51
|
Jiang W, Cheng Y, Wang Y, Wu J, Rong Z, Sun L, Zhou Y, Zhang K. Involvement of Abnormal p-α-syn Accumulation and TLR2-Mediated Inflammation of Schwann Cells in Enteric Autonomic Nerve Dysfunction of Parkinson's Disease: an Animal Model Study. Mol Neurobiol 2023:10.1007/s12035-023-03345-4. [PMID: 37148524 DOI: 10.1007/s12035-023-03345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
The study was designed to investigate the pathogenesis of gastrointestinal (GI) impairment in Parkinson's disease (PD). We utilized 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) and probenecid (250 mg/kg) to prepare a PD mice model. MPTP modeling was first confirmed. GI motility was measured using stool collection test and enteric plexus loss was also detected. Intestinal phosphorylated α-synuclein (p-α-syn), inflammation, and S100 were assessed using western blotting. Association between Toll-like receptor 2(TLR2) and GI function was validated by Pearson's correlations. Immunofluorescence was applied to show co-localizations of intestinal p-α-syn, inflammation, and Schwann cells (SCs). CU-CPT22 (3 mg/kg, a TLR1/TLR2 inhibitor) was adopted then. Success in modeling, damaged GI neuron and function, and activated intestinal p-α-syn, inflammation, and SCs responses were observed in MPTP group, with TLR2 related to GI damage. Increased p-α-syn and inflammatory factors were shown in SCs of myenteron for MPTP mice. Recovered fecal water content and depression of inflammation, p-α-syn deposition, and SCs activity were noticed after TLR2 suppression. The study investigates a novel mechanism of PD GI autonomic dysfunction, demonstrating that p-α-syn accumulation and TLR2 signaling of SCs were involved in disrupted gut homeostasis and treatments targeting TLR2-mediated pathway might be a possible therapy for PD.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ye Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Wu
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Zhe Rong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Yan Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
52
|
Solitano V, Dal Buono A, Gabbiadini R, Wozny M, Repici A, Spinelli A, Vetrano S, Armuzzi A. Fibro-Stenosing Crohn's Disease: What Is New and What Is Next? J Clin Med 2023; 12:jcm12093052. [PMID: 37176493 PMCID: PMC10179180 DOI: 10.3390/jcm12093052] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Fibro-stenosing Crohn's disease (CD) is a common disease presentation that leads to impaired quality of life and often requires endoscopic treatments or surgery. From a pathobiology perspective, the conventional view that intestinal fibro-stenosis is an irreversible condition has been disproved. Currently, there are no existing imaging techniques that can accurately quantify the amount of fibrosis within a stricture, and managing patients is challenging, requiring a multidisciplinary team. Novel therapies targeting different molecular components of the fibrotic pathways are increasing regarding other diseases outside the gut. However, a large gap between clinical need and the lack of anti-fibrotic agents in CD remains. This paper reviews the current state of pathobiology behind fibro-stenosing CD, provides an updated diagnostic and therapeutic approach, and finally, focuses on clinical trial endpoints and possible targets of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 4V2, Canada
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Endoscopy, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Colon and Rectal Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
53
|
Suau R, Garcia A, Bernal C, Llaves M, Schiering K, Jou-Ollé E, Pertegaz A, Garcia-Jaraquemada A, Bartolí R, Lorén V, Vergara P, Mañosa M, Domènech E, Manyé J. Response Variability to Drug Testing in Two Models of Chemically Induced Colitis. Int J Mol Sci 2023; 24:ijms24076424. [PMID: 37047397 PMCID: PMC10094987 DOI: 10.3390/ijms24076424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The lack of knowledge regarding the pathogenesis of IBD is a challenge for the development of more effective and safer therapies. Although in vivo preclinical approaches are critical for drug testing, none of the existing models accurately reproduce human IBD. Factors that influence the intra-individual response to drugs have barely been described. With this in mind, our aim was to compare the anti-inflammatory efficacy of a new molecule (MTADV) to that of corticosteroids in TNBS and DSS-induced colitis mice of both sexes in order to clarify further the response mechanism involved and the variability between sexes. The drugs were administered preventively and therapeutically, and real-time bioluminescence was performed for the in vivo time-course colitis monitoring. Morphometric data were also collected, and colonic cytokines and acute plasma phase proteins were analyzed by qRT-PCR and ELISA, respectively-bioluminescence images correlated with inflammatory markers. In the TNBS model, dexamethasone worked better in females, while MTADV improved inflammation in males. In DSS-colitis, both therapies worked similarly. Based on the molecular profiles, interaction networks were constructed to pinpoint the drivers of therapeutic response that were highly dependent on the sex. In conclusion, our results suggest the importance of considering sex in IBD preclinical drug screening.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Anna Garcia
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Carla Bernal
- Laboratory of Genetic Metabolic Diseases, Faculty of Biosciences, National University of San Marcos, Lima 15088, Peru
| | - Mariona Llaves
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Katharina Schiering
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Eva Jou-Ollé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Alex Pertegaz
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | - Ramon Bartolí
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Hepatology Unit IGTP, 08916 Badalona, Spain
| | - Violeta Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Patri Vergara
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Department of Physiology, Faculty of Veterinary, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Míriam Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Gastroenterology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Eugeni Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Gastroenterology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
54
|
Urbančič J, Košak Soklič T, Demšar Luzar A, Hočevar Boltežar I, Korošec P, Rijavec M. Transcriptomic Differentiation of Phenotypes in Chronic Rhinosinusitis and Its Implications for Understanding the Underlying Mechanisms. Int J Mol Sci 2023; 24:ijms24065541. [PMID: 36982612 PMCID: PMC10051401 DOI: 10.3390/ijms24065541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifaceted disease with variable clinical courses and outcomes. We aimed to determine CRS-associated nasal-tissue transcriptome in clinically well-characterized and phenotyped individuals, to gain a novel insight into the biological pathways of the disease. RNA-sequencing of tissue samples of patients with CRS with polyps (CRSwNP), without polyps (CRSsNP), and controls were performed. Characterization of differently expressed genes (DEGs) and functional and pathway analysis was undertaken. We identified 782 common CRS-associated nasal-tissue DEGs, while 375 and 328 DEGs were CRSwNP- and CRSsNP-specific, respectively. Common key DEGs were found to be involved in dendritic cell maturation, the neuroinflammation pathway, and the inhibition of the matrix metalloproteinases. Distinct CRSwNP-specific DEGs were involved in NF-kβ canonical pathways, Toll-like receptor signaling, HIF1α regulation, and the Th2 pathway. CRSsNP involved the NFAT pathway and changes in the calcium pathway. Our findings offer new insights into the common and distinct molecular mechanisms underlying CRSwNP and CRSsNP, providing further understanding of the complex pathophysiology of the CRS, with future research directions for novel treatment strategies.
