51
|
Ito N, Sakamoto K, Hikichi C, Matsusaka T, Nagata M. Biphasic MIF and SDF1 expression during podocyte injury promote CD44-mediated glomerular parietal cell migration in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2020; 318:F741-F753. [PMID: 32068458 DOI: 10.1152/ajprenal.00414.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glomerular parietal epithelial cell (PEC) activation, as revealed by de novo expression of CD44 and cell migration toward the injured filtration barrier, is a hallmark of podocyte injury-driven focal segmental glomerulosclerosis (FSGS). However, the signaling pathway that mediates activation of PECs in response to podocyte injury is unknown. The present study focused on CD44 signaling, particularly the roles of two CD44-related chemokines, migration inhibitory factor (MIF) and stromal cell-derived factor 1 (SDF1), and their common receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), in the NEP25/LMB2 mouse podocyte-toxin model of FSGS. In the early phase of the disease, CD44-positive PECs were locally evident on the opposite side of the intact glomerular tuft and subsequently increased in the vicinity of synechiae with podocyte loss. Expression of MIF and SDF1 was first increased in injured podocytes and subsequently transferred to activated PECs expressing CD44 and CXCR4. In an immortalized mouse PEC (mPEC) line, recombinant MIF and SDF1 (rMIF and rSDF1, respectively) individually increased CD44 and CXCR4 mRNA and protein levels. rMIF and rSDF1 stimulated endogenous MIF and SDF1 production. rMIF- and rSDF1-induced mPEC migration was suppressed by CD44 siRNA. However, MIF and SDF1 inhibitors failed to show any impact on proteinuria, podocyte number, and CD44 expression in NEP25/LMB2 mice. Our data suggest that injured podocytes upregulate MIF and SDF1 that stimulate CD44 expression and CD44-mediated migration, which is enhanced by endogenous MIF and SDF1 in PECs. This biphasic expression pattern of the chemokine-CD44 axis in podocytes and PECs may be a novel mechanism of "podocyte-PEC cross-talk" signaling underlying podocyte injury-driven FSGS.
Collapse
Affiliation(s)
- Naoko Ito
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuo Sakamoto
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chihiro Hikichi
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Michio Nagata
- Department of Pathology, Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
52
|
Ahmed HM, Morgan DS, Doudar NA, Naguib MS. High Serum Endothelin-1 Level is Associated with Poor Response to Steroid Therapy in Childhood-Onset Nephrotic Syndrome. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2020; 30:769-774. [PMID: 31464232 DOI: 10.4103/1319-2442.265451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nephrotic syndrome (NS) is one of the most common kidney diseases seen in children. It is a disorder characterized by severe proteinuria, hypoproteinemia, hyperlipidemia, and generalized edema resulting from alterations of permeability at the glomerular capillary wall. Endothelin-1 (ET1) has a central role in the pathogenesis of proteinuria and glomerulosclerosis and has a role in assessment of the clinical course of NS in children. This study aims to investigate the relationship between ET1 serum level and the response to steroid therapy in children with primary NS. Serum ET1 levels were evaluated in 55 children with NS. They were classified into two groups: 30 patients with steroid-sensitive NS (SSNS) and 25 patients with steroid-resistant NS (SRNS). The SSNS group was further divided into infrequent-relapsing NS (IFRNS) and steroid-dependent NS (SDNS), while the SRNS group was subdivided into two groups according to renal pathology. ET1 levels were significantly higher in the SRNS group (52.5 ± 45.8 pg/dL) compared to the SSNS group (18.3 ± 17 pg/dL) (P <0.001). Furthermore, ET1 levels were significantly higher in SDNS (54.3 ± 18.6) compared to IFRNS (11.9 ± 7.8, P = 0.001). There was no statistically significant difference in ET1 levels between minimal change disease group and focal segmental glomerulosclerosis group, (P = 0.28). Serum ET1 can be considered as a predictor for response to steroid therapy.
Collapse
Affiliation(s)
- Heba Mostafa Ahmed
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Dalia S Morgan
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Noha A Doudar
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Mariam S Naguib
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
53
|
Xie L, Zhai R, Chen T, Gao C, Xue R, Wang N, Wang J, Xu Y, Gui D. Panax Notoginseng Ameliorates Podocyte EMT by Targeting the Wnt/β-Catenin Signaling Pathway in STZ-Induced Diabetic Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:527-538. [PMID: 32103895 PMCID: PMC7008200 DOI: 10.2147/dddt.s235491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
Introduction Epithelial–mesenchymal transition (EMT) may contribute to podocyte dysfunction in diabetic nephropathy (DN). Aiming to identify novel therapeutic options, we investigated the protective effects of Panax notoginseng (PN) on podocyte EMT in diabetic rats and explored its mechanisms. Methods Diabetes was induced in rats with streptozotocin (STZ) by intraperitoneal injection at 55 mg/kg. Diabetic rats were randomly divided into three groups, namely, diabetic rats, diabetic rats treated with beraprost sodium (BPS) at 0.6 mg/kg/d or PN at 0.4 g/kg/d p.o., for 12 weeks. Urinary albumin/creatinine ratio (ACR), biochemical parameters, renal histopathology, and podocyte morphological changes were evaluated. Protein expression of EMT markers (desmin, α-SMA, and nephrin) as well as components of the Wnt/β-catenin pathway (wnt1, β-catenin, and snail) was detected by immunohistochemistry and Western blot, respectively. Results In diabetic rats, severe hyperglycemia and albuminuria were detected. Moreover, mesangial expansion and podocyte foot process effacement were found markedly increased in diabetic kidneys. Increased protein expression of wnt1, β-catenin, snail, desmin, and α-SMA, as well as decreased protein expression of nephrin was detected in diabetic kidneys. All these abnormalities found in DN rats were partially restored by PN treatment. Conclusion PN ameliorated albuminuria and podocyte EMT in diabetic rats partly through inhibiting Wnt/β-catenin signaling pathway. These findings provide experimental arguments for a novel therapeutic option in DN.
Collapse
Affiliation(s)
- Ling Xie
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, People's Republic of China.,Department of Nephrology, Shanghai Sixth People's Hospital East Campus, Shanghai, People's Republic of China
| | - Ruonan Zhai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Teng Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chongting Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
54
|
Li C, Guan XM, Wang RY, Xie YS, Zhou H, Ni WJ, Tang LQ. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci 2020; 243:117277. [DOI: 10.1016/j.lfs.2020.117277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
|
55
|
TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp Cell Res 2020; 388:111862. [PMID: 31982382 DOI: 10.1016/j.yexcr.2020.111862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Thioredoxin-interacting protein (TXNIP), is identified as an inhibitor of the thiol oxidoreductase thioredoxin that acts endogenously, and is increased by high glucose (HG). In this study, we investigated the potential function of TXNIP on apoptosis of podocytes and its potential mechanism in vivo and in vitro in diabetic nephropathy (DN). TXNIP silencing attenuated HG-induced apoptosis and obliterated the activation of signaling pathways of mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) in conditionally immortalized mouse podocytes. Furthermore, the Raptor and Rictor shRNAs, mTOR specific inhibitor KU-0063794 and p38 MAPK inhibitor SB203580 were used to assess the role of mTOR or p38 MAPK pathway on podocyte apoptosis induced by HG. The Rictor and Raptor shRNAs and KU-0063794 appeared to reduce HG-induced apoptosis in podocytes. Simultaneously, SB203580 could also restrain HG-induced apoptosis in podocytes. Streptozotocin rendered equivalent diabetes in TXNIP-/- (TKO) and wild-type (WT) control mice. TXNIP deficiency mitigated renal injury in diabetic mice. Additionally, TXNIP deficiency also descended the apoptosis-related protein and Nox4 levels, the mTOR signaling activation and the p38 MAPK phosphorylation in podocytes of diabetic mice. All these data indicate that TXNIP deficiency may mitigate apoptosis of podocytes by inhibiting p38 MAPK or mTOR signaling pathway in DN, underlining TXNIP as a putative target for therapy.
Collapse
|
56
|
Wang L, Chang JH, Buckley AF, Spurney RF. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int 2020; 95:321-332. [PMID: 30665571 DOI: 10.1016/j.kint.2018.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
Gain-of-function mutations in TRPC6 cause familial focal segmental glomerulosclerosis, and TRPC6 is upregulated in glomerular diseases including diabetic kidney disease. We studied the effect of systemic TRPC6 knockout in the Akita model of type 1 diabetes. Knockout of TRPC6 inhibited albuminuria in Akita mice at 12 and 16 weeks of age, but this difference disappeared by 20 weeks. Knockout of TRPC6 also reduced tubular injury in Akita mice; however, mesangial expansion was significantly increased. Hyperglycemia and blood pressure were similar between TRPC6 knockout and wild-type Akita mice, but knockout mice were more insulin resistant. In cultured podocytes, knockout of TRPC6 inhibited expression of the calcium/calcineurin responsive gene insulin receptor substrate 2 and decreased insulin responsiveness. Insulin resistance is reported to promote diabetic kidney disease independent of blood glucose levels. While the mechanisms are not fully understood, insulin activates both Akt2 and ERK, which inhibits apoptosis signal regulated kinase 1 (ASK1)-p38-induced apoptosis. In cultured podocytes, hyperglycemia stimulated p38 signaling and induced apoptosis, which was reduced by insulin and ASK1 inhibition and enhanced by Akt or ERK inhibition. Glomerular p38 signaling was increased in TRPC6 knockout Akita mice and was associated with enhanced expression of the p38 gene target cyclooxygenase 2. These data suggest that knockout of TRPC6 in Akita mice promotes insulin resistance and exacerbates glomerular disease independent of hyperglycemia.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - Jae-Hyung Chang
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University Health System, Durham, North Carolina, USA; Durham VA Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
57
|
Hasbal NB, Caglayan FB, Sakaci T, Ahbap E, Koc Y, Sevinc M, Ucar ZA, Unsal A, Basturk T. Unexpectedly High Prevalence of Low Alpha-Galactosidase A Enzyme Activity in Patients with Focal Segmental Glomerulosclerosis. Clinics (Sao Paulo) 2020; 75:e1811. [PMID: 32997080 PMCID: PMC7510945 DOI: 10.6061/clinics/2020/e1811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Fabry disease (FD) is a rare disease associated with sphingolipid accumulation. Sphingolipids are components of plasma membranes that are important in podocyte function and accumulate in various glomerular diseases such as focal segmental glomerulosclerosis (FSGS). Both FD and FSGS can cause podocyte damage and are classified as podocytopathies. In this respect, FD and FSGS share the same pathophysiologic pathways. Previous screening studies have shown that a significant proportion of end-stage renal disease (ESRD) patients receiving hemodialysis (HD) have unsuspected FD, and the prevalence of low alpha-galactosidase A (αGLA) enzyme activity in these patients is higher than that in the normal population. We aimed to compare αGLA enzyme activity in patients with biopsy-proven FSGS and ESRD receiving HD. METHODS The records of 232 patients [62 FSGS (F/M: 33/29); 170 HD (M/F: 93/79)] were evaluated retrospectively. The screening was performed based on the αGLA enzyme activity on a dried blood spot, with the confirmation of plasma LysoGb3 levels, and the known GLA mutations were tested in patients with low enzyme activities. The two groups were compared using these parameters. RESULTS The mean level of αGLA enzyme activity was found to be lower in FSGS patients than in the HD group (2.88±1.2 μmol/L/h versus 3.79±1.9 μmol/L/h, p<0.001). There was no significant relationship between the two groups with regard to the plasma LysoGb3 levels (2.2±1.22 ng/ml versus 1.7±0.66 ng/ml, p: 0.4). In the analysis of GLA mutations, a D313Y mutation [C(937G>T) in exon p] was found in one patient from the FSGS group. CONCLUSIONS We found that αGAL activity in patients with FSGS is lower than that in patients undergoing HD. The low enzyme activity in patients with FSGS may be explained by considering the similar pathogenesis of FSGS and FD, which may also lead to sphingolipid deposition and podocyte injury.
