in cell lines and monocytic cells, including macrophages (MPhi), without causing a cytopathic effect or inducing interferon (IFN) secretion. In the present study, the capacity of CSFV to interfere with cellular antiviral activity was investigated. When the porcine kidney cell line SK-6 was infected with CSFV, there was a 100-fold increased capacity to resist to apoptosis induced by polyinosinic-polycytidylic acid [poly(IC)], a synthetic double-stranded RNA. In MPhi, the virus infection inhibited poly(IC)-induced alpha/beta IFN (type I IFN) synthesis. This interference with cellular antiviral defense correlated with the presence of the viral N(pro) gene. Mutants lacking the N(pro) gene (DeltaN(pro) CSFV) did not protect SK-6 cells from poly(IC)-induced apoptosis, despite growth properties and protein expression levels similar to those of the wild-type virus. Furthermore, DeltaN(pro) CSFV did not prevent poly(IC)-induced type I IFN production in MPhi but rather induced type I IFN in the absence of poly(IC) in both MPhi and the porcine kidney cell line PK-15, but not in SK-6 cells. With MPhi and PK-15, an impaired replication of the DeltaN(pro) CSFV compared with wild-type virus was noted. In addition, DeltaN(pro) CSFV, but not wild-type CSFV, could interfere with vesicular stomatitis virus replication in PK-15 cells. Taken together, these results provide evidence for a novel function associated with CSFV N(pro) with respect to the inhibition of the cellular innate immune system.
Collapse
Affiliation(s)
- Nicolas Ruggli
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland.
| | | | | | | | | | | |
Collapse
|
83
|
Nielsen J, Vincent IE, Bøtner A, Ladekaer-Mikkelsen AS, Allan G, Summerfield A, McCullough KC. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol 2003; 92:97-111. [PMID: 12730011 DOI: 10.1016/s0165-2427(03)00031-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The composition of peripheral blood leukocyte populations was studied following experimental PCV2-infection in 3-week-old piglets. Four of 10 PCV2-infected piglets developed clinical and pathological symptoms consistent with postweaning multisystemic wasting syndrome (PMWS) between 14 and 21 days post-inoculation (p.i.), and were characterised as PMWS-affected. Only these four PMWS-affected piglets, but neither the non-symptomatic infected nor control animals, developed a clear leukopenia. Kinetic analysis demonstrated a clear loss of both CD21(+) B and CD3(+) T lymphocytes in the PMWS-affected piglets. By CD3/CD4/CD8 triple labelling, the influence of PCV2 infection on all T cell sub-populations was discernible. A loss of CD3(+)CD4(+)CD8(+) memory/activated Th lymphocytes was particularly notable. However, all T lymphocyte sub-populations-CD3(+)CD4(+)CD8(+) memory Th, CD3(+)CD4(+)CD8(-) nai;ve Th, CD3(+)CD4(-)CD8(+) Tc and CD3(+)CD4(-)CD8(-) gammadelta TCR(+) lymphocytes-were susceptible to PCV2 infection-induced lymphopenia. CD3(-)CD4(-)CD8(+) NK cells were also depleted in the PMWS-affected animals, but granulocytes and monocytes were less affected. In conclusion, PCV2 infection induces primarily a lymphopenia, but only in animals which subsequently develop PMWS. The lymphopenia can be identified early p.i., particularly with the B lymphocytes. Memory/activated Th lymphocytes might be affected more than the other T cell sub-populations, but as time progressed a collapse of both T and B cell populations was clear.
