51
|
Wang Y, Wang J, Yang C, Wang Y, Liu J, Shi Z, Chen Y, Feng Y, Ma X, Qiao S. A study of the correlation between M2 macrophages and lymph node metastasis of colorectal carcinoma. World J Surg Oncol 2021; 19:91. [PMID: 33781288 PMCID: PMC8008636 DOI: 10.1186/s12957-021-02195-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lymph node metastasis is a major prognostic sign of colorectal carcinoma and an important indicator for individualized treatment. M2 macrophages play a key role in carcinogenesis and tumor development by enhancing invasiveness and promoting lymph node metastasis. The purpose of this study was to investigate the effect of CD163-positive M2 macrophages on lymph node metastasis in colorectal carcinoma. Methods Postoperative lymph node tissues were obtained from 120 patients with colorectal carcinoma who underwent radical surgery in the First Affiliated Hospital of Jinzhou Medical University between December 2019 and May 2020. We detected the expression of the CD163 protein in lymph nodes using immunohistochemistry. Furthermore, the relationships between M2 macrophages identified by expression of CD163 and lymph node metastasis were analyzed using the independent sample t-test and Chi-square test. Results M2 macrophages were increased in metastatic lymph nodes and non-metastatic lymph nodes adjacent to the cancer. The M2 macrophage count was higher in patients with macro-metastases than in patients with micro-metastases. Conclusions The presence of M2 macrophages represents an important indicator for lymph node metastasis in colorectal carcinoma and may be a potential marker for its prediction. Thus, M2 macrophage localization might offer a new target for the comprehensive treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Yanping Wang
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Jikun Wang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Chunyu Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yue Wang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Jinhao Liu
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Zuoxiu Shi
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yanlei Chen
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Yang Feng
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Xueqian Ma
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China
| | - Shifeng Qiao
- The Second Ward of Colorectal Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Guta, Jinzhou, 121000, Liaoning, People's Republic of China.
| |
Collapse
|
52
|
Li X, Song D, Liu H, Wang Z, Ma G, Yu M, Zhang Y, Zeng Y. Expression levels of VEGF-C and VEGFR-3 in renal cell carcinoma and their association with lymph node metastasis. Exp Ther Med 2021; 21:554. [PMID: 33850526 PMCID: PMC8027741 DOI: 10.3892/etm.2021.9986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Vascular endothelial growth factor-C (VEGF-C) and its receptor, VEGFR-3, are involved in lymphangiogenesis. The aim of the present study was to investigate the expression levels of VEGF-C and VEGFR-3 in RCC, and their association with lymphatic vessel density (LVD) and lymph node metastasis. The mRNA expression levels of VEGF-C in 40 RCC tissues and 10 normal renal tissues were determined by reverse transcription-semiquantitative PCR. The differential expression of VEGF-C and VEGFR-3 was examined by immunohistochemistry. Using an anti-D2-40 antibody as a lymphatic marker, the morphology and structure of lymphatic vessels in tissues was examined, and the LVD was calculated. VEGF-C mRNA expression in RCC tissues was higher than that in normal renal tissues, and VEGF-C mRNA expression in the lymph node metastasis group was higher than that in the non-lymph node metastasis group. The positive expression rate of VEGF-C and VEGFR-3 in RCC tissues was significantly higher than that in normal renal tissues. VEGF-C expression in the lymph node metastasis group was significantly higher than that in the non-lymph node metastasis group, and the positive expression of VEGF-C was associated with the clinical staging of RCC. In addition, there was a correlation between VEGF-C and VEGFR-3 expression in tumor cells. The LVD around the tumor was higher than that in the center of the tumor tissues and normal renal tissues, and it was closely associated with lymphatic invasion and lymph node metastasis. Overall, the current findings demonstrated that the VEGF-C/VEGFR-3 signaling pathway promoted lymphangiogenesis around the tumor and provided an approach for tumor lymphatic invasion and lymph node metastasis. Therefore, VEGFC and VEGFR-3 expression may serve an important role in the initiation and development of RCC.
Collapse
Affiliation(s)
- Xiuming Li
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Dianbin Song
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hui Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing 100081, P.R. China
| | - Zhiyong Wang
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Guang Ma
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Man Yu
- Department of Urology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yu Zeng
- Department of Urology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
53
|
Kuriyama N, Yoshioka Y, Kikuchi S, Azuma N, Ochiya T. Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol 2020; 8:611039. [PMID: 33363175 PMCID: PMC7755723 DOI: 10.3389/fcell.2020.611039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.
Collapse
Affiliation(s)
- Naoya Kuriyama
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
54
|
Massimino L, Lovisa S, Antonio Lamparelli L, Danese S, Ungaro F. Gut eukaryotic virome in colorectal carcinogenesis: Is that a trigger? Comput Struct Biotechnol J 2020; 19:16-28. [PMID: 33363706 PMCID: PMC7750180 DOI: 10.1016/j.csbj.2020.11.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota is composed of bacteria and viruses that might be associated with colorectal cancer (CRC) onset and progression. Indeed, although viral infections have been reported to be the primary trigger in many diseases, the role of eukaryotic viruses populating the gut mucosa during early colorectal carcinogenesis is underinvestigated. Human eukaryotic viruses in the gut were found to induce alterations of the immune homeostasis so that some viral-dependent mechanisms likely able to induce DNA alterations in the bowel wall have been proposed, although no demonstration is available yet. However, thanks to the latest advancements in computational biology and the implementation of the bioinformatic pipelines, the option of establishing a direct causative link between intestinal virome and CRC will be possible soon, hopefully paving the way to innovative therapeutic strategies blocking or reverting the CRC pathogenesis.
Collapse
Affiliation(s)
- Luca Massimino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Sara Lovisa
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
55
|
Zeng X, Cao Z, Luo W, Zheng L, Zhang T. MicroRNA-381-A Key Transcriptional Regulator: Its Biological Function and Clinical Application Prospects in Cancer. Front Oncol 2020; 10:535665. [PMID: 33324542 PMCID: PMC7726430 DOI: 10.3389/fonc.2020.535665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function by regulating messenger RNAs. Recent studies have shown that miRNAs play important roles in multiple processes of cancer development. MiR-381 is one of the most important miRNAs in cancer progression. MiR-381 is downregulated in some cancers and upregulated in other cancers, including glioma, epithelial sarcoma, and osteosarcoma. MiR-381 regulates epithelial-mesenchymal transition (EMT), chemotherapeutic resistance, radioresistance, and immune responses. Thus, miR-381 participates in tumor initiation, progression, and metastasis. Moreover, miR-381 functions in various oncogenic pathways, including the Wnt/β-catenin, AKT, and p53 pathways. Clinical studies have shown that miR-381 could be considered a biomarker or a novel prognostic factor. Here, we summarize the present studies on the role of miR-381 in cancer development, including its biogenesis and various affected signaling pathways, and its clinical application prospects. MiR-381 expression is associated with tumor stage and survival time, making miR-381 a novel prognostic factor.
Collapse
Affiliation(s)
- Xue Zeng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
56
|
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L, Wang W. Periostin + cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol 2020; 15:210-227. [PMID: 33124726 PMCID: PMC7782076 DOI: 10.1002/1878-0261.12837] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Lymph node metastasis (LNM), a critical prognostic determinant in cancer patients, is critically influenced by the presence of numerous heterogeneous cancer‐associated fibroblasts (CAFs) in the tumor microenvironment. However, the phenotypes and characteristics of the various pro‐metastatic CAF subsets in cervical squamous cell carcinoma (CSCC) remain unknown. Here, we describe a CAF subpopulation with elevated periostin expression (periostin+CAFs), located in the primary tumor sites and metastatic lymph nodes, that positively correlated with LNM and poor survival in CSCC patients. Mechanistically, periostin+CAFs impaired lymphatic endothelial barriers by activating the integrin‐FAK/Src‐VE‐cadherin signaling pathway in lymphatic endothelial cells and consequently enhanced metastatic dissemination. In contrast, inhibition of the FAK/Src signaling pathway alleviated periostin‐induced lymphatic endothelial barrier dysfunction and its related effects. Notably, periostin‐CAFs were incapable of impairing endothelial barrier integrity, which may explain the occurrence of CAF‐enriched cases without LNM. In conclusion, we identified a specific periostin+CAF subset that promotes LNM in CSCC, mainly by impairing the lymphatic endothelial barriers, thus providing the basis for potential stromal fibroblast‐targeted interventions that block CAF‐dependent metastasis.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zheng Hu
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| |
Collapse
|
57
|
Pan Y, Liu L, Cheng Y, Yu J, Feng Y. Amplified LncRNA PVT1 promotes lung cancer proliferation and metastasis by facilitating VEGFC expression. Biochem Cell Biol 2020; 98:676-682. [PMID: 33167678 DOI: 10.1139/bcb-2019-0435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the abundance of long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) in lung cancer has been well researched, the underlying mechanisms behind its effects were unknown. Here we investigated the molecular events regulating PVT1 in lung cancer. The pro-proliferative property of PVT1 was examined using a xenograft tumor model. Transwell chambers were used to analyze the impact of PVT1 expression on cell invasiveness and migration. In vivo metastasis was examined by tail-vein-injection in mice. Direct binding of miR-128 to PVT1 was investigated using a probe pulldown assay. The relative expression levels of miR-128 and PVT1 were quantified by real-time polymerase chain reaction and Western blotting. We show here that when PVT1 is amplified, there is a poor survival prognosis for patients with lung cancer. Elevated levels of PVT1 promoted lung cancer cell proliferation and metastasis, both in vitro and in vivo. Mechanistically, we found that PVT1 competes endogenously with miR-128 in the regulation of vascular endothelial growth factor C (VEGFC) expression, which is significantly associated with an unfavorable prognosis in lung cancer. We identified that copy number amplification significantly contributes to the high level of PVT1 transcripts in lung cancer, which promotes cell proliferation and metastatic behavior via modulating VEGFC expression by endogenous competition with miR-128.