Collapse
Affiliation(s)
| | | | - Tamer Sakaci
- Department of Nephrology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Elbis Ahbap
- Department of Nephrology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
- Corresponding author. E-mail:
| | - Yener Koc
- Division of Nephrology, Department of Internal Medicine, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Mustafa Sevinc
- Department of Nephrology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Zuhal Atan Ucar
- Division of Nephrology, Department of Internal Medicine, Medical Faculty, Demiroglu Bilim University, Istanbul, Turkey
| | - Abdulkadir Unsal
- Department of Nephrology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
- Department of Internal Medicine, Faculty of Medicine, Health Sciences University, Istanbul, Turkey
| | - Taner Basturk
- Department of Nephrology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
- Department of Internal Medicine, Faculty of Medicine, Health Sciences University, Istanbul, Turkey
| |
Collapse
|
58
|
Hall G, Wang L, Spurney RF. TRPC Channels in Proteinuric Kidney Diseases. Cells 2019; 9:cells9010044. [PMID: 31877991 PMCID: PMC7016871 DOI: 10.3390/cells9010044] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Over a decade ago, mutations in the gene encoding TRPC6 (transient receptor potential cation channel, subfamily C, member 6) were linked to development of familial forms of nephrosis. Since this discovery, TRPC6 has been implicated in the pathophysiology of non-genetic forms of kidney disease including focal segmental glomerulosclerosis (FSGS), diabetic nephropathy, immune-mediated kidney diseases, and renal fibrosis. On the basis of these findings, TRPC6 has become an important target for the development of therapeutic agents to treat diverse kidney diseases. Although TRPC6 has been a major focus for drug discovery, more recent studies suggest that other TRPC family members play a role in the pathogenesis of glomerular disease processes and chronic kidney disease (CKD). This review highlights the data implicating TRPC6 and other TRPC family members in both genetic and non-genetic forms of kidney disease, focusing on TRPC3, TRPC5, and TRPC6 in a cell type (glomerular podocytes) that plays a key role in proteinuric kidney diseases.
Collapse
|
59
|
Qiu Y, Zhou J, Zhang H, Zhou H, Tang H, Lei C, Ye C, You C, Chen Y, Wang Y, Xiong J, Su H, Yao G, Zhang C. Rhodojaponin II attenuates kidney injury by regulating TGF-β1/Smad pathway in mice with adriamycin nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112078. [PMID: 31301369 DOI: 10.1016/j.jep.2019.112078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/11/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhododendron molle G. Don (Ericaceae) (RM) is a natural medicinal plant. Its root extracts have been applied in clinic and proved to be effective in chronic glomerulonephritis and rheumatoid arthritis in China. Surprising, little is understood about the key compound of RM and the exact mechanisms underlying its treatment on kidney diseases. In this study, we will explore whether rhodojaponin II (R-II), as the important compound of RM, also exerts the major effect. MATERIALS AND METHODS Mouse model of focal segmental glomerulosclerosis was induced by single dose of adriamycin injection. Induced adriamycin nephropathy (ADRN) mice were treated individually with RM root extract (5 mg/kg, n = 5), RM root extract (60 mg/kg, n = 5), R-II (0.04 mg/kg, n = 6) or captopril (30 mg/kg, n = 5) for five weeks. Podocyte marker (nephrin and podocin) expressions were examined by immunohistochemical staining and Western Blot analysis. Fibronectin level was evaluated by immunohistochemical staining and Western Blot analysis. Interstitial infiltrated inflammatory cells (CD4+ T cells, CD8+ T cells, and CD68+ macrophages) were examined with immunohistochemical staining. The expressions of NF-ĸB p-p65 and TGF-β1/Smad pathway associated key proteins, such as TGF-β1, Smad3, phosphorylated-Smad3 (p-Smad3), and Smad7, were analyzed respectively by Western Blot analysis. RESULTS RM root extract (5 mg/kg) and its important compound R-II (0.04 mg/kg) significantly ameliorated proteinuria, podocyte injury, and glomerulosclerosis, meanwhile, they hampered interstitial fibrosis in mice with ADRN. R-II significantly reduced NF-ĸB p65 phosphorylation, interstitial infiltrated CD4+ T cells, CD8+ T cells, and CD68+ macrophages, at the same time, down-regulated TGF-β1 and p-Smad3 protein expressions in mice with ADRN. CONCLUSION RM root extract, R-II, could effectively ameliorate proteinuria and kidney injury in ADRN, related to its anti-inflammatory effects, as well as suppression of TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfei Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haofeng Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuntao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoqun You
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
60
|
Abstract
Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.
Collapse
|
61
|
Mühldorfer J, Pfister E, Büttner-Herold M, Klewer M, Amann K, Daniel C. Bi-nucleation of podocytes is uniformly accompanied by foot processes widening in renal disease. Nephrol Dial Transplant 2019; 33:796-803. [PMID: 29106627 DOI: 10.1093/ndt/gfx201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023] Open
Abstract
Background Podocytes are terminally differentiated glomerular cells expressing a highly complex architecture and lacking the ability to proliferate. However, during renal injury or stress these cells can re-enter into the cell cycle but fail to divide. As a consequence, bi- and multi-nucleated podocytes can be identified in renal biopsies from patients with various kidney diseases. It is still unclear whether the occurrence of such cells is dependent on or correlates with renal damage and if bi- or multi-nucleation results in ultrastructural alterations such as e.g. foot process effacement. Therefore, we investigated the frequency, correlation with clinical parameters and morphological consequences of podocyte bi- or multi-nucleation in a cohort of 377 patients suffering from different renal diseases. Methods Renal biopsies from patients with minimal change disease (MCD; n = 93), IgA-glomerulonephritis (IgA-GN, n = 95), lupus nephritis (LN; n = 90) and diabetic nephropathy (DN; n = 99) were investigated for the occurrence of bi-nucleated or multi-nucleated podocytes using semi-thin sections and light-microscopy at 1000× magnification. The frequency of bi-nucleation and multi-nucleation in podocytes was correlated with clinical parameters and markers of renal injury. In addition, ultrastructural morphological features associated with podocyte bi- or multi-nucleation were analysed by scanning transmission electron microscopy at various magnifications. Results Ultrastructural analysis of podocyte nuclear morphology revealed a broad spectrum of nuclear appearances. Therefore, podocytes were classified in cells with mono-nucleated, lobulated, potential bi-nucleated, symmetrically bi-nucleated, asymmetrically bi-nucleated and multi-nucleated nuclear morphology. In 65-80% of all investigated glomeruli only mono-nuclear podocytes were identified. The highest frequency of bi-nucleated podocytes was found in patients with IgA-GN (18.6%) and the lowest in patients with DN (5.6%). The proportion of bi-nucleated podocytes with asymmetric nuclear morphology was about 50% of all bi-nucleated podocytes and independent of the underlying renal disease. In addition, ultrastructural analysis by electron microscopy showed significant widening of foot processes in bi-nucleated compared with mono-nucleated podocytes. Interestingly, foot process width of podocytes with lobulated nuclei was also significantly increased compared with podocytes with normal mono-nuclear morphology. Furthermore, podocyte density per glomerular area was significantly lower in glomeruli with bi-nucleated podocytes. Due to the relatively low frequency of bi- and multi-nucleated podocytes, correlations with clinical parameters were weak and dependent on renal disease. Conclusions The frequency of bi-nucleated podocytes was highest in IgA-GN but can also be observed in all investigated renal diseases. In podocytes with altered nuclear morphology particularly in bi- and multi-nucleated podocytes ultrastructural analysis of podocytes revealed significant widening of foot processes as a potential maladaptive structural consequence.
Collapse
Affiliation(s)
- Johanna Mühldorfer
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Pfister
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Monika Klewer
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
62
|
Cai X, Wang L, Wang X, Hou F. miR-124a enhances therapeutic effects of bone marrow stromal cells transplant on diabetic nephropathy-related epithelial-to-mesenchymal transition and fibrosis. J Cell Biochem 2019; 121:299-312. [PMID: 31190436 DOI: 10.1002/jcb.29170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) has been gradually considered as one of the major pathways that causes the production of interstitial myofibroblasts in diseased kidneys. MATERIALS AND METHODS The study was done to investigate the effect of a bone marrow stromal cell (BMSCs) transplant on rat podocytes and diabetic nephropathy (DN) rats in high-glucose concentration, and to explore the effect of miR-124a on BMSC therapy. High glucose-injured podocytes and streptozotocin-induced DN rats have been respectively used as injury models in in vitro and in vivo studies. Podocyte viability was measured using the Cell Counting Kit-8 assay. Renal pathological examination was observed by HE staining and Masson staining. The messenger RNA and protein levels were determined via real-time polymerase chain reaction and Western blotting, respectively. RESULTS By mediating the activation of caveolin-1 (cav-1) and β-catenin and affecting the expression levels of EMT biomarkers including p-cadherin, synaptopodin, fibroblast-specific protein-1, α-smooth muscle actin and snail, our in vitro study confirmed that miR-124a played a significant role in the treatment of high glucose-induced podocyte injury by BMSCs. The therapeutic effects of the BMSC transplant on DN rats were also proved to be further enhanced by miR-124a overexpression in BMSCs, and such a phenomenon was accompanied by the improvement of renal fibrosis and mitigation of DN-related kidney impairment. Regulation of fibronectin, collagen1, and EMT-related proteins was closely implicated with the mechanism, and the activation of cav-1 and β-catenin was also possibly involved. CONCLUSION The study demonstrated the pivotal effect of miR-124a on BMSC therapy for DN rats via mitigating EMT and fibrosis. Our results provide a novel insight into how therapeutic effects of BMSCs can be improved at the posttranscriptional level.
