51
|
Abravanel F, Lacipière A, Lhomme S, Dubois M, Minier L, Peron JM, Alric L, Kamar N, Izopet J. Performance of a commercial assay for detecting and quantifying HEV RNA in faeces. J Clin Virol 2018; 109:1-5. [PMID: 30336371 PMCID: PMC7106495 DOI: 10.1016/j.jcv.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/11/2023]
Abstract
No commercial HEV RNA assay is validated for use in faecal samples. Monitoring HEV faecal excretion is recommended for managing chronic HEV infection in solid-organ transplant recipients. We evaluated the Altona assay by testing patients on ribavirin therapy.
Background Detecting hepatitis E virus (HEV) RNA in faeces is useful for diagnosing and monitoring HEV infections, particularly in immunocompromised patients requiring ribavirin therapy. Objectives This study evaluated the performance of the Altona RealStar HEV RNA kit for detecting and quantifying HEV in faeces. Study design RNA was extracted from 94 stool samples by two methods: QIAamp Viral RNA Mini kit and MagNA Pure 96 automate. The Altona results were compared to a reference laboratory-developed accredited ISO15189 RT-PCR assay. Results The Altona and reference assays detect HEV RNA in 77/93 (82.8%) and 83/93 (89.2%) of the QIAamp extracted samples, respectively, after exclusion of invalid result; they detected HEV RNA in 67/92 (72.8%) and 66/92 (71.7%) of the MagNA Pure extracted samples, respectively, which emphasizes the importance of the RNA extraction method. The HEV RNA concentrations obtained with Altona RT-PCR and the reference RT-PCR were well correlated whatever the extraction method, and Bland Altman analyses indicated that the Altona values were higher than the reference assay values. The Altona values for QIAamp-extracted and MagNA Pure-extracted HEV RNA were very similar. Conclusions The Altona RealStar assay is suitable for quantifying HEV RNA in the faeces and monitoring HEV RNA shedding during ribavirin therapy. Extraction is critical for detecting faecal HEV with high performance RT-PCR assays.
Collapse
Affiliation(s)
- Florence Abravanel
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France; CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, National Reference Center for Hepatitis E, F-31300, France.
| | - Audrey Lacipière
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, National Reference Center for Hepatitis E, F-31300, France
| | - Sébastien Lhomme
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France; CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, National Reference Center for Hepatitis E, F-31300, France
| | - Martine Dubois
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France; CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, National Reference Center for Hepatitis E, F-31300, France
| | - Luce Minier
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, National Reference Center for Hepatitis E, F-31300, France
| | - Jean-Marie Peron
- CHU Toulouse, Hôpital Purpan, Département de Gastroentérologie, F-31300, France
| | - Laurent Alric
- CHU Toulouse, Hôpital Purpan, Service de médecine interne, F-31300, France
| | - Nassim Kamar
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France; CHU Toulouse, Hôpital Rangueil, Département de Néphrologie, Dialyse et Transplantation multi-organe, F-31300 France
| | - Jacques Izopet
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France; CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, National Reference Center for Hepatitis E, F-31300, France
| |
Collapse
|
52
|
Anang S, Kaushik N, Surjit M. Recent Advances Towards the Development of a Potent Antiviral Against the Hepatitis E Virus. J Clin Transl Hepatol 2018; 6:310-316. [PMID: 30271744 PMCID: PMC6160310 DOI: 10.14218/jcth.2018.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E virus (HEV) is one of the leading causes of acute viral hepatitis. It also causes acute liver failure and acute-on-chronic liver failure in many patients, such as those suffering from other infections/liver injuries or organ transplant/chemotherapy recipients. Despite widespread sporadic and epidemic incidents, there is no specific treatment against HEV, justifying an urgent need for developing a potent antiviral against it. This review summarizes the known antiviral candidates and provides an overview of the potential targets for the development of specific antivirals against HEV.
Collapse
Affiliation(s)
- Saumya Anang
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Nidhi Kaushik
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
- *Correspondence to: Milan Surjit, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box No. 04, Faridabad-121001, Haryana, India. Tel: +91-129-2876-318, Fax: +91-129-2876400, E-mail:
| |
Collapse
|
53
|
Potent Inhibition of Hepatitis E Virus Release by a Cyclic Peptide Inhibitor of the Interaction between Viral Open Reading Frame 3 Protein and Host Tumor Susceptibility Gene 101. J Virol 2018; 92:JVI.00684-18. [PMID: 30068652 DOI: 10.1128/jvi.00684-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis E virus (HEV) generally causes self-limiting acute viral hepatitis in normal individuals. It causes a more severe disease in immunocompromised persons and pregnant women. Due to the lack of an efficient cell culture system or animal model, the life cycle of the virus is understudied, few antiviral targets are known, and very few antiviral candidates against HEV infection have been identified. Inhibition of virus release is one possible antiviral development strategy, which limits the spread of the virus. Previous studies have demonstrated the essential role of the interaction between the PSAP motif of the viral open reading frame 3 protein (ORF3-PSAP) and the UEV domain of the host tumor susceptibility gene 101 (TSG101) protein (UEV-TSG101) in mediating the release of genotype 3 HEV. Cyclic peptide (CP) inhibitors of the interaction between the human immunodeficiency virus (HIV) gag-PTAP motif and UEV-TSG101 are known to block the release of HIV. Using a molecular dynamic simulation, we observed that both gag-PTAP and ORF3-PSAP motifs bind to the same site in UEV-TSG101 by hydrogen bonding. HIV-released inhibitory CPs also displayed binding to the same site in UEV-TSG101, indicating that they may compete with ORF3-PSAP or gag-PTAP for binding to UEV-TSG101. Two independent assays confirmed the ability of a cyclic peptide (CP11) to inhibit the ORF3-TSG101 interaction. CP11 treatment also reduced the release of both genotype 1 and genotype 3 HEV by approximately 90%, with a 50% inhibitory concentration (IC50) of 2 μM. Thus, CP11 appears to be an attractive candidate for further validation of its anti-HEV properties.IMPORTANCE There is no specific therapy against hepatitis E virus (HEV)-induced hepatic and nonhepatic health problems. Prevention of the release of the progeny viruses from infected cells is an attractive strategy to limit the spread of the virus. Interactions between the viral open reading frame 3 and the host tumor susceptibility gene 101 proteins have been shown to be essential for the release of genotype 3 HEV from infected cells. In this study, we have identified a cyclic peptide inhibitor of the above-mentioned interaction and demonstrate the efficiency of the inhibitor in preventing virus release from infected cells. Thus, our findings uncover the possibility of developing a specific antiviral agent against HEV by blocking its release from infected cells.
Collapse
|
54
|
Parvez MK, Subbarao N. Molecular Analysis and Modeling of Hepatitis E Virus Helicase and Identification of Novel Inhibitors by Virtual Screening. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5753804. [PMID: 30246023 PMCID: PMC6136533 DOI: 10.1155/2018/5753804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
The hepatitis E virus- (HEV-) helicase as a novel drug-target was evaluated. While cell culture model was used for mutational characterization of helicase, in silico protein modeling and virtual screening were employed to identify helicase inhibitors. None of the saturation mutant replicons significantly affected RNA replication. Notably, mutants encompassing the Walker motifs replicated as wild-type, showing indispensability of nucleotides conservation in viability compared to known criticality of amino acids. A 3D modeling of HEV-helicase and screening of a compound dataset identified ten most promising inhibitors with drug likeness, notably, JFD02650, RDR03130, and HTS11136 that interacted with Walker A residues Gly975, Gly978, Ser979, and Gly980. Our model building and virtual identification of novel helicase inhibitors warrant further studies towards developing anti-HEV drugs.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
55
|
Gong W, Liu L, Li M, Wang L, Zhang M, Luo Z, Sridhar S, Woo PCY, Wang L. Evaluation of antiviral efficacy of Chinese traditional medicine Babao Dan in rabbits infected with hepatitis E virus. J Gen Virol 2018; 99:1036-1043. [PMID: 29923821 DOI: 10.1099/jgv.0.001089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis. Patients with chronic hepatitis B superinfected with HEV may progress to liver failure. Babao Dan (BD) is a traditional Chinese medicine widely used as an auxiliary option for the treatment of chronic hepatitis and liver cancer in China. This study aimed to evaluate the effect of BD on the management of HEV infection in a rabbit model. Sixty-two specific-pathogen-free (SPF) rabbits were divided randomly into five groups and treated with BD or placebo for 2 weeks. All rabbits were inoculated intravenously with rabbit HEV after initial administration. Then, rabbits were administered BD or ribavirin or placebo at 2 weeks post-inoculation (wpi) until faecal virus shedding showed negative. The duration of faecal virus shedding and levels of HEV RNA in faeces were reduced, and anti-HEV antibodies were detected in all rabbits in groups treated with BD before or after inoculation. Ribavirin treatment rapidly cleared HEV infection in SPF rabbits, but anti-HEV antibodies remained negative in 50 % of rabbits treated with ribavirin. These results indicate that ribavirin treatment was more effective in clearing HEV infection, while administration of BD before or after inoculation was effective in clearing HEV infection. Further clinical studies are warranted.