Collapse
Affiliation(s)
- Jure Urbančič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Correspondence:
| | - Tanja Košak Soklič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Ajda Demšar Luzar
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
| | - Irena Hočevar Boltežar
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matija Rijavec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
55
|
Wang H, Wu J, Ma L, Bai Y, Liu J. Theroleofinterleukin-1familyinfibroticdiseases. Cytokine 2023; 165:156161. [PMID: 36921509 DOI: 10.1016/j.cyto.2023.156161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 03/17/2023]
Abstract
Fibrosis refers to the phenomenon that fibrous connective tissues are increased and parenchymal cells are decreased in organs or tissues such as lung, heart, liver, kidney, skin and so on. It usually occurs at the late stage of repair of chronic or recurrent tissue damage. Fibrotic disease is the main factor for the morbidity and mortality of all tissues and organ systems. Long-term fibrosis can lead to organ and tissue dysfunction and even failure. Interleukin -1 family cytokines are a series of classical inflammatory factors and involved in the occurrence and development process of multiple fibrotic diseases, its biological function, relationship with diseases and application are more and more favored by scientists from various countries. So far, 11 cytokines and 10 receptors of IL-1 family have been identified. In this paper, the cytokines, receptors, signaling pathways and biological functions of IL-1 family are summarized, and the correlation with fibrosis diseases is analyzed.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| | - Ji Wu
- Department of Orthopaedics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 Jiangsu, China.
| | - Yunfeng Bai
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China.
| |
Collapse
|
56
|
Shen LF, Chen HH, Guo Y. The role of interleukin 36γ in the epithelial-mesenchymal transition process of chronic rhinosinusitis: A pilot study. Clin Otolaryngol 2023; 48:347-355. [PMID: 36245286 DOI: 10.1111/coa.13993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/14/2022] [Accepted: 08/21/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) is an important characteristic in the remodelling of chronic rhinosinusitis with nasal polyps (CRSwNP). IL-36γ and fibroblast activation protein (FAP) may exacerbate remodelling in CRS. Here, we aimed to determine whether IL-36γ and FAP expression are associated with EMT and may be a predictor for CRSwNP prognosis. METHODS Fifty-two non-Eos CRSwNP patients and 12 control patients were obtained and were followed up for more than 1 year after surgery. IL-36γ, FAP and EMT markers expression were evaluated by real-time polymerase chain reaction and western blot. Masson trichrome staining was adopted to assess tissue fibrotic changes. Furthermore, the soluble form of IL-36γ and FAP in nasal secretions was detected by ELISA. RESULTS While basal expression of E-cadherin decreased, the expression of IL-36γ, vimentin and FAP increased in nasal polyps. In well-prognosis patients, the expression of IL-36γ, vimentin and FAP were significantly decreased than in poor-prognosis patients, while the protein expression of E-cadherin was increased. The protein expression of IL-36γ was notably increased in recurrent nasal polyps than in preoperation specimens. A positive relationship between IL-36γ and FAP expression, a negative relationship between IL-36γ and E-cad expression was noted. The soluble form of IL-36γ and FAP increased during the development of non-Eos CRSwNP, with the highest level in poor-prognosis patients after surgery. CONCLUSION Non-Eos CRSwNP have partially undergone EMT under baseline conditions. IL-36γ and FAP expression were related with EMT, the soluble form of IL-36γ and FAP in nasal secretions may predict the prognosis of patients.
Collapse
Affiliation(s)
- Li-Fang Shen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Hai-Hong Chen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Yu Guo
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| |
Collapse
|
57
|
Gu NX, Guo YR, Lin SE, Wang YH, Lin IH, Chen YF, Yen Y. Frizzled 7 modulates goblet and Paneth cell fate, and maintains homeostasis in mouse intestine. Development 2023; 150:287020. [PMID: 36691900 PMCID: PMC10112897 DOI: 10.1242/dev.200932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Intestinal homeostasis depends on interactions between the intestinal epithelium, the immune system and the microbiota. Because of these complicated connections, there are many problems that need to be solved. Current research has indicated that genes targeted by Wnt signaling are responsible for controlling intestinal stem cell fate and for modulating intestinal homeostasis. Our data show that loss of frizzled 7 (Fzd7), an important element in Wnt signaling, interrupts the differentiation of mouse intestinal stem cells into absorptive progenitors instead of secretory progenitors (precursors of goblet and Paneth cells). The alteration in canonical Wnt and Notch signaling pathways interrupts epithelial homeostasis, resulting in a decrease in physical protection in the intestine. Several phenotypes in our Fzd7-deleted model were similar to the features of enterocolitis, such as shortened intestines, decreased numbers of goblet cells and Paneth cells, and severe inflammation. Additionally, loss of Fzd7 exacerbated the defects in a chemical-induced colitis model and could initiate tumorigenesis. These findings may provide important information for the discovery of efficient therapeutic methods to treat enterocolitis and related cancers in the intestines.
Collapse
Affiliation(s)
- Nai-Xin Gu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ru Guo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sey-En Lin
- Department of Anatomic Pathology, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, New Taipei City 236017, Taiwan
| | - Yen-Hsin Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Hsuan Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fan Chen
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031 , Taiwan
| | - Yun Yen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei 116081 , Taiwan
| |
Collapse
|
58
|
Ferrante M, Irving PM, Selinger CP, D'Haens G, Kuehbacher T, Seidler U, Gropper S, Haeufel T, Forgia S, Danese S, Klaus J, Feagan BG. Safety and tolerability of spesolimab in patients with ulcerative colitis. Expert Opin Drug Saf 2023; 22:141-152. [PMID: 35861588 DOI: 10.1080/14740338.2022.2103536] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Interleukin (IL)-36 signaling has been shown to be increased in ulcerative colitis (UC). Spesolimab, a novel humanized monoclonal antibody, targets the IL-36 pathway. RESEARCH DESIGN AND METHODS We report safety, immunogenicity, and efficacy data of intravenous (IV) spesolimab in UC. Study 1: phase II, randomized, placebo-controlled trial (300 mg single dose; 450 mg every 4 weeks [q4w]; or 1,200 mg q4w, three doses). Study 2: phase IIa, randomized, placebo-controlled trial (1,200 mg q4w). Study 3: phase IIa, open-label, single-arm trial (1,200 mg q4w). Studies lasted 12 weeks, with a 12-, 24-, and 16-week safety follow-up, respectively. RESULTS Adver+se event (AE) rates were similar for spesolimab and placebo in Studies 1 (N = 98; 64.9%; 65.2%) and 2 (N = 22; 86.7%; 71.4%); all patients in Study 3 (N = 8) experienced AEs. The most frequent investigator-assessed drug-related (spesolimab; placebo) AEs were skin rash (5.4%; 0%) and nasopharyngitis (4.1%; 0%) in Study 1; acne (13.3%; 0%) in Study 2; one patient reported skin rash, nasopharyngitis, headache, and acne in Study 3. Efficacy endpoints were not met. CONCLUSIONS Spesolimab was generally well tolerated, with no unexpected safety concerns. The safety data are consistent with studies in other inflammatory diseases.