Collapse
Affiliation(s)
- Xiaojun Cai
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang, China
| | - Lei Wang
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang, China
| | - Xuling Wang
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang, China
| | - Fengyan Hou
- Department of Endocrinology, Heilongjiang Provincial Academy of Chinese Medical Science, Harbin, Heilongjiang, China
| |
Collapse
|
63
|
Zhao D, Liu Z, Zhang H. The protective effect of the TUG1/miR‑197/MAPK1 axis on lipopolysaccharide‑induced podocyte injury. Mol Med Rep 2019; 20:49-56. [PMID: 31115515 DOI: 10.3892/mmr.2019.10216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
The podocyte, a type of glomerular epithelial cell, is the key constituent of the filtration barrier layer in the kidney. Previous studies have shown that long non‑coding RNA (lncRNA)‑taurine‑upregulated gene 1 (TUG1) served a protective role in diabetes‑induced podocyte damage. The aim of the present study was to investigate the potential role of TUG1 in the progress of podocyte injury induced by lipopolysaccharide (LPS), and explore the underlying mechanisms. The results showed that TUG1 expression was suppressed in LPS‑induced podocytes. Enhanced TUG1 expression by exogenous recombinant vector regulated the expression of podocyte associated proteins [Nephrin, Podocin and CCAAT/enhancer‑binding protein (CHOP)]. A marked decrease was observed in the level the albumin influx in cells transfected with TUG1. Further study indicated that microRNA (miR)‑197 is a potential target of TUG1. The enhanced level of miR‑197 induced by LPS was inhibited in cells transfected with TUG1. The decreased Nephrin and Podocin expression, upregulated CHOP expression and the increased albumin influx were slightly enhanced by miR‑197 mimic transfection, while markedly suppressed by miR‑197 inhibitor transfection in LPS‑induced podocytes. Mitogen‑activated protein kinase (MAPK) protein was predicted as a potential target of miR‑197. The downregulated expression of phosphorylated‑MAPK/MAPK induced by LPS was significantly suppressed by TUG1 transfection in podocytes. In addition to this, autophagy was promoted by TUG1 transfection via the elevation of the Beclin1 and light chain (LC)3 II/LC3 I levels, and suppressing p62 expression. However, the p38 MAPK inhibitor SB203580 reversed the changes that TUG1 induced in the levels of Beclin1, LC3 II/LC3 I and p62. Taken together, these results demonstrated that LPS‑induced podocyte injury could be alleviated by the TUG1/miR‑197/MAPK1 axis.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zheng Liu
- Department of Nephropathy and Diabetes Mellitus, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Heng Zhang
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
64
|
Yin W, Jiang Y, Xu S, Wang Z, Peng L, Fang Q, Deng T, Zhao W, Zhang W, Lou J. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats. J Diabetes Investig 2019; 10:613-625. [PMID: 30307132 PMCID: PMC6497589 DOI: 10.1111/jdi.12956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION Blockade or reversal the progression of diabetic nephropathy is a clinical challenge. The aim of the present study was to examine whether recombinant human glucagon-like peptide-1 (rhGLP-1) has an effect on alleviating urinary protein and urinary albumin levels in diabetic rats. MATERIALS AND METHODS Streptozotocin-induced diabetes rats were treated with rhGLP-1 insulin and saline. Using immunostaining, hematoxylin-eosin, electron microscopy and periodic acid-Schiff staining to study the pathology of diabetic nephropathy, and we carried out quantitative reverse transcription polymerase chain reaction, western blot and immunohistochemistry to identify the differentially expressed proteins. The mechanism was studied through advanced glycation end-products-induced tubular epithelial cells. RESULTS rhGLP-1 inhibits protein kinase C (PKC)-β, but increases protein kinase A (PKA), which reduces oxidative stress in glomeruli and in cultured glomerular microvascular endothelial cells. In tubules, rhGLP-1 increased the expression of two key proteins related to re-absorption - megalin and cubilin - which was accompanied by downregulation of PKC-β and upregulation of PKA. On human proximal tubular epithelial cells, rhGLP-1 enhanced the absorption of albumin, and this was blocked by a PKC activator or PKA inhibitor. CONCLUSIONS These findings suggest that rhGLP-1 can reverse diabetic nephropathy by protecting both glomeruli and tubules by inhibiting PKC and activating PKA.
Collapse
Affiliation(s)
- Weiqin Yin
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yongwei Jiang
- Department of Laboratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Shiqing Xu
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Zai Wang
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Liang Peng
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Qing Fang
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Tingting Deng
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Wanni Zhao
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Wenjian Zhang
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Jinning Lou
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegeChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
65
|
Kuppe C, Leuchtle K, Wagner A, Kabgani N, Saritas T, Puelles VG, Smeets B, Hakroush S, van der Vlag J, Boor P, Schiffer M, Gröne HJ, Fogo A, Floege J, Moeller MJ. Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions. Kidney Int 2019; 96:80-93. [PMID: 31029503 PMCID: PMC7292612 DOI: 10.1016/j.kint.2019.01.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
Beside the classical flat parietal epithelial cells (PECs), we investigated proximal tubular epithelial-like cells, a neglected subgroup of PECs. These cells, termed cuboidal PECs, make up the most proximal part of the proximal tubule and may also line parts of Bowman's capsule. Additionally, a third intermediate PEC subgroup was identified at the junction between the flat and cuboidal PEC subgroups at the tubular orifice. The transgenic mouse line PEC-rtTA labeled all three PEC subgroups. Here we show that the inducible Pax8-rtTA mouse line specifically labeled only cuboidal and intermediate PECs, but not flat PECs. In aging Pax8-rtTA mice, cell fate mapping showed no evidence for significant transdifferentiation from flat PECs to cuboidal or intermediate PECs or vice versa. In murine glomerular disease models of crescentic glomerulonephritis, and focal segmental glomerulosclerosis (FSGS), intermediate PECs became more numerous. These intermediate PECs preferentially expressed activation markers CD44 and Ki-67, suggesting that this subgroup of PECs was activated more easily than the classical flat PECs. In mice with FSGS, cuboidal and intermediate PECs formed sclerotic lesions. In patients with FSGS, cells forming the tip lesions expressed markers of intermediate PECs. These novel PEC subgroups form sclerotic lesions and were more prone to cellular activation compared to the classical flat PECs in disease. Thus, colonization of Bowman's capsule by cuboidal PECs may predispose to lesion formation and chronic kidney disease. We propose that tip lesions originate from this novel subgroup of PECs in patients with FSGS.
Collapse
Affiliation(s)
- Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
| | - Katja Leuchtle
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Anton Wagner
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nazanin Kabgani
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Turgay Saritas
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Victor G Puelles
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Cardiovascular Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, School of Biomedical Sciences, and Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia; Department of Nephrology, Monash Health, Melbourne Australia
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samy Hakroush
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University of Erlangen, Erlangen, Germany
| | - Hermann-Josef Gröne
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Agnes Fogo
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Marcus Johannes Moeller
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
| |
Collapse
|
66
|
Song CC, Hong Q, Geng XD, Wang X, Wang SQ, Cui SY, Guo MD, Li O, Cai GY, Chen XM, Wu D. New Mutation of Coenzyme Q 10 Monooxygenase 6 Causing Podocyte Injury in a Focal Segmental Glomerulosclerosis Patient. Chin Med J (Engl) 2019; 131:2666-2675. [PMID: 30425193 PMCID: PMC6247592 DOI: 10.4103/0366-6999.245158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Focal segmental glomerulosclerosis (FSGS) is a kidney disease that is commonly associated with proteinuria and the progressive loss of renal function, which is characterized by podocyte injury and the depletion and collapse of glomerular capillary segments. The pathogenesis of FSGS has not been completely elucidated; however, recent advances in molecular genetics have provided increasing evidence that podocyte structural and functional disruption is central to FSGS pathogenesis. Here, we identified a patient with FSGS and aimed to characterize the pathogenic gene and verify its mechanism. Methods: Using next-generation sequencing and Sanger sequencing, we screened the causative gene that was linked to FSGS in this study. The patient's total blood RNA was extracted to validate the messenger RNA (mRNA) expression of coenzyme Q10 monooxygenase 6 (COQ6) and validated it by immunohistochemistry. COQ6 knockdown in podocytes was performed in vitro with small interfering RNA, and then, F-actin was determined using immunofluorescence staining. Cell apoptosis was evaluated by flow cytometry, the expression of active caspase-3 was determined by Western blot, and mitochondrial function was detected by MitoSOX. Results: Using whole-exome sequencing and Sanger sequencing, we screened a new causative gene, COQ6, NM_182480: exon1: c.G41A: p.W14X. The mRNA expression of COQ6 in the proband showed decreased. Moreover, the expression of COQ6, which was validated by immunohistochemistry, also had the same change in the proband. Finally, we focused on the COQ6 gene to clarify the mechanism of podocyte injury. Flow cytometry showed significantly increased in apoptotic podocytes, and Western blotting showed increases in active caspase-3 in si-COQ6 podocytes. Meanwhile, reactive oxygen species (ROS) levels were increased and F-actin immunofluorescence was irregularly distributed in the si-COQ6 group. Conclusions: This study reported a possible mechanism for FSGS and suggested that a new mutation in COQ6, which could cause respiratory chain defect, increase the generation of ROS, destroy the podocyte cytoskeleton, and induce apoptosis. It provides basic theoretical basis for the screening of FSGS in the future.
Collapse
Affiliation(s)
- Cheng-Cheng Song
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiao-Dong Geng
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xu Wang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Shu-Qiang Wang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Shao-Yuan Cui
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Man-Di Guo
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Ou Li
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Di Wu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| |
Collapse
|
67
|
Zhong F, Chen Z, Zhang L, Xie Y, Nair V, Ju W, Kretzler M, Nelson RG, Li Z, Chen H, Wang Y, Zhang A, Lee K, Liu Z, He JC. Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight 2018; 3:123482. [PMID: 30429374 PMCID: PMC6302948 DOI: 10.1172/jci.insight.123482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023] Open
Abstract
Our previous work demonstrated a protective role of protein S in early diabetic kidney disease (DKD). Protein S exerts antiinflammatory and antiapoptotic effects through the activation of TYRO3, AXL, and MER (TAM) receptors. Among the 3 TAM receptors, we showed that the biological effects of protein S were mediated largely by TYRO3 in diabetic kidneys. Our data now show that TYRO3 mRNA expression is highly enriched in human glomeruli and that TYRO3 protein is expressed in podocytes. Interestingly, glomerular TYRO3 mRNA expression increased in mild DKD but was suppressed in progressive DKD, as well as in focal segmental glomerulosclerosis (FSGS). Functionally, morpholino-mediated knockdown of tyro3 altered glomerular filtration barrier development in zebrafish larvae, and genetic ablation of Tyro3 in murine models of DKD and Adriamycin-induced nephropathy (ADRN) worsened albuminuria and glomerular injury. Conversely, the induction of TYRO3 overexpression specifically in podocytes significantly attenuated albuminuria and kidney injury in mice with DKD, ADRN, and HIV-associated nephropathy (HIVAN). Mechanistically, TYRO3 expression was suppressed by activation of TNF-α/NF-κB pathway, which may contribute to decreased TYRO3 expression in progressive DKD and FSGS, and TYRO3 signaling conferred antiapoptotic effects through the activation of AKT in podocytes. In conclusion, TYRO3 plays a critical role in maintaining normal podocyte function and may be a potential new drug target to treat glomerular diseases.