Collapse
Affiliation(s)
- Wanyun Gong
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Lin Liu
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Manyu Li
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Lin Wang
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Mingyu Zhang
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Zhengxin Luo
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | - Siddharth Sridhar
- 2Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Patrick C Y Woo
- 2Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Ling Wang
- 1Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| |
Collapse
|
56
|
Dalton HR, Kamar N, Baylis SA, Moradpour D, Wedemeyer H, Negro F. EASL Clinical Practice Guidelines on hepatitis E virus infection. J Hepatol 2018; 68:1256-1271. [PMID: 29609832 DOI: 10.1016/j.jhep.2018.03.005] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/08/2023]
Abstract
Infection with hepatitis E virus (HEV) is a significant cause of morbidity and mortality, representing an important global health problem. Our understanding of HEV has changed completely over the past decade. Previously, HEV was thought to be limited to certain developing countries. We now know that HEV is endemic in most high-income countries and is largely a zoonotic infection. Given the paradigm shift in our understanding of zoonotic HEV and that locally acquired HEV is now the commonest cause of acute viral hepatitis in many European countries, the focus of these Clinical Practice Guidelines will be on HEV genotype 3 (and 4).
Collapse
|
57
|
De Winter BCM, Hesselink DA, Kamar N. Dosing ribavirin in hepatitis E-infected solid organ transplant recipients. Pharmacol Res 2018; 130:308-315. [PMID: 29499270 DOI: 10.1016/j.phrs.2018.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of viral hepatitis worldwide. Genotypes 1 and 2 (GT1 and GT2) are mainly present in developing countries, while GT3 and GT4 are prevalent in developed and high-income countries. In the majority of cases, HEV causes a self-limiting hepatitis. GT3 and GT4 can be responsible for a chronic hepatitis that can lead to cirrhosis in immunocompromized patients, i.e. solid-organ- and stem-cell-transplant-patients, human immunodeficiency virus-infected patients, and patients receiving chemotherapy or immunotherapy. HEV has also been associated with extra-hepatic manifestations such as neurologic disorders (Guillain-Barré Syndrome and neuralgic amyotrophy) and kidney disease. In patients with chronic hepatitis, reduction of immunosuppression, when possible, is the first therapeutic option. In the remaining patients, ribavirin therapy has been shown to very efficient for treating HEV infection leading to a sustained virological response in nearly 80-85% of patients. However, the mechanism of action of ribavirin in this setting is still unknown, as is the impact of HEV RNA polymerase mutations. There are unmet needs with regard to the treatment of chronic HEV with ribavirin. These include the optimal dosing and duration of treatment, and the potential beneficial effects of therapeutic drug monitoring on the virological response and the incidence of side effects. In the present review, we will provide an overview of HEV epidemiology, its mode of transmission and clinical manifestations, as well as its treatment by ribavirin with a focus on the drug's pharmacokinetics and dosing.
Collapse
Affiliation(s)
- Brenda C M De Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Rotterdam Transplant Group, Division of Nephrology and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR-BMT, Université Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Internal Medicine, Division of Nephrology and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR-BMT, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
58
|
Nan Y, Wu C, Zhao Q, Sun Y, Zhang YJ, Zhou EM. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges. Front Microbiol 2018; 9:266. [PMID: 29520257 PMCID: PMC5827553 DOI: 10.3389/fmicb.2018.00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
59
|
Loyrion E, Trouve-Buisson T, Pouzol P, Larrat S, Decaens T, Payen JF. Hepatitis E Virus Infection after Platelet Transfusion in an Immunocompetent Trauma Patient. Emerg Infect Dis 2018; 23:146-147. [PMID: 27983485 PMCID: PMC5176217 DOI: 10.3201/eid2301.160923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatitis E virus (HEV) infection causes acute liver disease, but severe infections are rare in immunocompetent patients. We describe a case of HEV infection in a previously healthy male trauma patient in France who received massive transfusions. Genotyping confirmed HEV in a transfused platelet pool and the donor.
Collapse
|
60
|
Izopet J. [HEV and transfusion-recipient risk]. ANNALES PHARMACEUTIQUES FRANÇAISES 2018; 76:89-96. [PMID: 29395014 DOI: 10.1016/j.pharma.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
Abstract
HEV infections are mainly food- and water-borne but transfusion-transmission has occurred in both developing and developed countries. The infection is usually asymptomatic but it can lead to fulminant hepatitis in patients with underlying liver disease and pregnant women living in developing countries. It also causes chronic hepatitis E, with progressive fibrosis and cirrhosis, in approximately 60 % of immunocompromised patients infected with HEV genotype 3. Extra-hepatic manifestations such as neurological and renal manifestations have been reported. The risk of a transfusion-transmitted HEV infection is linked to the frequency of viremia in blood donors, the donor virus load and the volume of plasma in the final transfused blood component. Several developed countries have adopted measures to improve blood safety based on the epidemiology of HEV.
Collapse
Affiliation(s)
- J Izopet
- Laboratoire de virologie, centre national de référence virus des hépatites à transmission entérique (hépatites A et E), institut fédératif de biologie, CHU de Purpan, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm U1043/CNRS 5282, université Paul-Sabatier, centre de physiopathologie de Toulouse-Purpan, 31024 Toulouse cedex 03, France.
| |
Collapse
|
61
|
The Medicinal Chemistry of Antihepatitis Agents I. STUDIES ON HEPATITIS VIRUSES 2018. [PMCID: PMC7149832 DOI: 10.1016/b978-0-12-813330-9.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since viral hepatitis, as discussed in preceding chapters, has emerged as a major public health problem throughout the world affecting several hundreds of millions of people, and since no effective chemotherapy has been developed so far that can completely treat viral hepatitis, attempts are continued to find potential drugs against this disease. In this respect, the development of medicinal chemistry has been rewarding, as it covers all aspects of drug design such as recognition of important drug targets, computational chemistry, optimization of drug activity based on their structure-activity relationship, finding the three-dimensional structures of compounds by X-ray crystallography, NMR, molecular dynamics, and then synthesis of the drugs and evaluating their activity. The present chapter, thus, presents such medicinal chemistry study on anti-HAV, anti-HDV, and anti-HEV drugs.
Collapse
|
62
|
Guerra JADAA, Kampa KC, Morsoletto DGB, Junior AP, Ivantes CAP. Hepatitis E: A Literature Review. J Clin Transl Hepatol 2017; 5:376-383. [PMID: 29226104 PMCID: PMC5719195 DOI: 10.14218/jcth.2017.00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E is the fifth known form of human viral hepatitis. Although not very common in our clinical practice, the incidence in Western countries is increasing. Infection with the hepatitis E virus (HEV) may be related to acute illness, liver failure, chronic hepatitis and cirrhosis. HEV itself is an RNA virus, with eight described genotypes (HEV 1-8), four of which more commonly affect humans and have, thus, been better studied. Besides liver manifestations, genotype 3 is also related to extra-hepatic manifestations, such as neurological, renal and rheumatological. Evolution to chronic disease occurs especially in patients who underwent transplantation, have hematological malignancies requiring chemotherapy, or have infection with the human immunodeficiency virus. The diagnosis may be difficult because of the low availability of tests and due to low sensibility and specificity. The acute form of illness does not have to be treated, but the chronic one does. We present here a literature review of hepatitis E and the relation between chronic hepatitis E and transplantation.
