51
|
Jiang F, Tian Z, Wang Y. Characterization of ligand response properties of the CRP protein from Pseudomonas putida. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5360-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Miyakoshi M, Shintani M, Inoue K, Terabayashi T, Sai F, Ohkuma M, Nojiri H, Nagata Y, Tsuda M. ParI, an orphan ParA family protein from Pseudomonas putida KT2440-specific genomic island, interferes with the partition system of IncP-7 plasmids. Environ Microbiol 2012; 14:2946-59. [PMID: 22925377 DOI: 10.1111/j.1462-2920.2012.02861.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/26/2012] [Accepted: 07/28/2012] [Indexed: 01/09/2023]
Abstract
Pseudomonas putida KT2440 is an ideal soil bacterium for expanding the range of degradable compounds via the recruitment of various catabolic plasmids. In the course of our investigation of the host range of IncP-7 catabolic plasmids pCAR1, pDK1 and pWW53, we found that the IncP-7 miniplasmids composed of replication and partition loci were exceptionally unstable in KT2440, which is the authentic host of the archetypal IncP-9 plasmid pWW0. This study identified ParI, a homologue of ParA family of plasmid partitioning proteins encoded on the KT2440-specific cryptic genomic island, as a negative host factor for the maintenance of IncP-7 plasmids. The miniplasmids were destabilized by ectopic expression of ParI, and the loss rate correlated with the copy number of ParB binding sites in the centromeric parS region. Mutations in the conserved ATPase domains of ParI abolished destabilization of miniplasmids. Furthermore, ParI destabilized miniplasmid derivatives carrying the partition-deficient parA mutations but failed to impact the stability of miniplasmid derivatives with parB mutations in the putative arginine finger. Altogether, these results indicate that ParI interferes with the IncP-7 plasmid partition system. This study extends canonical partition-mediated incompatibility of plasmids beyond heterogeneous mobile genetic elements, namely incompatibility between plasmid and genomic island.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness. Appl Environ Microbiol 2012; 78:6963-74. [PMID: 22843519 DOI: 10.1128/aem.00901-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment.
Collapse
|
54
|
Santamaría-Hernando S, Krell T, Ramos-González MI. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins. PLoS One 2012; 7:e40698. [PMID: 22808235 PMCID: PMC3396595 DOI: 10.1371/journal.pone.0040698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33–79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca2+ binding with a KD of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María-Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
55
|
Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 2012; 7:e35498. [PMID: 22545111 PMCID: PMC3335876 DOI: 10.1371/journal.pone.0035498] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/19/2012] [Indexed: 01/26/2023] Open
Abstract
Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP)-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.
Collapse
|
56
|
Effects of entrapment on nucleic acid content, cell morphology, cell surface property, and stress of pure cultures commonly found in biological wastewater treatment. Appl Microbiol Biotechnol 2011; 92:407-18. [DOI: 10.1007/s00253-011-3393-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 01/10/2023]
|
57
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
58
|
Follonier S, Panke S, Zinn M. A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Microb Cell Fact 2011; 10:25. [PMID: 21513516 PMCID: PMC3107774 DOI: 10.1186/1475-2859-10-25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/22/2011] [Indexed: 11/15/2022] Open
Abstract
Background The substitution of plastics based on fossil raw material by biodegradable plastics produced from renewable resources is of crucial importance in a context of oil scarcity and overflowing plastic landfills. One of the most promising organisms for the manufacturing of medium-chain-length polyhydroxyalkanoates (mcl-PHA) is Pseudomonas putida KT2440 which can accumulate large amounts of polymer from cheap substrates such as glucose. Current research focuses on enhancing the strain production capacity and synthesizing polymers with novel material properties. Many of the corresponding protocols for strain engineering rely on the rifampicin-resistant variant, P. putida KT2442. However, it remains unclear whether these two strains can be treated as equivalent in terms of mcl-PHA production, as the underlying antibiotic resistance mechanism involves a modification in the RNA polymerase and thus has ample potential for interfering with global transcription. Results To assess PHA production in P. putida KT2440 and KT2442, we characterized the growth and PHA accumulation on three categories of substrate: PHA-related (octanoate), PHA-unrelated (gluconate) and poor PHA substrate (citrate). The strains showed clear differences of growth rate on gluconate and citrate (reduction for KT2442 > 3-fold and > 1.5-fold, respectively) but not on octanoate. In addition, P. putida KT2442 PHA-free biomass significantly decreased after nitrogen depletion on gluconate. In an attempt to narrow down the range of possible reasons for this different behavior, the uptake of gluconate and extracellular release of the oxidized product 2-ketogluconate were measured. The results suggested that the reason has to be an inefficient transport or metabolization of 2-ketogluconate while an alteration of gluconate uptake and conversion to 2-ketogluconate could be excluded. Conclusions The study illustrates that the recruitment of a pleiotropic mutation, whose effects might reach deep into physiological regulation, effectively makes P. putida KT2440 and KT2442 two different strains in terms of mcl-PHA production. The differences include the onset of mcl-PHA production (nitrogen limitation) and the resulting strain performance (growth rate). It remains difficult to predict a prioriwhere such major changes might occur, as illustrated by the comparable behavior on octanoate. Consequently, experimental data on mcl-PHA production acquired for P. putida KT2442 cannot always be extrapolated to KT2440 and vice versa, which potentially reduces the body of available knowledge for each of these two model strains for mcl-PHA production substantially.
Collapse
Affiliation(s)
- Stéphanie Follonier
- Laboratory for Biomaterials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9000 St, Gallen, Switzerland
| | | | | |
Collapse
|
59
|
Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 2011; 35:299-323. [PMID: 20796030 PMCID: PMC3056050 DOI: 10.1111/j.1574-6976.2010.00249.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas putida is a gram-negative rod-shaped gammaproteobacterium that is found throughout various environments. Members of the species P. putida show a diverse spectrum of metabolic activities, which is indicative of their adaptation to various niches, which includes the ability to live in soils and sediments contaminated with high concentrations of heavy metals and organic contaminants. Pseudomonas putida strains are also found as plant growth-promoting rhizospheric and endophytic bacteria. The genome sequences of several P. putida species have become available and provide a unique tool to study the specific niche adaptation of the various P. putida strains. In this review, we compare the genomes of four P. putida strains: the rhizospheric strain KT2440, the endophytic strain W619, the aromatic hydrocarbon-degrading strain F1 and the manganese-oxidizing strain GB-1. Comparative genomics provided a powerful tool to gain new insights into the adaptation of P. putida to specific lifestyles and environmental niches, and clearly demonstrated that horizontal gene transfer played a key role in this adaptation process, as many of the niche-specific functions were found to be encoded on clearly defined genomic islands.