Collapse
Affiliation(s)
- Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Liwen Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yifan Xie
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Viji Nair
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Zhengzhe Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyu Chen
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, China
| | - Yongjun Wang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J Peters Veterans Affair Medical Center, Bronx, New York, USA
| |
Collapse
|
68
|
Hu S, Han R, Shi J, Zhu X, Qin W, Zeng C, Bao H, Liu Z. The long noncoding RNA LOC105374325 causes podocyte injury in individuals with focal segmental glomerulosclerosis. J Biol Chem 2018; 293:20227-20239. [PMID: 30389788 DOI: 10.1074/jbc.ra118.005579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Indexed: 01/18/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common kidney disease that results in nephrotic syndrome. FSGS arises from dysfunction and apoptosis of podocytes in the glomerulus of the kidney, leading to podocytopathy. The molecular mechanisms underlying podocyte apoptosis remain incompletely understood. Using an array of gene expression profiling, PCR, and in situ hybridization assay, we found here that the levels of the long noncoding RNA LOC105374325 were elevated in the renal podocytes of individuals with FSGS. We also observed that the microRNAs miR-34c and miR-196a/b down-regulated the expression of the apoptosis regulators BCL2-associated X, apoptosis regulator (Bax), and BCL2 antagonist/killer 1 (Bak) in podocytes. Competitive binding between LOC105374325 and miR-34c or miR-196a/b increased Bax and Bak levels and caused podocyte apoptosis. Of note, the mitogen-activated protein kinase P38 and the transcription factor CCAAT enhancer-binding protein β (C/EBPβ) up-regulated LOC105374325 expression. P38 inhibition or C/EBPβ silencing decreased LOC105374325 levels and inhibited apoptosis in adriamycin-treated podocytes. LOC105374325 overexpression decreased miR-34c and miR-196a/b levels, increased Bax and Bak levels, and induced proteinuria and focal segmental lesions in mice. In conclusion, activation of the P38/C/EBPβ pathway stimulates the expression of LOC105374325, which, in turn, increases Bax and Bak levels and causes apoptosis by competitively binding to miR-34c and miR-196a/b in the podocytes of individuals with FSGS.
Collapse
Affiliation(s)
- Shuai Hu
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Runhong Han
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and; the School of Medicine, Southeast University, Nanjing 210009, China
| | - Jingsong Shi
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Xiaodong Zhu
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Weisong Qin
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Caihong Zeng
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and
| | - Hao Bao
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and.
| | - Zhihong Liu
- From the National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002 and.
| |
Collapse
|
69
|
Prochnicki A, Amann K, Wegner M, Sock E, Pfister E, Shankland S, Pippin J, Daniel C. Characterization of Glomerular Sox9+ Cells in Anti-Glomerular Basement Membrane Nephritis in the Rat. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2529-2541. [DOI: 10.1016/j.ajpath.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
|
70
|
Honzumi S, Takeuchi M, Kurihara M, Fujiyoshi M, Uchida M, Watanabe K, Suzuki T, Ishii I. The effect of cholesterol overload on mouse kidney and kidney-derived cells. Ren Fail 2018; 40:43-50. [PMID: 29304720 PMCID: PMC6014466 DOI: 10.1080/0886022x.2017.1419974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction: Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. Methods: C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (βVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. Results: In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman’s capsule decreased and the expression level of megalin decreased. After βVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. Conclusions: These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.
Collapse
Affiliation(s)
- Shoko Honzumi
- a Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan
| | - Miho Takeuchi
- a Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan
| | - Mizuki Kurihara
- a Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan
| | - Masachika Fujiyoshi
- a Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan
| | - Masashi Uchida
- b Division of Pharmacy , Chiba University Hospital , Chiba , Japan
| | - Kenta Watanabe
- b Division of Pharmacy , Chiba University Hospital , Chiba , Japan
| | - Takaaki Suzuki
- b Division of Pharmacy , Chiba University Hospital , Chiba , Japan
| | - Itsuko Ishii
- a Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences , Chiba University , Chiba , Japan.,b Division of Pharmacy , Chiba University Hospital , Chiba , Japan
| |
Collapse
|
71
|
Fujita Y, Tominaga T, Abe H, Kangawa Y, Fukushima N, Ueda O, Jishage KI, Kishi S, Murakami T, Saga Y, Kanwar YS, Nagai K, Doi T. An adjustment in BMP4 function represents a treatment for diabetic nephropathy and podocyte injury. Sci Rep 2018; 8:13011. [PMID: 30158674 PMCID: PMC6115362 DOI: 10.1038/s41598-018-31464-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/09/2018] [Indexed: 01/03/2023] Open
Abstract
Podocyte injury has been proposed to play an important role in diabetic nephropathy; however, its pathological mechanism remains unclear. We have shown that bone morphogenetic protein 4 (BMP4) signaling leads to the glomerular changes characteristic of this disorder. To analyze the molecular mechanism of podocyte injury, the effect of BMP4 was investigated using streptozotocin (STZ)-induced, Bmp4 heterozygous knockout (Bmp4+/−) and podocyte-specific Bmp4 knockout mice. Mice with STZ-induced diabetes exhibited glomerular matrix hyperplasia and decreased numbers of podocyte nucleus-specific WT1-positive cells. The number of podocytes and proteinuria were improved in both diabetic Bmp4 knockout mouse models compared to the effects observed in the control mice. The effect of BMP4 overexpression on Bmp4-induced or podocyte-specific transgenic mice was examined. Tamoxifen-induced Bmp4-overexpressing mice exhibited mesangial matrix expansion and decreased numbers of WT1-positive cells. Podocyte-specific Bmp4-overexpressing mice displayed increased kidney BMP4 expression and mesangial matrix expansion but decreased nephrin expression and numbers of WT1-positive cells. Both lines of Bmp4-overexpressing mice exhibited increased albuminuria. In cultured podocytes, BMP4 increased phospho-p38 levels. BMP4 decreased nephrin expression but increased cleaved caspase-3 levels. p38 suppression inhibited caspase-3 activation. Apoptosis was confirmed in STZ-diabetic glomeruli and Bmp4-overexpressing mice. Bmp4 +/− mice with diabetes displayed reduced apoptosis. Based on these data, the BMP4 signaling pathway plays important roles in the development of both podocyte injury and mesangial matrix expansion in diabetic nephropathy.
Collapse
Affiliation(s)
- Yui Fujita
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Tatsuya Tominaga
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan.
| | - Hideharu Abe
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yumi Kangawa
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Naoshi Fukushima
- Research Division, Fuji Gotemba Research Labs, Chugai Pharmaceutical Co., Ltd, Shizuoka, Japan
| | - Otoya Ueda
- Research Division, Fuji Gotemba Research Labs, Chugai Pharmaceutical Co., Ltd, Shizuoka, Japan
| | - Kou-Ichi Jishage
- Research Division, Fuji Gotemba Research Labs, Chugai Pharmaceutical Co., Ltd, Shizuoka, Japan.,Chugai Research Institute for Medical Science Inc., Shizuoka, Japan
| | - Seiji Kishi
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Taichi Murakami
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yashpal S Kanwar
- Department of Pathology & Medicine-Nephrology, FSM, Northwestern University, Chicago, Illinois, 60611, USA
| | - Kojiro Nagai
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Toshio Doi
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
72
|
Regulation of cofilin phosphorylation in glomerular podocytes by testis specific kinase 1 (TESK1). Sci Rep 2018; 8:12286. [PMID: 30115939 PMCID: PMC6095849 DOI: 10.1038/s41598-018-30115-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Expression of a constitutively active Rho A (V14Rho) in podocytes in vivo induces albuminuria and foot process (FP) effacement. These effects may be mediated by the Rho A effector Rho kinase (ROK); but inhibition of ROK with Y27632 failed to attenuate albuminuria or FP effacement in V14Rho mice. ROK activates LIM kinases (LIMKs), which phosphorylate and inhibit the actin depolymerizing factor cofilin 1 (CFL1). Sustained phosphorylation of CFL1 is implicated in human nephrotic diseases, but Y27632 did not inhibit phosphorylation of CFL1 in vivo, despite effective ROK inhibition. CFL1 is also phosphorylated by testis-specific kinase 1 (TESK1) on the same serine residue. TESK1 was expressed in podocytes, and, similar to the in vivo situation, Y27632 had little effect on phospho-CFL1 (pCFL1) levels in cultured podocytes. In contrast, Y27632 reduced pCFL1 levels in TESK1 knockout (KO) cells. ROK inhibition enhanced podocyte motility but, the motility promoting effect of Y27632 was absent in TESK1 KO podocytes. Thus, TESK1 regulates podocyte cytoskeletal dynamics in glomerular podocytes and may play an important role in regulating glomerular filtration barrier integrity in glomerular disease processes.
Collapse
|
73
|
Modified scanning electron microscopy reveals pathological crosstalk between endothelial cells and podocytes in a murine model of membranoproliferative glomerulonephritis. Sci Rep 2018; 8:10276. [PMID: 29980767 PMCID: PMC6035194 DOI: 10.1038/s41598-018-28617-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
This study evaluated endothelial cells and podocytes, both being primary components of the glomerular filtration barrier, in the progression of membranoproliferative glomerulonephritis (MPGN) using modified scanning electron microscopy (mSEM) analysis. BXSB/MpJ-Yaa model mice exhibited autoimmune-mediated MPGN characterised by elevated serum autoantibody levels, albuminuria, renal dysfunctional parameters, and decreased glomerular endothelial fenestrations (EF) and podocyte foot process (PFP) effacement with immune cell infiltration. Similar to transmission electron microscopy, mSEM revealed a series of pathological changes in basement membrane and densities of EF and PFP in BXSB/MpJ-Yaa compared with control BXSB/MpJ at different stages. Further, immunopositive area of endothelial marker (CD34), podocyte functional molecules (Nephrin, Podocin, Synaptopodin, and Wilms’ tumour 1 (WT1)), and vascular endothelial growth factor A (VEGF A) significantly decreased in the glomerulus of BXSB/MpJ-Yaa compared with BXSB at final stage. The indices of glomerular endothelial injuries (EF density and immunopositive area of CD34 and VEGF A) and podocyte injuries (PEP density and immunopositive area of podocyte functional molecules) were also significantly correlated with each other and with indices of autoimmune disease and renal dysfunction. Thus, our results elucidated the pathological crosstalk between endothelial cells and podocytes in MPGN progression and the usefulness of mSEM for glomerular pathological analysis.