Collapse
Affiliation(s)
- Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Peter M Irving
- IBD Centre, Guy's and St Thomas' NHS Foundation Trust London, London, UK
| | - Christian P Selinger
- Gastroenterology Department, The Leeds Teaching Hospitals NHS Trust, St James's University Hospital, Leeds, UK
| | - Geert D'Haens
- Inflammatory Bowel Disease Centre, Academic Medical Centre, Amsterdam, Netherlands
| | - Tanja Kuehbacher
- Klinik für Innere Medizin, Diabetologie, Gastroenterologie, Pulmonologie, Tumormedizin und Palliativmedizin, Medius Klinik Nürtingen, Nürtingen, Germany
| | - Ursula Seidler
- Medizinische Hochschule Hannover, Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Hannover, Germany
| | - Savion Gropper
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Thomas Haeufel
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | | | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, Milan, Italy
| | - Jochen Klaus
- Universitätsklinikum Ulm, Klinik für Innere Medizin I, Ulm, Germany
| | - Brian G Feagan
- Alimentiv Inc., Western University, London, Ontario, Canada
| |
Collapse
|
59
|
Comparison of the Inflammatory Circuits in Psoriasis Vulgaris, Non‒Pustular Palmoplantar Psoriasis, and Palmoplantar Pustular Psoriasis. J Invest Dermatol 2023; 143:87-97.e14. [PMID: 35934055 DOI: 10.1016/j.jid.2022.05.1094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
Palmoplantar pustular psoriasis (PPPP) and non‒pustular palmoplantar psoriasis (NPPP) are localized, debilitating forms of psoriasis. The inflammatory circuits involved in PPPP and NPPP are not well-understood. To compare the cellular and immunological features that differentiate PPPP and NPPP, skin biopsies were collected from a total of 30 participants with PPPP, NPPP, and psoriasis vulgaris (PV) and from 10 healthy participants. A subset consented to a second biopsy after 3 additional weeks off medication. Histologic staining of lesional and nonlesional skin showed higher neutrophil counts in PPPP than in NPPP and PV and higher CD8+ T-cell counts in NPPP. RNA sequencing and transcriptional analysis of skin biopsies showed enhanced IFN-γ pathway activation in NPPP lesions but stronger signatures of IL-17 pathway and neutrophil-related genes (e.g., IL36A) in PPPP lesional skin. Serum analysis on the Olink platform detected higher concentrations of T helper type 1, IFN-γ‒inducible chemokines in NPPP, and higher neutrophil-associated cytokines in PPPP. Taken together, this evidence suggests more pronounced T helper 1‒mediated inflammation in NPPP than in PV and PPPP and stronger neutrophil-associated activity in PPPP than in NPPP and PV. These data support targeting inflammatory pathways associated with neutrophilic inflammation (e.g., IL-36 signaling) for therapeutic development in PPPP.
Collapse
|
60
|
Koop K, Enderle K, Hillmann M, Ruspeckhofer L, Vieth M, Sturm G, Trajanoski Z, Kühl AA, Atreya R, Leppkes M, Baum P, Roy J, Martin A, Neurath MF, Neufert C. Interleukin 36 receptor-inducible matrix metalloproteinase 13 mediates intestinal fibrosis. Front Immunol 2023; 14:1163198. [PMID: 37207229 PMCID: PMC10189878 DOI: 10.3389/fimmu.2023.1163198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Background Fibrostenotic disease is a common complication in Crohn's disease (CD) patients hallmarked by transmural extracellular matrix (ECM) accumulation in the intestinal wall. The prevention and medical therapy of fibrostenotic CD is an unmet high clinical need. Although targeting IL36R signaling is a promising therapy option, downstream mediators of IL36 during inflammation and fibrosis have been incompletely understood. Candidate molecules include matrix metalloproteinases which mediate ECM turnover and are thereby potential targets for anti-fibrotic treatment. Here, we have focused on understanding the role of MMP13 during intestinal fibrosis. Methods We performed bulk RNA sequencing of paired colon biopsies taken from non-stenotic and stenotic areas of patients with CD. Corresponding tissue samples from healthy controls and CD patients with stenosis were used for immunofluorescent (IF) staining. MMP13 gene expression was analyzed in cDNA of intestinal biopsies from healthy controls and in subpopulations of patients with CD in the IBDome cohort. In addition, gene regulation on RNA and protein level was studied in colon tissue and primary intestinal fibroblasts from mice upon IL36R activation or blockade. Finally, in vivo studies were performed with MMP13 deficient mice and littermate controls in an experimental model of intestinal fibrosis. Ex vivo tissue analysis included Masson's Trichrome and Sirius Red staining as well as evaluation of immune cells, fibroblasts and collagen VI by IF analysis. Results Bulk RNA sequencing revealed high upregulation of MMP13 in colon biopsies from stenotic areas, as compared to non-stenotic regions of patients with CD. IF analysis confirmed higher levels of MMP13 in stenotic tissue sections of CD patients and demonstrated αSMA+ and Pdpn+ fibroblasts as a major source. Mechanistic experiments demonstrated that MMP13 expression was regulated by IL36R signaling. Finally, MMP13 deficient mice, as compared to littermate controls, developed less fibrosis in the chronic DSS model and showed reduced numbers of αSMA+ fibroblasts. These findings are consistent with a model suggesting a molecular axis involving IL36R activation in gut resident fibroblasts and MMP13 expression during the pathogenesis of intestinal fibrosis. Conclusion Targeting IL36R-inducible MMP13 could evolve as a promising approach to interfere with the development and progression of intestinal fibrosis.
Collapse
Affiliation(s)
- Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Kristina Koop,
| | - Karin Enderle
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miriam Hillmann
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Ruspeckhofer
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, Innsbruck, Austria
- The Transregio 241 IBDome Consortium, Erlangen, Germany
| | - Anja A. Kühl
- The Transregio 241 IBDome Consortium, Erlangen, Germany
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raja Atreya
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- The Transregio 241 IBDome Consortium, Erlangen, Germany
| | - Moritz Leppkes
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | | | - Andrea Martin
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States
| | - Markus F. Neurath
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
61
|
Flannigan KL, Nieves KM, Szczepanski HE, Serra A, Lee JW, Alston LA, Ramay H, Mani S, Hirota SA. The Pregnane X Receptor and Indole-3-Propionic Acid Shape the Intestinal Mesenchyme to Restrain Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 2023; 15:765-795. [PMID: 36309199 PMCID: PMC9883297 DOI: 10.1016/j.jcmgh.2022.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Fibrosis is a common complication of inflammatory bowel diseases (IBDs). The pregnane X receptor (PXR) (encoded by NR1I2) suppresses intestinal inflammation and has been shown to influence liver fibrosis. In the intestine, PXR signaling is influenced by microbiota-derived indole-3-propionic acid (IPA). Here, we sought to assess the role of the PXR in regulating intestinal inflammation and fibrosis. METHODS Intestinal inflammation was induced using dextran sulfate sodium (DSS). Fibrosis was assessed in wild-type (WT), Nr1i2-/-, epithelial-specific Nr1i2-/-, and fibroblast-specific Nr1i2-/- mice. Immune cell influx was quantified by flow cytometry and cytokines by Luminex. Myofibroblasts isolated from WT and Nr1i2-/- mice were stimulated with cytomix or lipopolysaccharide, and mediator production was assessed by quantitative polymerase chain reaction and Luminex. RESULTS After recovery from DSS-induced colitis, WT mice exhibited fibrosis, a response that was exacerbated in Nr1i2-/- mice. This was correlated with greater neutrophil infiltration and innate cytokine production. Deletion of the PXR in fibroblasts, but not the epithelium, recapitulated this phenotype. Inflammation and fibrosis were reduced by IPA administration, whereas depletion of the microbiota exaggerated intestinal fibrosis. Nr1i2-deficient myofibroblasts were hyperresponsive to stimulation, producing increased levels of inflammatory mediators compared with WT cells. In biopsies from patients with active Crohn's disease (CD) and ulcerative colitis (UC), expression of NR1I2 was reduced, correlating with increased expression of fibrotic and innate immune genes. Finally, both CD and UC patients exhibited reduced levels of fecal IPA. CONCLUSIONS These data highlight a role for IPA and its interactions with the PXR in regulating the mesenchyme and the development of inflammation and fibrosis, suggesting microbiota metabolites may be a vital determinant in the progression of fibrotic complications in IBD.