Collapse
Affiliation(s)
- Xiao Wu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | | | | | | | | |
Collapse
|
60
|
Lee Y, Seo H, Yeom J, Park W. Molecular characterization of the extracellular matrix in a Pseudomonas putida dsbA mutant: implications for acidic stress defense and plant growth promotion. Res Microbiol 2011; 162:302-10. [DOI: 10.1016/j.resmic.2010.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/12/2010] [Indexed: 11/27/2022]
|
61
|
Martínez V, García P, García JL, Prieto MA. Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 2011; 4:533-47. [PMID: 21418544 PMCID: PMC3815265 DOI: 10.1111/j.1751-7915.2011.00257.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The development of efficient recovery processes is essential to reduce the cost of polyhydroxyalkanoates (PHAs) production. In this work, a programmed self‐disruptive Pseudomonas putida BXHL strain, derived from the prototype medium‐chain‐length PHA producer bacterium P. putida KT2440, was constructed as a proof of concept for exploring the possibility to control and facilitate the release of PHA granules to the extracellular medium. The new autolytic cell disruption system is based on two simultaneous strategies: the coordinated action of two proteins from the pneumococcal bacteriophage EJ‐1, an endolysin (Ejl) and a holin (Ejh), and the mutation of the tolB gene, which exhibits alterations in outer membrane integrity that induce lysis hypersensitivity. The ejl and ejh coding genes were expressed under a XylS/Pm monocopy expression system inserted into the chromosome of the tolB mutant strain, in the presence of 3‐methylbenzoate as inducer molecule. Our results demonstrate that the intracellular presence of PHA granules confers resistance to cell envelope. Conditions to control the cell autolysis in P. putida BXHL in terms of optimal fermentation, PHA content and PHA recovery have been set up by exploring the sensitivity to detergents, chelating agents and wet biomass solubility in organic solvents such as ethyl acetate.
Collapse
Affiliation(s)
- Virginia Martínez
- Environmental Biology Department, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | |
Collapse
|
62
|
Abstract
Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 microm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.
Collapse
|
63
|
Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 2010; 77:549-61. [DOI: 10.1111/j.1365-2958.2010.07249.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
64
|
Matilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivanco JM, Ramos-González MI. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:381-8. [PMID: 23766110 DOI: 10.1111/j.1758-2229.2009.00091.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pseudomonas putida KT2440 is an efficient colonizer of the rhizosphere of plants of agronomical and basic interest. We have demonstrated that KT2440 can protect the model plant Arabidopsis thaliana against infection by the phytopathogen Pseudomonas syringae pv. tomato DC3000. P. putida extracellular haem-peroxidase (PP2561) was found to be important for competitive colonization and essential for the induction of plant systemic resistance. Root exudates of plants elicited by KT2440 exhibited distinct patterns of metabolites compared with those of non-elicited plants. The levels of some of these compounds were dramatically reduced in axenic plants or plants colonized by a mutant defective in PP2561, which has increased sensitiveness to oxidative stress with respect to the wild type. Thus high-level oxidative stress resistance is a bacterial driving force in the rhizosphere for efficient colonization and to induce systemic resistance. These results provide important new insight into the complex events that occur in order for plants to attain resistance against foliar pathogens.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain. Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands. Department of Horticulture and Landscape Architecture, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Dechesne A, Owsianiak M, Bazire A, Grundmann GL, Binning PJ, Smets BF. Biodegradation in a partially saturated sand matrix: compounding effects of water content, bacterial spatial distribution, and motility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2386-2392. [PMID: 20192168 DOI: 10.1021/es902760y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial pesticide degraders are generally heterogeneously distributed in soils, leaving soil volumes devoid of degradation potential. This is expected to have an impact on degradation rates because the degradation of pollutant molecules in such zones will be contingent either on degraders colonizing these zones or on pollutant mass transfer to neighboring zones containing degraders. In a model system, we quantified the role exerted by water on mineralization rate in the context of a heterogeneously distributed degradation potential. Alginate beads colonized by Pseudomonas putida KT2440 were inserted at prescribed locations in sand microcosms so that the initial spatial distribution of the mineralization potential was controlled. The mineralization rate was strongly affected by the matric potential (decreasing rate with decreasing matric potential) and by the initial distribution of the degraders (more aggregated distributions being associated with lower rates). The mineralization was diffusion-limited, as confirmed with a mathematical model. In wet conditions, extensive cell dispersal was observed for the flagellated wild type and, albeit to a lesser extent, for a nonflagellated mutant, partially relieving the diffusion limitation. Dry conditions, however, sustained low mineralization rates through the combined effects of low pollutant diffusivity and limited degrader dispersal.
Collapse
Affiliation(s)
- Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej Bg 113, Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
66
|
Renzi F, Rescalli E, Galli E, Bertoni G. Identification of genes regulated by the MvaT-like paralogues TurA and TurB ofPseudomonas putidaKT2440. Environ Microbiol 2010; 12:254-63. [DOI: 10.1111/j.1462-2920.2009.02064.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
67
|
|
68
|
Lee Y, Oh S, Park W. Inactivation of the Pseudomonas putida KT2440 dsbA gene promotes extracellular matrix production and biofilm formation. FEMS Microbiol Lett 2009; 297:38-48. [PMID: 19500143 DOI: 10.1111/j.1574-6968.2009.01650.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-DeltadsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-DeltadsbA under UV light as well as in both the wild type and the KT2440-DeltadsbA when grown on Luria-Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.
Collapse
Affiliation(s)
- Yunho Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | | | | |
Collapse
|
69
|
Yousef-Coronado F, Travieso ML, Espinosa-Urgel M. Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 2009; 288:118-24. [PMID: 18783437 DOI: 10.1111/j.1574-6968.2008.01339.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mechanisms governing biofilm formation have generated considerable interest in recent years, yet comparative analyses of processes for bacterial establishment on abiotic and biotic surfaces are still limited. In this report we have expanded previous information on the genetic determinants required for colonization of plant surfaces by Pseudomonas putida populations and analyzed their correlation with biofilm formation processes on abiotic surfaces. Insertional mutations affecting flagellar genes or the synthesis and transport of the large adhesin LapA lead to decreased adhesion to seeds and biofilm formation on abiotic surfaces. The latter also causes reduced fitness in the rhizosphere. Decreased seed adhesion and altered biofilm formation kinetics are observed in mutants affected in heme biosynthesis and a gene that might participate in oxidative stress responses, whereas a mutant in a gene involved in cytochrome oxidase assembly is affected in the bacterium-plant interaction but not in bacterial establishment on abiotic surfaces. Finally, a mutant altered in lipopolysaccharide biosynthesis is impaired in seed and root colonization but seems to initiate attachment to plastic faster than the wild type. This variety of phenotypes reflects the complexity of bacterial adaptation to sessile life, and the partial overlap between mechanisms leading to biofilm formation on abiotic and biotic surfaces.