Collapse
Affiliation(s)
- Yanming Pan
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, P.R. China
| | - Lantao Liu
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, P.R. China
| | - Yongxia Cheng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, P.R. China
| | - Jianbo Yu
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, P.R. China
| | - Yukuan Feng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157011, Heilongjiang, P.R. China
| |
Collapse
|
58
|
Haider T, Sandha KK, Soni V, Gupta PN. Recent advances in tumor microenvironment associated therapeutic strategies and evaluation models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111229. [DOI: 10.1016/j.msec.2020.111229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
59
|
Zhu G, Zhao M, Han Q, Tan Y, Sun YU, Bouvet M, Singh SR, Ye J, Hoffman RM. Pazopanib Inhibits Tumor Growth, Lymph-node Metastasis and Lymphangiogenesis of an Orthotopic Mouse of Colorectal Cancer. Cancer Genomics Proteomics 2020; 17:131-139. [PMID: 32108035 DOI: 10.21873/cgp.20173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/AIM Pazopanib (PAZ) can inhibit tumor progression, but whether PAZ inhibits lymph node metastasis and lymphangiogenesis in colorectal cancer is still unknown. The aim of the present study was to determine the efficacy of PAZ on tumor growth, lymph node metastasis and lymphangiogenesis in an orthotopic nude mouse model in colorectal cancer. MATERIALS AND METHODS CT-26-green fluorescence protein (GFP)-expressing mouse colon cancer cells were injected into nude mice to establish a subcutaneous colorectal cancer model and were treated with saline and PAZ. Additionals subcutaneous tumors were harvested and cut into 5 mm3 fragments, then tumor fragments were implanted orthotopically in the cecum to establish an orthotopic colorectal-cancer nude mouse model. Orthotopic mice were randomized into two groups for the treatment with saline and PAZ, respectively. Tumor width, length and mouse body weight was measured twice a week. The Fluor Vivo imaging system was used to image the GFP. Hematoxylin & eosin staining and immunohistochemical staining was used for histological analysis. RESULTS PAZ inhibited the growth of subcutaneous colorectal cancer, as wells as orthotopic transplanted colorectal cancer tumors. PAZ suppressed lymph node metastasis and lymphangiogenesis in the orthotopic colon cancer model. No significant changes were observed in the body weight between the control and the mice treated with PAZ. CONCLUSION PAZ can inhibit the growth of colorectal cancer and inhibit lymph node metastasis and lymphangiogenesis in orthotopic colon cancer nude mouse models.
Collapse
Affiliation(s)
- Guangwei Zhu
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Ming Zhao
- AntiCancer, Inc., San Diego, CA, U.S.A
| | | | | | - Y U Sun
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, P.R. China .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, P.R. China
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
60
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
61
|
Zhang F, Zarkada G, Yi S, Eichmann A. Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Front Physiol 2020; 11:509. [PMID: 32547411 PMCID: PMC7274196 DOI: 10.3389/fphys.2020.00509] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) lining lymphatic vessels develop specialized cell-cell junctions that are crucial for the maintenance of vessel integrity and proper lymphatic vascular functions. Successful lymphatic drainage requires a division of labor between lymphatic capillaries that take up lymph via open "button-like" junctions, and collectors that transport lymph to veins, which have tight "zipper-like" junctions that prevent lymph leakage. In recent years, progress has been made in the understanding of these specialized junctions, as a result of the application of state-of-the-art imaging tools and novel transgenic animal models. In this review, we discuss lymphatic development and mechanisms governing junction remodeling between button and zipper-like states in LECs. Understanding lymphatic junction remodeling is important in order to unravel lymphatic drainage regulation in obesity and inflammatory diseases and may pave the way towards future novel therapeutic interventions.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Georgia Zarkada
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
62
|
Chen S, Gao C, Wu Y, Huang Z. Identification of Prognostic miRNA Signature and Lymph Node Metastasis-Related Key Genes in Cervical Cancer. Front Pharmacol 2020; 11:544. [PMID: 32457603 PMCID: PMC7226536 DOI: 10.3389/fphar.2020.00544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background miRNAs and genes can serve as biomarkers for the prognosis and therapy of cervical tumors whose metastasis into lymph nodes is closely associated with disease progression and poor prognosis. Methods R software and Bioconductor packages were employed to identify differentially expressed miRNAs (DEMs) from The Cancer Genome Atlas (TCGA) database. GEO2R detected differentially expressed genes (DEGs) in the GSE7410 dataset originating from the Gene Expression Omnibus (GEO). A Cox proportional hazard regression model was established to select prognostic miRNA biomarkers. Online tools such as TargetScan and miRDB predicted target genes, and overlapping DEGs and target genes were defined as consensus genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) function annotations were performed to discern the potential functions of consensus genes. STRING and Cytoscape screened key genes and constructed a regulatory network. Results A combination of four miRNAs (down-regulated miR-502 and miR-145, up-regulated miR-142 and miR-33b) was identified as an independent prognostic signature of cervical cancer. A total of 94 consensus genes were significantly enriched in 7 KEGG pathways and 19 GO function annotations including the cAMP signaling pathway, the plasma membrane, integral components of the plasma membrane, cell adhesion, etc. The module analysis suggested that CXCL12, IGF1, PTPRC CDH5, RAD51B, REV3L, and WDHD1 are key genes that significantly correlate with cervical cancer lymph node metastasis. Conclusions This study demonstrates that a four-miRNA signature can be a prognostic biomarker, and seven key genes are significantly associated with lymph node metastasis in cervical cancer patients. These miRNAs and key genes have the potential to be therapeutic targets for cervical cancer. Among them, two miRNAs (miR-502 and miR-33b) and two key genes (PTPRC and CDH5) were first reported to be potential novel biomarkers for cervical cancer. The current study further characterizes the progression of lymph node metastasis and mechanism of cervical tumors; therefore, it provides a novel diagnostic indicator and therapeutic targets for future clinical treatments.
Collapse
Affiliation(s)
- Shuoling Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yangyuan Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
63
|
Parallels of Resistance between Angiogenesis and Lymphangiogenesis Inhibition in Cancer Therapy. Cells 2020; 9:cells9030762. [PMID: 32244922 PMCID: PMC7140636 DOI: 10.3390/cells9030762] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the primary cause of cancer-related mortality. Cancer cells primarily metastasize via blood and lymphatic vessels to colonize lymph nodes and distant organs, leading to worse prognosis. Thus, strategies to limit blood and lymphatic spread of cancer have been a focal point of cancer research for several decades. Resistance to FDA-approved anti-angiogenic therapies designed to limit blood vessel growth has emerged as a significant clinical challenge. However, there are no FDA-approved drugs that target tumor lymphangiogenesis, despite the consequences of metastasis through the lymphatic system. This review highlights several of the key resistance mechanisms to anti-angiogenic therapy and potential challenges facing anti-lymphangiogenic therapy. Blood and lymphatic vessels are more than just conduits for nutrient, fluid, and cancer cell transport. Recent studies have elucidated how these vasculatures often regulate immune responses. Vessels that are abnormal or compromised by tumor cells can lead to immunosuppression. Therapies designed to improve lymphatic vessel function while limiting metastasis may represent a viable approach to enhance immunotherapy and limit cancer progression.
Collapse
|
64
|
Henderson AR, Choi H, Lee E. Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling. MICROMACHINES 2020; 11:E147. [PMID: 32013154 PMCID: PMC7074693 DOI: 10.3390/mi11020147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
The human circulatory system is divided into two complementary and different systems, the cardiovascular and the lymphatic system. The cardiovascular system is mainly concerned with providing nutrients to the body via blood and transporting wastes away from the tissues to be released from the body. The lymphatic system focuses on the transport of fluid, cells, and lipid from interstitial tissue spaces to lymph nodes and, ultimately, to the cardiovascular system, as well as helps coordinate interstitial fluid and lipid homeostasis and immune responses. In addition to having distinct structures from each other, each system also has organ-specific variations throughout the body and both systems play important roles in maintaining homeostasis. Dysfunction of either system leads to devastating and potentially fatal diseases, warranting accurate models of both blood and lymphatic vessels for better studies. As these models also require physiological flow (luminal and interstitial), extracellular matrix conditions, dimensionality, chemotactic biochemical gradient, and stiffness, to better reflect in vivo, three dimensional (3D) microfluidic (on-a-chip) devices are promising platforms to model human physiology and pathology. In this review, we discuss the heterogeneity of both blood and lymphatic vessels, as well as current in vitro models. We, then, explore the organ-specific features of each system with examples in the gut and the brain and the implications of dysfunction of either vasculature in these organs. We close the review with discussions on current in vitro models for specific diseases with an emphasis on on-chip techniques.