Collapse
Affiliation(s)
- Juliana Ayres de Alencar Arrais Guerra
- Nossa Senhora das Graças Hospital, Alcides Munhoz Street, 433 – Mercês, Curitiba – PR, Brazil
- *Correspondence to: Juliana Ayres de Alencar Arrais Guerra, Nossa Senhora das Graças Hospital, Alcides Munhoz Street, 433 – Mercês, Curitiba – PR 80810-040, Brazil. Tel: +55-41-3240-6060, E-mail:
| | - Katia Cristina Kampa
- Nossa Senhora das Graças Hospital, Alcides Munhoz Street, 433 – Mercês, Curitiba – PR, Brazil
| | | | - Alcindo Pissaia Junior
- Nossa Senhora das Graças Hospital, Alcides Munhoz Street, 433 – Mercês, Curitiba – PR, Brazil
| | | |
Collapse
|
63
|
Abstract
Hepatitis E virus (HEV) infection can lead to acute and chronic hepatitis as well as to extrahepatic manifestations such as neurological and renal disease; it is the most common cause of acute viral hepatitis worldwide. Four genotypes are responsible for most infection in humans, of which HEV genotypes 1 and 2 are obligate human pathogens and HEV genotypes 3 and 4 are mostly zoonotic. Until quite recently, HEV was considered to be mainly responsible for epidemics of acute hepatitis in developing regions owing to contamination of drinking water supplies with human faeces. However, HEV is increasingly being recognized as endemic in some developed regions. In this setting, infections occur through zoonotic transmission or contaminated blood products and can cause chronic hepatitis in immunocompromised individuals. HEV infections can be diagnosed by measuring anti-HEV antibodies, HEV RNA or viral capsid antigen in blood or stool. Although an effective HEV vaccine exists, it is only licensed for use in China. Acute hepatitis E is usually self-limiting and does not require specific treatment. Management of immunocompromised individuals involves lowering the dose of immunosuppressive drugs and/or treatment with the antiviral agent ribavirin.
Collapse
|
64
|
Harms D, Wang B, Papp CP, Bock CT. Capturing virus evolution by proteomic bioinformatics: Hunting for characteristic mutations in the hepatitis E virus genome. Virulence 2017; 9:13-16. [PMID: 28945510 PMCID: PMC5955182 DOI: 10.1080/21505594.2017.1384526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dominik Harms
- a Division of Viral Gastroenteritis , Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute , Berlin , Germany
| | - Bo Wang
- a Division of Viral Gastroenteritis , Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute , Berlin , Germany
| | - C Patrick Papp
- a Division of Viral Gastroenteritis , Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute , Berlin , Germany
| | - C-Thomas Bock
- a Division of Viral Gastroenteritis , Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute , Berlin , Germany.,b Institute of Tropical Medicine, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
65
|
Kaushik N, Subramani C, Anang S, Muthumohan R, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase. J Virol 2017; 91:e00754-17. [PMID: 28814517 PMCID: PMC5640865 DOI: 10.1128/jvi.00754-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection.IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used to treat HEV cases, there are known side effects and limitations of such therapy. Our discovery of the ability of zinc salts to block HEV replication by virtue of their ability to inhibit the activity of viral RdRp is important because these findings pave the way to test the efficacy of zinc supplementation therapy in HEV-infected patients. Since zinc supplementation therapy is known to be safe in healthy individuals and since high-dose zinc is used in the treatment of Wilson's disease, it may be possible to control HEV-associated health problems following a similar treatment regimen.
Collapse
Affiliation(s)
- Nidhi Kaushik
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Chandru Subramani
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Saumya Anang
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Rajagopalan Muthumohan
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - C T Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Infection with the hepatitis E virus (HEV) is very common worldwide. The epidemiology, viral genotypes, and transmission routes differ between low-resource countries and economically developed countries. These differences have resulted in the design of diverse prevention and treatment strategies to combat HEV. RECENT FINDINGS The population seroprevalence of HEV immunoglobulin G varies between 5 and 50%. However, the diagnosis of acute hepatitis from HEV has not been common in the United States or Western Europe. Chronic progressive HEV infections have been reported among patients who are immunocompromised. Successful treatment of patients with chronic hepatitis from HEV infection with antiviral agents, such as ribavirin or interferon-α, has been reported. Extrahepatic manifestations of HEV infection are common. Large epidemics of hundreds or thousands of cases continue to be reported among populations in Asia and Africa. A subunit peptide HEV vaccine has been found to be highly efficacious in a large clinical trial. However, the vaccine has not been evaluated in populations of pregnant women or other risk groups and is only available in China. SUMMARY Although HEV infections are increasingly recognized as a global public health problem, there are few methods for prevention and treatment that are widely available.
Collapse
|
67
|
|
68
|
Fang SY, Han H. Hepatitis E viral infection in solid organ transplant patients. Curr Opin Organ Transplant 2017; 22:351-355. [DOI: 10.1097/mot.0000000000000432] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Izopet J, Lhomme S, Chapuy-Regaud S, Mansuy JM, Kamar N, Abravanel F. HEV and transfusion-recipient risk. Transfus Clin Biol 2017; 24:176-181. [PMID: 28690036 DOI: 10.1016/j.tracli.2017.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 01/14/2023]
Abstract
HEV infections are mainly food- and water-borne but transfusion-transmission has occurred in both developing and developed countries. The infection is usually asymptomatic but it can lead to fulminant hepatitis in patients with underlying liver disease and pregnant women living in developing countries. It also causes chronic hepatitis E, with progressive fibrosis and cirrhosis, in approximately 60% of immunocompromised patients infected with HEV genotype 3. The risk of a transfusion-transmitted HEV infection is linked to the frequency of viremia in blood donors, the donor virus load and the volume of plasma in the final transfused blood component. Several developed countries have adopted measures to improve blood safety based on the epidemiology of HEV.
Collapse
Affiliation(s)
- J Izopet
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France.
| | - S Lhomme
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France
| | - S Chapuy-Regaud
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France
| | - J-M Mansuy
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France
| | - N Kamar
- Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France; Department of nephrology and organ transplantation, CHU Rangueil, 31059 Toulouse, France
| | - F Abravanel
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France
| |
Collapse
|
70
|
Donnelly MC, Scobie L, Crossan CL, Dalton H, Hayes PC, Simpson KJ. Review article: hepatitis E-a concise review of virology, epidemiology, clinical presentation and therapy. Aliment Pharmacol Ther 2017; 46:126-141. [PMID: 28449246 DOI: 10.1111/apt.14109] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a leading cause of acute icteric hepatitis and acute liver failure in the developing world. During the last decade, there has been increasing recognition of autochthonous (locally acquired) HEV infection in developed countries. Chronic HEV infection is now recognised, and in transplant recipients this may lead to cirrhosis and organ failure. AIM To detail current understanding of the molecular biology of HEV, diagnostic and therapeutic strategies and propose future directions for basic science and clinical research. METHODS PubMed was searched for English language articles using the key words "hepatitis E", "viral hepatitis", "autochthonous infection", "antiviral therapy", "liver transplantation", "acute", "chronic", "HEV", "genotype", "transmission" "food-borne", "transfusion". Additional relevant publications were identified from article reference lists. RESULTS There has been increasing recognition of autochthonous HEV infection in Western countries, mainly associated with genotype 3. Chronic HEV infection has been recognised since 2008, and in transplant recipients this may lead to cirrhosis and organ failure. Modes of transmission include food-borne transmission, transfusion of blood products and solid organ transplantation. Ribavirin therapy is used to treat patients with chronic HEV infection, but new therapies are required as there have been reports of treatment failure with ribavirin. CONCLUSIONS Autochthonous HEV infection is a clinical issue with increasing burden. Future work should focus on increasing awareness of HEV infection in the developed world, emphasising the need for clinicians to have a low threshold for HEV testing, particularly in immunosuppressed patients. Patients at potential risk of chronic HEV infection must also be educated and given advice regarding prevention of infection.