Collapse
|
74
|
Sun J, Lv J, Zhang W, Li L, Lv J, Geng Y, Yin A. Combination with miR-124a improves the protective action of BMSCs in rescuing injured rat podocytes from abnormal apoptosis and autophagy. J Cell Biochem 2018; 119:7166-7176. [PMID: 29904949 DOI: 10.1002/jcb.26771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
This in vitro study was performed to identify the role of miR-124a in bone marrow stromal stem cells (BMSCs) therapy for H2 O2 -induced rat podocyte injury, and determine whether combination treatment with miR-124a could improve the protective effect of BMSCs. Cell viability of podocytes was detected by CCK-8 assay. Detection of ROS level, apoptotic rate, and autophagy rate was carried out using flow cytometry assays. Oxidative stress parameters were analyzed using the ELISA assays. MiR-124a and mRNA levels were determined using real-time PCR. Protein expression was detected using Western blotting. Our study revealed a pivotal role of miR-124a in the protective action of BMSCs on podocyte injury driven by oxidative stress. BMSCs could rescue injured podocytes from aberrant apoptosis and autophagy by regulating cleaved caspase-3, Bax, Bcl-2, LC3-II/I, and p62. Suppression of the PI3 K/Akt/mTOR signaling pathway is likely one of the main mechanisms underlying the protective action of BMSCs transfected with miR-124a. Our study revealed that miR-124a further improves the protective effect of BMSCs in injured podocytes. Thus, the combination of BMSCs and microRNAs could be a beneficial treatment for renal diseases in the near future.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjing Zhang
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lili Li
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jia Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingzhou Geng
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aiping Yin
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
75
|
Haley KE, Kronenberg NM, Liehm P, Elshani M, Bell C, Harrison DJ, Gather MC, Reynolds PA. Podocyte injury elicits loss and recovery of cellular forces. SCIENCE ADVANCES 2018; 4:eaap8030. [PMID: 29963620 PMCID: PMC6021140 DOI: 10.1126/sciadv.aap8030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
In the healthy kidney, specialized cells called podocytes form a sophisticated blood filtration apparatus that allows excretion of wastes and excess fluid from the blood while preventing loss of proteins such as albumin. To operate effectively, this filter is under substantial hydrostatic mechanical pressure. Given their function, it is expected that the ability to apply mechanical force is crucial to the survival of podocytes. However, to date, podocyte mechanobiology remains poorly understood, largely because of a lack of experimental data on the forces involved. We perform quantitative, continuous, nondisruptive, and high-resolution measurements of the forces exerted by differentiated podocytes in real time using a recently introduced functional imaging modality for continuous force mapping. Using an accepted model for podocyte injury, we find that injured podocytes experience near-complete loss of cellular force transmission but that this loss of force is reversible under certain conditions. The observed changes in force correlate with F-actin rearrangement and reduced expression of podocyte-specific proteins. By introducing robust and high-throughput mechanical phenotyping and by demonstrating the significance of mechanical forces in podocyte injury, this research paves the way to a new level of understanding of the kidney. In addition, in an advance over established force mapping techniques, we integrate cellular force measurements with immunofluorescence and perform continuous long-term force measurements of a cell population. Hence, our approach has general applicability to a wide range of biomedical questions involving mechanical forces.
Collapse
Affiliation(s)
- Kathryn E. Haley
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Nils M. Kronenberg
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
- Scottish Universities Physics Alliance, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Philipp Liehm
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
- Scottish Universities Physics Alliance, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Cameron Bell
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Malte C. Gather
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
- Scottish Universities Physics Alliance, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Paul A. Reynolds
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
76
|
Campbell KN, Tumlin JA. Protecting Podocytes: A Key Target for Therapy of Focal Segmental Glomerulosclerosis. Am J Nephrol 2018; 47 Suppl 1:14-29. [PMID: 29852493 DOI: 10.1159/000481634] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a histologic pattern of injury demonstrated by renal biopsy that can arise from a diverse range of causes and mechanisms. It has an estimated incidence of 7 per 1 million and is the most common primary glomerular disorder leading to end-stage renal disease in the United States. This review focuses on damage to the podocyte and the consequences of this injury in patients with FSGS, the genetics of FSGS, and approaches to treatment with a focus on the effects on podocytes. SUMMARY The podocyte is central to the glomerular filtration barrier and is particularly vulnerable because of its highly differentiated post-mitotic phenotype. The progressive structural changes involved in the pathology of FSGS include podocyte foot process effacement, death of podocytes and exposure of the glomerular basement membrane, filtration of nonspecific plasma proteins, expansion of capillaries, misdirected filtration at points of synechiae, and mesangial matrix proliferation. Although damage to and death of podocytes can result from single-gene disorders, evidence also suggests a role for soluble factors, such as soluble urokinase-type plasminogen activator receptor, cardiotrophin-like cytokine-1, and anti-CD40 antibodies, that promote FSGS recurrence post transplant. Several classes of medications, including corticosteroids, calcineurin inhibitors, endothelin receptor antagonists, adrenocorticotropic hormone, and rituximab, have been shown to be effective for the treatment of FSGS and have been demonstrated to have significant protective effects on podocytes. Key Messages: Greater understanding of podocyte biology is essential to the identification of new treatment targets and medications for the management of patients with FSGS.
Collapse
Affiliation(s)
- Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James A Tumlin
- Department of Medicine, UT College of Medicine, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
77
|
Zhou X, Zhang J, Haimbach R, Zhu W, Mayer-Ezell R, Garcia-Calvo M, Smith E, Price O, Kan Y, Zycband E, Zhu Y, Hoek M, Cox JM, Ma L, Kelley DE, Pinto S. An integrin antagonist (MK-0429) decreases proteinuria and renal fibrosis in the ZSF1 rat diabetic nephropathy model. Pharmacol Res Perspect 2018; 5. [PMID: 28971604 PMCID: PMC5625158 DOI: 10.1002/prp2.354] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023] Open
Abstract
Multiple integrins have been implicated in modulating renal function. Modulation of integrin function can lead to pathophysiological processes associated with diabetic nephropathy such as alterations in the glomerular filtration barrier and kidney fibrosis. The complexity of these pathophysiological changes implies that multiple integrin subtypes might need to be targeted to ameliorate the progression of renal disease. To address this hypothesis, we investigated the effects of MK‐0429, a compound that was originally developed as an αvβ3 inhibitor for the treatment of osteoporosis, on renal function and fibrosis. We demonstrated that MK‐0429 is an equipotent pan‐inhibitor of multiple av integrins. MK‐0429 dose‐dependently inhibited podocyte motility and also suppressed TGF‐β‐induced fibrosis marker gene expression in kidney fibroblasts. Moreover, in the obese ZSF1 rat model of diabetic nephropathy, chronic treatment with MK‐0429 resulted in significant reduction in proteinuria, kidney fibrosis, and collagen accumulation. In summary, our results suggest that inhibition of multiple integrin subtypes might lead to meaningful impact on proteinuria and renal fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Ji Zhang
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Robin Haimbach
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Wei Zhu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Rosemary Mayer-Ezell
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Margarita Garcia-Calvo
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Elizabeth Smith
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Olga Price
- Department of Pharmacology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Yanqing Kan
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Emanuel Zycband
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Yonghua Zhu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Maarten Hoek
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Jason M Cox
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Lijun Ma
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - David E Kelley
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| | - Shirly Pinto
- Department of Cardiometabolic Diseases, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033
| |
Collapse
|
78
|
Fukuda A, Minakawa A, Sato Y, Iwakiri T, Iwatsubo S, Komatsu H, Kikuchi M, Kitamura K, Wiggins RC, Fujimoto S. Urinary podocyte and TGF-β1 mRNA as markers for disease activity and progression in anti-glomerular basement membrane nephritis. Nephrol Dial Transplant 2018; 32:1818-1830. [PMID: 28419296 DOI: 10.1093/ndt/gfx047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Podocyte depletion causes glomerulosclerosis, with persistent podocyte loss being a major factor driving disease progression. Urinary podocyte mRNA is potentially useful for monitoring disease progression in both animal models and in humans. To determine whether the same principles apply to crescentic glomerular injury, a rat model of anti-glomerular basement membrane (anti-GBM) nephritis was studied in parallel with a patient with anti-GBM nephritis. Methods Podocyte loss was measured by Wilms' Tumor 1-positive podocyte nuclear counting and density, glomerular epithelial protein 1 or synaptopodin-positive podocyte tuft area and urinary podocyte mRNA excretion rate. Glomerulosclerosis was evaluated by Azan staining and urinary transforming growth factor (TGF)-β1 mRNA excretion rate. Results In the rat model, sequential kidney biopsies revealed that after a threshold of 30% podocyte loss, the degree of glomerulosclerosis was linearly associated with the degree of podocyte depletion, compatible with podocyte depletion driving the sclerotic process. Urinary podocyte mRNA correlated with the rate of glomerular podocyte loss. In treatment studies, steroids prevented glomerulosclerosis in the anti-GBM model in contrast to angiotensin II inhibition, which lacked a protective effect, and urinary podocyte and TGF-β1 mRNA markers more accurately reflected both the amount of podocyte depletion and the degree of glomerulosclerosis compared with proteinuria under both scenarios. In a patient successfully treated for anti-GBM nephritis, urinary podocyte and TGB-β1 mRNA reflected treatment efficacy. Conclusion These results emphasize the role of podocyte depletion in anti-GBM nephritis and suggest that urinary podocyte and TGF-β1 mRNA could serve as markers of disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Akihiro Fukuda
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akihiro Minakawa
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuji Sato
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Iwakiri
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuji Iwatsubo
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Komatsu
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masao Kikuchi
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Kitamura
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Roger C Wiggins
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Shouichi Fujimoto
- First Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Hemovascular Medicine and Artificial Organs, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
79
|
Zhao X, Hwang DY, Kao HY. The Role of Glucocorticoid Receptors in Podocytes and Nephrotic Syndrome. NUCLEAR RECEPTOR RESEARCH 2018; 5. [PMID: 30417008 PMCID: PMC6224173 DOI: 10.11131/2018/101323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glucocorticoid receptor (GC), a founding member of the nuclear hormone receptor superfamily, is a glucocorticoid-activated transcription factor that regulates gene expression and controls the development and homeostasis of human podocytes. Synthetic glucocorticoids are the standard treatment regimens for proteinuria (protein in the urine) and nephrotic syndrome (NS) caused by kidney diseases. These include minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN) and immunoglobulin A nephropathy (IgAN) or subsequent complications due to diabetes mellitus or HIV infection. However, unwanted side effects and steroid-resistance remain major issues for their long-term use. Furthermore, the mechanism by which glucocorticoids elicit their renoprotective activity in podocyte and glomeruli is poorly understood. Podocytes are highly differentiated epithelial cells that contribute to the integrity of kidney glomerular filtration barrier. Injury or loss of podocytes leads to proteinuria and nephrotic syndrome. Recent studies in multiple experimental models have begun to explore the mechanism of GC action in podocytes. This review will discuss progress in our understanding of the role of glucocorticoid receptor and glucocorticoids in podocyte physiology and their renoprotective activity in nephrotic syndrome.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Daw-Yang Hwang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
80
|
Wen Y, Shah S, Campbell KN. Molecular Mechanisms of Proteinuria in Focal Segmental Glomerulosclerosis. Front Med (Lausanne) 2018; 5:98. [PMID: 29713631 PMCID: PMC5912003 DOI: 10.3389/fmed.2018.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disease resulting in end-stage renal disease in the USA and is increasing in prevalence worldwide. It is a diverse clinical entity with idiopathic, genetic, metabolic, infectious, and other causes that culminate in a characteristic histologic pattern of injury. Proteinuria is a hallmark of FSGS as well as other primary and secondary glomerular disorders. The magnitude of proteinuria at disease onset and during treatment has prognostic implications for renal survival as well as associated cardiovascular morbidity and mortality. Significant advances over the last two decades have shed light on the molecular architecture of the glomerular filtration barrier. The podocyte is the target cell for injury in FSGS. A growing list of disease-causing gene mutations encoding proteins that regulate podocyte survival and homeostasis has been identified in FSGS patients. Several pathogenic and regulatory pathways have been uncovered that result in proteinuria in rodent models and human FSGS. The recurrence of proteinuria and FSGS after kidney transplantation is supporting evidence for the role of a circulating permeability factor in disease pathogenesis. These advances reviewed herein have significant implications for disease classification and therapeutic drug development for FSGS.
