51
|
Wang C, Huang M, Chen C, Li Y, Qin N, Ma Z, Fan J, Gong L, Zeng H, Yang L, Xu X, Zhou J, Dai J, Jin G, Hu Z, Ma H, Tan F, Shen H. Identification of A-to-I RNA editing profiles and their clinical relevance in lung adenocarcinoma. SCIENCE CHINA-LIFE SCIENCES 2021; 65:19-32. [PMID: 34050895 DOI: 10.1007/s11427-020-1928-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 12/24/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a widespread posttranscriptional modification that has been shown to play an important role in tumorigenesis. Here, we evaluated a total of 19,316 RNA editing sites in the tissues of 80 lung adenocarcinoma (LUAD) patients from our Nanjing Lung Cancer Cohort (NJLCC) and 486 LUAD patients from the TCGA database. The global RNA editing level was significantly increased in tumor tissues and was highly heterogeneous across patients. The high RNA editing level in tumors was attributed to both RNA (ADAR1 expression) and DNA alterations (mutation load). Consensus clustering on RNA editing sites revealed a new molecular subtype (EC3) that was associated with the poorest prognosis of LUAD patients. Importantly, the new classification was independent of classic molecular subtypes based on gene expression or DNA methylation. We further proposed a simplified model including eight RNA editing sites to accurately distinguish the EC3 subtype in our patients. The model was further validated in the TCGA dataset and had an area under the curve (AUC) of the receiver operating characteristic curve of 0.93 (95%CI: 0.91-0.95). In addition, we found that LUAD cell lines with the EC3 subtype were sensitive to four chemotherapy drugs. These findings highlighted the importance of RNA editing events in the tumorigenesis of LUAD and provided insight into the application of RNA editing in the molecular subtyping and clinical treatment of cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingtao Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zijian Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
52
|
Tai Tay DJ, Song Y, Peng B, Toh TB, Hooi L, Kaixin Toh DF, Hong H, Tang SJ, Han J, Gan WL, Man Chan TH, Krishna MS, Patil KM, Maraswami M, Loh TP, Dan YY, Zhou L, Bonney GK, Kah-Hoe Chow P, Chen G, Kai-Hua Chow E, Le MT, Chen L. Targeting RNA Editing of Antizyme Inhibitor 1: a Potential Oligonucleotide-Based Antisense Therapy for Cancer. Mol Ther 2021; 29:3258-3273. [PMID: 33974998 PMCID: PMC8571177 DOI: 10.1016/j.ymthe.2021.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3′ end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2′-O-methyl (2′-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.
Collapse
Affiliation(s)
- Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Wei Liang Gan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Lei Zhou
- Division of Gastroenterology and Hepatology, National University Health System, Singapore 119228
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery, National University Health System, Singapore 119228
| | - Pierce Kah-Hoe Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore 169610; Department of Hepato-Pancreato-Biliary and Transplant Surgery, Singapore General Hospital, Singapore 169608; Duke-NUS Medical School, Singapore 169857
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; The N.1 Institute for Health (N.1), 28 Medical Dr, Singapore 117456
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600; Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594.
| |
Collapse
|
53
|
Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in Biology and Disease. Genes (Basel) 2021; 12:600. [PMID: 33921764 PMCID: PMC8072771 DOI: 10.3390/genes12040600] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
54
|
An O, Song Y, Ke X, So JBY, Sundar R, Yang H, Rha SY, Lee MH, Tay ST, Ong X, Tan ALK, Ng MCH, Tantoso E, Chen L, Tan P, Yong WP. "3G" Trial: An RNA Editing Signature to Guide Gastric Cancer Chemotherapy. Cancer Res 2021; 81:2788-2798. [PMID: 33558338 DOI: 10.1158/0008-5472.can-20-2872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/29/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer cases are often diagnosed at an advanced stage with poor prognosis. Platinum-based chemotherapy has been internationally accepted as first-line therapy for inoperable or metastatic gastric cancer. To achieve greater benefits, selection of patients eligible for this treatment is critical. Although gene expression profiling has been widely used as a genomic classifier to identify molecular subtypes of gastric cancer and to stratify patients for different chemotherapy regimens, its prediction accuracy can be improved. Adenosine-to-inosine (A-to-I) RNA editing has emerged as a new player contributing to gastric cancer development and progression, offering potential clinical utility for diagnosis and treatment. Using a systematic computational approach followed by both in vitro validations and in silico validations in The Cancer Genome Atlas (TCGA), we conducted a transcriptome-wide RNA editing analysis of a cohort of 104 patients with advanced gastric cancer and identified an RNA editing (GCRE) signature to guide gastric cancer chemotherapy. RNA editing events stood as a prognostic and predictive biomarker in advanced gastric cancer. A GCRE score based on the GCRE signature consisted of 50 editing sites associated with 29 genes, predicting response to chemotherapy with a high accuracy (84%). Of note, patients demonstrating higher editing levels of this panel of sites presented a better overall response. Consistently, gastric cancer cell lines with higher editing levels showed higher chemosensitivity. Applying the GCRE score on TCGA dataset confirmed that responders had significantly higher levels of editing in advanced gastric cancer. Overall, this newly defined GCRE signature reliably stratifies patients with advanced gastric cancer and predicts response from chemotherapy. SIGNIFICANCE: This study describes a novel A-to-I RNA editing signature as a prognostic and predictive biomarker in advanced gastric cancer, providing a new tool to improve patient stratification and response to therapy.
Collapse
Affiliation(s)
- Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xinyu Ke
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, National University Hospital, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raghav Sundar
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sun Young Rha
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | | | - Erwin Tantoso
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. .,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | | | | |
Collapse
|
55
|
Chiang DC, Li Y, Ng SK. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front Immunol 2021; 11:625504. [PMID: 33613567 PMCID: PMC7886975 DOI: 10.3389/fimmu.2020.625504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Both DNA and RNA can maintain left-handed double helical Z-conformation under physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD). After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and ORF112 in viruses. The host-virus antagonism immediately highlights the importance of ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress granules that play central role in coordinating cellular response to stresses. This review sought to consolidate current understanding of Z-RNA sensing in innate immunity and implore possible roles of Z-RNA binding within cytoplasmic stress granules.
Collapse
Affiliation(s)
- De Chen Chiang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
56
|
Torsin LI, Petrescu GED, Sabo AA, Chen B, Brehar FM, Dragomir MP, Calin GA. Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. Int J Mol Sci 2021; 22:ijms22020581. [PMID: 33430133 PMCID: PMC7827606 DOI: 10.3390/ijms22020581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, for seemingly every type of cancer, dysregulated levels of non-coding RNAs (ncRNAs) are reported and non-coding transcripts are expected to be the next class of diagnostic and therapeutic tools in oncology. Recently, alterations to the ncRNAs transcriptome have emerged as a novel hallmark of cancer. Historically, ncRNAs were characterized mainly as regulators and little attention was paid to the mechanisms that regulate them. The role of modifications, which can control the function of ncRNAs post-transcriptionally, only recently began to emerge. Typically, these modifications can be divided into reversible (i.e., chemical modifications: m5C, hm5C, m6A, m1A, and pseudouridine) and non-reversible (i.e., editing: ADAR dependent, APOBEC dependent and ADAR/APOBEC independent). The first research papers showed that levels of these modifications are altered in cancer and can be part of the tumorigenic process. Hence, the aim of this review paper is to describe the most common regulatory modifications (editing and chemical modifications) of the traditionally considered “non-functional” ncRNAs (i.e., microRNAs, long non-coding RNAs and circular RNAs) in the context of malignant disease. We consider that only by understanding this extra regulatory layer it is possible to translate the knowledge about ncRNAs and their modifications into clinical practice.
Collapse
Affiliation(s)
- Ligia I. Torsin
- Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania;
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Alexandru A. Sabo
- Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany;
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| |
Collapse
|
57
|
Song Y, An O, Ren X, Chan THM, Tay DJT, Tang SJ, Han J, Hong H, Ng VHE, Ke X, Shen H, Pitcheshwar P, Lin JS, Leong KW, Molias FB, Yang H, Kappei D, Chen L. RNA editing mediates the functional switch of COPA in a novel mechanism of hepatocarcinogenesis. J Hepatol 2021; 74:135-147. [PMID: 32693003 DOI: 10.1016/j.jhep.2020.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant adenosine-to-inosine RNA editing is implicated in cancers. Until now, very few functionally important protein-recoding editing targets have been discovered. Here, we investigated the role of a recently discovered protein-recoding editing target COPA (coatomer subunit α) in hepatocellular carcinoma (HCC). METHODS Clinical implication of COPA editing was studied in a cohort of 125 HCC patients. CRISPR/Cas9-mediated knockout of the editing site complementary sequence (ECS) was used to delete edited COPA transcripts endogenously. COPA editing-mediated change in its transcript or protein stability was investigated upon actinomycin D or cycloheximide treatment, respectively. Functional difference in tumourigenesis between wild-type and edited COPA (COPAWTvs. COPAI164V) and the exact mechanisms were also studied in cell models and mice. RESULTS ADAR2 binds to double-stranded RNA formed between edited exon 6 and the ECS at intron 6 of COPA pre-mRNA, causing an isoleucine-to-valine substitution at residue 164. Reduced editing of COPA is implicated in the pathogenesis of HCC, and more importantly, it may be involved in many cancer types. Upon editing, COPAWT switches from a tumour-promoting gene to a tumour suppressor that has a dominant-negative effect. Moreover, COPAI164V may undergo protein conformational change and therefore become less stable than COPAWT. Mechanistically, COPAI164V may deactivate the PI3K/AKT/mTOR pathway through downregulation of caveolin-1 (CAV1). CONCLUSIONS We uncover an RNA editing-associated mechanism of hepatocarcinogenesis by which downregulation of ADAR2 caused the loss of tumour suppressive COPAI164V and concurrent accumulation of tumour-promoting COPAWT in tumours; a rapid degradation of COPAI164V protein and hyper-activation of the PI3K/AKT/mTOR pathway further promote tumourigenesis. LAY SUMMARY RNA editing is a process in which RNA is changed after it is made from DNA, resulting in an altered gene product. In this study, we found that RNA editing of a gene known as coatomer subunit α (COPA) is lower in tumour samples and discovered that this editing process changes COPA protein from a tumour-promoting form to a tumour-suppressive form. Loss of the edited COPA promotes the development of liver cancer.