Collapse
Affiliation(s)
- Kyle L Flannigan
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Kristoff M Nieves
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Holly E Szczepanski
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Alex Serra
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Joshua W Lee
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Laurie A Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Hena Ramay
- International Microbiome Centre, University of Calgary, AB, Canada
| | - Sridhar Mani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
62
|
Zhao X, Yang W, Yu T, Yu Y, Cui X, Zhou Z, Yang H, Yu Y, Bilotta AJ, Yao S, Xu J, Zhou J, Yochum GS, Koltun WA, Portolese A, Zeng D, Xie J, Pinchuk IV, Zhang H, Cong Y. Th17 Cell-Derived Amphiregulin Promotes Colitis-Associated Intestinal Fibrosis Through Activation of mTOR and MEK in Intestinal Myofibroblasts. Gastroenterology 2023; 164:89-102. [PMID: 36113570 PMCID: PMC9772145 DOI: 10.1053/j.gastro.2022.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Intestinal fibrosis is a significant complication of Crohn's disease (CD). Gut microbiota reactive Th17 cells are crucial in the pathogenesis of CD; however, how Th17 cells induce intestinal fibrosis is still not completely understood. METHODS In this study, T-cell transfer model with wild-type (WT) and Areg-/- Th17 cells and dextran sulfate sodium (DSS)-induced chronic colitis model in WT and Areg-/- mice were used. CD4+ T-cell expression of AREG was determined by quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of AREG on proliferation/migration/collagen expression in human intestinal myofibroblasts was determined. AREG expression was assessed in healthy controls and patients with CD with or without intestinal fibrosis. RESULTS Although Th1 and Th17 cells induced intestinal inflammation at similar levels when transferred into Tcrβxδ-/- mice, Th17 cells induced more severe intestinal fibrosis. Th17 cells expressed higher levels of AREG than Th1 cells. Areg-/- mice developed less severe intestinal fibrosis compared with WT mice on DSS insults. Transfer of Areg-/- Th17 cells induced less severe fibrosis in Tcrβxδ-/- mice compared with WT Th17 cells. Interleukin (IL)6 and IL21 promoted AREG expression in Th17 cells by activating Stat3. Stat3 inhibitor suppressed Th17-induced intestinal fibrosis. AREG promoted human intestinal myofibroblast proliferation, motility, and collagen I expression, which was mediated by activating mammalian target of rapamycin and MEK. AREG expression was increased in intestinal CD4+ T cells in fibrotic sites compared with nonfibrotic sites from patients with CD. CONCLUSIONS These findings reveal that Th17-derived AREG promotes intestinal fibrotic responses in experimental colitis and human patients with CD. Thereby, AREG might serve as a potential therapeutic target for fibrosis in CD.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, Texas
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, Texas
| | - Yu Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Xiufang Cui
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Hui Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania; Department of Surgery, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Walter A Koltun
- Department of Surgery, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Austin Portolese
- Department of Surgery, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, California
| | - Jingwu Xie
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana
| | - Iryna V Pinchuk
- Division of Gastroenterology, Department of Medicine, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
63
|
Yu H, Zhang Z, Li G, Feng Y, Xian L, Bakhsh F, Xu D, Xu C, Vong T, Wu B, Selaru FM, Wan F, Donowitz M, Wong GW. Adipokine C1q/Tumor Necrosis Factor- Related Protein 3 (CTRP3) Attenuates Intestinal Inflammation Via Sirtuin 1/NF-κB Signaling. Cell Mol Gastroenterol Hepatol 2022; 15:1000-1015. [PMID: 36592863 PMCID: PMC10040965 DOI: 10.1016/j.jcmgh.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The adipokine CTRP3 has anti-inflammatory effects in several nonintestinal disorders. Although serum CTRP3 is reduced in patients with inflammatory bowel disease (IBD), its function in IBD has not been established. Here, we elucidate the function of CTRP3 in intestinal inflammation. METHODS CTRP3 knockout (KO) and overexpressing transgenic (Tg) mice, along with their corresponding wild-type littermates, were treated with dextran sulfate sodium for 6-10 days. Colitis phenotypes and histologic data were analyzed. CTRP3-mediated signaling was examined in murine and human intestinal mucosa and mouse intestinal organoids derived from CTRP3 KO and Tg mice. RESULTS CTRP3 KO mice developed more severe colitis, whereas CTRP3 Tg mice developed less severe colitis than wild-type littermates. The deletion of CTRP3 correlated with decreased levels of Sirtuin-1 (SIRT1), a histone deacetylase, and increased levels of phosphorylated/acetylated NF-κB subunit p65 and proinflammatory cytokines tumor necrosis factor-α and interleukin-6. Results from CTRP3 Tg mice were inverse to those from CTRP3 KO mice. The addition of SIRT1 activator resveratrol to KO intestinal organoids and SIRT1 inhibitor Ex-527 to Tg intestinal organoids suggest that SIRT1 is a downstream effector of CTRP3-related inflammatory changes. In patients with IBD, a similar CTRP3/SIRT1/NF-κB relationship was observed. CONCLUSIONS CTRP3 expression levels correlate negatively with intestinal inflammation in acute mouse colitis models and patients with IBD. CTRP3 may attenuate intestinal inflammation via SIRT1/NF-κB signaling. The manipulation of CTRP3 signaling, including through the use of SIRT1 activators, may offer translational potential in the treatment of IBD.
Collapse
Affiliation(s)
- Huimin Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Zixin Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gangping Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yan Feng
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital, Penn Medicine, Philadelphia, Pennsylvania
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fatemeh Bakhsh
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Wu
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
64
|
Abstract
Targeting cytokines in inflammatory bowel disease (IBD) is a useful clinical approach. Potential therapies for IBD include regulatory T cell transfer to restore cytokine balance, blocking proinflammatory cytokines (e.g., IL-12 and IL-23) or their receptors (sIL-6R and IL-36R), or inhibiting signaling kinases (e.g., JAK). An emerging trend in IBD therapy is to combine several anti-cytokine agents simultaneously.