Collapse
Affiliation(s)
- J Nielsen
- Department of Virology, Danish Veterinary Institute, Lindholm, DK-4771, Kalvehave, Denmark
| | | | | | | | | | | | | |
Collapse
|
84
|
Rigden RC, Carrasco CP, Barnett PV, Summerfield A, McCullough KC. Innate immune responses following emergency vaccination against foot-and-mouth disease virus in pigs. Vaccine 2003; 21:1466-77. [PMID: 12615443 DOI: 10.1016/s0264-410x(02)00663-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inactivated "emergency" foot-and-mouth disease virus (FMDV) vaccine of high potency will induce early protection against the disease, implying a critical role for innate immune defences. At 3 and 6 days post-vaccination (dpv), there was no evidence of vaccine-induced specific anti-FMDV antibodies (Abs), nor enhanced uptake and destruction of opsonised virus by macrophages. Sera from vaccinates and control animals showed similar capacity to neutralise the virus, and were not different from the pre-vaccination sera. There were also no distinguishable changes in the distribution of the different peripheral blood leucocyte (PBL) subpopulations. Nor was any vaccine-induced increase in production of acute phase proteins noted. In contrast, chemotaxis assays identified an increase in PBL migratory activity which was vaccine-related. Furthermore, sera from 3 days post-vaccination contained elevated chemotactic potential. These results demonstrate that enhanced chemotaxis of cells of the innate immune defences, could play an important role during the early protection induced by emergency FMDV vaccines.
Collapse
Affiliation(s)
- R C Rigden
- Institute of Virology and Immunoprophylaxis, Mittelhausern CH3147, Switzerland
| | | | | | | | | |
Collapse
|
85
|
Rigden RC, Carrasco CP, Summerfield A, MCCullough KC. Macrophage phagocytosis of foot-and-mouth disease virus may create infectious carriers. Immunology 2002; 106:537-48. [PMID: 12153517 PMCID: PMC1782748 DOI: 10.1046/j.1365-2567.2002.01460.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophages play critical roles in innate defences against virus infections, particularly pertinent to the rapid immune response required following emergency vaccination against foot-and-mouth disease virus (FMDV). Consequently, macrophage-FMDV interaction was studied in vitro, in the absence of specific antibodies, to mimic the animal early postvaccination. A gradual loss of infectivity and viral antigen was observed over 48 hr, and no evidence of productive virus replication was found. From the pathological viewpoint, an important observation was that the majority of macrophages carried infectious virus for at least 10 hr. Pronase and mild acid treatments showed the virus to be primarily on the cell surface during the first 4 hr. Thereafter, it became internalized (pronase- and pH resistant), but remained infectious for 10-24 hr. The internalization process was dependent on microfilament activity, while the survival of infectious virus related to live virus-dependent inhibition of macrophage protein synthesis. Infectious centre assays demonstrated that this infectious virus - whether on the cell surface or internalized - was actually being released from the cells. This is interesting considering that FMDV is highly pH labile. Together, these characteristics suggest that the virus had been internalized by a process such as macropinocytosis, and fusion with endosomes was delayed or impaired. This mechanism whereby the virus could 'piggyback' on or in the macrophage, becoming internalized but not degraded for at least 10 hr, are important considerations in FMD pathogenesis. Such 'virus-transporting' macrophages would be in a position to carry infectious FMDV to different sites in the body, where it could be released to infect other cells for replication.