Collapse
Affiliation(s)
- Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xi Ren
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore 119074, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xinyu Ke
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jaymie Siqi Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Ka Wai Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
58
|
Abstract
The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as "self" and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.
Collapse
|
59
|
Immune-related IncRNA LINC00944 responds to variations in ADAR1 levels and it is associated with breast cancer prognosis. Life Sci 2020; 268:118956. [PMID: 33383047 DOI: 10.1016/j.lfs.2020.118956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
AIMS Breast cancer is one of the leading causes of woman deaths worldwide, being a major public health problem. It has been reported that the expression of the RNA-editing enzyme Adenosine Deaminase Acting on RNAs 1 (ADAR1) is upregulated in breast cancer, predicting poor prognosis in patients. A few reports in literature examine ADAR1 and long non-coding RNAs (lncRNAs) interplay in cancer and suggest key roles in cancer-related pathways. This study aimed to investigate whether ADAR1 could alter the expression levels of lncRNAs and explore how those changes are related to breast cancer biology. MAIN METHODS ADAR1 overexpression and knockdown studies were performed in breast cancer cell lines to analyze the effects over lncRNAs expression. Guilt-by-Association correlation analysis of the TCGA-BRCA cohort was performed to predict the function of the lncRNA LINC00944. KEY FINDINGS Here, we show that LINC00944 is responsive to ADAR1 up- and downregulation in breast cancer cells. We found that LINC00944 expression has a strong relationship with immune signaling pathways. Further assessment of the TCGA-BRCA cohort showed that LINC00944 expression was positively correlated to tumor-infiltrating T lymphocytes and pro-apoptotic markers. Moreover, we found that LINC00944 expression was correlated to the age at diagnosis, tumor size, and estrogen and progesterone receptor expression. Finally, we show that low expression of LINC00944 is correlated to poor prognosis in breast cancer patients. SIGNIFICANCE Our study provides further evidence of the effect of ADAR1 over lncRNA expression levels, and on the participation of LINC00944 in breast cancer, suggesting to further investigate its potential role as prognostic biomarker.
Collapse
|
60
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
61
|
Genome-Wide Characterization of RNA Editing Sites in Primary Gastric Adenocarcinoma through RNA-seq Data Analysis. Int J Genomics 2020; 2020:6493963. [PMID: 33415135 PMCID: PMC7768588 DOI: 10.1155/2020/6493963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
RNA editing is a posttranscriptional nucleotide modification in humans. Of the various types of RNA editing, the adenosine to inosine substitution is the most widespread in higher eukaryotes, which is mediated by the ADAR family enzymes. Inosine is recognized by the biological machinery as guanosine; therefore, editing could have substantial functional effects throughout the genome. RNA editing could contribute to cancer either by exclusive editing of tumor suppressor/promoting genes or by introducing transcriptomic diversity to promote cancer progression. Here, we provided a comprehensive overview of the RNA editing sites in gastric adenocarcinoma and highlighted some of their possible contributions to gastric cancer. RNA-seq data corresponding to 8 gastric adenocarcinoma and their paired nontumor counterparts were retrieved from the GEO database. After preprocessing and variant calling steps, a stringent filtering pipeline was employed to distinguish potential RNA editing sites from SNPs. The identified potential editing sites were annotated and compared with those in the DARNED database. Totally, 12362 high-confidence adenosine to inosine RNA editing sites were detected across all samples. Of these, 12105 and 257 were known and novel editing events, respectively. These editing sites were unevenly distributed across genomic regions, and nearly half of them were located in 3′UTR. Our results revealed that 4868 editing sites were common in both normal and cancer tissues. From the remaining sites, 3985 and 3509 were exclusive to normal and cancer tissues, respectively. Further analysis revealed a significant number of differentially edited events among these sites, which were located in protein coding genes and microRNAs. Given the distinct pattern of RNA editing in gastric adenocarcinoma and adjacent normal tissue, edited sites have the potential to serve as the diagnostic biomarkers and therapeutic targets in gastric cancer.
Collapse
|
62
|
Teoh PJ, Koh MY, Chng WJ. ADARs, RNA editing and more in hematological malignancies. Leukemia 2020; 35:346-359. [PMID: 33139858 DOI: 10.1038/s41375-020-01076-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in humans, mediated by the adenosine deaminases acting on RNA (ADARs). Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they catalyze the conversion of adenosines (A) to inosines (I) on double-stranded mRNA molecules. Aberrant ADAR-mediated-editing is a prominent feature in a variety of cancers. Importantly, the biological functions of ADARs and its functional implications in hematological malignancies have recently been unraveled. In this review, we will highlight the functions of ADARs and their involvements in cancer, specifically in hematological malignancies. RNA editing-independent function of cellular processes by ADARs and the potential of developing novel therapeutic approaches revolving RNA editing will also be discussed.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Mun Yee Koh
- Cancer Science Institute of Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Cancer Science Institute of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore.
| |
Collapse
|
63
|
Guo Y, He Y. Comprehensive analysis of the expression of SLC30A family genes and prognosis in human gastric cancer. Sci Rep 2020; 10:18352. [PMID: 33110097 PMCID: PMC7591519 DOI: 10.1038/s41598-020-75012-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022] Open
Abstract
The solute carrier 30 (SLC30) family genes play a fundamental role in various cancers. However, the diverse expression patterns, prognostic value, and potential mechanism of SLC30A family genes in gastric cancer (GC) remain unknown. Herein, we analyzed the expression and survival data of SLC30A family genes in GC patients using multiple bioinformatic approaches. Expression data of SLC30A family genes for GC patients were extracted from the Cancer Genome Atlas (TCGA) and genetic alteration frequency assessed by using cBioportal database. And validated the expression of SLC30A family genes in GC tissues and corresponding normal tissues. The prognostic value of SLC30A family genes in gastric cancer patients were explored using Kaplan–Meier plotter database. Functional enrichment analysis performed using DAVID database and clusterProfiler package. And ssGSEA algorithm was performed to explore the relationship between the SLC30A family genes and the infiltration of immune cells. We found that the median expression levels of SLC30A1-3, 5–7, and 9 were significantly upregulated in gastric cancer tissues compared to non-cancerous tissues, while SLC30A4 was downregulated. Meanwhile, SLC30A1-7, and 9 were significantly correlated with advanced tumor stage and nodal metastasis status, SLC30A5-7, and 9–10 were significantly related to the Helicobacter pylori infection status of GC patients. High expression of five genes (SLC30A1, 5–7, and 9) was significantly correlated with better overall survival (OS), first progression survival (FPS), and post progression survival (PPS). Conversely, upregulated SLC30A2-4, 8, and 10 expression was markedly associated with poor OS, FP and PPS. And SLC30A family genes were closely associated with the infiltration of immune cells. The present study implied that SLC30A5 and 7 may be potential biomarkers for predicting prognosis in GC patients, SLC30A2 and 3 play an oncogenic role in GC patients and could provide a new strategy for GC patients treatment.
Collapse
Affiliation(s)
- Yongdong Guo
- Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yutong He
- Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
64
|
Jiang L, Park MJ, Cho CJ, Lee K, Jung MK, Pack CG, Myung SJ, Chang S. ADAR1 Suppresses Interferon Signaling in Gastric Cancer Cells by MicroRNA-302a-Mediated IRF9/STAT1 Regulation. Int J Mol Sci 2020; 21:ijms21176195. [PMID: 32867271 PMCID: PMC7504523 DOI: 10.3390/ijms21176195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
ADAR (adenosine deaminase acting on RNA) catalyzes the deamination of adenosine to generate inosine, through its binding to double-stranded RNA (dsRNA), a phenomenon known as RNA editing. One of the functions of ADAR1 is suppressing the type I interferon (IFN) response, but its mechanism in gastric cancer is not clearly understood. We analyzed changes in RNA editing and IFN signaling in ADAR1-depleted gastric cancer cells, to clarify how ADAR1 regulates IFN signaling. Interestingly, we observed a dramatic increase in the protein level of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 9 (IRF9) upon ADAR1 knockdown, in the absence of type I or type II IFN treatment. However, there were no changes in protein expression or localization of the mitochondrial antiviral signaling protein (MAVS) and interferon alpha and beta-receptor subunit 2 (IFNAR2), the two known mediators of IFN production. Instead, we found that miR-302a-3p binds to the untranslated region (UTR) of IRF9 and regulate its expression. The treatment of ADAR1-depleted AGS cells with an miR-302a mimic successfully restored IRF9 as well as STAT1 protein level. Hence, our results suggest that ADAR1 regulates IFN signaling in gastric cancer through the suppression of STAT1 and IRF9 via miR-302a, which is independent from the RNA editing of known IFN production pathway.