Collapse
|
70
|
Vitale E, Milani A, Renzi F, Galli E, Rescalli E, de Lorenzo V, Bertoni G. Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma54-promoter Pu to the response regulator PprA. Mol Microbiol 2009; 69:698-713. [PMID: 19138193 DOI: 10.1111/j.1365-2958.2008.06321.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Implantation of the regulatory circuit of the degradation pathway of TOL plasmid pWW0 in the native transcriptional network of the host Pseudomonas putida involves interplay between plasmid- and chromosome-encoded factors. We have employed a reverse genetics approach to investigate such a molecular wiring by identifying host proteins that form stable complexes with Pu, the sigma(54)-dependent promoter of the upper TOL operon of pWW0. This approach revealed that the Pu upstream activating sequences (UAS), the target sites of the cognate activator XylR, form a specific complex with a host protein which, following DNA affinity purification and mass spectrometry analysis, was identified as the LytTR-type two-component response regulator PprA. Directed inactivation of pprA resulted in the upregulation of the Pu promoter in vivo, while expression of the same gene from a plasmid vector strongly repressed Pu activity. Such a downregulation of Pu by PprA could be faithfully reproduced both in vitro with purified components and in an in vivo reporter system assembled in Escherichia coli. The overlap of the PprA and XylR binding sites suggested that the basis for the inhibitory effect on Pu was a mutual exclusion mechanism between the two proteins to bind the UAS. We argue that the binding of the response regulator PprA to Pu (a case without precedents in sigma(54)-dependent transcription) helps to anchor the TOL regulatory subnetwork to the wider context of the host transcriptome, thereby allowing the entry of physiological signals that modulate the outcome of promoter activity.
Collapse
Affiliation(s)
- Elena Vitale
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
71
|
Molina-Henares MA, García-Salamanca A, Molina-Henares AJ, de la Torre J, Herrera MC, Ramos JL, Duque E. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440. Microb Biotechnol 2008; 2:91-100. [PMID: 21261884 PMCID: PMC3815424 DOI: 10.1111/j.1751-7915.2008.00062.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas putida KT2440 is a non-pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini-Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene-encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB-like genes are present in the host chromosome.
Collapse
Affiliation(s)
- M Antonia Molina-Henares
- Consejo Superior de Investigaciones Científicas, Estación del Zaidín, Department of Environmental Protection, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Khan NH, Ahsan M, Yoshizawa S, Hosoya S, Yokota A, Kogure K. Multilocus sequence typing and phylogenetic analyses of Pseudomonas aeruginosa Isolates from the ocean. Appl Environ Microbiol 2008; 74:6194-205. [PMID: 18757570 PMCID: PMC2570286 DOI: 10.1128/aem.02322-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 08/15/2008] [Indexed: 11/20/2022] Open
Abstract
Recent isolation of Pseudomonas aeruginosa strains from the open ocean and subsequent pulsed-field gel electrophoresis analyses indicate that these strains have a unique genotype (N. H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino, M. Nishimura, and K. Kogure, Microb. Ecol. 53:173-186, 2007). We hypothesized that ocean P. aeruginosa strains have a unique phylogenetic position relative to other strains. The objective of this study was to clarify the intraspecies phylogenetic relationship between marine strains and other strains from various geographical locations. Considering the advantages of using databases, multilocus sequence typing (MLST) was chosen for the typing and discrimination of ocean P. aeruginosa strains. Seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were analyzed, and the results were compared with data on the MLST website. These genes were also used for phylogenetic analysis of P. aeruginosa. Rooted and unrooted phylogenetic trees were generated for each gene locus and the concatenated gene fragments. MLST data showed that all the ocean strains were new. Trees constructed for individual and concatenated genes revealed that ocean P. aeruginosa strains have clusters distinct from those of other P. aeruginosa strains. These clusters roughly reflected the geographical locations of the isolates. These data support our previous findings that P. aeruginosa strains are present in the ocean. It can be concluded that the ocean P. aeruginosa strains have diverged from other isolates and form a distinct cluster based on MLST and phylogenetic analyses of seven housekeeping genes.
Collapse
Affiliation(s)
- Nurul Huda Khan
- Marine Microbiology Laboratory, Ocean Research Institute, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
73
|
A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida. J Bacteriol 2008; 190:7666-74. [PMID: 18820016 DOI: 10.1128/jb.00868-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A two-component system formed by a sensor histidine kinase and a response regulator has been identified as an element participating in cell density signal transduction in Pseudomonas putida KT2440. It is a homolog of the Pseudomonas aeruginosa RoxS/RoxR system, which in turn belongs to the RegA/RegB family, described in photosynthetic bacteria as a key regulatory element. In KT2440, the two components are encoded by PP_0887 (roxS) and PP_0888 (roxR), which are transcribed in a single unit. Characterization of this two-component system has revealed its implication in redox signaling and cytochrome oxidase activity, as well as in expression of the cell density-dependent gene ddcA, involved in bacterial colonization of plant surfaces. Whole-genome transcriptional analysis has been performed to define the P. putida RoxS/RoxR regulon. It includes genes involved in sugar and amino acid metabolism and the sulfur starvation response and elements of the respiratory chain (a cbb3 cytochrome oxidase, Fe-S clusters, and cytochrome c-related proteins) or genes participating in the maintenance of the redox balance. A putative RoxR recognition element containing a conserved hexamer (TGCCAG) has also been identified in promoters of genes regulated by this two-component system.