Collapse
Affiliation(s)
- M C Donnelly
- Department of Hepatology and Scottish Liver Transplant Unit, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - L Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - C L Crossan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - H Dalton
- Royal Cornwall Hospital Trust and European Centre for Environment and Human Health, University of Exeter, Truro, UK
| | - P C Hayes
- Department of Hepatology and Scottish Liver Transplant Unit, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - K J Simpson
- Department of Hepatology and Scottish Liver Transplant Unit, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
71
|
Li IWS, Chok KSH. Acute hepatitis E virus infection causing acute liver failure requiring living-donor liver transplantation in a non-pregnant immunocompetent woman. Transpl Infect Dis 2017; 19. [PMID: 28295889 DOI: 10.1111/tid.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022]
Abstract
We report a rare case of acute liver failure from acute hepatitis E virus (HEV) in a non-pregnant woman without comorbidities who survived after liver transplantation. The source was likely consumption of partially cooked pig liver. HEV genotype 3 is the second most common genotype causing acute hepatitis E in developed countries. Fulminant hepatitis E rarely occurs without a risk factor, as in our patient. Vigilant monitoring for chronic hepatitis E in post-transplant immunocompromised patients is needed.
Collapse
Affiliation(s)
- Iris Wai Sum Li
- Queen Mary Hospital, Hong Kong, China.,School of Public Health, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
72
|
Shrestha A, P Gupta B, K Lama T. Current Treatment of Acute and Chronic Hepatitis E Virus Infection: Role of Antivirals. Euroasian J Hepatogastroenterol 2017; 7:73-77. [PMID: 29201777 PMCID: PMC5663779 DOI: 10.5005/jp-journals-10018-1216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) infection results in nearly 20 million new infections, resulting in 70,000 deaths globally each year. Previously thought as a disease limited to developing nations with poor sanitation and hygiene, it is increasingly recognized that even the most developed nations are not spared. A clear dichotomy in epidemiology of HEV is noted between developing and industrialized nations. The HEV genotypes 1 and 2 are common in Asia and Africa and are transmitted mainly by contaminated drinking water. Sporadic as well as large-scale epidemics of acute hepatitis have been noted with HEV genotype 1 infection in developing countries of Asia and Africa. On the contrary, HEV genotypes 3 and 4 are common in industrialized nations and unlike genotypes 1 and 2, they are transmitted by consumption of raw meat products, fruits, and blood transfusion. Large epidemics have not been reported with HEV genotypes 3 and 4 and manifestation is usually indolent, though severe acute hepatitis has been reported. How to cite this article: Shrestha A, Gupta BP, Lama TK. Current Treatment of Acute and Chronic Hepatitis E Virus Infection: Role of Antivirals. Euroasian J Hepato-Gastroenterol 2017;7(1):73-77.
Collapse
Affiliation(s)
| | - Birendra P Gupta
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | | |
Collapse
|
73
|
Hepatitis E Virus (HEV) Detection and Quantification by a Real-Time Reverse Transcription-PCR Assay Calibrated to the World Health Organization Standard for HEV RNA. J Clin Microbiol 2017; 55:1478-1487. [PMID: 28228493 DOI: 10.1128/jcm.02334-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
Hepatitis E virus (HEV) has emerged as a cause of chronic hepatitis among immunocompromised patients. Molecular assays have become important tools for the diagnosis and management of these chronically infected patients. A real-time reverse transcription-quantitative PCR (RT-qPCR) assay utilizing Pleiades probe chemistry and an RNA internal control for the simultaneous detection and quantification of HEV RNA in human serum was developed based on an adaptation of a previously described and broadly reactive primer set targeting the overlapping open reading frame 2/3 (ORF2/3) nucleotide sequence of HEV. A chimeric bovine viral diarrhea virus construct containing an HEV RNA insert (SynTura HEV) was developed, value assigned with the first World Health Organization (WHO) international standard for HEV RNA (code 6329/10), and used to prepare working assay calibrators and controls, which supported an assay quantification range of 100 to 5,000,000 IU/ml. The analytical sensitivity (95% detection rate) of this assay was 25.2 IU/ml (95% confidence interval [CI], 19.2 to 44.1 IU/ml). The assay successfully amplified 16 different HEV sequences with significant nucleotide mismatching in primer/probe binding regions, while evaluation of a WHO international reference panel for HEV genotypes (code 8578/13) showed viral load results falling within the result ranges generated by WHO collaborative study participants for all panel members (genotypes 1 to 4). Broadly reactive RT-qPCR primers targeting HEV ORF2/3 were successfully adapted for use in an assay based on Pleiades probe chemistry. The availability of secondary standards calibrated to the WHO HEV international standard can improve the standardization and performance of assays for the detection and quantification of HEV RNA.
Collapse
|
74
|
Satake M, Matsubayashi K, Hoshi Y, Taira R, Furui Y, Kokudo N, Akamatsu N, Yoshizumi T, Ohkohchi N, Okamoto H, Miyoshi M, Tamura A, Fuse K, Tadokoro K. Unique clinical courses of transfusion-transmitted hepatitis E in patients with immunosuppression. Transfusion 2017; 57:280-288. [PMID: 28144952 DOI: 10.1111/trf.13994] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The high prevalence of specific immunoglobulin G for hepatitis E virus (HEV) in Japanese people raises the possibility of a high incidence of HEV-viremic blood donors and therefore frequent transfusion-transmitted HEV (TT-HEV). STUDY DESIGN AND METHODS TT-HEV cases established in Japan through hemovigilance and those published in the literature were collected. Infectivity of HEV-contaminated blood components and disease severity in relation to immunosuppression were investigated. RESULTS Twenty established TT-HEV cases were recorded over the past 17 years. A lookback study verified that five of 10 patients transfused with known HEV-contaminated blood components acquired HEV infection. The minimal infectious dose of HEV through transfusion was 3.6 × 104 IU. Nine of the 19 TT-HEV cases analyzed had hematologic diseases. Only two cases showed the maximal alanine aminotransferase level of more than 1000 U/L. Two patients with hematologic malignancy and two liver transplant recipients had chronic liver injury of moderate severity. CONCLUSION The infectivity of HEV-contaminated components was 50%. Immunosuppression likely causes the moderate illness of TT-HEV, but it may lead to the establishment of chronic sequelae. Transfusion recipients, a population that is variably immunosuppressed, are more vulnerable to chronic liver injury as a result of TT-HEV than the general population is as a result of food-borne infection.
Collapse
Affiliation(s)
| | | | - Yuji Hoshi
- Japanese Red Cross Central Blood Institute
| | | | | | - Norihiro Kokudo
- Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobuhisa Akamatsu
- Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Ohkohchi
- Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University
| | - Akinori Tamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nihon University School of Medicine.,Tamura Medical Clinic, Tokyo, Japan
| | - Kyoko Fuse
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | | |
Collapse
|
75
|
Hepatitis E virus ORF3 is a functional ion channel required for release of infectious particles. Proc Natl Acad Sci U S A 2017; 114:1147-1152. [PMID: 28096411 DOI: 10.1073/pnas.1614955114] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of enterically transmitted viral hepatitis globally. Of HEV's three ORFs, the function of ORF3 has remained elusive. Here, we demonstrate that via homophilic interactions ORF3 forms multimeric complexes associated with intracellular endoplasmic reticulum (ER)-derived membranes. HEV ORF3 shares several structural features with class I viroporins, and the function of HEV ORF3 can be maintained by replacing it with the well-characterized viroporin influenza A virus (IAV) matrix-2 protein. ORF3's ion channel function is further evidenced by its ability to mediate ionic currents when expressed in Xenopus laevis oocytes. Furthermore, we identified several positions in ORF3 critical for its formation of multimeric complexes, ion channel activity, and, ultimately, release of infectious particles. Collectively, our data demonstrate a previously undescribed function of HEV ORF3 as a viroporin, which may serve as an attractive target in developing direct-acting antivirals.
Collapse
|
76
|
Hepatitis E Virus in Industrialized Countries: The Silent Threat. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9838041. [PMID: 28070522 PMCID: PMC5192302 DOI: 10.1155/2016/9838041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) is the main cause of acute viral hepatitis worldwide. Its presence in developing countries has been documented for decades. Developed countries were supposed to be virus-free and initially only imported cases were detected in those areas. However, sporadic and autochthonous cases of HEV infection have been identified and studies reveal that the virus is worldwide spread. Chronic hepatitis and multiple extrahepatic manifestations have also been associated with HEV. We review the data from European countries, where human, animal, and environmental data have been collected since the 90s. In Europe, autochthonous HEV strains were first detected in the late 90s and early 2000s. Since then, serological data have shown that the virus infects quite frequently the European population and that some species, such as pigs, wild boars, and deer, are reservoirs. HEV strains can be isolated from environmental samples and reach the food chain, as shown by the detection of the virus in mussels and in contaminated pork products as sausages or meat. All these data highlight the need of studies directed to control the sources of HEV to protect immunocompromised individuals that seem the weakest link of the HEV epidemiology in industrialized regions.