Collapse
Affiliation(s)
- Lushang Jiang
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Min Ji Park
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Charles J. Cho
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Kihak Lee
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
| | - Min Kyo Jung
- Department of Convergence Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (M.K.J.); (C.G.P.)
| | - Chan Gi Pack
- Department of Convergence Medicine, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (M.K.J.); (C.G.P.)
| | - Seung-Jae Myung
- Department of Gastroenterology, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea
- Correspondence: (S.-J.M.); (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea; (L.J.); (M.J.P.); (C.J.C.); (K.L.)
- Department of Physiology, College of Medicine, Asan Medical Center, University of Ulsan, Seoul 05505, Korea
- Correspondence: (S.-J.M.); (S.C.)
| |
Collapse
|
65
|
Wang S, Feng C, Dong D, Li H, Zhou J, Ye Y, Liu Z, Tian J, Wang Y. Preoperative computed tomography-guided disease-free survival prediction in gastric cancer: a multicenter radiomics study. Med Phys 2020; 47:4862-4871. [PMID: 32592224 DOI: 10.1002/mp.14350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Preoperative and noninvasive prognosis evaluation remains challenging for gastric cancer. Novel preoperative prognostic biomarkers should be investigated. This study aimed to develop multidetector-row computed tomography (MDCT)-guided prognostic models to direct follow-up strategy and improve prognosis. METHODS A retrospective dataset of 353 gastric cancer patients were enrolled from two centers and allocated to three cohorts: training cohort (n = 166), internal validation cohort (n = 83), and external validation cohort (n = 104). Quantitative radiomic features were extracted from MDCT images. The least absolute shrinkage and selection operator penalized Cox regression was adopted to construct a radiomic signature. A radiomic nomogram was established by integrating the radiomic signature and significant clinical risk factors. We also built a preoperative tumor-node-metastasis staging model for comparison. All models were evaluated considering the abilities of risk stratification, discrimination, calibration, and clinical use. RESULTS In the two validation cohorts, the established four-feature radiomic signature showed robust risk stratification power (P = 0.0260 and 0.0003, log-rank test). The radiomic nomogram incorporated radiomic signature, extramural vessel invasion, clinical T stage, and clinical N stage, outperforming all the other models (concordance index = 0.720 and 0.727) with good calibration and decision benefits. Also, the 2-yr disease-free survival (DFS) prediction was most effective (time-dependent area under curve = 0.771 and 0.765). Moreover, subgroup analysis indicated that the radiomic signature was more sensitive in risk stratifying patients with advanced clinical T/N stage. CONCLUSIONS The proposed MDCT-guided radiomic signature was verified as a prognostic factor for gastric cancer. The radiomic nomogram was a noninvasive auxiliary model for preoperative individualized DFS prediction, holding potential in promoting treatment strategy and clinical prognosis.
Collapse
Affiliation(s)
- Siwen Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hailin Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
66
|
Competitive endogenous network of lncRNA, miRNA, and mRNA in the chemoresistance of gastrointestinal tract adenocarcinomas. Biomed Pharmacother 2020; 130:110570. [PMID: 32763816 DOI: 10.1016/j.biopha.2020.110570] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the main therapeutic strategies used for gastrointestinal tract adenocarcinomas (GTAs), but resistance to anticancer drugs is a substantial obstacle in successful chemotherapy. Accumulating evidence shows that non-coding RNAs, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), can affect the drug resistance of tumor cells by forming a ceRNA regulatory network with mRNAs. The efficiency of the competing endogenous RNAs (ceRNAs) network can be affected by the number and integrality of miRNA recognition elements (MREs). Dynamic factors such as RNA editing, alternative splicing, single nucleotide polymorphism (SNP), RNA-binding proteins and RNA secondary structure can influence the MRE activity, which may in turn be involved in the regulation of chemoresistance-associated ceRNA network by prospective approaches. Besides activities in a single tumor cell, the components of the tumor micoenvironment (TME) also affect the ceRNA network by regulating the expression of non-coding RNA directly or indirectly. The alternation of the ceRNA network often has an impact on the malignant phenotype of tumor including chemoresistance. In this review, we focused on how MRE-associated dynamic factors and components of TME affected the ceRNA network and speculated the potential association of ceRNA network with chemoresistance. We also summarized the ceRNA network of lncRNAs, miRNAs, and mRNAs which efficiently triggers chemoresistance in the specific types of GTAs and analyzed the role of each RNA as a "promoter" or "suppressor" of chemoresistance.
Collapse
|
67
|
Non-Coding RNA Editing in Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12071845. [PMID: 32650588 PMCID: PMC7408896 DOI: 10.3390/cancers12071845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
In the last two decades, RNA post-transcriptional modifications, including RNA editing, have been the subject of increasing interest among the scientific community. The efforts of the Human Genome Project combined with the development of new sequencing technologies and dedicated bioinformatic approaches created to detect and profile RNA transcripts have served to further our understanding of RNA editing. Investigators have determined that non-coding RNA (ncRNA) A-to-I editing is often deregulated in cancer. This discovery has led to an increased number of published studies in the field. However, the eventual clinical application for these findings remains a work in progress. In this review, we provide an overview of the ncRNA editing phenomenon in cancer. We discuss the bioinformatic strategies for RNA editing detection as well as the potential roles for ncRNA A to I editing in tumor immunity and as clinical biomarkers.
Collapse
|
68
|
Han J, An O, Hong H, Chan THM, Song Y, Shen H, Tang SJ, Lin JS, Ng VHE, Tay DJT, Molias FB, Pitcheshwar P, Tan HQ, Yang H, Chen L. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. SCIENCE ADVANCES 2020; 6:eaba5136. [PMID: 32596459 PMCID: PMC7299630 DOI: 10.1126/sciadv.aba5136] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 05/02/2023]
Abstract
RNA editing introduces nucleotide changes in RNA sequences. Recent studies have reported that aberrant A-to-I RNA editing profiles are implicated in cancers. Albeit changes in expression and activity of ADAR genes are thought to have been responsible for the dysregulated RNA editome in diseases, they are not always correlated, indicating the involvement of secondary regulators. Here, we uncover DAP3 as a potent repressor of editing and a strong oncogene in cancer. DAP3 mainly interacts with the deaminase domain of ADAR2 and represses editing via disrupting association of ADAR2 with its target transcripts. PDZD7, an exemplary DAP3-repressed editing target, undergoes a protein recoding editing at stop codon [Stop →Trp (W)]. Because of editing suppression by DAP3, the unedited PDZD7WT, which is more tumorigenic than edited PDZD7Stop518W, is accumulated in tumors. In sum, cancer cells may acquire malignant properties for their survival advantage through suppressing RNA editome by DAP3.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Tim Hon Man Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jaymie Siqi Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hui Qing Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
69
|
Behroozi J, Shahbazi S, Bakhtiarizadeh MR, Mahmoodzadeh H. ADAR expression and copy number variation in patients with advanced gastric cancer. BMC Gastroenterol 2020; 20:152. [PMID: 32410589 PMCID: PMC7227226 DOI: 10.1186/s12876-020-01299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Gastric cancer (GC) is a world health problem and it is the third leading cause of cancer deaths worldwide. The current practice for prognosis assessment in GC is based on radiological and pathological criteria and they may not result in an accurate prognosis. The aim of this study is to evaluate expression and copy number variation of the ADAR gene in advanced GC and clarify its correlation with survival and histopathological characteristics. Methods Forty two patients with stage III and IV GC were included in this study. ADAR gene expression and copy number variation were measured by real-time PCR and Quantitative multiplex fluorescent-PCR, respectively. Survival analysis performed based on the Kaplan–Meier method and Mantel–Cox test. Results ADAR mRNA was significantly overexpressed in the tumor tissues when compared to the adjacent normal tissues (p < 0.01). Also, ADAR expression level in stage IV was higher than stage III. 40% of patients showed amplification in ADAR gene and there was a positive correlation between ADAR copy number and expression. Increased ADAR expression was clearly correlated with poorer survival outcomes and Mantel–Cox test showed statistically significant differences between low and high expression groups (p < 0.0001). ADAR overexpression and amplification were significantly associated with metastasis, size and stage of tumor. Conclusions Together, our data indicate that amplification leads to over expression of ADAR and it could be used as a prognostic biomarker for disease progression, especially for the metastatic process in GC.