Collapse
Affiliation(s)
- Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nürnberg, Kussmaul Campus for Medical Research, and Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
65
|
Liang Z, Sun R, Tu P, Liang Y, Liang L, Liu F, Bian Y, Yin G, Zhao F, Jiang M, Gu J, Tang D. Immune-related gene-based prognostic index for predicting survival and immunotherapy outcomes in colorectal carcinoma. Front Immunol 2022; 13:944286. [PMID: 36591255 PMCID: PMC9795839 DOI: 10.3389/fimmu.2022.944286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Colorectal cancer shows high incidence and mortality rates. Immune checkpoint blockade can be used to treat colorectal carcinoma (CRC); however, it shows limited effectiveness in most patients. Methods To identify patients who may benefit from immunotherapy using immune checkpoint inhibitors, we constructed an immune-related gene prognostic index (IRGPI) for predicting the efficacy of immunotherapy in patients with CRC. Transcriptome datasets and clinical information of patients with CRC were used to identify differential immune-related genes between tumor and para-carcinoma tissue. Using weighted correlation network analysis and Cox regression analysis, the IRGPI was constructed, and Kaplan-Meier analysis was used to evaluate its predictive ability. We also analyzed the molecular and immune characteristics between IRGPI high-and low-risk subgroups, performed sensitivity analysis of ICI treatment, and constructed overall survival-related receiver operating characteristic curves to validate the IRGPI. Finally, IRGPI genes and tumor immune cell infiltration in CRC model mice with orthotopic metastases were analyzed to verify the results. Results The IRGPI was constructed based on the following 11 hub genes: ADIPOQ, CD36, CCL24, INHBE, UCN, IL1RL2, TRIM58, RBCK1, MC1R, PPARGC1A, and LGALS2. Patients with CRC in the high-risk subgroup showed longer overall survival than those in the low-risk subgroup, which was confirmed by GEO database. Clinicopathological features associated with cancer progression significantly differed between the high- and low-risk subgroups. Furthermore, Kaplan-Meier analysis of immune infiltration showed that the increased infiltration of naïve B cells, macrophages M1, and regulatory T cells and reduced infiltration of resting dendritic cells and mast cells led to a worse overall survival in patients with CRC. The ORC curves revealed that IRGPI predicted patient survival more sensitive than the published tumor immune dysfunction and rejection and tumor inflammatory signature. Discussion Thus, the low-risk subgroup is more likely to benefit from ICIs than the high-risk subgroup. CRC model mice showed higher proportions of Tregs, M1 macrophages, M2 macrophages and lower proportions of B cells, memory B cell immune cell infiltration, which is consistent with the IRGPI results. The IRGPI can predict the prognosis of patients with CRC, reflect the CRC immune microenvironment, and distinguish patients who are likely to benefit from ICI therapy.
Collapse
Affiliation(s)
- Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruolan Sun
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fuyan Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Bian
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Yin
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingchen Jiang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Junfei Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Decai Tang, ; Junfei Gu,
| | - Decai Tang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Decai Tang, ; Junfei Gu,
| |
Collapse
|
66
|
Yoon HJ, Lee S, Kim TY, Yu SE, Kim HS, Chung YS, Chung S, Park S, Shin YC, Wang EK, Noh J, Kim HJ, Ku CR, Koh H, Kim CS, Park JS, Shin YM, Sung HJ. Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy. Bioact Mater 2022; 18:433-445. [PMID: 35415304 PMCID: PMC8971598 DOI: 10.1016/j.bioactmat.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022] Open
Abstract
All-in-one treatments represent a paradigm shift in future medicine. For example, inflammatory bowel disease (IBD) is mainly diagnosed by endoscopy, which could be applied for not only on-site monitoring but also the intestinal lesion-targeted spray of injectable hydrogels. Furthermore, molecular conjugation to the hydrogels would program both lesion-specific adhesion and drug-free therapy. This study validated this concept of all-in-one treatment by first utilizing a well-known injectable hydrogel that underwent efficient solution-to-gel transition and nanomicelle formation as a translatable component. These properties enabled spraying of the hydrogel onto the intestinal walls during endoscopy. Next, peptide conjugation to the hydrogel guided endoscopic monitoring of IBD progress upon adhesive gelation with subsequent moisturization of inflammatory lesions, specifically by nanomicelles. The peptide was designed to mimic the major component that mediates intestinal interaction with Bacillus subtilis flagellin during IBD initiation. Hence, the peptide-guided efficient adhesion of the hydrogel nanomicelles onto Toll-like receptor 5 (TLR5) as the main target of flagellin binding and Notch-1. The peptide binding potently suppressed inflammatory signaling without drug loading, where TLR5 and Notch-1 operated collaboratively through downstream actions of tumor necrosis factor-alpha. The results were produced using a human colorectal cell line, clinical IBD patient cells, gut-on-a-chip, a mouse IBD model, and pig experiments to validate the translational utility. Injectable nanomicelle hydrogel for all-in-one treatment of intestinal inflammation. Spraying of the hydrogel onto the intestinal walls during endoscopy. Peptide-guided detection and moisturization of inflammatory lesions.
Collapse
Affiliation(s)
- Hyo-Jin Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae Young Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Shin Chung
- Department of Obstetrics and Gynecology, Institution of Women's Life Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Suji Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Cheol Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eun Kyung Wang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jihye Noh
- Department of Pediatrics, Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Jung Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cheol Ryong Ku
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Soo Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Numais Co., Ltd., Korea Seoul 04799, Republic of Korea
| | - Joon-Sang Park
- Department of Computer Engineering, Hongik University, Seoul, 04066, Republic of Korea
- Corresponding author.
| | - Young Min Shin
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Corresponding author.
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
67
|
Vieujean S, D’Amico F, Netter P, Danese S, Peyrin‐Biroulet L. Landscape of new drugs and targets in inflammatory bowel disease. United European Gastroenterol J 2022; 10:1129-1166. [PMID: 36112543 PMCID: PMC9752289 DOI: 10.1002/ueg2.12305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023] Open
Abstract
Although the therapeutic armamentarium of Inflammatory bowel diseases (IBD) physicians has expanded rapidly in recent years, a proportion of patients remain with a suboptimal response to medical treatment due to primary no response, loss of response or intolerance to currently available drugs. Our growing knowledges of IBD pathophysiology has led to the development of a multitude of new therapies over time, which may, 1 day, be able to address this unmet medical need. This review aims to provide physicians an update of emerging therapies in IBD by focusing on drugs currently in phase 3 clinical trials. Among the most promising molecules are anti-IL-23, JAK-inhibitors, anti-integrins and S1P modulators. While the results in terms of efficacy and safety are fairly clear for some classes, the question of safety remains more uncertain for other classes. Molecules at a more preliminary stage of development (phase 1 and 2), one of which may 1 day offer an optimal benefit-risk ratio, will also be presented as well as their respective mechanisms of action.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato‐Gastroenterology and Digestive OncologyUniversity Hospital CHU of LiègeLiègeBelgium
| | - Ferdinando D’Amico
- Department of Gastroenterology and EndoscopyIRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleMilanItaly
| | | | - Silvio Danese
- Department of Gastroenterology and EndoscopyIRCCS San Raffaele Hospital and Vita‐Salute San Raffaele UniversityMilanItaly
| | - Laurent Peyrin‐Biroulet
- Department of GastroenterologyUniversity of LorraineCHRU‐NancyNancyFrance
- University of LorraineInserm, NGERENancyFrance
| |
Collapse
|
68
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
69
|
Lin SN, Musso A, Wang J, Mukherjee PK, West GA, Mao R, Lyu R, Li J, Zhao S, Elias M, Haberman Y, Denson LA, Kugathasan S, Chen MH, Czarnecki D, Dejanovic D, Le HT, Chandra J, Lipman J, Steele SR, Nguyen QT, Fiocchi C, Rieder F. Human intestinal myofibroblasts deposited collagen VI enhances adhesiveness for T cells - A novel mechanism for maintenance of intestinal inflammation. Matrix Biol 2022; 113:1-21. [PMID: 36108990 PMCID: PMC10043923 DOI: 10.1016/j.matbio.2022.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1β (IL-1β) and tumor necrosis factor (TNF) increased, and to transforming growth factor-β1 (TGF-β1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvβ1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvβ1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alessandro Musso
- Division of Gastroenterology, Città della Salute e della Scienza di Torino, Molinette Hospital, Turin, Italy
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan, China
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yael Haberman
- Sheba Medical Center, Tel Hashomer, Affiliated with the Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Min-Hu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Doug Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dina Dejanovic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Lipman
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, 9500 Euclid Avenue - NC22, Cleveland, OH, USA.
| |
Collapse
|
70
|
Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 2022; 381:104614. [PMID: 36182587 DOI: 10.1016/j.cellimm.2022.104614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/03/2022]
Abstract
Intestinal macrophages are heterogenous cell populations with different developmental ontogeny and tissue anatomy. The concerted actions of intestinal macrophage subsets are critical to maintaining tissue homeostasis. However, the dysregulation of macrophages following tissue injury or chronic inflammation could also lead to intestinal fibrosis, with few treatment options in the clinic. In this review, we will characterize the features of intestinal macrophages in light of the latest advances in lineage tracing and single-cell sequencing technology. The roles of macrophages in distinct stages of intestinal fibrosis would be also elaborated. Finally, based on the reciprocal interaction between macrophages and intestinal fibrosis, we will propose the potential macrophage targeting anti-intestinal fibrosis therapies.