Collapse
Affiliation(s)
- Rachael C Rigden
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | | | | |
Collapse
|
86
|
Weingartl HM, Sabara M, Pasick J, van Moorlehem E, Babiuk L. Continuous porcine cell lines developed from alveolar macrophages: partial characterization and virus susceptibility. J Virol Methods 2002; 104:203-16. [PMID: 12088830 PMCID: PMC7119708 DOI: 10.1016/s0166-0934(02)00085-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porcine monomyeloid cell lines were established following transfection of primary porcine alveolar macrophage cultures with plasmid pSV3neo, carrying genes for neomycin resistance and SV40 large T antigen. The parental clone 3D4 exhibited a relatively rapid doubling time (25.5 h), high plating efficiency and mixed phenotype with respect to growth on a solid support. Single cell cloning of the 3D4 parent resulted in establishment of several cell lines; three of them designated 3D4/2, 3D4/21 and 3D4/31 were selected for further characterization. All three clones supported the replication of vesicular stomatitis virus (VSV), pseudorabies virus (PRV), classical swine fever virus (CSFV), swine vesicular disease virus (SVDV), swine poxvirus, African swine fever virus (ASFV), herpes simplex virus (HSV), parainfluenza virus, bovine adenovirus (BAV), vaccinia virus (VV), and porcine adenovirus (PAV). Under the conditions tested the cells did not support replication of porcine reproductive and respiratory syndrome virus (PRRSV). The swine myeloid character was confirmed for all three clones by fluorescence activated cell scanning (FACS) analysis using monoclonal antibodies 74-22-15 and DH59B, which recognize the pan-myeloid antigen cluster SWC3a. A subpopulation of each cell line was positive for nonspecific esterase activity and phagocytic activity to varying degrees depending on the media formulation. Cells from all three lines exhibited anchorage dependent growth when maintained in RPMI 1640 medium supplemented with 5-15% fetal bovine serum (FBS) and nonessential amino acids. Propagation in commercially formulated serum free media resulted in colony formation and growth in suspension. The addition of dimethyl sulfoxide (DMSO) or phorbol 12-myristate 13-acetate (PMA) to serum free media restored cell attachment. DMSO was also able to induce expression of CD14 monocyte marker in the 3D4/31 cell line maintained in FBS containing medium, as determined by FACS with monoclonal antibody CAM36A. Supplementation of RPMI medium with 10% porcine serum upregulated the expression of CD14 and induced expression of porcine macrophage markers recognized by antibodies 2B10 and 2G6 (Vet. Immunol. Immunopathol. 74 (2000) 163) in all three cell lines. The porcine myelomonocytic cell lines obtained may have a wide variety of applications in porcine virology and immunology.
Collapse
Affiliation(s)
- H M Weingartl
- NCFAD, CFIA, 1015 Arlington St., Winnipeg, MB, Canada R3E 3M4.
| | | | | | | | | |
Collapse
|
87
|
Higashi N, Morikawa A, Fujioka K, Fujita Y, Sano Y, Miyata-Takeuchi M, Suzuki N, Irimura T. Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages. Int Immunol 2002; 14:545-54. [PMID: 12039906 DOI: 10.1093/intimm/dxf021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We studied the expression of a human macrophage lectin specific for galactose/N-acetylgalactosamine (hMGL) during macrophage differentiation. The expression of hMGL during the in vitro differentiation induced by human serum was examined by immunostaining and Western blotting with a specific mAb, MLD-1, as well as with RT-PCR analysis. hMGL was detected on cells at an intermediate stage of differentiation. These cells were round, slightly larger in size (12.7 +/- 0.2 microm) than monocytes (9.8 +/- 0.1 microm) and expressed the macrophage marker CD14, but lacked the dendritic cell marker CD1a. The highest levels of expression occurred after 2-4 days of culture. At this time point, MLD-1 prominently stained 20-40% of the cells. Monocytes cultured for 16 h or fully differentiated monocyte-derived macrophages were negative or weak for hMGL expression. Similar transient expression was also observed during granulocyte macrophage colony stimulating factor- or macrophage colony stimulating factor-dependent macrophage differentiation. The lectin was characterized as a functional endocytic receptor for glycosylated macromolecules, since the uptake of carbohydrate polymers was partially inhibited by the addition of MLD-1. The distribution of hMGL(+) cells in normal human skin was found by immunostaining to be mainly in the upper dermis distant from vascular structures. More than 90% of the hMGL(+) cells were double stained with anti-CD68 mAb and constituted approximately 20% of the CD68(+) cells. We suggest that the dermal hMGL(+) cells are a subset of differentiated cells derived from monocytes and that hMGL is a unique marker for cells at an intermediate stage of macrophage differentiation.