Collapse
Affiliation(s)
- Aria R. Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Hyoann Choi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
65
|
Song J, Chen W, Cui X, Huang Z, Wen D, Yang Y, Yu W, Cui L, Liu CY. CCBE1 promotes tumor lymphangiogenesis and is negatively regulated by TGFβ signaling in colorectal cancer. Am J Cancer Res 2020; 10:2327-2341. [PMID: 32089745 PMCID: PMC7019157 DOI: 10.7150/thno.39740] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Collagen and calcium-binding EGF domain-1 (CCBE1) is essential for lymphatic vascular development as it promotes vascular endothelial growth factor C (VEGFC) proteolysis. A recent study reported that CCBE1 was overexpressed in epithelial colorectal cancer (CRC) cells; however, the role of CCBE1 in tumor lymphangiogenesis and the mechanism underlying dysregulated CCBE1 expression in CRC remain undefined. Methods: The role of CCBE1 in tumor lymphangiogenesis and lymphatic metastasis was investigated using human lymphatic endothelial cells (HLECs) model in vitro, and a hindfoot lymphatic metastasis model in vivo. Immunochemistry analysis was performed to assess CCBE1 expression, prognostic value and correlation with clinicopathological characteristics in CRC. The biochemical function and transcriptional regulatory mechanism of CCBE1 were explored by western blot, qPCR, and chromatin immunoprecipitation. Results: Cancer cell-derived CCBE1 enhances VEGFC proteolysis in vitro, facilitates tube formation and migration of HLECs in vitro, and promotes tumor lymphangiogenesis and lymphatic metastasis in vivo. In addition to CRC cells, tumor stroma within CRC tissue shows high CCBE1 expression, which is associated with high lymphatic vessel density, increased lymph node metastasis and poor prognosis. Cancer-associated fibroblasts (CAFs) express and secret CCBE1, thereby contributing to VEGFC maturation and tumor lymphangiogenesis in CRC. Transforming growth factor beta (TGF-β) downregulates the transcription and lymphangiogenic function of CCBE1 in CAFs and CRC cells through direct binding of SMADs to CCBE1 gene locus. Inactivation of the TGF-β pathway correlates with increased CCBE1 expression in CRC. Conclusion: Our results demonstrate the protumorigenic role of CCBE1 in promoting lymphangiogenesis and lymphatic metastasis in CRC, revealing a new mechanism by which loss of TGF-β signaling promotes CRC metastasis.
Collapse
|
66
|
Zhang Y, Yang X, Liu H, Cai M, Shentu Y. Inhibition of Tumor Lymphangiogenesis is an Important Part that EGFR-TKIs Play in the Treatment of NSCLC. J Cancer 2020; 11:241-250. [PMID: 31892990 PMCID: PMC6930403 DOI: 10.7150/jca.35448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used to treat non-small cell lung cancer (NSCLC) because they inhibit tumour growth and metastasis. However, the underlying mechanisms are not fully understood. Here, we investigate whether anti-lymphangiogenesis mechanisms contribute to the anti-tumour effects of EGFR-TKIs. Three different EGFR-TKIs (Gefitinib, Afatinib, and AZD9291) were used to determine the possible biological effects of EGFR-TKIs on lymphangiogenesis in vitro and in vivo. EGFR-TKIs inhibited human lymphatic endothelial cells (HLEC) proliferation, migration and tube formation at the indicated concentrations. Conditioned medium from human lung adenocarcinoma HCC827 cells treated with EGFR-TKIs also inhibited HLEC migration and tube formation. EGFR-TKIs inhibited VEGFC secretion, which further influenced HLEC behaviour in vitro. Afatinib inhibited tumour growth and lymphangiogenesis in the HCC827 xenograft mouse model. The densities and tube diameters of the lymphatic vessels were decreased in a dose-dependent manner, as shown by lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) staining. EGFR-TKIs also inhibited the expression of important lymphangiogenesis regulatory factors vascular endothelial growth factor 2/3 (VEGF2/3), VEGFC, and chemokine receptor 7 (CCR7) as shown by immunocytochemistry (IHC) staining. Additional assays confirmed that the JAK/STAT3 signalling pathways play important roles in the anti-lymphangiogenesis process induced by EGFR-TKIs. Inhibition of lymphangiogenesis is another important role that the three EGFR-TKIs play in the treatment of lung cancer and the Janus kinase/signal transducers and activators of transcription 3 (JAK/STAT3) maybe an important signalling pathway regulating lymphangiogenesis, which provides a new idea for clinical therapy of lung cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinying Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongchun Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minghui Cai
- Department of Thoracic Surgery, Taizhou hospital of Zhejiang province, Zhejiang, 317000, China
| | - Yang Shentu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
67
|
Li X, Lv X, Li Z, Li C, Li X, Xiao J, Liu B, Yang H, Zhang Y. Long Noncoding RNA ASLNC07322 Functions in VEGF-C Expression Regulated by Smad4 during Colon Cancer Metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:851-862. [PMID: 31739210 PMCID: PMC6861657 DOI: 10.1016/j.omtn.2019.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/22/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022]
Abstract
Deletion and mutation of the Smad4 gene are favorable events for the progression of colon cancer, which is related to the negative regulation of vascular endothelial growth factor C (VEGF-C). However, the regulatory mechanism between Smad4 and VEGF-C remains unclear. We reported first that Smad4 can increase the transcription of miR-128-3p, a microRNA targeting VEGF-C mRNA, resulting in a negative correlation between Smad4 and VEGF-C. Moreover, we found that Smad4 combined with Smad3 can positively regulate VEGF-C during colon cancer metastasis through binding to VEGF-C gene promoter. Further, results revealed a mechanism that long noncoding RNA (lncRNA) ASLNC07322 increased specifically in metastatic colon cancer and decreased miR-128-3p as a sponge, leading to a subsequent elevation of VEGF-C. In a word, there are two pathways in the progression of colon cancer, including Smad4/miR-128-3p/VEGF-C and Smad4/VEGF-C pathways in non-metastatic and metastatic colon cancer, respectively. ASLNC07322 crucially controlled this negative and positive regulatory transformation between them. Additionally, ASLNC07322 knockdown combined with Smad4 overexpression could efficiently inhibit lymphatic endothelial cells (LECs) proliferation and tube formation in vitro, as well as tumor growth and lymphangiogenesis in vivo. These data explained the underlying mechanism of Smad4 contribution on VEGF-C expression during metastasis where ASLNC07322 functions vitally as a switch in colon cancer.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xiaohong Lv
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Zhuowei Li
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Chao Li
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xinlei Li
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jianbing Xiao
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China.
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, 157 Baojian Road, Harbin, China.
| |
Collapse
|
68
|
Dieterich LC, Kapaklikaya K, Cetintas T, Proulx ST, Commerford CD, Ikenberg K, Bachmann SB, Scholl J, Detmar M. Transcriptional profiling of breast cancer-associated lymphatic vessels reveals VCAM-1 as regulator of lymphatic invasion and permeability. Int J Cancer 2019; 145:2804-2815. [PMID: 31344266 PMCID: PMC6771758 DOI: 10.1002/ijc.32594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
Tumor‐associated lymphangiogenesis and lymphatic invasion of tumor cells correlate with poor outcome in many tumor types, including breast cancer. Various explanations for this correlation have been suggested in the past, including the promotion of lymphatic metastasis and an immune‐inhibitory function of lymphatic endothelial cells (LECs). However, the molecular features of tumor‐associated lymphatic vessels and their implications for tumor progression have been poorly characterized. Here, we report the first transcriptional analysis of tumor‐associated LECs directly isolated from the primary tumor in an orthotopic mouse model of triple negative breast cancer (4T1). Gene expression analysis showed a strong upregulation of inflammation‐associated genes, including endothelial adhesion molecules such as VCAM‐1, in comparison to LECs derived from control tissue. In vitro experiments demonstrated that VCAM‐1 is not involved in the adhesion of tumor cells to LECs but unexpectedly promoted lymphatic permeability by weakening of lymphatic junctions, most likely through a mechanism triggered by interactions with integrin α4 which was also induced in tumor‐associated LECs. In line with this, in vivo blockade of VCAM‐1 reduced lymphatic invasion of 4T1 cells. Taken together, our findings suggest that disruption of lymphatic junctions and increased permeability via tumor‐induced lymphatic VCAM‐1 expression may represent a new target to block lymphatic invasion and metastasis. What's new? Tumor‐associated lymphatic vessels serve important roles in tumor progression and metastasis. Nonetheless, little is known about the molecular changes in these vessels that give rise to a tumor‐promoting phenotype. In this study, transcriptional analysis was performed on lymphatic endothelial cells (LECs) isolated from a mouse model of triple‐negative breast cancer. Endothelial adhesion molecules, including tumor‐induced VCAM‐1, were strongly upregulated in tumor‐associated LECs. Additional experiments showed that VCAM‐1 upregulation influences lymphatic permeability and that its inhibition attenuates lymphatic breast cancer cell invasion. The findings identify VCAM‐1 as a potential target for the blockade of lymphatic invasion of tumor cells.