Collapse
Affiliation(s)
- Hui Yao
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
71
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
72
|
Xu W, Hua Z, Wang Y, Gu Y, Zhong J, Cui L, Du P. The endoscopic prediction model of simple endoscopic score for Crohn’s disease (SES-CD) as an effective predictor of intestinal obstruction in Crohn’s disease: A multicenter long-term follow-up study. Front Surg 2022; 9:984029. [PMID: 36338648 PMCID: PMC9632952 DOI: 10.3389/fsurg.2022.984029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background The simple endoscopic score for Crohn's disease (SES-CD) is a widely used index to evaluate clinical and endoscopic activity. However, the association and predictive value of SES-CD for intestinal obstruction in Crohn's disease (CD) remains unclear. We aimed to establish the best cut-off indicators of SES-CD for early clinical intervention and subsequent prevention of intestinal obstruction in CD. Methods Data on patients with CD evaluated at our institute from January 2016 to January 2022 were retrospectively collected. The SES-CD and Crohn's Disease Activity Index scores used in the analysis indicated the results of the first clinical and colonoscopy evaluations after hospitalization. The primary outcome was the occurrence of intestinal obstruction during admission and follow-up. Results A total of 248 patients with a median follow-up time of 2 years [interquartile range: 1.0–4.0] were enrolled, of which 28.2% developed intestinal obstruction. An SES-CD score of 8 was the most significant threshold evaluation, and SES-CD ≥8 had the largest area under the receiver operating characteristic curve (0.705), with a sensitivity of 52.9% and specificity of 88.2% in predicting intestinal obstruction. Furthermore, SES-CD ≥8 had the greatest risk factor for intestinal obstruction (odds ratio: 7.731; 95% confidence interval: 3.901–15.322; p < 0.001) and significantly decreased the overall intestinal obstruction-free survival (p < 0.001). Conclusion The SES-CD endoscopic prediction model could be an effective predictor of intestinal obstruction in patients with CD. More frequent follow-up and colonoscopic surveillance should be considered in patients with SES-CD score ≥8 to prevent the development of intestinal obstruction.
Collapse
Affiliation(s)
- Weimin Xu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhebin Hua
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaosheng Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yubei Gu
- Department of Gastroenterology, Rui Jin Hospital, Affiliate to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Correspondence: Peng Du Long Cui Yubei Gu
| | - Jie Zhong
- Department of Gastroenterology, Rui Jin Hospital, Affiliate to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Long Cui
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Correspondence: Peng Du Long Cui Yubei Gu
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Correspondence: Peng Du Long Cui Yubei Gu
| |
Collapse
|
73
|
Poudel M, Bhattarai PY, Shrestha P, Choi HS. Regulation of Interleukin-36γ/IL-36R Signaling Axis by PIN1 in Epithelial Cell Transformation and Breast Tumorigenesis. Cancers (Basel) 2022; 14:cancers14153654. [PMID: 35954317 PMCID: PMC9367291 DOI: 10.3390/cancers14153654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Members of the interleukin (IL)-1 cytokine family exhibit dual functions in the regulation of inflammation and cancer. Recent studies have shown the critical role of IL-36γ, the newly identified IL-1 family member, in the regulation of cellular processes implicated in the progression of cancer. Therefore, the underlying mechanism of IL-36γ in tumor development is of considerable interest. Here, we identified the pivotal role of IL-36γ in the proliferation of breast cancer cells. Consistently, IL-36γ was found to promote epithelial cell transformation via the activation of c-Fos, c-Jun, and AP-1 transcription factors, followed by the IL36R-mediated MEK/ERK and JNK/c-Jun cascades. Furthermore, our findings demonstrate the critical role of PIN1 in the regulation of IL-36γ-induced mammary gland tumorigenesis. Abstract Given the increasing recognition of the relationship between IL-1 cytokines, inflammation, and cancer, the significance of distinct members of the IL-1 cytokine family in the etiology of cancer has been widely researched. In the present study, we investigated the underlying mechanism of the IL-36γ/IL-36R axis during breast cancer progression, which has not yet been elucidated. Initially, we determined the effects of IL-36γ on the proliferation and epithelial cell transformation of JB6 Cl41 mouse epidermal and MCF7 human breast cancer cells using BrdU incorporation and anchorage-independent growth assays. We found that treatment with IL-36γ increased the proliferation and colony formation of JB6 Cl41 and MCF7 cells. Analysis of the mechanism underlying the neoplastic cell transformation revealed that IL-36γ induced IL-36R-mediated phosphorylation of MEK1/2, ERK1/2, JNK1/2, and c-Jun, resulting in increased c-Fos, c-Jun, and AP-1 activities in JB6 Cl41 and MCF7 cells. Furthermore, the IL-36γ-induced tumorigenic capacity of MCF7 cells was considerably enhanced by PIN1, following MEK/ERK and JNK/c-Jun signaling. Interestingly, blocking PIN1 activity using juglone suppressed the IL-36γ-induced increase in the anchorage-independent growth of 4T1 metastatic mouse breast cancer cells. Finally, in a syngeneic mouse model, IL-36γ-induced tumor growth in the breast mammary gland was significantly inhibited following PIN1 knockout.
Collapse
Affiliation(s)
| | | | | | - Hong Seok Choi
- Correspondence: ; Tel.: +82-622306379; Fax: +82-622225414
| |
Collapse
|
74
|
Butera A, Quaranta MT, Crippa L, Spinello I, Saulle E, Di Carlo N, Campanile D, Boirivant M, Labbaye C. CD147 Targeting by AC-73 Induces Autophagy and Reduces Intestinal Fibrosis Associated with TNBS Chronic Colitis. J Crohns Colitis 2022; 16:1751-1761. [PMID: 35833587 PMCID: PMC9683082 DOI: 10.1093/ecco-jcc/jjac084] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis is a common complication of inflammatory bowel diseases. Medical treatment of intestinal fibrosis is an unmet therapeutic need. CD147 overexpression can induce myofibroblast differentiation associated with extracellular matrix deposition, favouring the development of fibrosis. To understand whether CD147 may promote intestinal fibrosis, we analysed its expression and blocked its function by using its specific inhibitor AC-73 [3-{2-[([1,1'-biphenyl]-4-ylmethyl) amino]-1-hydroxyethyl} phenol] in the murine TNBS [trinitrobenzenesulfonic acid]-chronic colitis model associated with intestinal fibrosis. METHODS TNBS chronic colitis was induced by weekly intrarectal administration of escalating doses of TNBS. Ethanol-treated and untreated mice were used as controls. Separated groups of TNBS, ethanol-treated or untreated mice received AC-73 or vehicle administered intraperitoneally from day 21 to day 49. At day 49, mice were killed, and colons collected for histological analysis, protein and RNA extraction. CD147, α-SMA and activated TGF-β1 protein levels, CD147/ERK/STAT3 signalling pathway and autophagy were assessed by Western blot, collagen and inflammatory/fibrogenic cytokines mRNA tissue content by quantitative PCR. RESULTS In mice with chronic TNBS colitis, CD147 protein level increased during fibrosis development in colonic tissue, as compared to control mice. CD147 inhibition by AC-73 treatment reduced intestinal fibrosis, collagen and cytokine mRNA tissue content, without significant modulation of activated TGF-β1 protein tissue content. AC-73 inhibited CD147/ERK1/2 and STAT3 signalling pathway activation and induced autophagy. CONCLUSIONS CD147 is a potential new target for controlling intestinal fibrosis and its inhibitor, AC-73, might represent a potential new anti-fibrotic therapeutic option in IBD.