Collapse
Affiliation(s)
- Yumeng Wen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sapna Shah
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
81
|
Hamano T. Vitamin D and renal outcome: the fourth outcome of CKD-MBD? Oshima Award Address 2015. Clin Exp Nephrol 2018; 22:249-256. [PMID: 29270765 PMCID: PMC5838134 DOI: 10.1007/s10157-017-1517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
Bone fracture, cardiovascular events, and mortality are three outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD), and the umbrella concept originally described for dialysis patients. The reported association of serum phosphorus or fibroblast growth factor 23 (FGF23) levels with renal outcome suggests that the fourth relevant outcome of CKD-MBD in predialysis patients is renal outcome. We found that proteinuria of 2+ or greater with a dipstick test was associated with low vitamin D status due to urinary loss of 25-hydroxyvitamin D (25D). Moreover, active vitamin D or its analogues decrease proteinuria. Given our finding that maxacalcitol does not repress renin, the reduction of proteinuria by this agent is likely due to direct upregulation of the nephrin and podocin in podocytes. Moreover, this agent downregulates the mesenchymal marker desmin in podocytes and blocks transforming growth factor-beta autoinduction, leading to attenuation of renal fibrosis in a unilateral ureteral obstructive (UUO) model. These facts are reminiscent of the suppression of epithelial-mesenchymal transition (EMT) by vitamin D. EMT blockage may explain our finding that vitamin D prescription in renal transplant recipients is associated with a lower incidence of cancer. We also reported that low vitamin D status and high FGF23 levels predict a worse renal outcome. However, administration of massive doses of 25D exacerbates renal fibrosis in UUO kidneys in 1alpha-hydroxylase knockout mice. Moreover, FGF23 inhibits 1alpha-hydroxylase in proximal tubules and monocytes. Taken together, local 1,25(OH)2D in the kidney tissue but not 25D seems to protect the kidney.
Collapse
Affiliation(s)
- Takayuki Hamano
- Department of Comprehensive Kidney Disease Research (CKDR), Osaka University Graduate School of Medicine, D11, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
82
|
Vikøren LA, Drotningsvik A, Mwakimonga A, Leh S, Mellgren G, Gudbrandsen OA. Diets containing salmon fillet delay development of high blood pressure and hyperfusion damage in kidneys in obese Zucker fa/fa rats. ACTA ACUST UNITED AC 2018; 12:294-302. [DOI: 10.1016/j.jash.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/24/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
83
|
Rac1 in podocytes promotes glomerular repair and limits the formation of sclerosis. Sci Rep 2018; 8:5061. [PMID: 29567961 PMCID: PMC5864960 DOI: 10.1038/s41598-018-23278-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
Rac1, a Rho family member, is ubiquitously expressed and participates in various biological processes. Rac1 expression is induced early in podocyte injury, but its role in repair is unclear. To investigate the role of Rac1 expression in podocytes under pathological conditions, we used podocyte-specific Rac1 conditional knock-out (cKO) mice administered adriamycin (ADR), which causes nephrosis and glomerulosclerosis. Larger areas of detached podocytes, more adhesion of the GBM to Bowman’s capsule, and a higher ratio of sclerotic glomeruli were observed in Rac1 cKO mice than in control mice, whereas no differences were observed in glomerular podocyte numbers in both groups after ADR treatment. The mammalian target of rapamycin (mTOR) pathway, which regulates the cell size, was more strongly suppressed in the podocytes of Rac1 cKO mice than in those of control mice under pathological conditions. In accordance with this result, the volumes of podocytes in Rac1 cKO mice were significantly reduced compared with those of control mice. Experiments using in vitro ADR-administered Rac1 knockdown podocytes also supported that a reduction in Rac1 suppressed mTOR activity in injured podocytes. Taken together, these data indicate that Rac1-associated mTOR activation in podocytes plays an important role in preventing the kidneys from developing glomerulosclerosis.
Collapse
|
84
|
[Correlation between expressions of VEGF and TRPC6 and their roles in podocyte injury in rats with diabetic nephropathy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38. [PMID: 29643035 PMCID: PMC6744170 DOI: 10.3969/j.issn.1673-4254.2018.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To analyze the correlation between the expressions of vascular endothelial growth factor (VEGF) and transient receptor potential canonical 6 (TRPC6) and their role in podocyte injury in rats with diabetic nephropathy. METHODS Forty SD rats with diabetic nephropathy induced by intraperitoneal injection of 65 mg/kg streptozotocin were randomized equally into 5 groups, including a diabetic nephropathy model group and 4 treatment groups, with 8 normal SD rats as the normal control group. In the 4 treatment groups, the rats received intraperitoneal injections with SU5416 at 5 mg/kg or 10 mg/kg twice a week or with LY294002 at 1 mg/kg or 2 mg/kg once daily for 8 weeks. Blood glucose, serum creatinine, blood urea nitrogen, and 24-h urinary protein levels of the rats were detected at different time points, and the pathologies in the renal tissue were observed using HE staining, PAS staining and immunohistochemistry. The expressions of VEGF, nephrin, and TRPC6 at mRNA and protein levels were detected using RT-PCR and Western blotting. RESULTS Compared with normal control rats, the diabetic rats showed significantly increased fasting blood glucose, serum creatinine, blood urea nitrogen and 24-h urinary protein levels with decreased expressions of nephrin mRNA and protein (P<0.05) and increased expressions of VEGF and TRPC6 (P<0.05). Compared with the untreated diabetic rats, the rats with SU5416 treatment showed increased 24-h urinary protein, urea nitrogen, and nephrin expression and decreased TRPC6 expression without significant changes in fasting blood glucose, serum creatinine, or VEGF expression. The rats treated with LY294002 showed decreased 24-h urinary protein and TRPC6 expression without significant changes in fasting blood glucose, serum creatinine, urea nitrogen, or expressions of nephrin and VEGF. CONCLUSION The regulatory effect of VEGF on TRPC6 can be blocked by inhibiting VEGFR-2 or blocking PI3K/Akt signaling pathway.
Collapse
|
85
|
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116:50-63. [PMID: 29305106 DOI: 10.1016/j.freeradbiomed.2017.12.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of diabetic nephropathy. Studies in experimental animal models of diabetes strongly implicate oxidant species as a major determinant in the pathophysiology of diabetic kidney disease. The translation, in the clinical setting, of these concepts have been quite disappointing, and new theories have challenged the concepts that oxidative stress per se plays a role in the pathophysiology of diabetic kidney disease. The concept of mitochondrial hormesis has been introduced to explain this apparent disconnect. Hormesis is intended as any cellular process that exhibits a biphasic response to exposure to increasing amounts of a substance or condition: specifically, in diabetic kidney disease, oxidant species may represent, at determined concentration, an essential and potentially protective factor. It could be postulated that excessive production or inhibition of oxidant species formation might result in an adverse phenotype. This review discusses the evidence underlying these two apparent contradicting concepts, with the aim to propose and speculate on potential mechanisms underlying the role of oxidant species in the pathophysiology of diabetic nephropathy and possibly open future more efficient therapies to be tested in the clinical settings.