Collapse
Affiliation(s)
- Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Kübra Kapaklikaya
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Timur Cetintas
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Catharina D. Commerford
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Kristian Ikenberg
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Samia B. Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Jeannette Scholl
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| |
Collapse
|
69
|
Xu W, Wittchen ES, Hoopes SL, Stefanini L, Burridge K, Caron KM. Small GTPase Rap1A/B Is Required for Lymphatic Development and Adrenomedullin-Induced Stabilization of Lymphatic Endothelial Junctions. Arterioscler Thromb Vasc Biol 2019; 38:2410-2422. [PMID: 30354217 DOI: 10.1161/atvbaha.118.311645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective- Maintenance of lymphatic permeability is essential for normal lymphatic function during adulthood, but the precise signaling pathways that control lymphatic junctions during development are not fully elucidated. The Gs-coupled AM (adrenomedullin) signaling pathway is required for embryonic lymphangiogenesis and the maintenance of lymphatic junctions during adulthood. Thus, we sought to elucidate the downstream effectors mediating junctional stabilization in lymphatic endothelial cells. Approach and Results- We knocked-down both Rap1A and Rap1B isoforms in human neonatal dermal lymphatic cells (human lymphatic endothelial cells) and genetically deleted the mRap1 gene in lymphatic endothelial cells by producing 2 independent, conditional Rap1a/b knockout mouse lines. Rap1A/B knockdown caused disrupted junctional formation with hyperpermeability and impaired AM-induced lymphatic junctional tightening, as well as rescue of histamine-induced junctional disruption. Less than 60% of lymphatic- Rap1a/b knockout embryos survived to E13.5 exhibiting interstitial edema, blood-filled lymphatics, disrupted lymphovenous valves, and defective lymphangiogenesis. Consistently, inducible lymphatic- Rap1a/b deletion in adult animals prevented AM-rescue of histamine-induced lymphatic leakage and dilation. Conclusions- Rap1 (Ras-related protein) serves as the dominant effector downstream of AM to stabilize lymphatic junctions. Rap1 is required for maintaining lymphatic permeability and driving normal lymphatic development.
Collapse
Affiliation(s)
- Wenjing Xu
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill
| | - Erika S Wittchen
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill
| | - Samantha L Hoopes
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill
| | - Lucia Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy (L.S.)
| | - Keith Burridge
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill.,McAllister Heart Institute (K.B.), The University of North Carolina, Chapel Hill.,Lineberger Comprehensive Cancer Center, Chapel Hill, NC (K.B.)
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill.,Department of Genetics (K.M.C.), The University of North Carolina, Chapel Hill
| |
Collapse
|
70
|
Yoon SY, Dieterich LC, Karaman S, Proulx ST, Bachmann SB, Sciaroni C, Detmar M. An important role of cutaneous lymphatic vessels in coordinating and promoting anagen hair follicle growth. PLoS One 2019; 14:e0220341. [PMID: 31344105 PMCID: PMC6657912 DOI: 10.1371/journal.pone.0220341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 01/13/2023] Open
Abstract
The lymphatic vascular system plays important roles in the control of tissue fluid homeostasis and immune responses. While VEGF-A-induced angiogenesis promotes hair follicle (HF) growth, the potential role of lymphatic vessels (LVs) in HF cycling has remained unknown. In this study, we found that LVs are localized in close proximity to the HF bulge area throughout the postnatal and depilation-induced hair cycle in mice and that a network of LVs directly connects the individual HFs. Increased LV density in the skin of K14-VEGF-C transgenic mice was associated with prolongation of anagen HF growth. Conversely, HF entry into the catagen phase was accelerated in K14-sVEGFR3 transgenic mice that lack cutaneous LVs. Importantly, repeated intradermal injections of VEGF-C promoted hair growth in mice. Conditioned media from lymphatic endothelial cells promoted human dermal papilla cell (DPC) growth and expression of IGF-1 and alkaline phosphatase, both activators of DPCs. Our results reveal an unexpected role of LVs in coordinating and promoting HF growth and identify potential new therapeutic strategies for hair loss-associated conditions.
Collapse
Affiliation(s)
- Sun-Young Yoon
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Sinem Karaman
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Samia B. Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Carol Sciaroni
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
71
|
Tacconi C, Ungaro F, Correale C, Arena V, Massimino L, Detmar M, Spinelli A, Carvello M, Mazzone M, Oliveira AI, Rubbino F, Garlatti V, Spanò S, Lugli E, Colombo FS, Malesci A, Peyrin-Biroulet L, Vetrano S, Danese S, D'Alessio S. Activation of the VEGFC/VEGFR3 Pathway Induces Tumor Immune Escape in Colorectal Cancer. Cancer Res 2019; 79:4196-4210. [PMID: 31239267 DOI: 10.1158/0008-5472.can-18-3657] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
Colorectal cancer is a major cause of cancer-related death in Western countries and is associated with increased numbers of lymphatic vessels (LV) and tumor-associated macrophages (TAM). The VEGFC/VEGFR3 pathway is regarded as the principal inducer of lymphangiogenesis and it contributes to metastases; however, no data are available regarding its role during primary colorectal cancer development. We found that both VEGFC and VEGFR3 were upregulated in human nonmetastatic colorectal cancer, with VEGFR3 expressed on both LVs and TAMs. With the use of three different preclinical models of colorectal cancer, we also discovered that the VEGFC/VEGFR3 axis can shape both lymphatic endothelial cells and TAMs to synergistically inhibit antitumor immunity and promote primary colorectal cancer growth. Therefore, VEGFR3-directed therapy could be envisioned for the treatment of nonmetastatic colorectal cancer. SIGNIFICANCE: The prolymphangiogenic factor VEGFC is abundant in colorectal cancer and activates VEGFR3 present on cancer-associated macrophages and lymphatic vessels; activation of VEGFR3 signaling fosters cancer immune escape, resulting in enhanced tumor growth.
Collapse
Affiliation(s)
- Carlotta Tacconi
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Federica Ungaro
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Carmen Correale
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Vincenzo Arena
- Department of Internal Medicine, Catholic University of Rome, Rome, Italy
| | - Luca Massimino
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Colon and Rectal Surgery Department, Humanitas Research Hospital, Rozzano, Italy
| | - Michele Carvello
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Colon and Rectal Surgery Department, Humanitas Research Hospital, Rozzano, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Leuven, Belgium.,Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ana I Oliveira
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Leuven, Belgium.,Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Federica Rubbino
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valentina Garlatti
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Salvatore Spanò
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Federico S Colombo
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alberto Malesci
- Department of Biotechnologies and Translational Medicine, University of Milan, Rozzano (Milan), Italy.,Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France
| | - Stefania Vetrano
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Silvio Danese
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Silvia D'Alessio
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy. .,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
72
|
Ungaro F, Colombo P, Massimino L, Ugolini GS, Correale C, Rasponi M, Garlatti V, Rubbino F, Tacconi C, Spaggiari P, Spinelli A, Carvello M, Sacchi M, Spanò S, Vetrano S, Malesci A, Peyrin-Biroulet L, Danese S, D'Alessio S. Lymphatic endothelium contributes to colorectal cancer growth via the soluble matrisome component GDF11. Int J Cancer 2019; 145:1913-1920. [PMID: 30889293 DOI: 10.1002/ijc.32286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most malignant tumors worldwide. Stromal cells residing in the tumor microenvironment strongly contribute to cancer progression through their crosstalk with cancer cells and extracellular matrix. Here we provide the first evidence that CRC-associated lymphatic endothelium displays a distinct matrisome-associated transcriptomic signature, which distinguishes them from healthy intestinal lymphatics. We also demonstrate that CRC-associated human intestinal lymphatic endothelial cells regulate tumor cell growth via growth differentiation factor 11, a soluble matrisome component which in CRC patients was found to be associated with tumor progression. Our data provide new insights into lymphatic contribution to CRC growth, aside from their conventional role as conduits of metastasis.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Carmen Correale
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Milan, Italy
| | | | - Federica Rubbino
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Pharmacogenomics, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Michele Carvello
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Matteo Sacchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Salvatore Spanò
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alberto Malesci
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Department of Gastroenterology, Humanitas Clinical and Research Center, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
73
|
Zhao YR, Liu H, Xiao LM, Jin CG, Zhang ZP, Yang CG. The clinical significance of CCBE1 expression in human colorectal cancer. Cancer Manag Res 2018; 10:6581-6590. [PMID: 30555263 PMCID: PMC6280897 DOI: 10.2147/cmar.s181770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose The identification and discovery of prognostic markers for colorectal cancer (CRC) are of great clinical significance. CCBE1 is expressed in various tumors and its expression correlates with lymphangiogenesis and angiogenesis. However, the association between CCBE1 expression and CRC outcome has not been reported. The aim of this study was to investigate clinical significance of CCBE1 expression in CRC. Patients and methods CCBE1 expression was examined in 30 pairs of fresh CRC tissues and compared with adjacent normal (AN) tissues using quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry (IHC) staining. Tissue microarray immunohistochemical staining was used to study the CCBE1 expression characteristics of 204 CRC patient samples collected from January 2002 to December 2007, and the relationship of CCBE1 with clinicopathological features and prognosis of CRC was analyzed. Results CCBE1 was highly expressed in CRC tissues compared with matched AN tissues (P=0.001). Moreover, high expression of CCBE1 was significantly associated with tumor differentiation, lymph node metastasis, vascular invasion, liver metastasis and TNM stage in CRC patients (P≤0.01). Kaplan-Meier survival analysis revealed that high CCBE1 expression, poor tumor differentiation, lymph node metastasis and vascular invasion were significantly associated (all P<0.001) with poor prognosis for patients. Furthermore, univariate and multivariate Cox analysis revealed that high CCBE1 expression, poor tumor differentiation, lymph node metastasis and vascular invasion were independent risk factors for both overall survival (OS) and disease-free survival (DFS) of CRC patients (all P<0.05). OS and DFS of 267 CRC patients from The Cancer Genome Atlas (TCGA) database showed the same trend (log-rank P=6e-04, HR [high] =2.4; log-rank P=0.0081, HR [high] =1.9). Conclusion High levels of CCBE1 contribute to the aggressiveness and poor prognosis of CRC. CCBE1 can serve as a novel potential biomarker to predict CRC patients' prognosis.