Collapse
Affiliation(s)
| | | | - Luca Crippa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Nazzareno Di Carlo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Doriana Campanile
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Boirivant
- Corresponding authors: Monica Boirivant, MD, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale R. Elena, 299, 00161 Roma, Italy. Tel: +39 0649902976; E-mail:
| | - Catherine Labbaye
- Catherine Labbaye, PhD, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale R. Elena, 299, 00161 Roma, Italy. Tel: +39 0649902418; E-mail:
| |
Collapse
|
75
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
76
|
Neufert C. Transmural intestinal fibrosis in men and mice. Gut 2022; 71:1242-1244. [PMID: 34725200 DOI: 10.1136/gutjnl-2021-325522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/23/2021] [Indexed: 12/08/2022]
Affiliation(s)
- Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Bavaria, Germany .,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Bavaria, Germany
| |
Collapse
|
77
|
Baker JR, Fenwick PS, Koss CK, Owles HB, Elkin SL, Fine JS, Thomas M, Kasmi KC, Barnes PJ, Donnelly LE. Imbalance between IL-36 receptor agonist and antagonist drives neutrophilic inflammation in COPD. JCI Insight 2022; 7:155581. [PMID: 35763349 PMCID: PMC9462491 DOI: 10.1172/jci.insight.155581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Current treatments fail to modify the underlying pathophysiology and disease progression of chronic obstructive pulmonary disease (COPD), necessitating alternative therapies. Here, we show that COPD subjects have increased IL-36γ and decreased IL-36 receptor antagonist (IL-36Ra) in bronchoalveolar and nasal fluid compared to control subjects. IL-36γ is derived from small airway epithelial cells (SAEC) and further induced by a viral mimetic, whereas IL-36RA is derived from macrophages. IL-36γ stimulates release of the neutrophil chemoattractants CXCL1 and CXCL8, as well as elastolytic matrix metalloproteinases (MMPs) from small airway fibroblasts (SAF). Proteases released from COPD neutrophils cleave and activate IL-36γ thereby perpetuating IL-36 inflammation. Transfer of culture media from SAEC to SAF stimulated release of CXCL1, that was inhibited by exogenous IL-36RA. The use of a therapeutic antibody that inhibits binding to the IL-36 receptor (IL-36R) attenuated IL-36γ driven inflammation and cellular cross talk. We have demonstrated a mechanism for the amplification and propagation of neutrophilic inflammation in COPD and that blocking this cytokine family via a IL-36R neutralizing antibody could be a promising new therapeutic strategy in the treatment of COPD.
Collapse
Affiliation(s)
- Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter S Fenwick
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Harriet B Owles
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah L Elkin
- Department of Respiratory Medicine, Imperial College Healthcare Trust, London, United Kingdom
| | - Jay S Fine
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, United States of America
| | - Matthew Thomas
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Karim C Kasmi
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
78
|
Kreiss L, Thoma OM, Lemire S, Lechner K, Carlé B, Dilipkumar A, Kunert T, Scheibe K, Heichler C, Merten AL, Weigmann B, Neufert C, Hildner K, Vieth M, Neurath MF, Friedrich O, Schürmann S, Waldner MJ. Label-Free Characterization and Quantification of Mucosal Inflammation in Common Murine Colitis Models With Multiphoton Imaging. Inflamm Bowel Dis 2022; 28:1637-1646. [PMID: 35699622 PMCID: PMC9629455 DOI: 10.1093/ibd/izac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.
Collapse
Affiliation(s)
- Lucas Kreiss
- Address correspondence to: Lucas Kreiss, Dr.-Ing, Institute of Medical Biotechnology, Paul-Gordan-Str 3, 91052 Erlangen, Germany ()
| | | | - Sarah Lemire
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Lechner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Ashwathama Dilipkumar
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anna-Lena Merten
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
79
|
Yu M, Zhu W, Wang J, Chen X, He X, Lin B, Cen L, Zhou T, Lu C, Yu C, Sun J. Caveolin-1 Alleviates Crohn's Disease-induced Intestinal Fibrosis by Inhibiting Fibroblasts Autophagy Through Modulating Sequestosome 1. Inflamm Bowel Dis 2022; 28:923-935. [PMID: 35020883 DOI: 10.1093/ibd/izab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal fibrosis is a common complication of Crohn's disease (CD) and is characterized by the excessive accumulation of extracellular matrix produced by activated myofibroblasts. Caveolin-1 (CAV1) inhibits fibrosis. However, limited data show that CAV1 affects intestinal fibrosis. METHODS Human CD tissue samples were gained from patients with CD who underwent surgical resection of the intestine and were defined as stenotic or nonstenotic areas. A dextran sodium sulfate-induced mouse model of intestinal fibrosis was established. For in vitro experiments, we purchased CCD-18Co intestinal fibrosis cells and isolated and cultured human primary colonic fibroblasts. These fibroblasts were activated by transforming growth factor β administration for 48 hours. In the functional experiments, a specific small interfering RNA or overexpression plasmid was transfected into fibroblasts. The messenger RNA levels of fibrosis markers, such as α-smooth muscle actin, fibronectin, connective tissue growth factor, and collagen I1α, were determined using quantitative polymerase chain reaction. Western blot analysis was applied to detect the expression of CAV1, SQSTM1/p62 (sequestosome 1), and other fibrosis markers. RESULTS In human CD samples and the dextran sodium sulfate-induced mouse model of intestinal fibrosis, we observed a downregulation of CAV1 in fibrosis-activated areas. Mechanistically, CAV1 knockdown in both human primary colonic fibroblasts and CCD-18Co cells promoted fibroblast activation, while CAV1 overexpression inhibited fibroblast activation in vitro. We found that SQSTM1/p62 positively correlated with CAV1 expression levels in patients with CD and that it was indirectly modulated by CAV1 expression. Rescue experiments showed that CAV1 decreased primary human intestinal fibroblast activation by inhibiting fibroblast autophagy through the modulation of SQSTM1/p62. CONCLUSIONS Our data demonstrate that CAV1 deficiency induces fibroblast activation by indirectly regulating SQSTM1/p62 to promote fibroblast autophagy. CAV1 or SQSTM1/p62 may be potential therapeutic targets for intestinal fibrosis.