Collapse
Affiliation(s)
- Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
70
|
Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Exp Mol Med 2020; 52:582-593. [PMID: 32346127 PMCID: PMC7210288 DOI: 10.1038/s12276-020-0429-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, with the development of RNA sequencing technologies such as next-generation sequencing (NGS) for RNA, numerous variations of alternatively processed RNAs made by alternative splicing, RNA editing, alternative maturation of microRNA (miRNA), RNA methylation, and alternative polyadenylation have been uncovered. Furthermore, abnormally processed RNAs can cause a variety of diseases, including obesity, diabetes, Alzheimer’s disease, and cancer. Especially in cancer development, aberrant RNAs caused by deregulated RNA modifiers or regulators are related to progression. Accumulating evidence has reported that aberrant RNAs promote carcinogenesis in many cancers, including liver cancer, leukemia, melanoma, lung cancer, breast cancer, and other cancers, in which abnormal RNA processing occurs in normal cells. Therefore, it is necessary to understand the precise roles and mechanisms of disease-related RNA processing in various cancers for the development of therapeutic interventions. In this review, the underlying mechanisms of variations in the RNA life cycle and the biological impacts of RNA variations on carcinogenesis will be discussed, and therapeutic strategies for the treatment of tumor malignancies will be provided. We also discuss emerging roles of RNA regulators in hepatocellular carcinogenesis. A single gene can generate a variety of RNA products, and changes in this final RNA output can directly contribute to cancer onset and progression. The initial transcription of each DNA sequence yields a raw RNA strand that subsequently undergoes a variety of modification processes that shape its function. Hee Doo Yang and Suk Woo Nam, The Catholic University of Korea, Seoul, have reviewed the potential impact of these mechanisms on malignancy. Some cancers, for example, express RNA sequences that have been inappropriately edited by an enzymatic process called splicing, yielding abnormal RNAs that drive metastasis. Other tumors contain RNAs with atypical chemical modifications, or in which individual nucleotides have been enzymatically converted into other nucleotides. A deeper understanding of these RNA alterations and their impacts could lead to more effective and targeted cancer treatments.
Collapse
|
71
|
Gu T, Fu AQ, Bolt MJ, Zhao X. Systematic identification of A-to-I editing associated regulators from multiple human cancers. Comput Biol Med 2020; 119:103690. [PMID: 32339124 DOI: 10.1016/j.compbiomed.2020.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/11/2020] [Accepted: 02/29/2020] [Indexed: 11/18/2022]
Abstract
A-to-I editing is the most common editing type in humans that is catalyzed by ADAR family members (ADARs), ADAR1 and ADAR2. Although millions of A-to-I editing sites have recently been discovered, the regulation mechanisms of the RNA editing process are still not clear. Herein, we developed a two-step logistic regression model to identify genes that are potentially involved in the RNA editing process in four human cancers. In the first step, we tested the association of each editing site with known enzymes. To validate the logistic regression model, we collected 10 genes with 168 editing sites from multiple published studies and obtained a nearly 100% validation rate. ADAR1 was identified as the enzyme associated with the majority of the A-to-I editing sites. Thus, ADAR1 was taken as a control gene in the second step to identify genes that have a stronger regulation effect on editing sites than ADAR1. Using our advanced method, we successfully found a set of genes that were significantly positively or negatively associated (PA or NA) with specific sets of RNA editing sites. 51 of these genes had been reported in at least one previous study. We highlighted two genes: 1), SRSF5, supported by three previous studies, and 2) MIR22HG, supported by one previous study and two of our cancer datasets. The PA and NA genes were cancer-specific but shared common pathways. Interestingly, the PA genes from kidney cancer were enriched for survival-associated genes while the NA genes were not, indicating that the PA genes may play more important roles in kidney cancer progression.
Collapse
Affiliation(s)
- Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
| | - Audrey Qiuyan Fu
- Department of Statistical Science, Institute of Bioinformatics and Evolutionary Studies, Institute for Modeling Collaboration & Innovation, University of Idaho, Moscow, ID, USA
| | - Michael J Bolt
- Institute for Genomics and Systems Biology, Institute for Molecular Engineering, Department of Human Genetics, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
72
|
Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer 2020; 19:78. [PMID: 32303268 PMCID: PMC7164178 DOI: 10.1186/s12943-020-01194-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
RNA modifications can be added or removed by a variety of enzymes that catalyse the necessary reactions, and these modifications play roles in essential molecular mechanisms. The prevalent modifications on mRNA include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), pseudouridine (Ψ), inosine (I), uridine (U) and ribosemethylation (2’-O-Me). Most of these modifications contribute to pre-mRNA splicing, nuclear export, transcript stability and translation initiation in eukaryotic cells. By participating in various physiological processes, RNA modifications also have regulatory roles in the pathogenesis of tumour and non-tumour diseases. We discussed the physiological roles of RNA modifications and associated these roles with disease pathogenesis. Functioning as the bridge between transcription and translation, RNA modifications are vital for the progression of numerous diseases and can even regulate the fate of cancer cells.
Collapse
Affiliation(s)
- Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P.R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, People's Republic of China.
| |
Collapse
|
73
|
Abstract
RNA plays essential roles in not only translating nucleic acids into proteins, but also in gene regulation, environmental interactions and many human diseases. Nature uses over 150 chemical modifications to decorate RNA and diversify its functions. With the fast-growing RNA research in the burgeoning field of 'epitranscriptome', a term describes post-transcriptional RNA modifications that can dynamically change the transcriptome, it becomes clear that these modifications participate in modulating gene expression and controlling the cell fate, thereby igniting the new interests in RNA-based drug discovery. The dynamics of these RNA chemical modifications is orchestrated by coordinated actions of an array of writer, reader and eraser proteins. Deregulated expression of these RNA modifying proteins can lead to many human diseases including cancer. In this review, we highlight several critical modifications, namely m6A, m1A, m5C, inosine and pseudouridine, in both coding and non-coding RNAs. In parallel, we present a few other cancer-related tRNA and rRNA modifications. We further discuss their roles in cancer promotion or tumour suppression. Understanding the molecular mechanisms underlying the biogenesis and turnover of these RNA modifications will be of great significance in the design and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Phensinee Haruehanroengra
- Department of Chemistry and the RNA Institute, College of Arts and Science, University at Albany, State University of New York , Albany, NY, USA
| | - Ya Ying Zheng
- Department of Chemistry and the RNA Institute, College of Arts and Science, University at Albany, State University of New York , Albany, NY, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University , Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University , Houston, TX, USA
| | - Jia Sheng
- Department of Chemistry and the RNA Institute, College of Arts and Science, University at Albany, State University of New York , Albany, NY, USA
| |
Collapse
|
74
|
Tang SJ, Shen H, An O, Hong H, Li J, Song Y, Han J, Tay DJT, Ng VHE, Bellido Molias F, Leong KW, Pitcheshwar P, Yang H, Chen L. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nat Commun 2020; 11:799. [PMID: 32034135 PMCID: PMC7005744 DOI: 10.1038/s41467-020-14621-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
RNA editing and splicing are the two major processes that dynamically regulate human transcriptome diversity. Despite growing evidence of crosstalk between RNA editing enzymes (mainly ADAR1) and splicing machineries, detailed mechanistic explanations and their biological importance in diseases, such as cancer are still lacking. Herein, we identify approximately a hundred high-confidence splicing events altered by ADAR1 and/or ADAR2, and ADAR1 or ADAR2 protein can regulate cassette exons in both directions. We unravel a binding tendency of ADARs to dsRNAs that involves GA-rich sequences for editing and splicing regulation. ADAR1 edits an intronic splicing silencer, leading to recruitment of SRSF7 and repression of exon inclusion. We also present a mechanism through which ADAR2 binds to dsRNA formed between GA-rich sequences and polypyrimidine (Py)-tract and precludes access of U2AF65 to 3' splice site. Furthermore, we find these ADARs-regulated splicing changes per se influence tumorigenesis, not merely byproducts of ADARs editing and binding.
Collapse
Affiliation(s)
- Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Ka Wai Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore.
| |
Collapse
|
75
|
Esteve-Puig R, Bueno-Costa A, Esteller M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 2020; 474:127-137. [PMID: 31991154 DOI: 10.1016/j.canlet.2020.01.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Although cancer was originally considered a disease driven only by genetic mutations, it has now been proven that it is also an epigenetic disease driven by DNA hypermethylation-associated silencing of tumor suppressor genes and aberrant histone modifications. Very recently, a third component has emerged: the so-called epitranscriptome understood as the chemical modifications of RNA that regulate and alter the activity of RNA molecules. In this regard, the study of genetic and epigenetic disruption of the RNA-modifying proteins is gaining momentum in advancing our understanding of cancer biology. Furthermore, the development of epitranscriptomic anticancer drugs could lead to new promising and unexpected therapeutic strategies for oncology in the coming years.