Collapse
Affiliation(s)
- Yan-Rong Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li-Miao Xiao
- Department of Ultrasound, Hunan Children's Hospital, Changsha, Hunan, China
| | - Can-Guang Jin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Peng Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Guang Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China,
| |
Collapse
|
74
|
Ghalamfarsa G, Rastegari A, Atyabi F, Hassannia H, Hojjat‐Farsangi M, Ghanbari A, Anvari E, Mohammadi J, Azizi G, Masjedi A, Yousefi M, Yousefi B, Hadjati J, Jadidi‐Niaragh F. Anti‐angiogenic effects of CD73‐specific siRNA‐loaded nanoparticles in breast cancer‐bearing mice. J Cell Physiol 2018; 233:7165-7177. [DOI: 10.1002/jcp.26743] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ghasem Ghalamfarsa
- Cellular and Molecular Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Ali Rastegari
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Faculty of Medicine Mazandaran University of Medical Sciences Sari Iran
- Amol Faculty of Paramedical Sciences Mazandaran University of Medical Sciences Sari Iran
| | - Mohammad Hojjat‐Farsangi
- Department of Oncology‐Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK) Karolinska University Hospital Solna and Karolinska Institute Stockholm Sweden
- Department of Immunology, School of Medicine Bushehr University of Medical Sciences Bushehr Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine Ilam University of Medical Sciences Ilam Iran
| | - Jamshid Mohammadi
- Medicinal Plants Research Center Yasuj University of Medical Sciences Yasuj Iran
| | - Gholamreza Azizi
- Non‐Communicable Diseases Research Center Alborz University of Medical Sciences Karaj Iran
| | - Ali Masjedi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Bahman Yousefi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Jamshid Hadjati
- Department of Immunology, Faculty of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Farhad Jadidi‐Niaragh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
75
|
Ma Q, Dieterich LC, Detmar M. Multiple roles of lymphatic vessels in tumor progression. Curr Opin Immunol 2018; 53:7-12. [PMID: 29605736 DOI: 10.1016/j.coi.2018.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Sentinel lymph node metastasis is a prognostic indicator for systemic tumor spread in many types of cancers, and tumor lymphangiogenesis correlates with reduced survival. Consequently, lymphatic vessels have been suggested to promote tumor progression in multiple ways. Tumor lymphangiogenesis occurs both in primary tumors and at distant (pre-) metastatic sites, and facilitates lymphatic invasion and tumor cell dissemination. Lymphatic vessels have also emerged as regulators of tumor immunity, transporting tumor antigens to lymph nodes and directly interacting with immune cells. Furthermore, lymphatic vessels might provide a 'lymphovascular' niche contributing to the maintenance of stem-like tumor cells that are tightly related to tumor recurrence. Thus, targeting tumor lymphangiogenesis or specific lymphatic-associated functions might represent a promising approach to inhibit tumor progression.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
76
|
Chen W, Xia T, Wang D, Huang B, Zhao P, Wang J, Qu X, Li X. Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14. Oncotarget 2018; 7:62425-62438. [PMID: 27613828 PMCID: PMC5308737 DOI: 10.18632/oncotarget.11515] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 08/08/2016] [Indexed: 01/23/2023] Open
Abstract
The brain microenvironment has emerged as an important component in malignant progression of human glioma. However, astrocytes, the most abundant glial cells in the glioma microenvironment, have as yet a poorly defined role in the development of this disease, particularly with regard to invasion. Here, we co-cultured human astrocytes with human glioma cell lines, U251 and A172, in an in vitro transwell system in order to ascertain their influence on migration and invasion of gliomas. mRNA and protein expression assays were subsequently used to identify candidate proteins mediating this activity. Astrocytes significantly increased migration and invasion of both U251 and A172 cells in migration and invasion (plus matrigel) assays. Membrane type 1 matrix metalloproteinase (MMP14) originating from glioma cells was identified in qRT-PCR as the most highly up-regulated member of the MMP family of genes (~ 3 fold, p < 0.05) in this system. A cytokine array and ELISA were used to identify interleukin-6 (IL-6) as a highly increased factor in media collected from astrocytes, especially under co-culture conditions. IL-6 was also the key cytokine inducing cytomembrane MMP14 expression, the active form of MMP14, in glioma cells. Knockdown of MMP14 with siRNA led to decreased migration and invasion. Taken together, our results indicated that cytomembrane MMP14 was induced by IL-6 secreted from astrocytes, thereby enhancing the migration and invasion of glioma cells through activation of MMP2. Therefore, this IL-6 and MMP14 axis between astrocytes and glioma cells may become a potential target for treatment of glioma patients.
Collapse
Affiliation(s)
- Weiliang Chen
- Department of Otolaryngology, Qilu Hospital, Shandong University, Jinan, China.,Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China.,Key Laboratory of Otolaryngology, Chinese Ministry of Health, Jinan, China
| | - Tongliang Xia
- Department of Otolaryngology, Qilu Hospital, Shandong University, Jinan, China.,Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China.,Key Laboratory of Otolaryngology, Chinese Ministry of Health, Jinan, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
77
|
Tzeng HE, Chang AC, Tsai CH, Wang SW, Tang CH. Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells. Oncotarget 2018; 7:38566-38578. [PMID: 27229532 PMCID: PMC5122411 DOI: 10.18632/oncotarget.9570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
A chondrosarcoma is a common, primary malignant bone tumor that can grow to destroy the bone, produce fractures and develop soft tissue masses. Left untreated, chondrosarcomas metastasize through the vascular system to the lungs and ultimately lead to large metastatic deposits of the malignant cartilage taking over lung volume and function. Vascular endothelial growth factor (VEGF)-C has been implicated in tumor-induced lymphangiogenesis and elevated expression of VEGF-C has been found to correlate with cancer metastasis. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis and metastasis. We have previously reported on the important role of bFGF in angiogenesis in chondrosarcomas. However, the effect of bFGF in VEGF-C regulation and lymphangiogenesis in chondrosarcomas is poorly understood. In this investigation, we demonstrate a correlation exists between bFGF and VEGF-C in tissue specimens from patients with chondrosarcomas. To examine the lymphangiogenic effect of bFGF, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. We found that bFGF-treated chondrosarcomas promoted LEC tube formation and cell migration. In addition, bFGF knockdown inhibited lymphangiogenesis in vitro and in vivo. We also found that bFGF-induced VEGF-C is mediated by the platelet-derived growth factor receptor (PDGFR) and c-Src signaling pathway. Furthermore, bFGF inhibited microRNA-381 expression via the PDGFR and c-Src cascade. Our study is the first to describe the mechanism of bFGF-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, bFGF could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
78
|
Abstract
Cancer patients with lymph node (LN) metastases have a worse prognosis than those without nodal disease. However, why LN metastases correlate with reduced patient survival is poorly understood. Recent findings provide insight into mechanisms underlying tumor growth in LNs. Tumor cells and their secreted molecules engage stromal, myeloid, and lymphoid cells within primary tumors and in the lymphatic system, decreasing antitumor immunity and promoting tumor growth. Understanding the mechanisms of cancer survival and growth in LNs is key to designing effective therapy for the eradication of LN metastases. In addition, uncovering the implications of LN metastasis for systemic tumor burden will inform treatment decisions. In this review, we discuss the current knowledge of the seeding, growth, and further dissemination of LN metastases.
Collapse
Affiliation(s)
- Dennis Jones
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Ethel R Pereira
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
79
|
Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma. Oncotarget 2018; 7:85502-85514. [PMID: 27907907 PMCID: PMC5356753 DOI: 10.18632/oncotarget.13453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The underlying mechanisms of colorectal carcinoma (CRC) metastasis remain to be elucidated. The aim of this study is to investigate clinical significance and the expression of eIF4E, VEGF-C, MMP-2, and E-cadherin in the CRC metastasis. We investigated their expressions in 108 patients, analyzed the relationships between their expressions in CRC and evaluated the relationships between their expressions and clinical pathogenic parameters. Furthermore, their roles in patient survival and in CRC metastasis were also investigated. We found that eIF4E, VEGF-C and MMP-2 were up-regulated in CRC, and their expression frequencies (EFs) were higher in cancerous tissues than in adjacent normal tissues. The EF of E-cadherin is lower in cancerous tissues than in adjacent normal tissues. Totally, their EFs were not associated with sex and age of patient, however, their EFs were associated with tumor differentiation, the depth of invasion, lymph node metastasis and tumor stages. Furthermore, eIF4E, VEGF-C, and MMP-2 shortened and E-cadherin prolonged survival in patient-derived CRC xenografts. Similarly, eIF4E, VEGF-C, and MMP-2 promoted and E-cadherin suppressed the lung metastasis of CRC cells. In addition, knockdown of eIF4E inhibited migration of CRC cells, downregulated VEGF-C, MMP-2 and upregulated E-cadherin. In conclusion, eIF4E promoted CRC metastasis via up-regulating the expression of VEGF-C, MMP-2 and suppressing E-cadherin.