Collapse
|
77
|
Yu XB, Chen XH, Shan LP, Hao K, Wang GX. In vitro antiviral efficacy of moroxydine hydrochloride and ribavirin against grass carp reovirus and giant salamander iridovirus. DISEASES OF AQUATIC ORGANISMS 2016; 121:189-199. [PMID: 27786157 DOI: 10.3354/dao03053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Moroxydine hydrochloride (Mor) and ribavirin (Rib) have been reported to exhibit multi-antiviral activities against DNA and RNA viruses, but their antiviral activities and pharmacologies have seldom been studied in aquaculture. This paper has selected 3 aquatic viruses including a double-stranded RNA virus (grass carp reovirus, GCRV), a single-stranded RNA virus (spring viraemia of carp virus, SVCV) and a DNA virus (giant salamander iridovirus, GSIV) for antiviral testing. The results showed that Mor and Rib can effectively control the infection of GCRV and GSIV in respective host cells. Further study was undertaken to explore the antivirus efficiencies and pharmacological mechanisms of Mor and Rib on GCRV and GSIV in vitro. Briefly, compounds showed over 50% protective effects at 15.9 µg ml-1 except for the group of GSIV-infected epithelioma papulosum cyprinid (EPC) cells treated with Mor. Moreover, Mor and Rib blocked the virus-induced cytopathic effects and apoptosis in host cells to keep the normal cellular structure. The expression of VP1 (GCRV) and major capsid protein (MCP; GSIV) gene was also significantly inhibited in the virus-infected cells when treated with Mor and Rib. Cytotoxicity assay verified the 2 compounds had no toxic effects on grass carp ovary (GCO) cells and EPC cells at ≤96 µg ml-1. In conclusion, these results indicated that exposing GCRV-infected GCO cells and GSIV-infected EPC cells to Mor and Rib could elicit significant antiviral responses, and the 2 compounds have been shown to be promising agents for viral control in the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | |
Collapse
|
78
|
Dey D, Banerjee M. Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis. J Clin Transl Hepatol 2016; 4:248-257. [PMID: 27777893 PMCID: PMC5075008 DOI: 10.14218/jcth.2016.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Viral hepatitis remains a significant worldwide threat, in spite of the availability of several successful therapeutic and vaccination strategies. Complications associated with acute and chronic infections, such as liver failure, cirrhosis and hepatocellular carcinoma, are the cause of considerable morbidity and mortality. Given the significant burden on the healthcare system caused by viral hepatitis, it is essential that novel, more effective therapeutics be developed. The present review attempts to summarize the current treatments against viral hepatitis, and provides an outline for upcoming, promising new therapeutics. Development of novel therapeutics requires an understanding of the viral life cycles and viral effectors in molecular detail. As such, this review also discusses virally-encoded effectors, found to be essential for virus survival and replication in the host milieu, which may be utilized as potential candidates for development of alternative therapies in the future.
Collapse
Affiliation(s)
- Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
- *Correspondence to: Dr. Manidipa Banerjee, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Block 1A, Hauz Khas, New Delhi 110016, India. Tel: +91-11-26597538, Fax: +91-11-26597530, E-mail:
| |
Collapse
|
79
|
Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7:1419. [PMID: 27656178 PMCID: PMC5013053 DOI: 10.3389/fmicb.2016.01419] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College ParkMD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park MD, USA
| |
Collapse
|
80
|
Nicot F, Cazabat M, Lhomme S, Marion O, Sauné K, Chiabrando J, Dubois M, Kamar N, Abravanel F, Izopet J. Quantification of HEV RNA by Droplet Digital PCR. Viruses 2016; 8:v8080233. [PMID: 27548205 PMCID: PMC4997595 DOI: 10.3390/v8080233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
The sensitivity of real-time PCR for hepatitis E virus (HEV) RNA quantification differs greatly among techniques. Standardized tools that measure the real quantity of virus are needed. We assessed the performance of a reverse transcription droplet digital PCR (RT-ddPCR) assay that gives absolute quantities of HEV RNA. Analytical and clinical validation was done on HEV genotypes 1, 3 and 4, and was based on open reading frame (ORF)3 amplification. The within-run and between-run reproducibilities were very good, the analytical sensitivity was 80 HEV RNA international units (IU)/mL and linearities of HEV genotype 1, 3 and 4 were very similar. Clinical validation based on 45 samples of genotype 1, 3 or 4 gave results that correlated well with a validated reverse transcription quantitative PCR (RT-qPCR) assay (Spearman rs = 0.89, p < 0.0001). The RT-ddPCR assay is a sensitive method and could be a promising tool for standardizing HEV RNA quantification in various sample types.
Collapse
Affiliation(s)
- Florence Nicot
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
| | - Michelle Cazabat
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
| | - Sébastien Lhomme
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse, Toulouse F-31300, France.
| | - Olivier Marion
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
- CHU Toulouse, Hôpital Rangueil, Département de Néphrologie, Dialyse et Transplantation multi-organe, Toulouse F-31300, France.
| | - Karine Sauné
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse, Toulouse F-31300, France.
| | - Julie Chiabrando
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
| | - Martine Dubois
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
| | - Nassim Kamar
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
- CHU Toulouse, Hôpital Rangueil, Département de Néphrologie, Dialyse et Transplantation multi-organe, Toulouse F-31300, France.
| | - Florence Abravanel
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse, Toulouse F-31300, France.
| | - Jacques Izopet
- CHU Toulouse, Hôpital Purpan, Laboratoire de virologie, Institut fédératif de biologie, Toulouse F-31300, France.
- INSERM, U1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France.
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse, Toulouse F-31300, France.
| |
Collapse
|
81
|
Treatment of HEV Infection in Patients with a Solid-Organ Transplant and Chronic Hepatitis. Viruses 2016; 8:v8080222. [PMID: 27537905 PMCID: PMC4997584 DOI: 10.3390/v8080222] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/30/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) infection can cause hepatic and extra-hepatic manifestations. Treatment of HEV infection has been thoroughly studied in solid-organ-transplant patients who have developed a chronic HEV infection. In this review, we report on our current knowledge regarding treatment of HEV infection.
Collapse
|
82
|
Singh A, Seth R, Gupta A, Shalimar, Nayak B, Acharya SK, Das P. Chronic hepatitis E - an emerging disease in an immunocompromised host. Gastroenterol Rep (Oxf) 2016; 6:152-155. [PMID: 27516529 PMCID: PMC5952944 DOI: 10.1093/gastro/gow024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022] Open
Abstract
Chronic hepatitis E virus (HEV) infection is increasingly being reported in immunosuppressed individuals with HIV, patients with haematological malignancy and transplant recipients. The diagnosis of cirrhosis and liver failure post chronic HEV is controversial due to lack of standard diagnostic criteria. The treatment benefits of ribavirin in chronic HEV of genotype 1 are not well reported. We report a case of chronic HEV infection of genotype 1 leading to chronic liver disease in a child cured of acute leukaemia. Our report also highlights the successful use of ribavirin for eradicating chronic HEV infection and its subsequent survival benefits. Chronic hepatitis E may be an emerging disease of immunosuppressed patients and should be suspected in the presence of cryptogenic transaminitis. Ribavirin is an effective therapy for controlling HEV.