Collapse
Affiliation(s)
- Manpreet K Sagoo
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
86
|
Abstract
Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Jay P Garg
- Product Development, Departments of Immunology, Infectious Diseases, and Ophthalmology, Genentech, South San Francisco, CA
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, CA.
| |
Collapse
|
87
|
Abstract
Ultimately, the common final pathway of any glomerular disease is podocyte effacement, podocyte loss, and, eventually, glomerular scarring. There has been a long-standing debate on the underlying mechanisms for podocyte depletion, ranging from necrosis and apoptosis to detachment of viable cells from the glomerular basement membrane. However, this debate still continues because additional pathways of programmed cell death have been reported in recent years. Interestingly, viable podocytes can be isolated out of the urine of proteinuric patients easily, emphasizing the importance of podocyte detachment in glomerular diseases. In contrast, detection of apoptosis and other pathways of programmed cell death in podocytes is technically challenging. In fact, we still are lacking direct evidence showing, for example, the presence of apoptotic bodies in podocytes, leaving the question unanswered as to whether podocytes undergo mechanisms of programmed cell death. However, understanding the mechanisms leading to podocyte depletion is of particular interest because future therapeutic strategies might interfere with these to prevent glomerular scarring. In this review, we summarize our current knowledge on podocyte cell death, the different molecular pathways and experimental approaches to study these, and, finally, focus on the mechanisms that prevent the onset of programmed cell death.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
88
|
Yang S, Li A, Wang J, Liu J, Han Y, Zhang W, Li YC, Zhang H. Vitamin D Receptor: A Novel Therapeutic Target for Kidney Diseases. Curr Med Chem 2018; 25:3256-3271. [PMID: 29446731 PMCID: PMC6142412 DOI: 10.2174/0929867325666180214122352] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Kidney disease is a serious problem that adversely affects human health, but critical knowledge is lacking on how to effectively treat established chronic kidney disease. Mounting evidence from animal and clinical studies has suggested that Vitamin D Receptor (VDR) activation has beneficial effects on various renal diseases. METHODS A structured search of published research literature regarding VDR structure and function, VDR in various renal diseases (e.g., IgA nephropathy, idiopathic nephrotic syndrome, renal cell carcinoma, diabetic nephropathy, lupus nephritis) and therapies targeting VDR was performed for several databases. RESULT Included in this study are the results from 177 published research articles. Evidence from these papers indicates that VDR activation is involved in the protection against renal injury in kidney diseases by a variety of mechanisms, including suppression of RAS activation, anti-inflammation, inhibiting renal fibrogenesis, restoring mitochondrial function, suppression of autoimmunity and renal cell apoptosis. CONCLUSION VDR offers an attractive druggable target for renal diseases. Increasing our understanding of VDR in the kidney is a fertile area of research and may provide effective weapons in the fight against kidney diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Zhang
- Address correspondence to this author is at the Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Tel: 86-731-88638238; E-mail:
| |
Collapse
|
89
|
Angiotensin II induces calcium-mediated autophagy in podocytes through enhancing reactive oxygen species levels. Chem Biol Interact 2017; 277:110-118. [DOI: 10.1016/j.cbi.2017.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
|
90
|
Ikuma D, Hiromura K, Kajiyama H, Suwa J, Ikeuchi H, Sakairi T, Kaneko Y, Maeshima A, Kurosawa H, Hirayama Y, Yokota K, Araki Y, Sato K, Asanuma YF, Akiyama Y, Hara M, Nojima Y, Mimura T. The correlation of urinary podocytes and podocalyxin with histological features of lupus nephritis. Lupus 2017; 27:484-493. [PMID: 29050536 DOI: 10.1177/0961203317734918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives The objective of this study was to test the correlation of urinary podocyte number (U-Pod) and urinary podocalyxin levels (U-PCX) with histology of lupus nephritis. Methods This was an observational, cross-sectional study. Sixty-four patients were enrolled: 40 with lupus nephritis and 24 without lupus nephritis (12 lupus nephritis patients in complete remission and 12 systemic lupus erythematosus patients without lupus nephritis). Urine samples were collected before initiating treatment. U-Pod was determined by counting podocalyxin-positive cells, and U-PCX was measured by sandwich ELISA, normalized to urinary creatinine levels (U-Pod/Cr, U-PCX/Cr). Results Lupus nephritis patients showed significantly higher U-Pod/Cr and U-PCX/Cr compared with patients without lupus nephritis. U-Pod/Cr was high in proliferative lupus nephritis (class III±V/IV±V), especially in pure class IV (4.57 (2.02-16.75)), but low in pure class V (0.30 (0.00-0.71)). U-Pod/Cr showed a positive correlation with activity index ( r=0.50, P=0.0012) and was independently associated with cellular crescent formation. In contrast, U-PCX/Cr was high in both proliferative and membranous lupus nephritis. Receiver operating characteristic analysis revealed significant correlation of U-Pod/Cr with pure class IV, class IV±V and cellular crescent formation, and the combined values of U-Pod/Cr and U-PCX/Cr were shown to be associated with pure class V. Conclusions U-Pod/Cr and U-PCX/Cr correlate with histological features of lupus nephritis.
Collapse
Affiliation(s)
- D Ikuma
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| | - K Hiromura
- 2 Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - H Kajiyama
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| | - J Suwa
- 2 Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - H Ikeuchi
- 2 Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - T Sakairi
- 2 Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Y Kaneko
- 2 Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - A Maeshima
- 2 Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - H Kurosawa
- 3 Diagnostics Research Department, Denka Innovation Center, Tokyo, Japan
| | - Y Hirayama
- 3 Diagnostics Research Department, Denka Innovation Center, Tokyo, Japan
| | - K Yokota
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| | - Y Araki
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| | - K Sato
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| | - Y F Asanuma
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| | - Y Akiyama
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan.,4 Department of Rheumatology, Japanese Red Cross Ogawa Hospital, Saitama, Japan
| | - M Hara
- 5 Department of Pediatrics, Yoshida Hospital, Niigata, Japan
| | - Y Nojima
- 6 Department of Nephrology, Japanese Red Cross Maebashi Hospital, Gunma, Japan
| | - T Mimura
- 1 Department of Rheumatology and Applied Immunology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
91
|
Bose M, Almas S, Prabhakar S. Wnt signaling and podocyte dysfunction in diabetic nephropathy. J Investig Med 2017; 65:1093-1101. [DOI: 10.1136/jim-2017-000456] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Nephropathy is a major microvascular complication of diabetes mellitus and often leads to terminal renal failure in addition to contributing significantly to cardiovascular morbidity and mortality. Despites continuous advances, the pathogenesis of diabetic nephropathy remains poorly understood. Recent studies have underscored the significance of structural and functional changes in podocytes in the development and progression of diabetic nephropathy. The role of podocytes in health and diabetic nephropathy and abnormalities including podocyte hypertrophy, effacement, and apoptosis, and a detailed discussion on the role played by the Wnt-β-catenin signaling pathway in podocyte injury and dysfunction are the focus of this review. In addition, the role played by Wnt signaling in mediating the effects of known therapeutic strategies for diabetic nephropathy is also discussed.
Collapse
|
92
|
Luque Y, Lenoir O, Bonnin P, Hardy L, Chipont A, Placier S, Vandermeersch S, Xu-Dubois YC, Robin B, Lazareth H, Souyri M, Guyonnet L, Baudrie V, Camerer E, Rondeau E, Mesnard L, Tharaux PL. Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension. J Am Soc Nephrol 2017; 28:3563-3578. [PMID: 28928136 DOI: 10.1681/asn.2016090960] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/29/2017] [Indexed: 11/03/2022] Open
Abstract
FSGS, the most common primary glomerular disorder causing ESRD, is a complex disease that is only partially understood. Progressive sclerosis is a hallmark of FSGS, and genetic tracing studies have shown that parietal epithelial cells participate in the formation of sclerotic lesions. The loss of podocytes triggers a focal activation of parietal epithelial cells, which subsequently form cellular adhesions with the capillary tuft. However, in the absence of intrinsic podocyte alterations, the origin of the pathogenic signal that triggers parietal epithelial cell recruitment remains elusive. In this study, investigation of the role of the endothelial PAS domain-containing protein 1 (EPAS1), a regulatory α subunit of the hypoxia-inducible factor complex, during angiotensin II-induced hypertensive nephropathy provided novel insights into FSGS pathogenesis in the absence of a primary podocyte abnormality. We infused angiotensin II into endothelial-selective Epas1 knockout mice and their littermate controls. Although the groups presented with identical high BP, endothelial-specific Epas1 gene deletion accentuated albuminuria with severe podocyte lesions and recruitment of pathogenic parietal glomerular epithelial cells. These lesions and dysfunction of the glomerular filtration barrier were associated with FSGS in endothelial Epas1-deficient mice only. These results indicate that endothelial EPAS1 has a global protective role during glomerular hypertensive injuries without influencing the hypertensive effect of angiotensin II. Furthermore, these findings provide proof of principle that endothelial-derived signaling can trigger FSGS and illustrate the potential importance of the EPAS1 endothelial transcription factor in secondary FSGS.
Collapse
Affiliation(s)
- Yosu Luque
- Critical Care Nephrology and Kidney Transplantation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.,Unité Mixte de Recherche S1155.,University Pierre and Marie Curie, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Center (PARCC).,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Philippe Bonnin
- Department of Physiology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Unité Mixte de Recherche 965, and
| | | | - Anna Chipont
- Paris Cardiovascular Center (PARCC).,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | | | - Yi-Chun Xu-Dubois
- Critical Care Nephrology and Kidney Transplantation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.,Unité Mixte de Recherche S1155
| | - Blaise Robin
- Paris Cardiovascular Center (PARCC).,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Lazareth
- Paris Cardiovascular Center (PARCC).,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michèle Souyri
- Institut Universitaire d'Hématologie, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Léa Guyonnet
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; and
| | | | - Eric Camerer
- Paris Cardiovascular Center (PARCC).,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Rondeau
- Critical Care Nephrology and Kidney Transplantation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.,Unité Mixte de Recherche S1155.,University Pierre and Marie Curie, Paris, France
| | - Laurent Mesnard
- Critical Care Nephrology and Kidney Transplantation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France.,Unité Mixte de Recherche S1155.,University Pierre and Marie Curie, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Center (PARCC), .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Renal Division, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
93
|
Retinal Vascular Imaging Markers and Incident Chronic Kidney Disease: A Prospective Cohort Study. Sci Rep 2017; 7:9374. [PMID: 28839244 PMCID: PMC5570935 DOI: 10.1038/s41598-017-09204-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/21/2017] [Indexed: 11/17/2022] Open
Abstract
Retinal microvascular changes indicating microvascular dysfunction have been shown to be associated with chronic kidney disease (CKD) in cross-sectional studies, but findings were mixed in prospective studies. We aimed to evaluate the relationship between retinal microvascular parameters and incident CKD in an Asian population. We examined 1256 Malay adults aged 40–80 years from the Singapore Malay Eye Study, who attended both the baseline (2004–07) and the follow-up (2011–13) examinations and were free of prevalent CKD. We measured quantitative retinal vascular parameters (arteriolar and venular calibre, tortuosity, fractal dimension and branching angle) using a computer-assisted program (Singapore I Vessel Assessment, SIVA) and retinopathy (qualitative parameter) using the modified Airlie house classification system from baseline retinal photographs. Incident CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 + 25% decrease in eGFR during follow-up. Over a median follow-up period of 6 years, 78 (6.21%) developed CKD (70.5% had diabetes). In multivariable models, smaller retinal arterioles (hazards ratio [95% confidence interval] = 1.34 [1.00–1.78]), larger retinal venules (2.35 [1.12–5.94] and presence of retinopathy (2.54 [1.48–4.36]) were associated with incident CKD. Our findings suggest that retinal microvascular abnormalities may reflect subclinical renal microvascular abnormalities involved in the development of CKD.