Collapse
Affiliation(s)
- Nobuaki Higashi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Knoetig SM, McCullough KC, Summerfield A. Lipopolysaccharide-induced impairment of classical swine fever virus infection in monocytic cells is sensitive to 2-aminopurine. Antiviral Res 2002; 53:75-81. [PMID: 11684317 DOI: 10.1016/s0166-3542(01)00193-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharide (LPS) impairs classical swine fever virus (CSFV) replication in monocytic cells, which are primary targets for CSFV and mediators of virus-induced immunomodulation. Although soluble antiviral factors including interferons (IFN) were not detected, IFN-alpha and IFN-beta mRNA were induced. The serine threonine protein kinase inhibitor 2-aminopurine, impeded this antiviral activity. These results indicate that the LPS-induced antiviral state employs signaling pathways, in which the double-stranded RNA-dependent protein kinase (PKR) is actively involved.
Collapse
Affiliation(s)
- Sonja M Knoetig
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
| | | | | |
Collapse
|
89
|
Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S, Takamatsu H, Bertoni G, McCullough KC, Summerfield A. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001; 104. [PMID: 11683958 PMCID: PMC1783296 DOI: 10.1046/j.0019-2805.2001.01299.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Despite the central role that dendritic cells (DC) play in immune regulation and antigen presentation, little is known about porcine DC. In this study, two sources of DC were employed. Bone marrow haematopoietic cell-derived DC (BM-DC) were generated using granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence or absence of tumour necrosis factor-alpha (TNF-alpha). Monocyte-derived DC (Momicron-DC) were generated with GM-CSF and interleukin-4 (IL-4). In both systems, non-adherent cells developed with dendritic morphology, expressing high levels of major histocompatibility complex (MHC) class II. The presence of TNF-alpha increased the BM-DC yield, and enhanced T-cell stimulatory capacity. Both BM-DC and Momicron-DC expressed the pan-myeloid marker SWC3, as well as CD1 and CD80/86, but were also CD14+ and CD16+. The CD16 molecule was functional, acting as a low-affinity Fc receptor. In contrast, the CD14 on DC appeared to differ functionally from monocyte CD14: attempts to block CD14, in terms of lipopolysaccharide (LPS)-induced procoagulant activity (PCA), failed. The use of TNF-alpha or LPS for DC maturation induced up-regulation of MHC class II and/or CD80/86, but also CD14. Allogeneic mixed leucocyte reactions and staphylococcal enterotoxin B antigen presentation assays demonstrated that these DC possessed potent T-cell stimulatory capacity. No T helper cell polarization was noted. Both the BM-DC and the Momicron-DC induced a strong interferon-gamma and IL-4 response. Taken together, porcine DC generated in vitro possess certain characteristics relating them to DC from other species including humans, but the continued presence of CD14 and CD16 on mature and immature porcine DC was a notable difference.
Collapse
Affiliation(s)
- C P Carrasco
- Institute of Virology and Immunoprophylaxis, Mittelhausern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S, Takamatsu H, Bertoni G, McCullough KC, Summerfield A. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001; 104:175-84. [PMID: 11683958 PMCID: PMC1783296 DOI: 10.1046/j.1365-2567.2001.01299.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the central role that dendritic cells (DC) play in immune regulation and antigen presentation, little is known about porcine DC. In this study, two sources of DC were employed. Bone marrow haematopoietic cell-derived DC (BM-DC) were generated using granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence or absence of tumour necrosis factor-alpha (TNF-alpha). Monocyte-derived DC (Momicron-DC) were generated with GM-CSF and interleukin-4 (IL-4). In both systems, non-adherent cells developed with dendritic morphology, expressing high levels of major histocompatibility complex (MHC) class II. The presence of TNF-alpha increased the BM-DC yield, and enhanced T-cell stimulatory capacity. Both BM-DC and Momicron-DC expressed the pan-myeloid marker SWC3, as well as CD1 and CD80/86, but were also CD14+ and CD16+. The CD16 molecule was functional, acting as a low-affinity Fc receptor. In contrast, the CD14 on DC appeared to differ functionally from monocyte CD14: attempts to block CD14, in terms of lipopolysaccharide (LPS)-induced procoagulant activity (PCA), failed. The use of TNF-alpha or LPS for DC maturation induced up-regulation of MHC class II and/or CD80/86, but also CD14. Allogeneic mixed leucocyte reactions and staphylococcal enterotoxin B antigen presentation assays demonstrated that these DC possessed potent T-cell stimulatory capacity. No T helper cell polarization was noted. Both the BM-DC and the Momicron-DC induced a strong interferon-gamma and IL-4 response. Taken together, porcine DC generated in vitro possess certain characteristics relating them to DC from other species including humans, but the continued presence of CD14 and CD16 on mature and immature porcine DC was a notable difference.