Collapse
Affiliation(s)
- Amitabh Singh
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rachna Seth
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Gupta
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Subrat Kumar Acharya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
83
|
Update on hepatitis E virology: Implications for clinical practice. J Hepatol 2016; 65:200-212. [PMID: 26966047 DOI: 10.1016/j.jhep.2016.02.045] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal-oral route. The 7.2kb genome encodes three open reading frames (ORF) which are translated into (i) the ORF1 polyprotein, representing the viral replicase, (ii) the ORF2 protein, corresponding to the viral capsid, and (iii) the ORF3 protein, a small protein involved in particle secretion. Although HEV is a non-enveloped virus in bile and feces, it circulates in the bloodstream wrapped in cellular membranes. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom and are transmitted as a zoonosis mainly via contaminated meat. HEV infection is usually self-limited but may persist and cause chronic hepatitis in immunocompromised patients. Reduction of immunosuppressive treatment or antiviral therapy with ribavirin have proven effective in most patients with chronic hepatitis E but therapy failures have been reported. Alternative treatment options are needed, therefore. Infection with HEV may also cause a number of extrahepatic manifestations, especially neurologic complications. Progress in the understanding of the biology of HEV should contribute to improved control and treatment of HEV infection.
Collapse
|
84
|
Pérez-Gracia MT, Suay-García B, García M, Mateos-Lindemann ML. Hepatitis E: latest developments in knowledge. Future Microbiol 2016; 11:789-808. [PMID: 27203841 DOI: 10.2217/fmb-2016-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis E, caused by Hepatitis E virus (HEV), is a highly prevalent disease in developing countries. In developed nations, autochthonous HEV infections seem to be an emergent disease. Its clinical manifestations and epidemiology are well known for endemic countries. It has been confirmed that hepatitis E is a zoonosis and that parenteral transmission can also occur. The molecular mechanisms of HEV replication are not fully understood, mostly because there are no efficient cell culture systems. HEV can cause chronic hepatitis in organ transplant recipients and immunocompetent patients. Cases with fulminant hepatitis and other extrahepatic manifestations have also been reported. The diagnosis is based on serological studies and detection of HEV RNA in blood and feces. Treatment with ribavirin and/or pegylated-IFN-α have proven to be successful in some cases. The recently approved/marketed vaccine is a good option in order to prevent this infection.
Collapse
Affiliation(s)
- M Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - Beatriz Suay-García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - Mario García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - M Luisa Mateos-Lindemann
- Unidad de Virología, Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Ctra. Colmenar Km 9,1, Madrid 28034, Spain
| |
Collapse
|
85
|
Perrin HB, Cintas P, Abravanel F, Gérolami R, d'Alteroche L, Raynal JN, Alric L, Dupuis E, Prudhomme L, Vaucher E, Couzigou P, Liversain JM, Bureau C, Vinel JP, Kamar N, Izopet J, Peron JM. Neurologic Disorders in Immunocompetent Patients with Autochthonous Acute Hepatitis E. Emerg Infect Dis 2016; 21:1928-34. [PMID: 26490255 PMCID: PMC4622229 DOI: 10.3201/eid2111.141789] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neurologic disorders, mainly Guillain-Barré syndrome and Parsonage–Turner syndrome (PTS), have been described in patients with hepatitis E virus (HEV) infection in industrialized and developing countries. We report a wider range of neurologic disorders in nonimmunocompromised patients with acute HEV infection. Data from 15 French immunocompetent patients with acute HEV infection and neurologic disorders were retrospectively recorded from January 2006 through June 2013. The disorders could be divided into 4 main entities: mononeuritis multiplex, PTS, meningoradiculitis, and acute demyelinating neuropathy. HEV infection was treated with ribavirin in 3 patients (for PTS or mononeuritis multiplex). One patient was treated with corticosteroids (for mononeuropathy multiplex), and 5 others received intravenous immunoglobulin (for PTS, meningoradiculitis, Guillain-Barré syndrome, or Miller Fisher syndrome). We conclude that pleiotropic neurologic disorders are seen in HEV-infected immunocompetent patients. Patients with acute neurologic manifestations and aminotransferase abnormalities should be screened for HEV infection.
Collapse
|
86
|
Todt D, François C, Anggakusuma, Behrendt P, Engelmann M, Knegendorf L, Vieyres G, Wedemeyer H, Hartmann R, Pietschmann T, Duverlie G, Steinmann E. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication. Antimicrob Agents Chemother 2016; 60:2132-9. [PMID: 26787701 PMCID: PMC4808167 DOI: 10.1128/aac.02427-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed.
Collapse
Affiliation(s)
- Daniel Todt
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Catherine François
- EA4294, Laboratoire de Virologie, Centre Hospitalier Universitaire et Universite de Picardie Jules Verne, Amiens, France
| | - Anggakusuma
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Patrick Behrendt
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Engelmann
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Leonard Knegendorf
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Gabrielle Vieyres
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas Pietschmann
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Gilles Duverlie
- EA4294, Laboratoire de Virologie, Centre Hospitalier Universitaire et Universite de Picardie Jules Verne, Amiens, France
| | - Eike Steinmann
- Institute for Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
87
|
Park WJ, Park BJ, Ahn HS, Lee JB, Park SY, Song CS, Lee SW, Yoo HS, Choi IS. Hepatitis E virus as an emerging zoonotic pathogen. J Vet Sci 2016; 17:1-11. [PMID: 27051334 PMCID: PMC4808633 DOI: 10.4142/jvs.2016.17.1.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/27/2015] [Accepted: 08/22/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatitis E outbreaks are a serious public health concern in developing countries. The disease causes acute infections, primarily in young adults. The mortality rate is approximately 2%; however, it can exceed 20% in pregnant women in some regions in India. The causative agent, hepatitis E virus (HEV), has been isolated from several animal species, including pigs. HEV genotypes 3 and 4 have been isolated from both humans and animals, and are recognized as zoonotic pathogens. Seroprevalence studies in animals and humans indirectly suggest that HEV infections occur worldwide. The virus is primarily transmitted to humans via undercooked animal meats in developed countries. Moreover, transfusion- and transplantation-mediated HEV infections have recently been reported. This review summarizes the general characteristics of hepatitis E, HEV infection status in animals and humans, the zoonotic transmission modes of HEV, and HEV vaccine development status.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Han-Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
88
|
Tavitian S, Peron JM, Huguet F, Kamar N, Abravanel F, Beyne-Rauzy O, Oberic L, Faguer S, Alric L, Roussel M, Gaudin C, Ysebaert L, Huynh A, Recher C. Ribavirin for Chronic Hepatitis Prevention among Patients with Hematologic Malignancies. Emerg Infect Dis 2016. [PMID: 26197210 PMCID: PMC4517705 DOI: 10.3201/eid2108.150199] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Findings among a cohort of 26 patients who had hematologic malignancies and hepatitis E virus (HEV) infection support that HEV can induce chronic hepatitis. However, a 3-month course of ribavirin can induce a rapid viral clearance, reducing the risk for chronic hepatitis and enabling continuation of cytotoxic treatments for underlying malignancies.
Collapse
|
89
|
Wang X, Li M, Li S, Wu T, Zhang J, Xia N, Zhao Q. Prophylaxis against hepatitis E: at risk populations and human vaccines. Expert Rev Vaccines 2016; 15:815-27. [PMID: 26775537 DOI: 10.1586/14760584.2016.1143365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis E is an emerging global disease caused by hepatitis E virus (HEV) infection. While in developing countries the infection was primarily due to poor sanitary conditions through intake of contaminated water or undercooked meats of infected animals, increasing cases of chronic hepatitis E resulting in rapidly progressive liver cirrhosis and end-stage liver disease have been reported in organ transplant patients or in immune compromised patients in developed countries. Fortunately, hepatitis E is now a vaccine preventable disease with a HEV239 based vaccine licensed for human use. Much work is needed to enable its use outside China. This review recounted the development process of the vaccine, outlined the critical quality attributes of the vaccine antigen and, most importantly, listed the populations at risk for HEV infection and the subsequent disease. These at risk populations could benefit the most from the vaccination if the vaccine is widely adopted.