Collapse
|
80
|
He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, Chen X, Huang J, Lin T. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest 2018; 128:861-875. [PMID: 29355840 PMCID: PMC5785244 DOI: 10.1172/jci96218] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
The prognosis for bladder cancer patients with lymph node (LN) metastasis is dismal and only minimally improved by current treatment modalities. Elucidation of the molecular mechanisms that underlie LN metastasis may provide clinical therapeutic strategies for LN-metastatic bladder cancer. Here, we report that a long noncoding RNA LINC00958, which we have termed bladder cancer-associated transcript 2 (BLACAT2), was markedly upregulated in LN-metastatic bladder cancer and correlated with LN metastasis. Overexpression of BLACAT2 promoted bladder cancer-associated lymphangiogenesis and lymphatic metastasis in both cultured bladder cancer cell lines and mouse models. Furthermore, we demonstrate that BLACAT2 epigenetically upregulated VEGF-C expression by directly associating with WDR5, a core subunit of human H3K4 methyltransferase complexes. Importantly, administration of an anti-VEGF-C antibody inhibited LN metastasis in BLACAT2-overexpressing bladder cancer. Taken together, these findings uncover a molecular mechanism in the lymphatic metastasis of bladder cancer and indicate that BLACAT2 may represent a target for clinical intervention in LN-metastatic bladder cancer.
Collapse
|
81
|
Wang LH, Lin CY, Liu SC, Liu GT, Chen YL, Chen JJ, Chan CH, Lin TY, Chen CK, Xu GH, Chen SS, Tang CH, Wang SW. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells. Oncotarget 2018; 7:36896-36908. [PMID: 27166194 PMCID: PMC5095047 DOI: 10.18632/oncotarget.9213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/24/2016] [Indexed: 12/21/2022] Open
Abstract
Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Orthopedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Chia Liu
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Guan-Ting Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yen-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chia-Han Chan
- Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ting-Yi Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chi-Kuan Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Pathology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Guo-Hong Xu
- Department of Orthopedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Shiou-Sheng Chen
- Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Urology, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
82
|
Steinskog ESS, Sagstad SJ, Wagner M, Karlsen TV, Yang N, Markhus CE, Yndestad S, Wiig H, Eikesdal HP. Impaired lymphatic function accelerates cancer growth. Oncotarget 2018; 7:45789-45802. [PMID: 27329584 PMCID: PMC5216761 DOI: 10.18632/oncotarget.9953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/22/2016] [Indexed: 12/12/2022] Open
Abstract
Increased lymphangiogenesis is a common feature of cancer development and progression, yet the influence of impaired lymphangiogenesis on tumor growth is elusive. C3HBA breast cancer and KHT-1 sarcoma cell lines were implanted orthotopically in Chy mice, harboring a heterozygous inactivating mutation of vascular endothelial growth factor receptor-3, resulting in impaired dermal lymphangiogenesis. Accelerated tumor growth was observed in both cancer models in Chy mice, coinciding with reduced peritumoral lymphangiogenesis. An impaired lymphatic washout was observed from the peritumoral area in Chy mice with C3HBA tumors, and the number of macrophages was significantly reduced. While fewer macrophages were detected, the fraction of CD163+ M2 macrophages remained constant, causing a shift towards a higher M2/M1 ratio in Chy mice. No difference in adaptive immune cells was observed between wt and Chy mice. Interestingly, levels of pro- and anti-inflammatory macrophage-associated cytokines were reduced in C3HBA tumors, pointing to an impaired innate immune response. However, IL-6 was profoundly elevated in the C3HBA tumor interstitial fluid, and treatment with the anti-IL-6 receptor antibody tocilizumab inhibited breast cancer growth. Collectively, our data indicate that impaired lymphangiogenesis weakens anti-tumor immunity and favors tumor growth at an early stage of cancer development.
Collapse
Affiliation(s)
| | | | - Marek Wagner
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Ning Yang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hans Petter Eikesdal
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
83
|
Wen YR, Yang JH, Wang X, Yao ZB. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. Neural Regen Res 2018; 13:709-716. [PMID: 29722325 PMCID: PMC5950683 DOI: 10.4103/1673-5374.230299] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain.First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C) protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3), significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ya-Ru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun-Hua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
84
|
Ungaro F, Tacconi C, Massimino L, Corsetto PA, Correale C, Fonteyne P, Piontini A, Garzarelli V, Calcaterra F, Della Bella S, Spinelli A, Carvello M, Rizzo AM, Vetrano S, Petti L, Fiorino G, Furfaro F, Mavilio D, Maddipati KR, Malesci A, Peyrin-Biroulet L, D'Alessio S, Danese S. MFSD2A Promotes Endothelial Generation of Inflammation-Resolving Lipid Mediators and Reduces Colitis in Mice. Gastroenterology 2017; 153:1363-1377.e6. [PMID: 28827082 DOI: 10.1053/j.gastro.2017.07.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Alterations in signaling pathways that regulate resolution of inflammation (resolving pathways) contribute to pathogenesis of ulcerative colitis (UC). The resolution process is regulated by lipid mediators, such as those derived from the ω-3 docosahexaenoic acid (DHA), whose esterified form is transported by the major facilitator superfamily domain containing 2A (MFSD2A) through the endothelium of brain, retina, and placenta. We investigated if and how MFSD2A regulates lipid metabolism of gut endothelial cells to promote resolution of intestinal inflammation. METHODS We performed lipidomic and functional analyses of MFSD2A in mucosal biopsies and primary human intestinal microvascular endothelial cells (HIMECs) isolated from surgical specimens from patients with active, resolving UC and healthy individuals without UC (controls). MFSD2A was knocked down in HIMECs with small hairpin RNAs or overexpressed from a lentiviral vector. Human circulating endothelial progenitor cells that overexpress MFSD2A were transferred to CD1 nude mice with dextran sodium sulfate-induced colitis, with or without oral administration of DHA. RESULTS Colonic biopsies from patients with UC had reduced levels of inflammation-resolving DHA-derived epoxy metabolites compared to healthy colon tissues or tissues with resolution of inflammation. Production of these metabolites by HIMECs required MFSD2A, which is required for DHA retention and metabolism in the gut vasculature. In mice with colitis, transplanted endothelial progenitor cells that overexpressed MFSD2A not only localized to the inflamed mucosa but also restored the ability of the endothelium to resolve intestinal inflammation, compared with mice with colitis that did not receive MFSD2A-overexpressing endothelial progenitors. CONCLUSIONS Levels of DHA-derived epoxides are lower in colon tissues from patients with UC than healthy and resolving mucosa. Production of these metabolites by gut endothelium requires MFSD2A; endothelial progenitor cells that overexpress MFSD2A reduce colitis in mice. This pathway might be induced to resolve intestinal inflammation in patients with colitis.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Pharmacogenomics, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Luca Massimino
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Carmen Correale
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Philippe Fonteyne
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Andrea Piontini
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Valeria Garzarelli
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy; Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Angela Maria Rizzo
- Departments of Pharmacology and Biomolecular Science, University of Milan, Milan, Italy
| | - Stefania Vetrano
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Luciana Petti
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gionata Fiorino
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federica Furfaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Krishna Rao Maddipati
- Department of Pathology, Lipdomics Core Facility, Wayne State University, Detroit, Michigan
| | - Alberto Malesci
- Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy; Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, France
| | - Silvia D'Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.
| |
Collapse
|
85
|
Song XL, Ju RJ, Xiao Y, Wang X, Liu S, Fu M, Liu JJ, Gu LY, Li XT, Cheng L. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomedicine 2017; 12:7433-7451. [PMID: 29066893 PMCID: PMC5644542 DOI: 10.2147/ijn.s141787] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemotherapy for aggressive non-small-cell lung cancer (NSCLC) usually results in a poor prognosis due to tumor metastasis, vasculogenic mimicry (VM) channels, limited killing of tumor cells, and severe systemic toxicity. Herein, we developed a kind of multifunctional targeting epirubicin liposomes to enhance antitumor efficacy for NSCLC. In the liposomes, octreotide was modified on liposomal surface for obtaining a receptor-mediated targeting effect, and honokiol was incorporated into the lipid bilayer for inhibiting tumor metastasis and eliminating VM channels. In vitro cellular assays showed that multifunctional targeting epirubicin liposomes not only exhibited the strongest cytotoxic effect on Lewis lung tumor cells but also showed the most efficient inhibition on VM channels. Action mechanism studies showed that multifunctional targeting epirubicin liposomes could downregulate PI3K, MMP-2, MMP-9, VE-Cadherin, and FAK and activate apoptotic enzyme caspase 3. In vivo results exhibited that multifunctional targeting epirubicin liposomes could accumulate selectively in tumor site and display an obvious antitumor efficacy. In addition, no significant toxicity of blood system and major organs was observed at a test dose. Therefore, multifunctional targeting epirubicin liposomes may provide a safe and efficient therapy strategy for NSCLC.