Collapse
Affiliation(s)
- C P Carrasco
- Institute of Virology and Immunoprophylaxis, Mittelhausern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Basta S, Knoetig S, Summerfield A, McCullough KC. Lipopolysaccharide and phorbol 12-myristate 13-acetate both impair monocyte differentiation, relating cellular function to virus susceptibility. Immunology 2001; 103:488-97. [PMID: 11529940 PMCID: PMC1783260 DOI: 10.1046/j.1365-2567.2001.01266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) impeded monocyte to macrophage differentiation with respect to typical phenotypic modulation and certain phagocyte-related processes. The down-regulation of the porcine monocyte marker SWC1, and up-regulation of the SWC9 macrophage marker were retarded, but not inhibited, as was the differentiation-associated down-regulation of p53 and myeloperoxidase. Despite this clear impairment of macrophage differentiation, not all cellular functions were equally susceptible. Both agents inhibited phagocytosis, but not low-density lipoprotein receptor-associated endocytosis. Only LPS inhibited tartrate-resistant acid phosphatase up-regulation. In contrast, increase of vacuolar acidification rates was more susceptible to PMA. The activity of certain endosomal/lysosomal enzymes - esterase, nucleotidase, peroxidase and cathepsins - was generally enhanced by both LPS and PMA. This contrasted with autophagosomal activity, detected through the induction of an antiviral state. Disruption of autophagosomes and lysosomes (methionine-O-methyl ester), but not lysosomes alone (glycyl-L-phenylalanine) reversed LPS-induced inhibition of virus replication, without influencing the PMA-induced antiviral effect. Thus, PMA is similar to LPS in inhibiting monocyte to macrophage differentiation, when primary blood monocytes are employed, but not all pathways are equally susceptible. The analyses demonstrate that the pathways modulated during monocyte differentiation function somewhat independently. Moreover, certain functions of monocytic cells are more important with respect to the outcome of virus infection, with autophagosomal activities in particular favouring cell survival.
Collapse
Affiliation(s)
- S Basta
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | | | | | |
Collapse
|
92
|
Basta S, Carrasco CP, Knoetig SM, Rigden RC, Gerber H, Summerfield A, McCullough KC. Porcine alveolar macrophages: poor accessory or effective suppressor cells for T-lymphocytes. Vet Immunol Immunopathol 2000; 77:177-90. [PMID: 11137117 DOI: 10.1016/s0165-2427(00)00237-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Porcine Alv-Mphi from bronchoalveolar lavages were tested for their function in an in vitro foot-and-mouth disease virus (FMDV)-specific lymphoproliferative recall response. The Alv-Mphi were seen to be poor accessory cells when compared with peripheral blood monocytes. This poor capacity was evident despite an efficient expression of SLA-DR region antigens, and other co-stimulatory adhesion molecules. It was noted that Alv-Mphi secrete relatively little interleukin 1 (IL-1beta), with or without LPS induction, even though mRNA for the cytokine could be detected. In contrast, blood monocytes with their effective accessory activity were potent secretors of IL-1. Although this IL-1beta would be important with respect to the accessory capacity of monocytic cells, it was noted that the absence of bioactive IL-1 from the Alv-Mpi cultures was not solely responsible for their poor accessory function. In fact, the Alv-Mphi produced factors which not only inhibited IL-1 bioactivity, but were also responsible for a clear suppression of lymphoproliferation. This suppressor activity was dependent on the type of monocytic cell present in the culture, being more prominent when "scavenger" phagocytes were present. Thus, the major role of Alv-Mphi s not as an accessory cell akin to monocytes, but as both a scavenger cell, related to Mphi derived from monocytes in the absence of inflammatory signals, and an immunoregulatory cell.