Collapse
Affiliation(s)
- Xin Wang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China
| | - Min Li
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China
| | - Shaowei Li
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Ting Wu
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Jun Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Ningshao Xia
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China.,c School of Life Science , Xiamen University , Xiamen , PR China
| | - Qinjian Zhao
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases , Xiamen University , Xiamen , PR China.,b School of Public Health , Xiamen University , Xiamen , PR China
| |
Collapse
|
90
|
Marion O, Abravanel F, Lhomme S, Izopet J, Kamar N. Hepatitis E in Transplantation. Curr Infect Dis Rep 2016; 18:8. [DOI: 10.1007/s11908-016-0515-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
91
|
Kamar N, Lhomme S, Abravanel F, Cointault O, Esposito L, Cardeau-Desangles I, Del Bello A, Dörr G, Lavayssière L, Nogier MB, Guitard J, Ribes D, Goin AL, Broué P, Metsu D, Sauné K, Rostaing L, Izopet J. An Early Viral Response Predicts the Virological Response to Ribavirin in Hepatitis E Virus Organ Transplant Patients. Transplantation 2016. [PMID: 26214817 DOI: 10.1097/tp.0000000000000850] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ribavirin is efficient at treating chronic hepatitis E virus infection in solid-organ transplant patients. However, the early kinetics of viral replication under therapy and the impact of immunosuppressant regimens on viral replication are unknown: thus, determining the aim of our study. METHODS Thirty-five patients with a solid-organ transplant and chronic hepatitis E virus infection were given ribavirin for 3 months. The hepatitis E virus (HEV) RNA concentrations were determined before treatment, at days 7, 15, and 21 and at months 1, 2, and 3 during therapy and after ribavirin cessation. RESULTS A sustained virological response (SVR) occurred in 63%. Decreased viral concentration within the first week post-ribavirin therapy was an independent predictive factor for SVR, and a decreased HEV concentration of 0.5 log copies/mL or greater had an 88% positive predictive value. No correlation between ribavirin trough level on day 7 or at month 2 with a virological response or an SVR was observed. Before therapy, HEV RNA concentration was significantly greater in patients receiving mechanistic target of rapamycin inhibitor-based immunosuppression compared to patients given calcineurin inhibitors. The use of mycophenolic acid did not impact on the response to ribavirin. CONCLUSION An early response to ribavirin can be used to define the optimal duration of therapy in the setting of HEV infection.
Collapse
Affiliation(s)
- Nassim Kamar
- 1 Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France. 2 INSERM U1043, IFR-BMT, CHU Purpan, Toulouse, France. 3 Université Paul Sabatier, Toulouse, France. 4 Laboratory of Virology, CHU Purpan, Toulouse, France. 5 Department of Thoracic Surgery and Lung Transplantation, CHU Rangueil-Larrey, Toulouse, France. 6 Pediatric Hepatology, Hôpital des enfants, Toulouse, France. 7 Laboratory of Toxicology, CHU Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hui W, Wei L, Li Z, Guo X. Treatment of Hepatitis E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 948:211-221. [PMID: 27738987 DOI: 10.1007/978-94-024-0942-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis E virus (HEV) infections are the most common cause of acute hepatitis, but they can also take a chronic course. There is no specific therapy for acute hepatitis, and current treatment is supportive. Choosing ribavirin as the first-line therapy for chronic HEV is advisable, especially in solid organ transplant patients. Pegylated interferon-α has been used successfully for treatment of hepatitis E but is associated with major side effects. Cholestasis is one of the most common, but devastating, manifestations in hepatitis E. Current therapy for HEV aims to treat symptoms. Therapy generally involves several measures, such as vitamins for adequate nutrition, albumin and plasma for supporting treatment, symptomatic treatment for cutaneous pruritus, and ursodeoxycholic acid and S-adenosylmethionine, and Traditional Chinese medicine for removing jaundice. Patients with underlying liver disease may develop liver failure. For these patients, supportive treatment is the foundation. Ribavirin has successfully been used to prevent liver transplantation. Prevention and treatment of complications are important for treatment of liver failure. Liver support devices are intended to support liver function until such time as native liver function recovers or until liver transplantation. Liver transplantation is widely considered as irreplaceable and definitive treatment for acute-on-chronic liver failure, particularly for patients who do not improve with supportive measures to sustain life.
Collapse
Affiliation(s)
- Wei Hui
- Department of Liver Diseases Endocrine, Youan Hospital, Capital Medical University, No. 8 XitoutiaoYouanmenWai, Fengtai District, Beijing, 100069, China.
| | - Linlin Wei
- Department of Liver Diseases Endocrine, Youan Hospital, Capital Medical University, No. 8 XitoutiaoYouanmenWai, Fengtai District, Beijing, 100069, China
| | - Zhuo Li
- Beijing Institute of Liver Disease, No.8 Xitoutiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Xinhui Guo
- Department of Liver Diseases Endocrine, Youan Hospital, Capital Medical University, No. 8 XitoutiaoYouanmenWai, Fengtai District, Beijing, 100069, China
| |
Collapse
|
93
|
Miyoshi M, Kakinuma S, Tanabe Y, Ishii K, Li TC, Wakita T, Tsuura Y, Watanabe H, Asahina Y, Watanabe M, Ikeda T. Chronic Hepatitis E Infection in a Persistently Immunosuppressed Patient Unable to Be Eliminated after Ribavirin Therapy. Intern Med 2016; 55:2811-2817. [PMID: 27725541 PMCID: PMC5088542 DOI: 10.2169/internalmedicine.55.7025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent case reports have shown that hepatitis E virus (HEV) infection can cause chronic hepatitis in immunosuppressed or immunocompromised patients. A 37-year-old woman suffered from prolonged elevation of aminotransferases after chemotherapy for Burkitt's lymphoma and was diagnosed with chronic hepatitis E due to a transfusion during chemotherapy. After an 8-month administration of ribavirin, complete HEV clearance was not achieved, likely due to prolonged hypogammaglobulinemia. This case indicates that HEV infection should be ruled out during liver dysfunction in immunosuppressed or immunocompromised patients and suggests that an alternative therapeutic strategy for such patients will be needed.
Collapse
Affiliation(s)
- Masato Miyoshi
- Department of Gastroenterology and Hepatology, Yokosuka Kyosai Hospital, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Fischer SA. Emerging and Rare Viral Infections in Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7122901 DOI: 10.1007/978-3-319-28797-3_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunocompromised patients such as those undergoing solid organ or hematopoietic stem cell transplantation are at substantial risk for infection with numerous pathogens. Infections with cytomegalovirus (CMV), herpes simplex virus (HSV), Epstein–Barr virus (EBV), and human herpesvirus-6 (HHV-6) are well-described complications of transplantation. As viruses previously believed to be quiescent through widespread vaccination (e.g., measles and mumps) reemerge and molecular diagnostic techniques are refined, rare and emerging viral infections are increasingly diagnosed in transplant recipients. This chapter will review the clinical manifestations, diagnosis, and potential antiviral therapies for these viruses in the transplant population.
Collapse
|
95
|
Peters van Ton AM, Gevers TJG, Drenth JPH. Antiviral therapy in chronic hepatitis E: a systematic review. J Viral Hepat 2015; 22:965-73. [PMID: 25760481 DOI: 10.1111/jvh.12403] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 12/24/2022]
Abstract
Hepatitis E viral infection can lead to a chronic infection in immunocompromised patients, resulting in progressive liver disease and cirrhosis. Isolated cases have shown that treatment with ribavirin or pegylated interferon-α can result in viral eradication. This systematic review evaluated efficacy and safety of both treatments in chronic hepatitis E. A systematic literature search was performed on PubMed, Web of Science and clinicaltrials.gov for articles and abstracts. The keywords '"Hepatitis E" or HEV' AND 'ribavirin or Rebetol or Copegus' OR 'pegylated interferon OR peginterferon' were combined. The primary outcome was sustained viral response (SVR). Secondary endpoints include rapid viral response (RVR), relapse rates and side effects. Twenty-four studies matched our criteria, representing a total of 105 ribavirin-treated and 8 pegylated interferon-treated patients. The majority of patients had a solid organ transplant. Sixty-four per cent of ribavirin-treated patients achieved a SVR at 6 months after treatment cessation compared to 2/8 peginterferon-treated patients. Ribavirin was relatively well tolerated with the main side effect being anaemia, requiring dose reduction in 28% of patients. Peginterferon leads to acute transplant rejection in 2/8 patients. Ribavirin monotherapy appears to be an effective and safe treatment in all immunocompromised patients with chronic hepatitis E. The use of pegylated interferon in transplant patients may lead to transplant rejection and is not recommended. Therefore, ribavirin should be the antiviral treatment of choice in chronic hepatitis E.