Collapse
|
74
|
Parales RE, Parales JV, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:1-73, 2 p following 264. [PMID: 18485280 DOI: 10.1016/s0065-2164(08)00401-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R E Parales
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
75
|
Pizarro-Tobías P, de Genève J, Fernández M. Mining GOLD and new model organisms in biotechnology. Microb Biotechnol 2008; 1:273-4. [PMID: 21261847 PMCID: PMC3815392 DOI: 10.1111/j.1751-7915.2008.00039.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
76
|
Di Gennaro P, Ferrara S, Bestetti G, Sello G, Solera D, Galli E, Renzi F, Bertoni G. Novel auto-inducing expression systems for the development of whole-cell biocatalysts. Appl Microbiol Biotechnol 2008; 79:617-25. [DOI: 10.1007/s00253-008-1460-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/07/2008] [Accepted: 03/14/2008] [Indexed: 11/29/2022]
|
77
|
Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 2008; 8:R179. [PMID: 17784941 PMCID: PMC2375017 DOI: 10.1186/gb-2007-8-9-r179] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/09/2007] [Accepted: 09/04/2007] [Indexed: 01/03/2023] Open
Abstract
A global analysis of Pseudomonas putida gene expression performed during the interaction with maize roots revealed how a bacterial population adjusts its genetic program to the specific conditions of this lifestyle. Background Mutualistic interactions less well known than those between rhizobia and legumes are commonly found between plants and bacteria, frequently pseudomonads, which colonize roots and adjacent soil areas (the rhizosphere). Results A global analysis of Pseudomonas putida genes expressed during their interaction with maize roots revealed how a bacterial population adjusts its genetic program to this lifestyle. Differentially expressed genes were identified by comparing rhizosphere-colonizing populations with three distinct controls covering a variety of nutrients, growth phases and life styles (planktonic and sessile). Ninety rhizosphere up-regulated (rup) genes, which were induced relative to all three controls, were identified, whereas there was no repressed gene in common between the experiments. Genes involved in amino acid uptake and metabolism of aromatic compounds were preferentially expressed in the rhizosphere, which reflects the availability of particular nutrients in root exudates. The induction of efflux pumps and enzymes for glutathione metabolism indicates that adaptation to adverse conditions and stress (oxidative) response are crucial for bacterial life in this environment. The finding of a GGDEF/EAL domain response regulator among the induced genes suggests a role for the turnover of the secondary messenger c-diGMP in root colonization. Several mutants in rup genes showed reduced fitness in competitive root colonization. Conclusion Our results show the importance of two selective forces of different nature to colonize the rhizosphere: stress adaptation and availability of particular nutrients. We also identify new traits conferring bacterial survival in this niche and open a way to the characterization of specific signalling and regulatory processes governing the plant-Pseudomonas association.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental de Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental de Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain
| | - José J Rodríguez-Herva
- Department of Environmental Protection, Estación Experimental de Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain
| | - Juan L Ramos
- Department of Environmental Protection, Estación Experimental de Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain
| | - María Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental de Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, Granada 18008, Spain
| |
Collapse
|
78
|
Matilla MA, Ramos JL, Duque E, de Dios Alché J, Espinosa-Urgel M, Ramos-González MI. Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol 2008; 9:1842-50. [PMID: 17564617 DOI: 10.1111/j.1462-2920.2007.01286.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida KT2440 is unable to swarm at its common temperature of growth in the laboratory (30 degrees C) but exhibits surface motility similar to swarming patterns in other Pseudomonas between 18 degrees C and 28 degrees C. These motile cells show differentiation, consisting on elongation and the presence of surface appendages. Analysis of a collection of mutants to define the molecular determinants of this type of surface movement in KT2440 shows that while type IV pili and lipopolysaccharide O-antigen are requisites flagella are not. Although surface motility of flagellar mutants was macroscopically undistinguishable from that of the wild type, microscopy analysis revealed that these mutants move using a distinct mechanism to that of the wild-type strain. Mutants either in the siderophore pyoverdine (ppsD) or in the FpvA siderophore receptor were also unable to spread on surfaces. Motility in the ppsD strain was totally restored with pyoverdine and partially with the wild-type ppsD allele. Phenotype of the fpvA strain was not complemented by this siderophore. We discuss that iron influences surface motility and that it can be an environmental cue for swarming-like movement in P. putida. This study constitutes the first report assigning an important role to pyoverdine iron acquisition in en masse bacterial surface movement.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidin, CSIC, Profesor Albareda, 1 Granada 18008, Spain
| | | | | | | | | | | |
Collapse
|
79
|
Roca A, Rodríguez‐Herva J, Duque E, Ramos JL. Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microb Biotechnol 2008; 1:158-69. [PMID: 21261833 PMCID: PMC3864449 DOI: 10.1111/j.1751-7915.2007.00014.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/20/2007] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas putida KT2440 exhibits two formaldehyde dehydrogenases and two formate dehydrogenase complexes that allow the strain to stoichiometrically convert formaldehyde into CO(2). The strain tolerated up to 1.5 mM formaldehyde and died in the presence of 10 mM. In the presence of 0.5 mM formaldehyde, a sublethal concentration of this chemical, the growth rate decreased by about 40% with respect to growth in the absence of the toxicant. Transcriptomic analysis revealed that in response to low formaldehyde concentrations, a limited number of genes (52) were upregulated. Based on the function of these genes it seems that sublethal concentrations of HCOH trigger responses to overcome DNA and protein damage, extrude this toxic compound, and detoxify it by converting the chemical to CO(2). In strains bearing mutations of the upregulated genes we analysed growth inhibition by 1.5 mM HCOH and killing rates by 10 mM HCOH. Mutants in the MexEF/OprN efflux pump and in the DNA repair genes recA and uvrB were hypersensitive to 10 mM HCOH, the killing rate being three to four orders of magnitude higher than those in the wild-type strain. Mutants in other upregulated genes died at slightly higher or at similar rates to the parental strain. Regarding growth inhibition, we found that mutants in glutathione biosynthesis, stress response mediated by 2-hydroxy acid dehydrogenases and two efflux pumps of the MSF family were unable to grow in the presence of 1.5 mM HCOH. In an independent screening test we searched for mutants which were hypersensitive to formaldehyde, but whose expression did not change in response to this chemical. Two mutants with insertions in recD and fhdA were found which were unable to grow in the presence of 1.5 mM HCOH. The recD mutant was hypersensitive to 10 mM HCOH and died at a higher rate than the parental strain.