Collapse
Affiliation(s)
- Rosaura Esteve-Puig
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Alberto Bueno-Costa
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
76
|
Wang X, Ren X, Liu W, Chen X, Wei J, Gong Z, Yan Y, Xu Z. Role of downregulated ADARB1 in lung squamous cell carcinoma. Mol Med Rep 2020; 21:1517-1526. [PMID: 32016472 PMCID: PMC7003044 DOI: 10.3892/mmr.2020.10958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is prevalent worldwide. Lung squamous cell carcinoma (LUSC) is one of the main subtypes of NSCLC yet, currently, few biomarkers are available for the diagnosis of LUSC. The present study aimed to investigate the expression and role of adenosine deaminase RNA specific B1 (ADARB1) in lung squamous cell carcinoma (LUSC). Integrative bioinformatics analysis was used to identify the effects of ADARB1 expression on the occurrence and prognosis of LUSC. The expression of ADARB1 was further examined by immunohistochemistry (IHC). Bioinformatics analysis suggested that ADARB1 was downregulated in LUSC, serving as a potential tumor suppressor, and these results were verified by IHC performed on a lung cancer tissue array. Clinical studies suggested that ADARB1 expression and methylation levels were significantly associated with patient characteristics in LUSC. Moreover, ADARB1 global methylation levels were upregulated in LUSC tissues compared with normal lung tissues. Higher methylation levels of cg24063645 were associated with shorter overall survival time of patients with LUSC. A negative correlation was identified between ADARB1 and epidermal growth factor receptor (EGFR) expression in LUSC. Using the Gene Expression Omnibus database, it was suggested that the expression of ADARB1 in LUSC was significantly different compared with that in lung adenocarcinoma. Furthermore, protein-protein interactions were studied and a biological process annotation analysis was conducted. The present study suggested that ADARB1 was downregulated in LUSC; therefore, ADARB1 may serve as a specific biomarker and a potential therapeutic target for LUSC.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wanli Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
77
|
Activation of BDNF-AS/ADAR/p53 Positive Feedback Loop Inhibits Glioblastoma Cell Proliferation. Neurochem Res 2020; 45:508-518. [PMID: 31939089 DOI: 10.1007/s11064-019-02943-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
Despite progress in conventional treatment for glioblastoma (GBM), the prognosis remains poor due to high tumor recurrence. Therefore, identification of new molecular mechanisms is a pressing need for betterment of GBM patient outcomes. qRT-PCR was used to determine BDNF-AS expression in GBM cells. CCK-8, EdU incorporation, and caspase-3 activity assays were employed to analyze biological functions of BDNF-AS. RIP and RNA pull-down were conducted to detect the interactions among BDNF-AS, ADAR, and p53. Actinomycin D was utilized to examine the stability of p53 mRNA. ChIP and luciferase reporter assays were performed to detect transcriptional activation of BDNF-AS by p53. We found that BDNF-AS was significantly downregulated in GBM cell lines, and its overexpression inhibited GBM cell growth, and promoted apoptosis. Importantly, we illustrated that BDNF-AS coupled with ADAR protein to potentiate stability of p53 mRNA and thus upregulate p53. Interestingly, we further identified p53 as a transcription factor of BDNF-AS, activating transcription of BNDF-AS. This study firstly demonstrated that BDNF-AS acted as a tumor suppressor in GBM and the positive feedback circuit of BDNF-AS/ADAR/p53 served an important mechanism to control GBM proliferation. Targeting this auto-regulatory loop may provide a potential therapeutic strategy for GBM patients.
Collapse
|
78
|
Aberrant Overexpression of RNA-Editing Enzyme ADAR1 Promotes the Progression of Endometriosis. Reprod Sci 2020; 27:575-584. [PMID: 32046435 DOI: 10.1007/s43032-019-00057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 10/25/2022]
Abstract
Considerable efforts have been invested to elucidate the potential mechanisms involved in the physiopathology of endometriosis. However, to date, prior research has not been conclusive. This research has examined one particular mechanism, i.e., the effect of ADAR1 on endometriosis lesions. Eutopic endometrium was collected from women with (n = 25) and without endometriosis (n = 25), respectively. The expression of ADAR1 mRNA was measured based on quantitative real-time polymerase chain reactions (RT-qPCR). Both Western blot and immunohistochemistry were performed to establish ADAR1 protein expression levels. The results indicated that ADAR1 mRNA and proteins were significantly greater in the eutopic endometrium of the women with endometriosis, compared to the women without (P < 0.05). The Cell Counting Kit-8 (CCK-8) and EdU method were conducted to examine the effect of ADAR1 on cell viability and proliferation in eutopic endometriosis cells. A transwell assay was also used to detect the role of ADAR1 in the invasion of endometrial cells. The results obtained showed that ADAR1 promoted endometrial cell viability, proliferation, and invasion (P < 0.05). This informed our conclusion that the ADAR1 gene is upregulated in endometriosis, potentially paying a pivotal role in the physiopathology of endometriosis.
Collapse
|
79
|
Cai H, Hou X, Ding Y, Fu Z, Wang L, Du Y. Prediction of gastric cancer prognosis in the next-generation sequencing era. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer (GC) is one of the most commonly diagnosed malignancies worldwide, and is caused by complex interactions of multiple risk factors such as environmental (Helicobacter pylori and Epstein–Barr Virus), hereditary (genetic alterations and epigenetic modifications), as well as dietary and lifestyle factors. GC is usually detected at an advanced stage, with a dismal prognosis. Even for patients with similar clinical or pathologic stage receiving similar treatment, the outcomes are still uneven and unpredictable. To better incorporate genetic and epigenetic profiles into GC prognostic predication, gene expression signatures have been developed to predict GC outcomes. More recently, the advancement of high-throughput sequencing technology, also known as next-generation sequencing (NGS) technology, and analysis has provided the basis for accurate molecular classification of GC tumors. Here, we summarized and updated the literature related to NGS studies of GC, including whole-genome sequencing, whole-exome sequencing, RNA sequencing, and targeted sequencing, and discussed current progresses. NGS has facilitated the identification of genetic/epigenetic targets for screening as well as development of targeted agent therapy, thus enabling individualized patient management and treatment.
Collapse
Affiliation(s)
- Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- PLA Marine Corps Hospital, Chaozhou, Guangdong 521000, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai 200433, P. R. China
| | - Zhongxing Fu
- Ningguo Bio-Leader Biotechnology Co., Ltd., Anhui, Hefei, P. R. China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-related Diseases, Shanghai, P. R. China
| | - Yan Du
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai 200090, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
80
|
Jain M, Jantsch MF, Licht K. The Editor's I on Disease Development. Trends Genet 2019; 35:903-913. [PMID: 31648814 DOI: 10.1016/j.tig.2019.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA leads to deamination of adenosine to inosine. Inosine is interpreted as guanosine by the cellular machinery, thus altering the coding, folding, splicing, or transport of transcripts. A-to-I editing is tightly regulated. Altered editing has severe consequences for human health and can cause interferonopathies, neurological disorders, and cardiovascular disease, as well as impacting on cancer progression. ADAR1-mediated RNA editing plays an important role in antiviral immunity and is essential for distinguishing between endogenous and viral RNA, thereby preventing autoimmune disorders. Interestingly, A-to-I editing can be used not only to correct genomic mutations at the RNA level but also to modulate tumor antigenicity with large therapeutic potential. We highlight recent developments in the field, focusing on cancer and other human diseases.
Collapse
Affiliation(s)
- Mamta Jain
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
81
|
Zhang Y, Qian H, Xu J, Gao W. ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:686. [PMID: 31930087 DOI: 10.21037/atm.2019.11.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the conversion of adenosine (A) to inosine (I) in double-stranded RNA, which can change the codons after transcription. Abnormal ADAR editing is present in a variety of cancers. However, the study of the biological effects of ADARs in cancer is not very deep. Here, we review current important ADAR-mediated editing events, related carcinogenic mechanisms and applications in clinical medicine. Further exploration in ADARs can provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huizhu Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
82
|
Shelton PM, Duran A, Nakanishi Y, Reina-Campos M, Kasashima H, Llado V, Ma L, Campos A, García-Olmo D, García-Arranz M, García-Olmo DC, Olmedillas-López S, Caceres JF, Diaz-Meco MT, Moscat J. The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. Cell Rep 2019; 23:1178-1191. [PMID: 29694894 PMCID: PMC5958623 DOI: 10.1016/j.celrep.2018.03.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Most colorectal cancer (CRC)-related deaths are due to liver metastases. PKCζ is a tumor suppressor in CRC with reduced expression in metastasis. Given the importance of microRNAs (miRNAs) in regulating cellular plasticity, we performed an unbiased screening and identified the miR-200 family as the most relevant miRNAs downregulated by PKCζ deficiency. The regulation of the intracellular levels of miR-200 by PKCζ is post-transcriptional and involves their secretion in extracellular vesicles. Here, we identified ADAR2 as a direct substrate of PKCζ in CRC cells. Phosphorylation of ADAR2 regulates its editing activity, which is required to maintain miR-200 steady-state levels, suggesting that the PKCζ/ADAR2 axis regulates miR-200 secretion through RNA editing. Loss of this axis results in epithelial-to-mesenchymal transition (EMT) and increased liver metastases, which can be inhibited in vivo by blocking miR-200 release. Therefore, the PKCζ/ADAR2 axis is a critical regulator of CRC metastases through modulation of miR-200 levels.