Collapse
|
94
|
Application of next-generation sequencing technology to diagnosis and treatment of focal segmental glomerulosclerosis. Clin Exp Nephrol 2017; 22:491-500. [PMID: 28752288 PMCID: PMC5956018 DOI: 10.1007/s10157-017-1449-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
A broad range of genetic and non-genetic factors can lead to kidney injury that manifests as focal segmental glomerulosclerosis (FSGS), which can be classified into primary (idiopathic) and secondary forms. Previous genetic approaches to familial or sporadic cases of FSGS or steroid-resistant nephrotic syndrome identified causal mutations in a subset of genes. Recently, next-generation sequencing (NGS) approaches are becoming a part of a standard assessment in medical genetics. Current knowledge of the comprehensive genomic information is changing the way we think about FSGS and draws attention not only to identification of novel causal genes, but also to potential roles for combinations of mutations in multiple genes, mutations with complex inheritance, and susceptibility genes with variable penetrance carrying relatively minor but significant effects. This review provides an update on recent advances in the genetic analysis of FSGS and highlights the potential as well as the new challenges of NGS for diagnosis and mechanism-based treatment of FSGS.
Collapse
|
95
|
Lu Y, Ye Y, Bao W, Yang Q, Wang J, Liu Z, Shi S. Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. Kidney Int 2017; 92:1119-1129. [PMID: 28709640 DOI: 10.1016/j.kint.2017.04.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
Abstract
Gene expression differs substantially among individual cells of the same type. We speculate that genes that are expressed in all but a portion of cells of a given cell type would be likely essential and required for either the cell survival (housekeeping) or for the cell type's unique structure and function, enabling the organism to survive. Here, we performed RNA-seq of 20 mouse podocytes using the Fluidigm C1 system and identified 335 genes that were expressed in all of them. Among them, 239 genes were also expressed in mesangial and endothelial cells and were involved in energy metabolism, protein synthesis, etc., as housekeeping genes. In contrast, 92 genes were preferentially expressed in podocytes (over five-fold versus expression in mesangial and endothelial cells) and are, therefore, the essential candidate genes specific for podocytes. Assessments by bioinformatics, conserved expression in human podocytes, and association with injury/disease all support the essentiality of these genes for podocytes. Factually, 27 of the 92 genes are already known to be essential for podocyte structure and function. Thirty-seven novel genes were functionally analyzed by siRNA silencing, and we found that a deficiency of 30 genes led to either cytoskeletal injury (FGFR1, AOX1, AIF1L, HAUS8, RAB3B, LPIN2, GOLIM4, CERS6, ARHGEF18, ARPC1A, SRGAP1, ITGB5, ILDR2, MPP5, TSC22D1, DNAJC11, SEPT10, MOCS2, FNBP1L, and TMOD3) or significant downregulation of CD2AP and synaptopodin (IFT80, MYOM2, ANXA4, CYB5R4, GPC1, ZNF277, NSF, ITGAV, CRYAB, and MTSS1). Thus, the list of genes essential for podocyte cytoskeletons is expanded by single-cell RNA sequencing. It appears that podocyte-specific essential genes are mainly associated with podocyte cytoskeletons.
Collapse
Affiliation(s)
- Yuqiu Lu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yuting Ye
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Wenduona Bao
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Qianqian Yang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jinquan Wang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
96
|
Combined use of electron microscopy and intravital imaging captures morphological and functional features of podocyte detachment. Pflugers Arch 2017; 469:965-974. [PMID: 28664407 DOI: 10.1007/s00424-017-2020-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022]
Abstract
The development of podocyte injury and albuminuria in various glomerular pathologies is still incompletely understood due to technical limitations in studying the glomerular filtration barrier (GFB) in real-time. We aimed to directly visualize the early morphological and functional changes of the GFB during the development of focal segmental glomerulosclerosis (FSGS) using a combination of transmission electron microscopy (TEM) and in vivo multiphoton microscopy (MPM) in the rat puromycin aminonucleoside (PAN) model. We hypothesized that this combined TEM + MPM experimental approach would provide a major technical improvement that would benefit our mechanistic understanding of podocyte detachment. Male Sprague-Dawley (for TEM) or Munich-Wistar-Frömter (for MPM) rats were given a single dose of 100-150 mg/kg body weight PAN i.p. and were either sacrificed and the kidneys processed for TEM or surgically instrumented for in vivo MPM imaging at various times 2-14 days after PAN administration. Both techniques demonstrated hypertrophy and cystic dilatations of the subpodocyte space that developed as early as 2-3 days after PAN. Adhesions of the visceral epithelium to the parietal Bowman's capsule (synechiae) appeared at days 8-10. TEM provided unmatched resolution of podocyte foot process remodeling, while MPM revealed the rapid dynamics of pseudocyst filling, emptying, and rupture, as well as endothelial and podocyte injury, misdirected filtration, and podocyte shedding. Due to the complementary advantages of TEM and MPM, this combined approach can provide an unusally comprehensive and dynamic portrayal of the alterations in podocyte morphology and function during FSGS development. The results advance our understanding of the role and importance of the various cell types, hemodynamics, and mechanical forces in the development of glomerular pathology.
Collapse
|
97
|
Nagata M, Kobayashi N, Hara S. Focal segmental glomerulosclerosis; why does it occur segmentally? Pflugers Arch 2017; 469:983-988. [PMID: 28664408 DOI: 10.1007/s00424-017-2023-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Podocyte loss is the fundamental basis of glomerulosclerosis. Focal segmental glomerulosclerosis (FSGS) is a progressive glomerular disease, and its glomerular features are a prototype of podocyte loss-driven glomerulosclerosis. The glomerular pathology of FSGS is characterized by a focal and segmental location of the sclerotic lesions in human FSGS; segmental sclerosis often shows simultaneous intra- and extra-capillary changes, including parietal cell migration, capillary collapse, hyaline deposition, and intra-capillary thrombi and occasional hypercellularity. This suggests that local cellular events, initiated by podocyte loss, are the basis of the segmental lesions in FSGS. Using podocyte-specific injury by toxin administration, a series of recent works has identified the cellular basis of the glomerular response to podocyte loss. This review discusses the molecular pathway of the local response to podocyte loss and its progression to sclerosis. Recent results suggest that segmental sclerosis is a physiological tissue response aimed at halting protein leakage from a disrupted filtration barrier.
Collapse
Affiliation(s)
- Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba-City, Ibaraki, 305-8577, Japan.
| | - Namiko Kobayashi
- Nephrology, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Satoshi Hara
- Rheumatology, Kanazawa University Graduate School of Medicine, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8671, Japan
| |
Collapse
|
98
|
Abstract
In this article, I shall outline some of the most important aspects of the evidentiary basis of the so-called Kriz model for the development of glomerular sclerosis, a model that we continue to modify to this day. In my mind, the most important findings include the fact that podocytes are generally post-mitotic cells, so that loss of a significant number for any cause leads to podocyte insufficiency. Another pivotal finding is that in many experimental models and in human disease, podocytes detach from the GBM as living cells. These facts, together with biomechanical deduction, have led to the ongoing evolution of the original Heidelberg model.
Collapse
|
99
|
Wang L, Sha Y, Bai J, Eisner W, Sparks MA, Buckley AF, Spurney RF. Podocyte-specific knockout of cyclooxygenase 2 exacerbates diabetic kidney disease. Am J Physiol Renal Physiol 2017; 313:F430-F439. [PMID: 28490532 DOI: 10.1152/ajprenal.00614.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Enhanced expression of cyclooxygenase 2 (COX2) in podocytes contributes to glomerular injury in diabetic kidney disease, but some basal level of podocyte COX2 expression might be required to promote podocyte attachment and/or survival. To investigate the role of podocyte COX2 expression in diabetic kidney disease, we deleted COX2 specifically in podocytes in a mouse model of Type 1 diabetes mellitus (Akita mice). Podocyte-specific knockout (KO) of COX2 did not affect renal morphology or albuminuria in nondiabetic mice. Albuminuria was significantly increased in wild-type (WT) and KO Akita mice compared with nondiabetic controls, and the increase in albuminuria was significantly greater in KO Akita mice compared with WT Akita mice at both 16 and 20 wk of age. At the 20-wk time point, mesangial expansion was also increased in WT and KO Akita mice compared with nondiabetic animals, and these histologic abnormalities were not improved by KO of COX2. Tubular injury was seen only in diabetic mice, but there were no significant differences between groups. Thus, KO of COX2 enhanced albuminuria and did not improve the histopathologic features of diabetic kidney disease. These data suggest that 1) KO of COX2 in podocytes does not ameliorate diabetic kidney disease in Akita mice, and 2) some basal level of podocyte COX2 expression in podocytes is necessary to attenuate the adverse effects of diabetes on glomerular filtration barrier function.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - William Eisner
- Division of Hematological Malignancies, Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina;
| |
Collapse
|
100
|
Kwon SH, Woollard JR, Saad A, Garovic VD, Zand L, Jordan KL, Textor SC, Lerman LO. Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients. Nephrol Dial Transplant 2017; 32:800-807. [PMID: 27190371 PMCID: PMC5837786 DOI: 10.1093/ndt/gfw077] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND An increased number of podocyte-derived extracellular vesicles (pEVs) may reflect podocyte injury in renal disease. Elevated glomerular pressure and other insults may injure podocytes, yet it remains unclear whether the numbers of pEVs are altered in hypertensive patients. We tested the hypothesis that urinary pEV levels would be elevated in patients with renovascular hypertension (RVH) compared with essential hypertension (EH) or healthy volunteers (HVs). METHODS We prospectively enrolled patients with EH ( n = 30) or RVH ( n = 31) to study renal blood flow (RBF) and cortical perfusion using multidetector computed tomography under controlled condition (regulated sodium intake and renin-angiotensin blockade). After isolation from urine samples, pEVs (nephrin and podocalyxin positive) were characterized by flow cytometry. Fourteen RVH patients were studied again 3 months after stenting or continued medical therapy. HVs ( n = 15) served as controls. RESULTS The fraction of pEV among urinary EVs was elevated in RVH compared with HVs and EH (11.4 ± 6.4, 6.8 ± 3.4 and 6.3 ± 3.7%, respectively; P < 0.001) and remained unchanged after 3 additional months of therapy and after controlling for clinical parameters. However, eGFR- and age-adjusted pEV levels did not correlate with any clinical or renal parameters. CONCLUSIONS In hypertensive patients under controlled conditions, urinary pEV levels are elevated in patients with RVH and low eGFR compared with patients with EH and relatively preserved renal function. These pEVs may reflect podocyte injury secondary to kidney damage, and their levels might represent a novel therapeutic target.
Collapse
Affiliation(s)
- Soon Hyo Kwon
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Division of Nephrology, Soonchunhyang University Hospital, Seoul, Korea
| | - John R. Woollard
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen C. Textor
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|