Collapse
Affiliation(s)
- Amalia Roca
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, E‐18008 Granada, Spain
| | - José‐Juan Rodríguez‐Herva
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, E‐18008 Granada, Spain
| | - Estrella Duque
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, E‐18008 Granada, Spain
| | - Juan L. Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, E‐18008 Granada, Spain
- Unidad de Química Atmosférica, CSIC‐Universidad de Huelva, Huelva, Spain
| |
Collapse
|
80
|
Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H. Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 2007; 189:6849-60. [PMID: 17675379 PMCID: PMC2045235 DOI: 10.1128/jb.00684-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/19/2007] [Indexed: 11/20/2022] Open
Abstract
The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazole as the sole carbon source was compared to that during growth with succinate. The carbazole catabolic car and ant operons were induced, along with the chromosomal cat and pca genes involved in the catechol branch of the beta-ketoadipate pathway. Additionally, the regulatory gene antR encoding the AraC/XylS family transcriptional activator specific for car and ant operons was upregulated. The characterization of the antR promoter revealed that antR is transcribed from an RpoN-dependent promoter, suggesting that the successful expression of the carbazole catabolic operons depends on whether the chromosome contains the specific RpoN-dependent activator. Next, to analyze whether the horizontal transfer of a plasmid alters the transcription network of its host chromosome, we compared the chromosomal transcriptomes of KT2440(pCAR1) and KT2440 under the same growth conditions. Only subtle changes were caused by the transfer of pCAR1, except for the significant induction of the hypothetical gene PP3700, designated parI, which encodes a putative ParA-like ATPase with an N-terminal Xre-type DNA-binding motif. Further transcriptional analyses showed that the parI promoter was positively regulated by ParI itself and the pCAR1-encoded protein ParA.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
81
|
del Castillo T, Ramos JL. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 2007; 189:6602-10. [PMID: 17616587 PMCID: PMC2045187 DOI: 10.1128/jb.00679-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440(pWW0) can use toluene via the TOL plasmid-encoded catabolic pathways and can use glucose via a series of three peripheral chromosome-encoded routes that convert glucose into 6-phosphogluconate (6PG), namely, the glucokinase pathway, in which glucose is transformed to 6PG through the action of glucokinase and glucose-6-phosphate dehydrogenase. Alternatively, glucose can be oxidized to gluconate, which can be phosphorylated by gluconokinase to 6PG or oxidized to 2-ketogluconate, which, in turn, is converted into 6PG. Our results show that KT2440 metabolizes glucose and toluene simultaneously, as revealed by net flux analysis of [(13)C]glucose. Determination of glucokinase and gluconokinase activities in glucose metabolism, gene expression assays using a fusion of the promoter of the Pu TOL upper pathway to 'lacZ, and global transcriptomic assays revealed simultaneous catabolite repression in the use of these two carbon sources. The effect of toluene on glucose metabolism was directed to the glucokinase branch and did not affect gluconate metabolism. Catabolite repression of the glucokinase pathway and the TOL pathway was triggered by two different catabolite repression systems. Expression from Pu was repressed mainly via PtsN in response to high levels of 2-dehydro-3-deoxygluconate-6-phosphate, whereas repression of the glucokinase pathway was channeled through Crc.
Collapse
|
82
|
Rodríguez-Herva JJ, García V, Hurtado A, Segura A, Ramos JL. The ttgGHI solvent efflux pump operon of Pseudomonas putida DOT-T1E is located on a large self-transmissible plasmid. Environ Microbiol 2007; 9:1550-61. [PMID: 17504492 DOI: 10.1111/j.1462-2920.2007.01276.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida DOT-T1E is a solvent-tolerant strain able to grow in the presence of > 1% (v/v) toluene in the culture medium. A set of multidrug efflux pumps have been found to play a major role in the tolerance of this bacterium to organic solvents (Rojas et al., J Bacteriol 183: 3967-3973). In the course of studies of the mechanisms underlying solvent tolerance in DOT-T1E, we isolated a spontaneous solvent-sensitive mutant derivative which had lost the genes encoding the TtgGHI efflux pump, the most important extrusion element in quantitative terms. Genomic comparisons between the mutant and its parental strain by microarray analysis revealed that in addition to the ttgVW-ttgGHI gene cluster, another group of genes, highly similar to those found in the Tn4653A and ISPpu12 transposable elements of the TOL plasmid pWW0 from P. putida mt-2, were also absent from this strain. Further analysis demonstrated that strain DOT-T1E harboured a large plasmid (named pGRT1) that was lost from the solvent-sensitive mutant. Mapping analysis revealed that the ttgVW-ttgGHI genes and the Tn4653A-like transposon are borne by the pGRT1 plasmid. Plasmid pGRT1 is highly stable and its frequency of loss is below 10(-8) per cell per generation under a variety of growth conditions, including nutritional and physical stresses. The pGRT1 plasmid is self-transmissible, and its acquisition by the toluene-sensitive P. putida KT2440 and Pseudomonas aeruginosa PAO1 increased the recipient's tolerance to toluene up to levels similar to those exhibited by P. putida DOT-T1E. We discuss the importance and potential benefits of this plasmid for the development of bacteria with enhanced solvent tolerance, and its potential impact for bioremediation and whole-cell biotransformations.
Collapse
Affiliation(s)
- José J Rodríguez-Herva
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | | | | | | | | |
Collapse
|
83
|
Ballerstedt H, Volkers RJM, Mars AE, Hallsworth JE, dos Santos VAM, Puchalka J, van Duuren J, Eggink G, Timmis KN, de Bont JAM, Wery J. Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: implications for transcriptomics studies. Appl Microbiol Biotechnol 2007; 75:1133-42. [PMID: 17370070 PMCID: PMC1914237 DOI: 10.1007/s00253-007-0914-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida KT2440 is the only fully sequenced P. putida strain. Thus, for transcriptomics and proteomics studies with other P. putida strains, the P. putida KT2440 genomic database serves as standard reference. The utility of KT2440 whole-genome, high-density oligonucleotide microarrays for transcriptomics studies of other Pseudomonas strains was investigated. To this end, microarray hybridizations were performed with genomic DNAs of subcultures of P. putida KT2440 (DSM6125), the type strain (DSM291T), plasmid pWW0-containing KT2440-derivative strain mt-2 (DSM3931), the solvent-tolerant P. putida S12, and several other Pseudomonas strains. Depending on the strain tested, 22 to 99% of all genetic elements were identified in the genomic DNAs. The efficacy of these microarrays to study cellular function was determined for all strains included in the study. The vast majority of DSM6125 genes encoding proteins of primary metabolism and genes involved in the catabolism of aromatic compounds were identified in the genomic DNA of strain S12: a prerequisite for reliable transcriptomics analyses. The genomotypic comparisons between Pseudomonas strains were used to construct highly discriminative phylogenetic relationships. DSM6125 and DSM3931 were indistinguishable and clustered together with strain S12 in a separate group, distinct from DSM291T. Pseudomonas monteilii (DSM14164) clustered well with P. putida strains.