Collapse
Affiliation(s)
- A M Peters van Ton
- Department of Gastroenterology & Hepatology, Radboud UMC, Nijmegen, The Netherlands
| | - T J G Gevers
- Department of Gastroenterology & Hepatology, Radboud UMC, Nijmegen, The Netherlands
| | - J P H Drenth
- Department of Gastroenterology & Hepatology, Radboud UMC, Nijmegen, The Netherlands
| |
Collapse
|
96
|
Sayed IM, Vercouter AS, Abdelwahab SF, Vercauteren K, Meuleman P. Is hepatitis E virus an emerging problem in industrialized countries? Hepatology 2015; 62:1883-92. [PMID: 26175182 DOI: 10.1002/hep.27990] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/13/2015] [Indexed: 02/05/2023]
Abstract
Hepatitis E virus (HEV) is yearly responsible for approximately 20 million infections worldwide. Although most infections occur in developing countries, HEV appears to be an emerging problem in several industrialized countries, where it is mostly associated with either traveling to an HEV endemic area or contact with pigs, which represent a major reservoir of HEV. The major risk groups for HEV infection and its ensuing complications are elderly men, pregnant women, young children, immunocompromised patients, patients with preexisting liver disease, and workers that come into close contact with HEV-infected animals. Whereas HEV mainly causes acute self-limiting infections, chronic infections may occur among immunocompromised patients (e.g., transplant recipients and human immunodeficiency virus [HIV]-infected patients). Accordingly, HEV-HIV coinfection leads to accelerated liver cirrhosis and increased mortality rates compared to HEV infection alone, which is, except during pregnancy, usually associated with only low mortality. In the Western world, the most common genotype (gt) causing HEV infection is gt 3. Ribavirin (RBV) and interferon have been used successfully for treatment of HEV, but this treatment is contraindicated in certain patient groups. Therefore, novel antiviral compounds are highly needed, especially given that viral isolates with RBV resistance have been recently identified. Moreover, eradication of HEV is hampered by long-term environmental persistence of the virus, which represents a continuous source of the virus. In 2011, the first prophylactic HEV vaccine, Hecolin, was approved in China, but it is not yet globally available. In this review, we will discuss the molecular virology of HEV, mode of transmission in industrialized countries, and potential implications for different specific patient populations.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Center for Vaccinology, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
- Microbiology and Immunology Department, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Ann-Sofie Vercouter
- Center for Vaccinology, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Sayed F Abdelwahab
- Microbiology and Immunology Department, Faculty of Medicine, Minia University, Minia, Egypt
- Microbiology Department, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Koen Vercauteren
- Center for Vaccinology, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| | - Philip Meuleman
- Center for Vaccinology, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent, Belgium
| |
Collapse
|
97
|
Lee GY, Poovorawan K, Intharasongkroh D, Sa-nguanmoo P, Vongpunsawad S, Chirathaworn C, Poovorawan Y. Hepatitis E virus infection: Epidemiology and treatment implications. World J Virol 2015; 4:343-355. [PMID: 26568916 PMCID: PMC4641226 DOI: 10.5501/wjv.v4.i4.343] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/06/2015] [Accepted: 09/18/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis E virus (HEV) infection is now established as an emerging enteric viral hepatitis. Standard treatments in acute and chronic hepatitis E remain to be established. This study undertakes a review of the epidemiology, treatment implication and vaccine prevention from published literature. HEV infection is a worldwide public health problem and can cause acute and chronic hepatitis E. HEV genotypes 1 and 2 are primarily found in developing countries due to waterborne transmission, while the zoonotic potential of genotypes 3 and 4 affects mostly industrialized countries. An awareness of HEV transmission through blood donation, especially in the immunocompromised and solid organ transplant patients, merits an effective anti-viral therapy. There are currently no clear indications for the treatment of acute hepatitis E. Despite concerns for side effects, ribavirin monotherapy or in combination with pegylated interferon alpha for at least 3 mo appeared to show significant efficacy in the treatment of chronic hepatitis E. However, there are no available treatment options for specific patient population groups, such as women who are pregnant. Vaccination and screening of HEV in blood donors are currently a global priority in managing infection. New strategies for the treatment and control of hepatitis E are required for both acute and chronic infections, such as prophylactic use of medications, controlling large outbreaks, and finding acceptable antiviral therapy for pregnant women and other patient groups for whom the current options of treatment are not viable.
Collapse
|
98
|
Pokorny AMJ, Pokorny CS. Local outbreak of hepatitis E: a rare cause of viral hepatitis in Australia. Intern Med J 2015; 45:1300-2. [PMID: 26444571 DOI: 10.1111/imj.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/18/2015] [Indexed: 11/28/2022]
Abstract
Hepatitis E is a not uncommon cause of viral hepatitis globally but is relatively rare in Australia. Here, we report a case of acute hepatitis E that was acquired in Sydney and was part of a cluster believed to be infected locally. This is to our knowledge the first known outbreak of locally acquired hepatitis E in Australia. We discuss pathogenesis, clinical features and means by which further spread of infection can be limited.
Collapse
Affiliation(s)
| | - C S Pokorny
- Sydney and Liverpool Hospitals.,University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
99
|
Chronic hepatitis E in solid-organ transplantation: the key implications of immunosuppressants. Curr Opin Infect Dis 2015; 27:303-8. [PMID: 24977682 DOI: 10.1097/qco.0000000000000074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Solid-organ recipients infected with hepatitis E virus (HEV) bear an extremely high risk of developing chronic hepatitis, although this virus only causes acute infection in the general population. Immunosuppressive medication universally used after transplantation to prevent organ rejection appears to be a main risk factor for developing chronic infection. This review aims to overview and emphasize the current clinical and experimental evidence regarding the key implications of immunosuppressants in chronic hepatitis E. RECENT FINDINGS Over 60% of organ recipients who are infected with HEV develop chronic hepatitis. Immunosuppressant treatment after transplantation was identified as a key risk factor. Therefore, dose reduction or even withdrawal of immunosuppressants is considered as the first intervention strategy to achieve viral clearance in these patients. Otherwise, ribavirin, as an off-label medication, is considered as an antiviral treatment, with compelling outcomes observed so far. Interestingly, in addition to a common immunosuppression property that can favour HEV infection in general, different types of immunosuppressants may exert differential impacts on the infection course in patients. Furthermore, potential interaction may exist between particular immunosuppressant and ribavirin. With the recent development of a cell culture system for HEV, experimental research has been initiated to investigate how immunosuppressive drugs interact with HEV infection. SUMMARY On the basis of the current evidence, it remains impossible to define an optimal immunosuppressive protocol for these HEV-infected patients. However, the realization of this clinical issue and the initiation of translational research using cell culture models of HEV have been represented as milestones in this field.
Collapse
|
100
|
van der Eijk AA, Pas SD, Cornelissen JJ, de Man RA. Hepatitis E virus infection in hematopoietic stem cell transplant recipients. Curr Opin Infect Dis 2015; 27:309-15. [PMID: 24977683 DOI: 10.1097/qco.0000000000000076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Recipients of allogeneic stem cell transplantations are at risk of acquiring acute hepatitis E virus (HEV) infection, leading to chronicity. We review the incidence, sequela, extrahepatic manifestations, and treatment of hepatitis due to HEV infection in allogeneic hematopoietic stem cell transplantation (alloHSCT) recipients. RECENT FINDINGS HEV infection and progression to chronic HEV in alloHSCT recipients are recently described. Misdiagnosis of HEV in alloHSCT recipients occurs, with liver enzyme abnormalities often attributed to hepatic graft-versus-host disease or drug-induced liver injury. HEV infection may occur in HSCT donors and emphasizes the need for HEV screening not only after HSCT, but also in donors presenting with liver function disturbances. The discussion about HEV screening of blood products will continue. Extrahepatic manifestations of hepatitis E are described. SUMMARY HEV RNA screening in alloHSCT recipients with elevated liver enzymes is advised. Intervention strategies should be considered in cases of acute or chronic HEV infection. The first-line approach includes reduction of immunosuppressive medication. Oral ribavirin is in experienced hands a reasonable well tolerated treatment option, although the optimal dose, duration, and quantitative goals of ribavirin treatment are still unknown. Further studies are needed to improve our understanding of HEV, including extrahepatic manifestations and evaluation of therapeutic options.
Collapse
Affiliation(s)
- Annemiek A van der Eijk
- aDepartment of Viroscience bDepartment of Hematology cDepartment of Hepatogastroenterology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|