Collapse
Affiliation(s)
- Phillip M Shelton
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuki Nakanishi
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiroaki Kasashima
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victoria Llado
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Li Ma
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Damián García-Olmo
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), 28040 Madrid, Spain; Department of Surgery, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; Department of Surgery, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
| | - Mariano García-Arranz
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), 28040 Madrid, Spain; Department of Surgery, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Dolores C García-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), Institut de Recerca Biomèdica (IRBLLEIDA), 25138 Lleida, Spain
| | - Susana Olmedillas-López
- Foundation Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), 28040 Madrid, Spain
| | - Javier F Caceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
83
|
Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med 2019; 17:319. [PMID: 31547885 PMCID: PMC6757416 DOI: 10.1186/s12967-019-2071-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional modifications have been recently expanded with the addition of RNA editing, which is predominantly mediated by adenosine and cytidine deaminases acting on DNA and RNA. Here, we review the full spectrum of physiological processes in which these modifiers are implicated, among different organisms. Adenosine to inosine (A-to-I) editors, members of the ADAR and ADAT protein families are important regulators of alternative splicing and transcriptional control. On the other hand, cytidine to uridine (C-to-U) editors, members of the AID/APOBEC family, are heavily implicated in innate and adaptive immunity with important roles in antibody diversification and antiviral response. Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they modify various RNA molecules, including miRNAs, tRNAs apart from mRNAs, whereas DNA editing is also possible by some of them. The expansion of next generation sequencing technologies provided a wealth of data regarding such modifications. RNA editing has been implicated in various disorders including cancer, and neurological diseases of the brain or the central nervous system. It is also related to cancer heterogeneity and the onset of carcinogenesis. Response to treatment can also be affected by the RNA editing status where drug efficacy is significantly compromised. Studying RNA editing events can pave the way to the identification of new disease biomarkers, and provide a more personalised therapy to various diseases.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus. .,Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.
| |
Collapse
|
84
|
Lin JX, Xie XS, Weng XF, Qiu SL, Yoon C, Lian NZ, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Yang YH, Huang CM, Zheng CH, Li P. UFM1 suppresses invasive activities of gastric cancer cells by attenuating the expres7sion of PDK1 through PI3K/AKT signaling. J Exp Clin Cancer Res 2019; 38:410. [PMID: 31533855 PMCID: PMC6751655 DOI: 10.1186/s13046-019-1416-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND UFM1 has been found to be involved in the regulation of tumor development. This study aims to clarify the role and potential molecular mechanisms of UFM1 in the invasion and metastasis of gastric cancer. METHODS Expression of UFM1 in gastric tumor and paired adjacent noncancerous tissues from 437 patients was analyzed by Western blotting, immunohistochemistry, and realtime PCR. Its correlation with the clinicopathological characteristics and prognosis of gastric cancer patients was analyzed. The effects of UFM1 on the invasion and migration of gastric cancer cells were determined by the wound and trans-well assays, and the effect of UFM1 on subcutaneous tumor formation was verified in nude mice. The potential downstream targets of UFM1 and related molecular mechanisms were clarified by the human protein kinase assay and co-immunoprecipitation technique. RESULTS Compared with the corresponding adjacent tissues, the transcription level and protein expression level of UFM1 in gastric cancer tissues were significantly downregulated (P < 0.05). The 5-year survival rate of gastric cancer patients with low UFM1 expression was significantly lower than the patients with high UFM1 expression (42.1% vs 63.0%, P < 0.05). The invasion and migration abilities of gastric cancer cells with stable UFM1 overexpression were significantly decreased, and the gastric cancer cells with UFM1 stable knockdown showed the opposite results; similar results were also obtained in the nude mouse model. Further studies have revealed that UFM1 could increase the ubiquitination level of PDK1 and decrease the expression of PDK1 at protein level, thereby inhibiting the phosphorylation level of AKT at Ser473. Additionally, the effect of UFM1 on gastric cancer cell function is dependent on the expression of PDK1. The expression level of UFM1 can improve the poor prognosis of PDK1 in patients with gastric cancer. CONCLUSION UFM1 suppresses the invasion and metastasis of gastric cancer by increasing the ubiquitination of PDK1 through negatively regulating PI3K/AKT signaling.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
| | - Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Ning-Zi Lian
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Ying-Hong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian Province China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian Province China
| |
Collapse
|
85
|
Wang X, Xu Z, Ren X, Chen X, Wei J, Lin W, Li Z, Ou C, Gong Z, Yan Y. Function of low ADARB1 expression in lung adenocarcinoma. PLoS One 2019; 14:e0222298. [PMID: 31491024 PMCID: PMC6730894 DOI: 10.1371/journal.pone.0222298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Adenosine deaminase RNA-specific B1 (ADARB1), an adenosine-to-inosine (A-to-I) RNA-editing enzyme, has been found to play an essential role in the development of cancer. However, the specific function of ADARB1 in lung cancer, especially in lung adenocarcinoma (LUAD), is still not fully understood and requires further study. In our study, integrative bioinformatics were used to analyze the detailed function of ADARB1 in LUAD. By conducting bioinformatics analyses of several public databases, such as Gene Expression Profiling Interactive Analysis (GEPIA), GE-mini, and Oncomine, we found significantly decreased ADARB1 expression in LUAD cells and tissues. Moreover, RT-PCR and Western blot showed lower ADARB1 expression in H358 and A549 LUAD cells compared to human bronchial epithelial Beas-2B cells. Wound Healing Assay indicated that knockdown ADARB1 could promote LUAD cell metastasis. By using the Kaplan-Meier Plotter tool, we found that downregulation of ADARB1 was related to shorter first progression (FP), overall survival time (OS) and post-progression survival time (PPS). The relevant clinical data acquired from the Wanderer database indicated that the expression and methylation values of ADARB1 were significantly associated with the clinical characteristics of LUAD. Using DNA methylation inhibitor, we found DNMT inhibitor 5-aza-2-deoxycytidine (5-azaD) could promote the expression of ADARB1 and reverse the inhibition effect of ADARB1 in migration. In addition, functional enrichment analysis of ADARB1-associated coexpression genes was further conducted. Our investigation demonstrated that low levels of ADARB1 were specifically found in LUAD, and this gene might be a potential target in the diagnostic and prognostic evaluation of LUAD patients.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
86
|
Hong H, An O, Chan THM, Ng VHE, Kwok HS, Lin JS, Qi L, Han J, Tay DJT, Tang SJ, Yang H, Song Y, Bellido Molias F, Tenen DG, Chen L. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res 2019; 46:7953-7969. [PMID: 29796672 PMCID: PMC6125626 DOI: 10.1093/nar/gky396] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing entails the enzymatic deamination of adenosines to inosines by adenosine deaminases acting on RNA (ADARs). Dysregulated A-to-I editing has been implicated in various diseases, including cancers. However, the precise factors governing the A-to-I editing and their physiopathological implications remain as a long-standing question. Herein, we unravel that DEAH box helicase 9 (DHX9), at least partially dependent of its helicase activity, functions as a bidirectional regulator of A-to-I editing in cancer cells. Intriguingly, the ADAR substrate specificity determines the opposing effects of DHX9 on editing as DHX9 silencing preferentially represses editing of ADAR1-specific substrates, whereas augments ADAR2-specific substrate editing. Analysis of 11 cancer types from The Cancer Genome Atlas (TCGA) reveals a striking overexpression of DHX9 in tumors. Further, tumorigenicity studies demonstrate a helicase-dependent oncogenic role of DHX9 in cancer development. In sum, DHX9 constitutes a bidirectional regulatory mode in A-to-I editing, which is in part responsible for the dysregulated editome profile in cancer.
Collapse
Affiliation(s)
- HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Tim H M Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Vanessa H E Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hui Si Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Jaymie S Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Lihua Qi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Daryl J T Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
87
|
Fritzell K, Xu LD, Otrocka M, Andréasson C, Öhman M. Sensitive ADAR editing reporter in cancer cells enables high-throughput screening of small molecule libraries. Nucleic Acids Res 2019; 47:e22. [PMID: 30590609 PMCID: PMC6393238 DOI: 10.1093/nar/gky1228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Adenosine to inosine editing is common in the human transcriptome and changes of this essential activity is associated with disease. Children with ADAR1 mutations develop fatal Aicardi-Goutières syndrome characterized by aberrant interferon expression. In contrast, ADAR1 overexpression is associated with increased malignancy of breast, lung and liver cancer. ADAR1 silencing in breast cancer cells leads to increased apoptosis, suggesting an anti-apoptotic function that promotes cancer progression. Yet, suitable high-throughput editing assays are needed to efficiently screen chemical libraries for modifiers of ADAR1 activity. We describe the development of a bioluminescent reporter system that facilitates rapid and accurate determination of endogenous editing activity. The system is based on the highly sensitive and quantitative Nanoluciferase that is conditionally expressed upon reporter-transcript editing. Stably introduced into cancer cell lines, the system reports on elevated endogenous ADAR1 editing activity induced by interferon as well as knockdown of ADAR1 and ADAR2. In a single-well setup we used the reporter in HeLa cells to screen a small molecule library of 33 000 compounds. This yielded a primary hit rate of 0.9% at 70% inhibition of editing. Thus, we provide a key tool for high-throughput identification of modifiers of A-to-I editing activity in cancer cells.