Collapse
Affiliation(s)
- Hendrik Ballerstedt
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Julianalaan 67, 2628 BC, Delft, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Revelles O, Wittich RM, Ramos JL. Identification of the initial steps in D-lysine catabolism in Pseudomonas putida. J Bacteriol 2007; 189:2787-92. [PMID: 17259313 PMCID: PMC1855791 DOI: 10.1128/jb.01538-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida uses l-lysine as the sole carbon and nitrogen source which preferentially requires its metabolism through two parallel pathways. In one of the pathways delta-aminovalerate is the key metabolite, whereas in the other l-lysine is racemized to d-lysine, and l-pipecolate and alpha-aminoadipate are the key metabolites. All the genes and enzymes involved in the d-lysine pathway, except for those involved in the conversion of d-lysine into Delta(1)-piperideine-2-carboxylate, have been identified previously (30). In this study we report that the conversion of d-lysine into Delta(1)-piperideine-2-carboxylate can be mediated by a d-lysine aminotransferase (PP3590) and a d-lysine dehydrogenase (PP3596). From a physiological point of view PP3596 plays a major role in the catabolism of d-lysine since its inactivation leads to a marked reduction in the growth rate with l- or d-lysine as the sole carbon and nitrogen source, whereas inactivation of PP3590 leads only to slowed growth. The gene encoding PP3590, called here amaC, forms an operon with dpkA, the gene encoding the enzyme involved in conversion of Delta(1)-piperideine-2-carboxylate to l-pipecolate in the d-lysine catabolic pathway. The gene encoding PP3596, called here amaD, is the fifth gene in an operon made up of seven open reading frames (ORFs) encoding PP3592 through PP3597. The dpkA amaC operon was transcribed divergently from the operon ORF3592 to ORF3597. Both promoters were mapped by primer extension analysis, which showed that the divergent -35 hexamers of these operon promoters were adjacent to each other. Transcription of both operons was induced in response to l- or d-lysine in the culture medium.
Collapse
Affiliation(s)
- Olga Revelles
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, Calle Profesor Albareda 1, E-18008 Granada, Spain
| | | | | |
Collapse
|
85
|
Kim HE, Shitashiro M, Kuroda A, Takiguchi N, Kato J. Ethylene Chemotaxis in Pseudomonas aeruginosa and Other Pseudomonas Species. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hye-Eun Kim
- Department of Molecular Biotechnology, Hiroshima University
| | | | - Akio Kuroda
- Department of Molecular Biotechnology, Hiroshima University
| | | | - Junichi Kato
- Department of Molecular Biotechnology, Hiroshima University
| |
Collapse
|
86
|
Galvão TC, de Lorenzo V, Cánovas D. Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Mol Microbiol 2006; 62:1643-54. [PMID: 17116241 DOI: 10.1111/j.1365-2958.2006.05488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genomic context of the recognized bet genes for choline-O-sulphate (COS) utilization in Pseudomonas putida KT2440 is such that betC (choline sulphatase) lies adjacent to an ATP-binding cassette transporter and a LysR type regulator, but well away from betBA, encoding enzymes for transformation of choline into glycine betaine. The consequences of such genetic layout of the functions for COS metabolism have been examined with a suite of genetic and biochemical approaches. An early clue of the utilities of the betencoded products was exposed by the phenotypes of a betC deletion. This mutant still accumulated intact COS but failed to use this compound as carbon or nitrogen source. Furthermore, betC expression was downregulated at high salt concentrations, showing that the principal role of this gene lied in COS metabolism, not in osmoprotection. In contrast, the betBA genes were required for choline transformation into the highly effective compatible solute glycine betaine (and the concomitant endurance to high salt) and also for its utilization as carbon or nitrogen source. Thus, unlike in the cases of Bacillus subtilis and Sinorhizobium meliloti, betC is unrelated to osmoprotection in Pseudomonas putida while the betBA genes are required for both betaine synthesis and tolerance to high osmotic pressure.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
87
|
Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, Pérez-Pérez MM, Santero E, Díaz E, Ramos JL, de Lorenzo V, Rojo F. Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ Microbiol 2006; 8:165-77. [PMID: 16343331 DOI: 10.1111/j.1462-2920.2005.00890.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial transcriptional networks are built on a hierarchy of regulators, on top of which lie the components of the RNA polymerase (in particular the sigma factors) and the global control elements, which play a pivotal role. We have designed a genome-wide oligonucleotide-based DNA microarray for Pseudomonas putida KT2440. In combination with real-time reverse transcription polymerase chain reaction (RT-PCR), we have used it to analyse the expression pattern of the genes encoding the RNA polymerase subunits (the core enzyme and the 24 sigma factors), and various proteins involved in global regulation (Crc, Lrp, Fur, Anr, Fis, CsrA, IHF, HupA, HupB, HupN, BipA and several MvaT-like proteins), during the shift from exponential growth in rich medium into starvation and stress brought about by the entry into stationary phase. Expression of the genes encoding the RNA polymerase core and the vegetative sigma factor decreased in stationary phase, while that of sigma(S) increased. Data obtained for sigma(N), sigma(H), FliA and for the 19 extracytoplasmic function (ECF)-like sigma factors suggested that their mRNA levels change little upon entry into stationary phase. Expression of Crc, BipA, Fis, HupB, HupN and the MvaT-like protein PP3693 decreased in stationary phase, while that of HupA and the MvaT-like protein PP3765 increased significantly. Expression of IHF was indicative of post-transcriptional control. These results provide the first global study of the expression of the transcriptional machinery through the exponential stationary-phase shift in P. putida.
Collapse
Affiliation(s)
- Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 - Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Ramos-González MI, Campos MJ, Ramos JL, Espinosa-Urgel M. Characterization of the Pseudomonas putida mobile genetic element ISPpu10: an occupant of repetitive extragenic palindromic sequences. J Bacteriol 2006; 188:37-44. [PMID: 16352819 PMCID: PMC1317595 DOI: 10.1128/jb.188.1.37-44.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the Pseudomonas putida KT2440 insertion element ISPpu10. This insertion sequence encodes a transposase which exhibits homology to the transposases and specific recombinases of the Piv/Moov family, and no inverted repeats are present at the borders of its left and right ends, thus constituting a new member of the atypical IS110/IS492 family. ISPpu10 was found in at least seven identical loci in the KT2440 genome, and variants were identified having an extra insertion at distinct loci. ISPpu10 always appeared within the core of specific repetitive extragenic palindromic (REP) sequences TCGCGGGTAAACCCGCTCCTAC, exhibiting high target stringency. One intragenic target was found associated with the truncation of a GGDEF/EAL domain protein. After active in vitro transposition to a plasmid-borne target, a duplication of the CT (underlined above) at the junction as a consequence of the ISPpu10 insertion was experimentally demonstrated for the first time in the IS110/IS492 family. The same duplication was observed after transposition of ISPpu10 from a plasmid to the chromosome of P. putida DOT-T1E, an ISPpu10-free strain with REPs similar to those of strain KT2440. Plasmid ISPpu10-mediated rearrangements were observed in vivo under laboratory conditions and in the plant rhizosphere.