Collapse
Affiliation(s)
- S Basta
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147, Mittelhäusern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
93
|
Chamorro S, Revilla C, Alvarez B, López-Fuertes L, Ezquerra A, Domínguez J. Phenotypic characterization of monocyte subpopulations in the pig. Immunobiology 2000; 202:82-93. [PMID: 10879692 DOI: 10.1016/s0171-2985(00)80055-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We have recently described the existence of two subsets of porcine monocytes based on the expression of CD163. In this study we compare the expression of a number of cell surface antigens in CD163+ and CD163- monocyte subsets using three-color flow cytometry. These monocyte subsets show differences with respect to the expression of MHC class II antigens (SLA-DR and DQ) and a variety of adhesion molecules (CD11a, wCD11c, wCD29, CD49d) that are expressed at higher levels on CD163+ monocytes, and of CD14 that is higher expressed by CD 163- cells. These differences on phenotype could reflect differences in the ability of these two subsets to migrate to tissues and may account for the higher allostimulatory capacity of CD163+ cells. In some aspects, the phenotype of CD163+ monocytes resembles that of mature macrophages. In vitro serum-induced maturation of monocytes into macrophages lead to the expression of SWC9 together with an increase in the expression of CD163 and a reduction in that of CD14. These results delineate a maturation pathway where CD14hiCD163-SWC9- monocytes develop into CD14loCD163+SWC9- monocytes and these cells into CD14loCD163+SWC9+ macrophages.
Collapse
Affiliation(s)
- S Chamorro
- Centro de Investigación en Sanidad Animal (INIA), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
94
|
Blanco E, McCullough K, Summerfield A, Fiorini J, Andreu D, Chiva C, Borrás E, Barnett P, Sobrino F. Interspecies major histocompatibility complex-restricted Th cell epitope on foot-and-mouth disease virus capsid protein VP4. J Virol 2000; 74:4902-7. [PMID: 10775633 PMCID: PMC112017 DOI: 10.1128/jvi.74.10.4902-4907.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell epitopes within viral polypeptide VP4 of the capsid protein of foot-and-mouth disease virus were analyzed using 15-mer peptides and peripheral blood mononuclear cells (PBMC) from vaccinated outbred pigs. An immunodominant region between VP4 residues 16 and 35 was identified, with peptide residues 20 to 34 (VP4-0) and 21 to 35 (VP4-5) particularly immunostimulatory for PBMC from all of the vaccinated pigs. CD25 upregulation on peptide-stimulated CD4(+) CD8(+) cells-dominated by Th memory cells in the pig-and inhibition using anti-major histocompatibility complex class II monoclonal antibodies indicated recognition by Th lymphocytes. VP4-0 immunogenicity was retained in a tandem peptide with the VP1 residue 137 to 156 sequential B-cell epitope. This B-cell site also retained immunogenicity, but evidence is presented that specific antibody induction in vitro required both this and the T-cell site. Heterotypic recognition of the residue 20 to 35 region was also noted. Consequently, the VP4 residue 20 to 35 region is a promiscuous, immunodominant and heterotypic T-cell antigenic site for pigs that is capable of providing help for a B-cell epitope when in tandem, thus extending the possible immunogenic repertoire of peptide vaccines.
Collapse
Affiliation(s)
- E Blanco
- Centro de Investigation en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|