Collapse
Affiliation(s)
- Kajsa Fritzell
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Li-Di Xu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| |
Collapse
|
88
|
Teoh PJ, Chung TH, Chng PYZ, Toh SHM, Chng WJ. IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification. Haematologica 2019; 105:1391-1404. [PMID: 31413087 PMCID: PMC7193471 DOI: 10.3324/haematol.2019.221176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
1q21 amplification is an important prognostic marker in multiple myeloma. In this study we identified that IL6R (the interleukin-6 membrane receptor) and ADAR1 (an RNA editing enzyme) are critical genes located within the minimally amplified 1q21 region. Loss of individual genes caused suppression to the oncogenic phenotypes, the magnitude of which was enhanced when both genes were concomitantly lost. Mechanistically, IL6R and ADAR1 collaborated to induce a hyper-activation of the oncogenic STAT3 pathway. High IL6R confers hypersensitivity to interleukin-6 binding, whereas, ADAR1 forms a constitutive feed-forward loop with STAT3 in a P150-isoform-predominant manner. In this respect, ADAR1-P150 acts as a direct transcriptional target for STAT3 and this STAT3-induced-P150 in turn directly interacts with and stabilizes the former protein, leading to a larger pool of proteins acting as oncogenic transcription factors for pro-survival genes. The importance of both IL6R and ADAR1-P150 in STAT3 signaling was further validated when concomitant knockdown of both genes impeded IL6-induced-STAT3 pathway activation. Clinical evaluation of various datasets of myeloma patients showed that low expression of either one or both genes was closely associated with a compromised STAT3 signature, confirming the involvement of IL6R and ADAR1 in the STAT3 pathway and underscoring their essential role in disease pathogenesis. In summary, our findings highlight the complexity of the STAT3 pathway in myeloma, in association with 1q21 amplification. This study therefore reveals a novel perspective on 1q21 abnormalities in myeloma and a potential therapeutic target for this cohort of high-risk patients.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Cancer Science Institute of Singapore, National University of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore
| | - Pamela Y Z Chng
- Cancer Science Institute of Singapore, National University of Singapore
| | - Sabrina H M Toh
- Cancer Science Institute of Singapore, National University of Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| |
Collapse
|
89
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
90
|
Li Y, Jiang L, Lv S, Xu H, Fan Z, He Y, Wen H. E2F6-mediated lncRNA CASC2 down-regulation predicts poor prognosis and promotes progression in gastric carcinoma. Life Sci 2019; 232:116649. [PMID: 31301415 DOI: 10.1016/j.lfs.2019.116649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the potential biological role of E2F6 and its underlying molecular mechanism in gastric carcinoma (GC) progression. MAIN METHODS The expressions of cancer susceptibility candidate 2 (CASC2), E2F6 and matrix metalloprotein-2 (MMP-2) were measured by quantitative real-time polymerase chain reaction and western blotting. The inhibitory effect of E2F6 on CASC2 was evaluated using luciferase reporter assay. Cell growth was assessed by colony formation assay and cell counting kit-8. Cell invasion and apoptosis were measured by transwell assay and flow cytometry assay, respectively. In vivo tumorigenicity was assessed by tumor xenografts in nude mice. KEY FINDINGS Our data revealed that CASC2 was downregulated while E2F6 was upregulated in GC tissues and cell lines. Remarkably, lower expression of CASC2 was associated with poor survival in GC patients. E2F6 inhibited the expression of CASC2. Subsequently, reliable data showed that downregulation of E2F6 suppressed the proliferation and invasion, and promoted the apoptosis of GC cells. Furthermore, downregulation of E2F6 decreased the expression of MMP-2 and increased the activity of caspase-3. However, these changes triggered by E2F6 knockdown could be reversed by inhibition of CASC2. Moreover, we also proved that downregulation of CASC2 reverses the effect of E2F6 knockdown on tumor growth in vivo. SIGNIFICANCE Our data demonstrated that E2F6 could regulate the proliferation, invasion and apoptosis of GC cells via inhibiting the expression of CASC2, suggesting that E2F6/CASC2 axis is another regulator of GC progression.
Collapse
Affiliation(s)
- Yingxia Li
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China
| | - Libin Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China
| | - Shuai Lv
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China
| | - Haiyan Xu
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China
| | - Zhoupei Fan
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China
| | - Yixin He
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China
| | - Hongtao Wen
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450018, China.
| |
Collapse
|
91
|
Shanmugam R, Zhang F, Srinivasan H, Charles Richard JL, Liu KI, Zhang X, Woo CWA, Chua ZHM, Buschdorf JP, Meaney MJ, Tan MH. SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates. Nucleic Acids Res 2019; 46:7379-7395. [PMID: 29992293 PMCID: PMC6101530 DOI: 10.1093/nar/gky615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/26/2018] [Indexed: 02/05/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing displays diverse spatial patterns across different tissues. However, the human genome encodes only two catalytically active editing enzymes (ADAR1 and ADAR2), suggesting that other regulatory factors help shape the editing landscape. Here, we show that the splicing factor SRSF9 selectively controls the editing of many brain-specific sites in primates. SRSF9 is more lowly expressed in the brain than in non-brain tissues. Gene perturbation experiments and minigene analysis of candidate sites demonstrated that SRSF9 could robustly repress A-to-I editing by ADAR2. We found that SRSF9 biochemically interacted with ADAR2 in the nucleus via its RRM2 domain. This interaction required the presence of the RNA substrate and disrupted the formation of ADAR2 dimers. Transcriptome-wide location analysis and RNA sequencing revealed 1328 editing sites that are controlled directly by SRSF9. This regulon is significantly enriched for brain-specific sites. We further uncovered a novel motif in the ADAR2-dependent SRSF9 binding sites and provided evidence that the splicing factor prevents loss of cell viability by inhibiting ADAR2-mediated editing of genes involved in proteostasis, energy metabolism, the cell cycle and DNA repair. Collectively, our results highlight the importance of SRSF9 as an editing regulator and suggest potential roles for other splicing factors.
Collapse
Affiliation(s)
- Raghuvaran Shanmugam
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Fan Zhang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Harini Srinivasan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | | | - Kaiwen I Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Xiujun Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Cheok Wei A Woo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Zi Hao M Chua
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore.,School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - Jan Paul Buschdorf
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 117609, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 117609, Singapore.,Douglas Mental Health University Institute, McGill University, Montreal (Quebec) H4H 1R3, Canada
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.,Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| |
Collapse
|
92
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
93
|
Liu Q, Li H, You L, Li T, Li L, Zhou P, Bo X, Chen H, Chen X, Hu Y. Genome-wide identification and analysis of A-to-I RNA editing events in the malignantly transformed cell lines from bronchial epithelial cell line induced by α-particles radiation. PLoS One 2019; 14:e0213047. [PMID: 31158229 PMCID: PMC6546236 DOI: 10.1371/journal.pone.0213047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is the most prevalent RNA editing mechanism in humans and plays critical roles in tumorigenesis. However, the effects of radiation on RNA editing were poorly understood, and a deeper understanding of the radiation-induced cancer is imperative. Here, we analyzed BEP2D (a human bronchial epithelial cell line) and radiation-induced malignantly transformed cell lines with next generation sequencing. By performing an integrated analysis of A-to-I RNA editing, we found that single-nucleotide variants (SNVs) might induce the downregulation of ADAR2 enzymes, and further caused the abnormal occurrence of RNA editing in malignantly transformed cell lines. These editing events were significantly enriched in differentially expressed genes between normal cell line and malignantly transformed cell lines. In addition, oncogenes CTNNB1 and FN1 were highly edited and significantly overexpressed in malignantly transformed cell lines, thus may be responsible for the lung cancer progression. Our work provides a systematic analysis of RNA editing from cell lines derived from human bronchial epithelial cells with high-throughput RNA sequencing and DNA sequencing. Moreover, these results provide further evidence for RNA editing as an important tumorigenesis mechanism.
Collapse
Affiliation(s)
- Qiaowei Liu
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hao Li
- Medical School of Chinese PLA, Beijing, P.R. China
| | - Lukuan You
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Tao Li
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Lingling Li
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
- * E-mail: (YH); (XC); (HC)
| | - Xiaohua Chen
- Beijing Institute of Radiation Medicine, Beijing, P.R. China
- * E-mail: (YH); (XC); (HC)
| | - Yi Hu
- Medical School of Chinese PLA, Beijing, P.R. China
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, P.R. China
- * E-mail: (YH); (XC); (HC)
| |
Collapse
|
94
|
Mamrot J, Balachandran S, Steele EJ, Lindley RA. Molecular model linking Th2 polarized M2 tumour-associated macrophages with deaminase-mediated cancer progression mutation signatures. Scand J Immunol 2019; 89:e12760. [PMID: 30802996 PMCID: PMC6850162 DOI: 10.1111/sji.12760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
A new and diverse range of somatic mutation signatures are observed in late-stage cancers, but the underlying reasons are not fully understood. We advance a "combinatorial association model" for deaminase binding domain (DBD) diversification to explain the generation of previously observed cancer-progression associated mutation signatures. We also propose that changes in the polarization of tumour-associated macrophages (TAMs) are accompanied by the expression of deaminases with a new and diverse range of DBDs, and thus accounting for the generation of new somatic mutation signatures. The mechanism proposed is molecularly reminiscent of combinatorial association of heavy (H) and light (L) protein chains following V(D)J recombination of immunoglobulin molecules (and similarly for protein chains in heterodimers α/β and γ/δ of V(D)Js of T Cell Receptors) required for pathogen antigen recognition by B cells and T cells, respectively. We also discuss whether extracellular vesicles (EVs) emanating from tumour enhancing M2-polarized macrophages represent a likely source of the de novo deaminase DBDs. We conclude that M2-polarized macrophages extruding EVs loaded with deaminase proteins or deaminase-specific transcription/translation regulatory factors and like information may directly trigger deaminase diversification within cancer cells, and thus account for the many new somatic mutation signatures that are indicative of cancer progression. This hypothesis now has a plausible evidentiary base, and it is worth direct testing in future investigations. A long-term objective would be to identify molecular biomarkers predicting cancer progression (or metastatic disease) and to support the development of new drug targets before metastatic pathways are activated.