Collapse
Affiliation(s)
- María Isabel Ramos-González
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain.
| | | | | | | |
Collapse
|
89
|
Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 2006; 281:11981-91. [PMID: 16495222 DOI: 10.1074/jbc.m509848200] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When Pseudomonas putida KT2440 cells encounter toluene in the growth medium, they perceive it simultaneously as a potential nutrient to be metabolized, as a membrane-damaging toxic drug to be extruded, and as a macromolecule-disrupting agent from which to protect proteins. Each of these inputs requires a dedicated transcriptional response that involves a large number of genes. We used DNA array technology to decipher the interplay between these responses in P. putida KT2440 subjected to a short challenge (15 min) with toluene. We then compared the results with those in cells exposed to o-xylene (a non-biodegradable toluene counterpart) and 3-methylbenzoate (a specific substrate of the lower TOL pathway of the P. putida pWW0 plasmid). The resulting expression profiles suggest that the bulk of the available transcriptional machinery is reassigned to endure general stress, whereas only a small share of the available machinery is redirected to the degradation of the aromatic compounds. Specifically, both toluene and o-xylene induce the TOL pathways and a dedicated but not always productive metabolic program. Similarly, 3-methylbenzoate induces the expression not only of the lower meta pathway but also of the non-productive and potentially deleterious genes for the metabolism of (nonsubstituted) benzoate. In addition, toluene (and to a lesser extent o-xylene) inhibit motility functions as an unequivocal response to aromatic toxicity. We argue that toluene is sensed by P. putida KT2440 as a stressor rather than as a nutrient and that the inhibition by the aromatic compounds of many functions we tested is the tradeoff for activating stress tolerance genes at a minimal cost in terms of energy.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda, 1, E-18008 Granada, Spain
| | | | | | | | | |
Collapse
|
90
|
Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 2005; 187:7500-10. [PMID: 16237033 PMCID: PMC1272968 DOI: 10.1128/jb.187.21.7500-7510.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/24/2005] [Indexed: 11/20/2022] Open
Abstract
L-lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates D-lysine, L-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of L-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use L-lysine as the sole carbon and nitrogen source, although they still used L-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of L-lysine to delta-aminovaleramide and the hydrolysis of the latter to delta-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of Delta1-piperidine-2-carboxylate into aminoadipate. Based on L-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of L-lysine indicates that in addition to the existing connection between the D- and L-lysine pathways at the early steps of the catabolism of L-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of L-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism.
Collapse
Affiliation(s)
- Olga Revelles
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
91
|
Ramos-González MI, Campos MJ, Ramos JL. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo [corrected] expression technology capture and identification of root-activated promoters. J Bacteriol 2005; 187:4033-41. [PMID: 15937166 PMCID: PMC1151710 DOI: 10.1128/jb.187.12.4033-4041.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas putida KT2440, a paradigm organism in biodegradation and a good competitive colonizer of the maize rhizosphere, was the subject of studies undertaken to establish the genetic determinants important for its rhizospheric lifestyle. By using in vivo expression technology (IVET) to positively select single cell survival, we identified 28 rap genes (root-activated promoters) preferentially expressed in the maize rhizosphere. The IVET system had two components: a mutant affected in aspartate-beta-semialdehyde dehydrogenase (asd), which was unable to survive in the rhizosphere, and plasmid pOR1, which carries a promoter-less asd gene. pOR1-borne transcriptional fusions of the rap promoters to the essential gene asd, which were integrated into the chromosome at the original position of the corresponding rap gene, were active and allowed growth of the asd strain in the rhizosphere. The fact that five of the rap genes identified in the course of this work had been formerly characterized as being related to root colonization reinforced the IVET approach. Up to nine rap genes encoded proteins either of unknown function or that had been assigned an unspecific role based on conservation of the protein family domains. Rhizosphere-induced fusions included genes with probable functions in the cell envelope, chemotaxis and motility, transport, secretion, DNA metabolism and defense mechanism, regulation, energy metabolism, stress, detoxification, and protein synthesis.
Collapse
Affiliation(s)
- María Isabel Ramos-González
- Department of Plant Biochemistry and Molecular and Cell Biology, Estación Experimental de Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| | | | | |
Collapse
|
92
|
Molina MA, Godoy P, Ramos-González MI, Muñoz N, Ramos JL, Espinosa-Urgel M. Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. Environ Microbiol 2005; 7:443-9. [PMID: 15683404 DOI: 10.1111/j.1462-2920.2005.00720.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron, which is abundant in corn (Zea mays L.) seeds, plays an important role in the initial establishment of Pseudomonas putida KT2440 populations on seeds. Sequestration of seed-borne iron by chelators decreases the capacity of KT2440 to initiate attachment to corn seeds. The importance of iron for this plant-bacteria interaction is further supported by the fact that mutations in the TonB system, which is key for iron uptake, result in reduced seed colonization. TonB is also a primary determinant of the fitness of P. putida in the rhizosphere, as a deletion mutant shows a clear competitive disadvantage during colonization of corn roots.
Collapse
Affiliation(s)
- María Antonia Molina
- Department of Plant Biochemistry and Molecular and Cell Biology, Estación Experimental de Zaidín, CSIC, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | | | | | |
Collapse
|
93
|
Dos Santos VAPM, Heim S, Moore ERB, Strätz M, Timmis KN. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 2004; 6:1264-86. [PMID: 15560824 DOI: 10.1111/j.1462-2920.2004.00734.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in microbiology is the elucidation of the genetic and ecophysiological basis of habitat specificity of microbes. Pseudomonas putida is a paradigm of a ubiquitous metabolically versatile soil bacterium. Strain KT2440, a safety strain that has become a laboratory workhorse worldwide, has been recently sequenced and its genome annotated. By drawing on both published information and on original in silico analysis of its genome, we address here the question of what genomic features of KT2440 could explain or are consistent with its ubiquity, metabolic versatility and adaptability. The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments, either free-living, or in close association with plants. The high diversity of protein families encoded by its genome, the large number and variety of small aralogous families, insertion elements, repetitive extragenic palindromic sequences, as well as the mosaic structure of the genome (with many regions of 'atypical' composition) and the multiplicity of mobile elements, reflect a high functional diversity in P. putida and are indicative of its evolutionary trajectory and adaptation to the diverse habitats in which it thrives. The unusual wealth of determinants for high affinity nutrient acquisition systems, mono- and di-oxygenases, oxido-reductases, ferredoxins and cytochromes, dehydrogenases, sulfur metabolism proteins, for efflux pumps and glutathione-S-transfereases, and for the extensive array of extracytoplasmatic function sigma factors, regulators, and stress response systems, constitute the genomic basis for the exceptional nutritional versatility and opportunism of P. putida , its ubiquity in diverse soil, rhizosphere and aquatic systems, and its renowned tolerance of natural and anthropogenic stresses. This metabolic diversity is also the basis of the impressive evolutionary potential of KT2440, and its utility for the experimental design of novel pathways for the catabolism of organic, particularly aromatic, pollutants, and its potential for bioremediation of soils contaminated with such compounds as well as for its application in the production of high-added value compounds.