Collapse
Affiliation(s)
- Xiao-Li Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yao Xiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Xin Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Shuang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Li-Yan Gu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian
| |
Collapse
|
86
|
Bernier-Latmani J, Petrova TV. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat Rev Gastroenterol Hepatol 2017; 14:510-526. [PMID: 28655884 DOI: 10.1038/nrgastro.2017.79] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is richly supplied with lymphatic vasculature, which has functions ranging from maintenance of interstitial fluid balance to transport of antigens, antigen-presenting cells, dietary lipids and fat-soluble vitamins. In this Review, we provide in-depth information concerning the organization and structure of intestinal lymphatics, the current view of their developmental origins, as well as molecular mechanisms of intestinal lymphatic patterning and maintenance. We will also discuss physiological aspects of intestinal lymph flow regulation and the known and emerging roles of intestinal lymphatic vessels in human diseases, such as IBD, infection and cancer.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale 1015, Lausanne, Switzerland
| |
Collapse
|
87
|
Liu H, Liu Z, Li K, Li S, Song L, Gong Z, Shi W, Yang H, Xu Y, Ning S, Ismail S, Chen Y. TBL1XR1 predicts isolated tumor cells and micrometastasis in patients with TNM stage I/II colorectal cancer. J Gastroenterol Hepatol 2017; 32:1570-1580. [PMID: 28127799 DOI: 10.1111/jgh.13749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM A considerable number of early-stage colorectal cancer (CRC) patients may develop cancer relapse or metastasis after curative surgery. Isolated tumor cells (ITC) and micrometastasis in lymph nodes (LNMM), which are undetectable by conventional pathological examination, may be one primary reason. Detection of ITC/LNMM is time-consuming and cost-ineffective; we aimed to find biomarkers in primary CRC tissues to help predicting ITC/LNMM status. METHODS We enrolled 137 node-negative patients with early-stage CRC in this study. Existence of ITC/LNMM was identified by immunohistological staining with cytokeratin 20 in resected lymph nodes. Expression of transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) in primary CRC tissues was also investigated. Chi-squared test was performed to reveal the correlations between ITC/LNMM and clinicopathological characteristics. Univariate and multivariate analyses were used to determine independent prognostic factors. Knockdown experiment together with proliferation and invasion assays were carried out to explore molecular mechanisms between TBL1XR1 and ITC/LNMM. RESULTS About 29.2% (40/137) patients were identified as ITC/LNMM positive, and most of them (32/40 cases, 80%) showed high TBL1XR1 expression in primary CRC tissues. Both ITC/LNMM and TBL1XR1 expression were independent prognostic factors for disease relapse or metastasis. In vitro experiments demonstrated that TBL1XR1 can regulate the expression of vascular endothelial growth factor C and epithelial-mesenchymal transition proteins, thus mediate the process of lymph node metastasis. CONCLUSIONS Identification of ITC/LNMM is significant in evaluating clinical outcome and guiding adjuvant chemotherapy for early-stage CRC patients. TBL1XR1 overexpression in CRC tissues can serve as an efficient biomarker to predict the status of ITC/LNMM.
Collapse
Affiliation(s)
- Hongda Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhaochen Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shuo Li
- 302 Military Hospital of China, Beijing, China
| | - Lei Song
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zheng Gong
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Weichen Shi
- Department of Breast Surgery, Qianfoshan Hospital, Affiliated to Shandong University, Jinan, Shandong, China
| | - Hui Yang
- Department of Gastrointestinal Surgery, Qianfoshan Hospital, Affiliated to Shandong University, Jinan, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shanglei Ning
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Sayed Ismail
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuxin Chen
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
88
|
Dieterich LC, Ducoli L, Shin JW, Detmar M. Distinct transcriptional responses of lymphatic endothelial cells to VEGFR-3 and VEGFR-2 stimulation. Sci Data 2017; 4:170106. [PMID: 28850122 PMCID: PMC5574372 DOI: 10.1038/sdata.2017.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors play crucial roles in the formation of blood and lymphatic vessels during embryogenesis, and also under pathologic conditions in the adult. Despite intensive efforts over the last decades to elucidate the precise functions of VEGFs, transcriptional responses to VEGF receptor stimulation are still not fully characterized. To investigate the specific transcriptional effects of VEGFR-2 and VEGFR-3 activation, we performed a correlation analysis of previously published CAGE sequencing and microarray data of human lymphatic endothelial cells (LECs) stimulated with distinct VEGFs acting through either VEGFR-2 or VEGFR-3. We identified that specific activation of VEGFR-3 by VEGF-C156S results in the downregulation of many genes involved in immune regulation and inflammation, suggesting that VEGFR-3 stimulation has direct anti-inflammatory effects. Comparing CAGE and microarray data sets, we furthermore identified a small number of genes that showed a receptor-dependent response in LECs, demonstrating that these receptors, despite activating very similar signaling pathways, fulfill overlapping but not identical functions within the same cell type (LECs).
Collapse
Affiliation(s)
- Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Jay W. Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
89
|
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14:3883-3892. [PMID: 28943897 DOI: 10.3892/ol.2017.6700] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intercellular adhesion molecule (ICAM)-1, is a transmembrane glycoprotein of the immunoglobulin (Ig)-like superfamily, consisting of five extracellular Ig-like domains, a transmembrane domain and a short cytoplasmic tail. ICAM-1 is expressed in various cell types, including endothelial cells and leukocytes, and is involved in several physiological processes. Furthermore, it has additionally been reported to be expressed in various cancer cells, including melanoma, colorectal cancer and lymphoma. The majority of studies to date have focused on the expression of the ICAM-1 on the surface of tumor cells, without research into ICAM-1 expression at sites of metastasis. Cancer cells frequently metastasize to the liver, due to its unique physiology and specialized liver sinusoid capillary network. Liver sinusoidal endothelial cells constitutively express ICAM-1, which is upregulated under inflammatory conditions. Furthermore, liver ICAM-1 may be important during the development of liver metastasis. Therefore, it is necessary to improve the understanding of the mechanisms mediated by this adhesion molecule in order to develop host-directed anticancer therapies.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| |
Collapse
|
90
|
An Important Role of VEGF-C in Promoting Lymphedema Development. J Invest Dermatol 2017; 137:1995-2004. [PMID: 28526302 DOI: 10.1016/j.jid.2017.04.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/11/2017] [Accepted: 04/18/2017] [Indexed: 12/29/2022]
Abstract
Secondary lymphedema is a common complication after cancer treatment, but the pathomechanisms underlying the disease remain unclear. Using a mouse tail lymphedema model, we found an increase in local and systemic levels of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C and identified CD68+ macrophages as a cellular source. Surprisingly, overexpression of VEGF-C in a transgenic mouse model led to aggravation of lymphedema with increased immune cell infiltration and vascular leakage compared with wild-type littermates. Conversely, blockage of VEGF-C by overexpression of soluble VEGF receptor-3 reduced edema development, diminishing inflammation and blood vascular leakage. Similar findings were obtained in a hind limb lymph node excision lymphedema model. Flow cytometry analyses and immunofluorescence stainings in lymphedematic tissue showed that VEGF receptor-3 expression was restricted to lymphatic endothelial cells. Our data suggest that endogenous VEGF-C causes blood vascular leakage and fluid influx into the tissue, thus actively contributing to edema formation. These data may provide the basis for future clinical therapeutic approaches.
Collapse
|
91
|
Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017; 114:43-59. [PMID: 28694027 PMCID: PMC6026542 DOI: 10.1016/j.addr.2017.07.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Maria Stella Sasso
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
92
|
Suresh S, Durakoglugil D, Zhou X, Zhu B, Comerford SA, Xing C, Xie XJ, York B, O’Donnell KA. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer. PLoS Genet 2017; 13:e1006650. [PMID: 28273073 PMCID: PMC5362238 DOI: 10.1371/journal.pgen.1006650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/22/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Deniz Durakoglugil
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Xiaorong Zhou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Department of Immunology, Nantong University School of Medicine, Nantong, China
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sarah A. Comerford
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Chao Xing
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Xian-Jin Xie
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Kathryn A. O’Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
93
|
Identification of Candidate Genes Related to Inflammatory Bowel Disease Using Minimum Redundancy Maximum Relevance, Incremental Feature Selection, and the Shortest-Path Approach. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5741948. [PMID: 28293637 PMCID: PMC5331171 DOI: 10.1155/2017/5741948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
Abstract
Identification of disease genes is a hot topic in biomedicine and genomics. However, it is a challenging problem because of the complexity of diseases. Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. It has been proven to be associated with the development of intestinal malignancies. Although the specific pathological characteristics and genetic background of IBD have been partially revealed, it is still an overdetermined disease and the blueprint of all genetic variants still needs to be improved. In this study, a novel computational method was built to identify genes related to IBD. Samples from two subtypes of IBD (ulcerative colitis and Crohn's disease) and normal samples were employed. By analyzing the gene expression profiles of these samples using minimum redundancy maximum relevance and incremental feature selection, 21 genes were obtained that could effectively distinguish samples from the two subtypes of IBD and the normal samples. Then, the shortest-path approach was used to search for an additional 20 genes in a large network constructed using protein-protein interactions based on the above-mentioned 21 genes. Analyses of the 41 genes obtained indicate that they are closely associated with this disease.