Collapse
Affiliation(s)
| | - Siddharth Balachandran
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPennsylvania
| | - Edward J. Steele
- CYO’Connor ERADE Village FoundationPerthWestern AustraliaAustralia
- Melville Analytics Pty LtdMelbourneVictoriaAustralia
| | - Robyn A. Lindley
- GMDxCo Pty LtdMelbourneVictoriaAustralia
- Faculty of Medicine, Dentistry & Health Sciences, Department of Clinical PathologyUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
95
|
Fluctuations of epigenetic regulations in human gastric Adenocarcinoma: How does it affect? Biomed Pharmacother 2019; 109:144-156. [DOI: 10.1016/j.biopha.2018.10.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
|
96
|
Takeda S, Shigeyasu K, Okugawa Y, Yoshida K, Mori Y, Yano S, Noma K, Umeda Y, Kondo Y, Kishimoto H, Teraishi F, Nagasaka T, Tazawa H, Kagawa S, Fujiwara T, Goel A. Activation of AZIN1 RNA editing is a novel mechanism that promotes invasive potential of cancer-associated fibroblasts in colorectal cancer. Cancer Lett 2018; 444:127-135. [PMID: 30583079 DOI: 10.1016/j.canlet.2018.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a recently described epigenetic modification, which is believed to constitute a key oncogenic mechanism in human cancers. However, its functional role in cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) and its clinical significance remains unclear. Herein, we systematically analyzed a large cohort of 627 colorectal cancer (CRC) specimens, and investigated the expression pattern of ADAR1 and its biological significance on the antizyme inhibitor 1 (AZIN1) RNA editing levels. Both ADAR1 expression and AZIN1 RNA editing levels were significantly elevated in CRC tissues vs. normal mucosa, and these findings correlated with the increased expression of mesenchymal markers, Vimentin (ρ = 0.44) and Fibroblast activation protein (ρ = 0.38). Intriguingly, ADAR1 expression was specifically upregulated in both cancer cells and fibroblasts from cancerous lesions. Conditioned medium from cancer cells led to induction of ADAR1 expression and activation of AZIN1 RNA editing in fibroblasts (p < 0.05). Additionally, edited AZIN1 enhanced the invasive potential of fibroblasts. In conclusion, we provide novel evidence that hyper-editing of AZIN1 enhances the invasive potential of CAFs within the TME in colon and is an important predictor of tumor invasiveness in CRC.
Collapse
Affiliation(s)
- Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, TX, USA
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, TX, USA; Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan; Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, TX, USA
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, TX, USA.
| |
Collapse
|
97
|
Okugawa Y, Toiyama Y, Shigeyasu K, Yamamoto A, Shigemori T, Yin C, Ichikawa T, Yasuda H, Fujikawa H, Yoshiyama S, Hiro J, Ohi M, Araki T, Kusunoki M, Goel A. Enhanced AZIN1 RNA editing and overexpression of its regulatory enzyme ADAR1 are important prognostic biomarkers in gastric cancer. J Transl Med 2018; 16:366. [PMID: 30563560 PMCID: PMC6299520 DOI: 10.1186/s12967-018-1740-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing is catalyzed by adenosine deaminases acting on RNA (ADAR) enzymes. Recent evidence suggests that RNA editing of antizyme inhibitor 1 (AZIN1) RNA is emerging as a key epigenetic alteration underlying cancer pathogenesis. METHODS We evaluated AZIN1 RNA editing levels, and the expression of its regulator, ADAR1, in 280 gastric tissues from 140 patients, using a RNA editing site-specific quantitative polymerase chain reaction assays. We also analyzed the clinical significance of these results as disease biomarkers in gastric cancer (GC) patients. RESULTS Both AZIN1 RNA editing levels and ADAR1 expression were significantly elevated in GC tissues compared with matched normal mucosa (P < 0.0001, 0.0008, respectively); and AZIN1 RNA editing was positively correlated with ADAR1 expression. Elevated expression of ADAR1 significantly correlated with poor overall survival (P = 0.034), while hyper-edited AZIN1 emerged as an independent prognostic factor for OS and disease-free survival in GC patients [odds ratio (OR):1.98, 95% CI 1.17-3.35, P = 0.011, OR: 4.55, 95% CI 2.12-9.78, P = 0.0001, respectively]. Increased AZIN1 RNA editing and ADAR1 over-expression were significantly correlated with key clinicopathological factors, such as advanced T stage, presence of lymph node metastasis, distant metastasis, and higher TNM stages in GC patients. Logistic regression analysis revealed that hyper-editing status of AZIN1 RNA was an independent risk factor for lymph node metastasis in GC patients [hazard ratio (HR):3.03, 95% CI 1.19-7.71, P = 0.02]. CONCLUSIONS AZIN1 RNA editing levels may be an important prognostic biomarker in GC patients, and may serve as a key clinical decision-making tool for determining preoperative treatment strategies in GC patients.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama Japan
| | - Akira Yamamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Tsunehiko Shigemori
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Takashi Ichikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Hiromi Yasuda
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Shigeyuki Yoshiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie Japan
| | - Ajay Goel
- Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, 3410 Worth Street, Suite 610, Dallas, TX 75246 USA
| |
Collapse
|
98
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
99
|
Huang LY, Wang X, Cui XF, Li H, Zhao J, Wu CC, Min L, Zhou Z, Wan L, Wang YP, Zhang C, Gao WQ, Sun Y, Han ZG. IRTKS is correlated with progression and survival time of patients with gastric cancer. Gut 2018. [PMID: 28647685 DOI: 10.1136/gutjnl-2016-313478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES IRTKS functions as a novel regulator of tumour suppressor p53; however, the role of IRTKS in pathogenesis of gastric cancer is unclear. DESIGN We used immunohistochemistry to detect IRTKS levels in 527 human gastric cancer specimens. We generated both IRTKS-deficient and p53-deficient mice to observe survival time of these mice and to isolate mouse embryonic fibroblasts (MEFs) for evaluating in vivo tumorigenicity. Co-immunoprecipitation was used to study the interaction among p53, MDM2 and IRTKS, as well as the ubiquitination of p53. RESULTS IRTKS was significantly overexpressed in human gastric cancer, which was conversely associated with wild-type p53 expression. Among patients with wild-type p53 (n=206), those with high IRTKS expression (n=141) had a shorter survival time than those with low IRTKS (n=65) (p=0.0153). Heterozygous p53+/- mice with IRTKS deficiency exhibited significantly delayed tumorigenesis and an extended tumour-free survival time. p53+/- MEFs without IRTKS exhibited attenuated in vivo tumorigenicity. IRTKS depletion upregulated p53 and its target genes, such as BAX and p21. Intriguingly, IRTKS overexpression promoted p53 ubiquitination and degradation in MEFs and gastric cancer cells. Under DNA damage conditions, IRTKS was phosphorylated at Ser331 by the activated Chk2 kinase and then dissociated from p53, along with the p53-specific E3 ubiquitin ligase MDM2, resulting in attenuated p53 ubiquitination and degradation. CONCLUSION IRTKS overexpression is negatively correlated with progression and overall survival time of patients with gastric cancer with wild-type p53 through promotion of p53 degradation via the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Li-Yu Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Xiao-Fang Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Chong-Chao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingqiang Min
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Zhicheng Zhou
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Yu-Ping Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, USA.,Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College of Cornell University, New York, USA
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, General Surgery Research Institute, Fudan University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
100
|
Shi L, Yang L, Wu Z, Xu W, Song J, Guan W. Adenosine signaling: Next checkpoint for gastric cancer immunotherapy? Int Immunopharmacol 2018; 63:58-65. [PMID: 30075429 DOI: 10.1016/j.intimp.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022]
Abstract
Adenosine (ADO), generated by the ectonucleotidase CD39 and CD73 from ATP, interacts with its specific G protein-coupled receptors, which can impair anti-tumor immune responses inhibiting the infiltration and function of CD8+ T cell and natural killer cell. Recent studies have also identified that ADO pathway plays a critical role in tumor immune surveillance, especially for some non-solid cancers. In addition, although immune checkpoint therapy targeting ADO pathway in gastric cancer is still in an early phase, encouraging results have come out from some drugs targeting ADO pathway. Therefore, target ADO signaling may be a new promising strategy to treat gastric cancer. In this review, we summarized recent works on the role of ADO in cancer immunotherapy and also discussed relative mechanisms underlying the function of ADO signaling in cancer immune responses.
Collapse
Affiliation(s)
- Linsen Shi
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China; The Affiliated Drum Tower Clinical College of NanJing Medical University, Nanjing, PR China
| | - Lin Yang
- XuZhou Medical University, Xuzhou, PR China
| | - Zhaoyin Wu
- XuZhou Medical University, Xuzhou, PR China
| | - Wei Xu
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Jun Song
- Departments of Gastrointestinal surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China.
| | - Wenxian Guan
- Departments of Gastrointestinal surgery, the Affiliated Drum Tower hospital of NanJing Medical University, Nanjing, PR China.
| |
Collapse
|