Collapse
Affiliation(s)
- V A P Martins Dos Santos
- Department of Environmental Microbiology, GBF - German Research Centre for Biotechnology, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
94
|
Zhang XX, Lilley AK, Bailey MJ, Rainey PB. Functional and phylogenetic analysis of a plant-inducible oligoribonuclease (orn) gene from an indigenous Pseudomonas plasmid. Microbiology (Reading) 2004; 150:2889-2898. [PMID: 15347748 DOI: 10.1099/mic.0.27250-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Application of a promoter-trapping strategy to identify plant-inducible genes carried on an indigenousPseudomonasplasmid, pQBR103, revealed the presence of a putative oligoribonuclease (orn) gene that encodes a highly conserved 3′ to 5′ exoribonuclease specific for small oligoribonucleotides. The deduced amino acid sequence of the plasmid-derivedorn(ornpl) showed three conserved motifs characteristic of Orn from both prokaryotes and eukaryotes. Deletion ofornplgenerated no observable phenotype, but inactivation of the chromosomal copy caused slow growth inPseudomonas putidaKT2440. This defect was fully restored by complementation withornfromEscherichia coli(ornE.coli). Plasmid-derivedornplwas capable of partially complementing theP. putida ornmutant, demonstrating functionality ofornpl. Phylogenetic analysis showed that plasmid-encoded Orn was distinct from Orn encoded by the chromosome of proteobacteria. A survey ofornplfrom relatedPseudomonasplasmids showed a sporadic distribution but no sequence diversity. These data suggest that theornplwas acquired by pQBR103 in a single gene-transfer event: the donor is unknown, but is unlikely to be a member of theProteobacteria.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- Centre for Ecology and Hydrology NERC, Mansfield Road, Oxford OX1 3SR, UK
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andrew K Lilley
- Centre for Ecology and Hydrology NERC, Mansfield Road, Oxford OX1 3SR, UK
| | - Mark J Bailey
- Centre for Ecology and Hydrology NERC, Mansfield Road, Oxford OX1 3SR, UK
| | - Paul B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
95
|
Revelles O, Espinosa-Urgel M, Molin S, Ramos JL. The davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid. J Bacteriol 2004; 186:3439-46. [PMID: 15150230 PMCID: PMC415776 DOI: 10.1128/jb.186.11.3439-3446.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 02/17/2004] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 is a soil microorganism that attaches to seeds and efficiently colonizes the plant's rhizosphere. Lysine is one of the major compounds in root exudates, and P. putida KT2440 uses this amino acid as a source of carbon, nitrogen, and energy. Lysine is channeled to delta-aminovaleric acid and then further degraded to glutaric acid via the action of the davDT gene products. We show that the davDT genes form an operon transcribed from a single sigma70-dependent promoter. The relatively high level of basal expression from the davD promoter increased about fourfold in response to the addition of exogenous lysine to the culture medium. However, the true inducer of this operon seems to be delta-aminovaleric acid because in a mutant unable to metabolize lysine to delta-aminovaleric acid, this compound, but not lysine, acted as an effector. Effective induction of the P. putida P(davD) promoter by exogenously added lysine requires efficient uptake of this amino acid, which seems to proceed by at least two uptake systems for basic amino acids that belong to the superfamily of ABC transporters. Mutants in these ABC uptake systems retained basal expression from the davD promoter but exhibited lower induction levels in response to exogenous lysine than the wild-type strain.
Collapse
Affiliation(s)
- Olga Revelles
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
96
|
Lewis TA, Leach L, Morales S, Austin PR, Hartwell HJ, Kaplan B, Forker C, Meyer JM. Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 2004; 6:159-69. [PMID: 14756880 DOI: 10.1046/j.1462-2920.2003.00558.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial metabolite and transition metal chelator pyridine-2,6-dithiocarboxylic acid (PDTC), promotes a novel and effective means of dechlorination of the toxic and carcinogenic pollutant, carbon tetrachloride. Pyridine-2,6-dithiocarboxylic acid has been presumed to act as a siderophore in the Pseudomonas strains known to produce it. To explore further the physiological function of PDTC production, we have examined its regulation, the phenotype of PDTC-negative (pdt) mutants, and envelope proteins associated with PDTC in P. putida strain DSM 3601. Aspects of the regulation of PDTC production and outer membrane protein composition were consistent with siderophore function. Pyridine-2,6-dithiocarboxylic acid production was coordinated with production of the well-characterized siderophore pyoverdine; exogenously added pyoverdine led to decreased PDTC production, and added PDTC led to decreased pyoverdine production. Positive regulation of a chromosomal pdtI-xylE transcriptional fusion, and of a 66 kDa outer membrane protein (IROMP), was seen in response to exogenous PDTC. Tests with transition metal chelators indicated that PDTC could provide a benefit under conditions of metal limitation; the loss of PDTC biosynthetic capacity caused by a pdtI transposon insertion resulted in increased sensitivity to 1,10-phenanthroline, a chelator that has high affinity for a range of divalent transition metals (e.g. Fe(2+), Cu(2+), Zn(2+)). Exogenously added PDTC could also suppress a phenotype of pyoverdine-negative (Pvd-) mutants, that of sensitivity to EDDHA, a chelator with higher affinity and specificity for Fe(3+). Measurement of 59Fe incorporation showed uptake from 59Fe:PDTC by DSM 3601 grown in low-iron medium, but not by cells grown in high iron medium, or by the pdtI mutant, which did not show expression of the 66 kDa envelope protein. These data verified a siderophore function for PDTC, and have implicated it in the uptake of transition metals in addition to iron.
Collapse
Affiliation(s)
- Thomas A Lewis
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Regenhardt D, Heuer H, Heim S, Fernandez DU, Strömpl C, Moore ERB, Timmis KN. Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 2002; 4:912-5. [PMID: 12534472 DOI: 10.1046/j.1462-2920.2002.00368.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D Regenhardt
- Division of Microbiology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 2002; 4:799-808. [PMID: 12534463 DOI: 10.1046/j.1462-2920.2002.00366.x] [Citation(s) in RCA: 982] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
Collapse
Affiliation(s)
- K E Nelson
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|