Collapse
|
94
|
Lymphangiogenesis is a feature of acute GVHD, and VEGFR-3 inhibition protects against experimental GVHD. Blood 2017; 129:1865-1875. [PMID: 28096093 DOI: 10.1182/blood-2016-08-734210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
Lymph vessels play a crucial role in immune reactions in health and disease. In oncology the inhibition of lymphangiogenesis is an established therapeutic concept for reducing metastatic spreading of tumor cells. During allogeneic tissue transplantation, the inhibition of lymphangiogenesis has been successfully used to attenuate graft rejection. Despite its critical importance for tumor growth, alloimmune responses, and inflammation, the role of lymphangiogenesis has not been investigated during allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that acute graft-versus-host disease (aGVHD) is associated with lymphangiogenesis in murine allo-HSCT models as well as in patient intestinal biopsies. Inhibition of aGVHD-associated lymphangiogenesis by monoclonal antibodies against vascular endothelial growth factor receptor 3 (VEGFR-3) ameliorated aGVHD and improved survival in murine models. The administration of anti-VEGFR-3 antibodies did not interfere with hematopoietic engraftment and improved immune reconstitution in allo-HSCT recipients with aGVHD. Anti-VEGFR-3 therapy had no significant impact on growth of malignant lymphoma after allo-HSCT. We conclude that aGVHD is associated with lymphangiogenesis in intestinal lesions and in lymph nodes. Our data show that anti-VEGFR-3 treatment ameliorates lethal aGVHD and identifies the lymphatic vasculature as a novel therapeutic target in the setting of allo-HSCT.
Collapse
|
95
|
Lin CC, Chen PC, Lein MY, Tsao CW, Huang CC, Wang SW, Tang CH, Tung KC. WISP-1 promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-300 in human oral squamous cell carcinoma cells. Oncotarget 2017; 7:9993-10005. [PMID: 26824419 PMCID: PMC4891098 DOI: 10.18632/oncotarget.7014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/01/2016] [Indexed: 01/19/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), which accounts for nearly 90% of head and neck cancers, is characterized by a poor prognosis and a low survival rate. Vascular endothelial growth factor-C (VEGF-C) has been implicated in lymphangiogenesis and is correlated with cancer metastasis. WNT1-inducible signaling pathway protein-1 (WISP)-1/CCN4 is an extracellular matrix-related protein that belongs to the CCN family and stimulates many biological functions. Our previous studies showed that WISP-1 plays an important role in OSCC migration and angiogenesis. However, the effect of WISP-1 on VEGF-C regulation and lymphangiogenesis in OSCC is poorly understood. Here, we showed a correlation between WISP-1 and VEGF-C in tissue specimens from patients with OSCC. To examine the lymphangiogenic effect of WISP-1, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. The results showed that conditioned media from WISP-1-treated OSCC cells promoted tube formation and cell migration in LECs. We also found that WISP-1-induced VEGF-C is mediated via the integrin αvβ3/integrin-linked kinase (ILK)/Akt signaling pathway. In addition, the expression of microRNA-300 (miR-300) was inhibited by WISP-1 via the integrin αvβ3/ILK/Akt cascade. Collectively, these results reveal the detailed mechanism by which WISP-1 promotes lymphangiogenesis via upregulation of VEGF-C expression in OSCC. Therefore, WISP-1 could serve as therapeutic target to prevent metastasis and lymphangiogenesis in OSCC.
Collapse
Affiliation(s)
- Ching-Chia Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Po-Chun Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yu Lein
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Wen Tsao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
96
|
Su F, Li X, You K, Chen M, Xiao J, Zhang Y, Ma J, Liu B. Expression of VEGF-D, SMAD4, and SMAD7 and Their Relationship with Lymphangiogenesis and Prognosis in Colon Cancer. J Gastrointest Surg 2016; 20:2074-2082. [PMID: 27730400 DOI: 10.1007/s11605-016-3294-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 01/31/2023]
Abstract
AIM The vascular endothelial growth factor (VEGF) and TGF-β1 pathways play important roles in cancer. However, few studies have evaluated the expression and roles of VEGF-D, SMAD4, and SMAD7 in colon cancer, and the conclusions remain controversial. To clarify the roles of VEGF-D, SMAD4, and SMAD7 in colon cancer, we examined their expression and evaluated correlations with lymphangiogenesis, prognosis, and chemotherapeutic outcome. METHODS The expression of VEGF-D, SMAD4, and SMAD7 was immunohistochemically examined in 251 primary colon cancer samples obtained from the Harbin Medical University. RESULTS The expression of VEGF-D, SMAD4, and SMAD7 was identified in 71.7, 41.0, and 69.7 % of samples, respectively. Positive expression of VEGF-D and SMAD7 and lost expression of SMAD4 were significantly correlated with lymph node metastasis and high lymphatic vessel density. VEGF-D and SMAD7 were found to be independent indicators of prognosis and chemotherapy outcome, and positive expression of either VEGF-D or SMAD7 was associated with significantly shorter overall survival and disease-free survival (OS and DFS) than negative expression in all 251 patients (P < 0.001 for OS and DFS) and patients following chemotherapy (P < 0.001 for OS and DFS). CONCLUSION VEGF-D, SMAD4, and SMAD7 were involved in lymphangiogenesis and lymph node metastasis. VEGF-D and SMAD7 can serve as predictors of prognosis and chemotherapeutic outcome in colon cancer.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xuemei Li
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Kai You
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Mingwei Chen
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jianbing Xiao
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
97
|
Wang Y, Gao S, Wang W, Liang J. Temozolomide inhibits cellular growth and motility via targeting ERK signaling in glioma C6 cells. Mol Med Rep 2016; 14:5732-5738. [DOI: 10.3892/mmr.2016.5964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/08/2016] [Indexed: 11/06/2022] Open
|
98
|
Wang Z, Wang Z, Li G, Wu H, Sun K, Chen J, Feng Y, Chen C, Cai S, Xu J, He Y. CXCL1 from tumor-associated lymphatic endothelial cells drives gastric cancer cell into lymphatic system via activating integrin β1/FAK/AKT signaling. Cancer Lett 2016; 385:28-38. [PMID: 27832972 DOI: 10.1016/j.canlet.2016.10.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/16/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Crosstalk between lymphatic endothelial cells (LECs) and tumor cells in the tumor microenvironment plays a crucial role in tumor metastasis. Our previous study indicated chemokine (C-X-C motif) ligand 1 (CXCL1) from LECs stimulates the metastasis of gastric cancer. However, the mechanism is still unclear. Here, we successfully isolated tumor-associated LECs (T-LECs) and normal LECs (N-LECs) from clinical samples by magnetic-activated cell sorting system (MACS) and proved that CXCL1 expression was elevated in T-LECs compared with N-LECs in situ and vitro. Besides, we demonstrated that CXCL1 secreted by T-LECs promoted the migration, invasion, and adhesion of gastric cancer cells by upregulating integrin β1, MMP2, and MMP9. Furthermore, CXCL1 induced MMP2/9 expression by activating integrin β1-FAK-AKT signaling. In the animal model, CXCL1 overexpressed in LECs increased the lymph node metastasis of gastric cancer. In conclusion, CXCL1 expression in T-LECs was upregulated, and CXCL1 secreted by T-LECs promoted the lymph node metastasis of gastric cancer through integrin β1/FAK/AKT signaling, leading to MMP2 and MMP9 expression. Therefore, CXCL1 produced in T-LECs represents a potentially promising target for treating gastric cancer.
Collapse
Affiliation(s)
- Zhixiong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Zhao Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Guanghua Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Hui Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Yun Feng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Chuangqi Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Shirong Cai
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Gastric Cancer Center of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
99
|
Yang WH, Chang AC, Wang SW, Wang SJ, Chang YS, Chang TM, Hsu SK, Fong YC, Tang CH. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells. Sci Rep 2016; 6:28647. [PMID: 27345723 PMCID: PMC4921910 DOI: 10.1038/srep28647] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022] Open
Abstract
Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the chief lymphangiogenic mediator, and makes crucial contributions to tumor lymphangiogenesis. Leptin is an adipocytokine and has been indicated to facilitate tumorigenesis, angiogenesis and metastasis. However, the effect of leptin on VEGF-C regulation and lymphangiogenesis in human chondrosarcoma has hugely remained a mystery. Our results showed a clinical correlation between leptin and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that leptin promoted VEGF-C production and secretion in human chondrosarcoma cells. The conditioned medium from leptin-treated chondrosarcoma cells induced lymphangiogenesis of human lymphatic endothelial cells. We also found that leptin-induced VEGF-C is mediated by the FAK, PI3K and Akt signaling pathway. Furthermore, the expression of microRNA-27b was negatively regulated by leptin via the FAK, PI3K and Akt cascade. Our study is the first to describe the mechanism of leptin-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, leptin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.
Collapse
Affiliation(s)
- Wei-Hung Yang
- Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shoou-Jyi Wang
- Department of Orthopedic Surgery, Chang-Hua Hospital, Ministry of Health and Welfare, Puhsin Township, Changhua County, Taiwan
| | - Yung-Sen Chang
- Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Tzu-Ming Chang
- Department of Orthopedic Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Shao-Keh Hsu
- Department of Orthopedic Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
100
|
Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells. Clin Sci (Lond) 2016; 130:1523-33. [PMID: 27252405 DOI: 10.1042/cs20160117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.
Collapse
|