Collapse
Affiliation(s)
- Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinhai Wang
- Department of Colorectal Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyang Chen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinjue He
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Cen
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianyu Zhou
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Lu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
80
|
Interleukin-36α is elevated in diffuse systemic sclerosis and may potentiate fibrosis. Cytokine 2022; 156:155921. [PMID: 35667282 DOI: 10.1016/j.cyto.2022.155921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune prototypical connective tissues disease that results in alterations in vasculature, inflammation and fibrosis of the skin. Interleukin-1 family cytokines has been implicated in the disease including IL-1. IL-36α is an IL-1 family member that is clearly implicated in psoriatic skin disease but its role in systemic sclerosis disease is not clear. The aim of this work is to evaluate the levels and role of IL-36α in systemic sclerosis. Early diffuse SSc patients sera was isolated along with healthy controls and IL-36 levels quantified by ELISA. In vitro analysis was also undertaken with primary dermal fibroblasts with recombinant IL-36α and keratinocyte cells were also incubated with IL-36α. Cytokines were measured by ELISA. Serum IL-36 was significantly elevated compared to healthy controls. Elevated neutrophil elastase was also elevated in the matched sera. IL-36 was not directly pro-fibrotic in dermal fibroblasts but did induce pro-inflammatory cytokines that were dependant on the MAPK pathway for their release. IL-36α also led to release of CCL20 and CCL2 in keratinocytes which may potentiate fibrosis. IL-36α is elevated in SSc serum and whilst not directly pro-fibrotic it may through keratinocytes, potentiate fibrosis through keratinocyte-immune fibroblast cross-talk.
Collapse
|
81
|
Hernandez Santana YE, Irwin N, Walsh PT. IL-36: a therapeutic target for ulcerative colitis? Expert Opin Ther Targets 2022; 26:507-512. [PMID: 35634891 DOI: 10.1080/14728222.2022.2084381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yasmina E Hernandez Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Naoise Irwin
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
82
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
83
|
Xie M, Xiong Z, Yin S, Xiong J, Li X, Jin L, Zhang F, Chen H, Lan P, Lian L. Adiponectin Alleviates Intestinal Fibrosis by Enhancing AMP-Activated Protein Kinase Phosphorylation. Dig Dis Sci 2022; 67:2232-2243. [PMID: 34009553 DOI: 10.1007/s10620-021-07015-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intestinal fibrosis is a common complication of Crohn's disease (CD). Adiponectin reportedly exerts anti-inflammatory effects in various disease models, including colitis models. AIMS In this study, we aimed to determine the effects of adiponectin on intestinal fibrosis and the underlying mechanisms. METHODS A murine model of intestinal fibrosis was established by administering increasing doses of 2,4,6-trinitrobenzene sulfonic acid to Balb/c mice via enema for 7 weeks. Primary human fibroblasts were isolated from the colon tissues of patients with CD. The fibroblasts were incubated with transforming growth factor (TGF)-β1 to establish a fibrosis model in vitro. Pathway inhibitors were used to verify the potential signaling pathways involved in the anti-fibrogenic effect of adiponectin. RESULTS Compared with the normal mesentery, adiponectin expression was significantly increased in the hypertrophic mesentery of patients with CD. Intraperitoneal injection of adiponectin significantly decreased the activity of myeloperoxidase and the expression of pro-inflammatory cytokines (tumor necrosis factor α and interleukin 6) in the colon of fibrosis model mice, whereas the expression of the anti-inflammatory cytokine interleukin 10 was substantially increased. Moreover, adiponectin treatment inhibited colon shortening, decreased colon weight, and reduced fibrotic protein deposition in the model mice. Adiponectin reduced the phosphorylation of Smad2 and collagen deposition induced by TGF-β1 in primary human intestinal fibroblasts, with an increase in AMP-activated protein kinase (AMPK) phosphorylation. Furthermore, this phenomenon was reversed by the AMPK inhibitor. CONCLUSIONS Adiponectin can protect against intestinal fibrosis by enhancing the phosphorylation of AMPK and inhibiting the activity of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Zhizhong Xiong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Shi Yin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Jiaqing Xiong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Xianzhe Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Longyang Jin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Fengxiang Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Huaxian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, People's Republic of China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China.
| |
Collapse
|
84
|
Wang Y, Wang Z, Yang H, Chen S, Zheng D, Liu X, Jiang Q, Chen Y. Metformin Ameliorates Chronic Colitis-Related Intestinal Fibrosis via Inhibiting TGF-β1/Smad3 Signaling. Front Pharmacol 2022; 13:887497. [PMID: 35645830 PMCID: PMC9136141 DOI: 10.3389/fphar.2022.887497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Intestinal fibrosis is considered to be a chronic complication of inflammatory bowel disease (IBD) and seriously threatening human health. Effective medical therapies or preventive measures are desirable but currently unavailable. Metformin has been proved to have a satisfactory anti-inflammatory effects in ulcerative colitis (UC) patients. Whether metformin can ameliorate chronic colitis-related intestinal fibrosis and the possible mechanisms remain unclear. Here, we established colitis-related intestinal fibrosis in mice by repetitive administration of TNBS or DSS. Preventive and therapeutic administration of metformin to chronic TNBS or DSS colitis mice indicated that metformin significantly attenuated intestinal fibrosis by suppressing Smad3 phosphorylation. In vitro studies with human colon fibroblast cell line (CCD-18Co) and primary human intestinal fibroblast treated with TGF-β1 confirmed the anti-fibrotic function of metformin for fibroblast activation, proliferation and collagen production. Mechanistically, metformin particularly inhibited phosphorylation and nuclear translocation of Smad3 by blocking the interaction of Smad3 with TβRI. These findings suggest that metformin will be an attractive anti-fibrotic drug for intestinal fibrosis in future therapies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Wang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dekai Zheng
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinrui Jiang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Ye Chen,
| |
Collapse
|
85
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
86
|
Zhang Q, Guo L, Song X, Lv C, Tang P, Li Y, Ding Q, Li M. Serum IL-36 cytokines levels in idiopathic pulmonary fibrosis and connective tissue disease-associated interstitial lung diseases. Clin Chim Acta 2022; 530:8-12. [DOI: 10.1016/j.cca.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
|
87
|
Fousekis FS, Mitselos IV, Tepelenis K, Pappas-Gogos G, Katsanos KH, Lianos GD, Frattini F, Vlachos K, Christodoulou DK. Medical, Endoscopic and Surgical Management of Stricturing Crohn's Disease: Current Clinical Practice. J Clin Med 2022; 11:2366. [PMID: 35566492 PMCID: PMC9104530 DOI: 10.3390/jcm11092366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
The development of fibrostenotic intestinal disease occurs in approximately one-third of patients with Crohn's disease and is associated with increased morbidity. Despite introducing new biologic agents, stricturing Crohn's disease remains a significant clinical challenge. Medical treatment is considered the first-line treatment for inflammatory strictures, and anti-TNF agents appear to provide the most considerable benefit among the available medical treatments. However, medical therapy is ineffective on strictures with a mainly fibrotic component, and a high proportion of patients under anti-TNF will require surgery. In fibrotic strictures or cases refractory to medical treatment, an endoscopic or surgical approach should be considered depending on the location, length, and severity of the stricture. Both endoscopic balloon dilatation and endoscopic stricturoplasty are minimally invasive and safe, associated with a small risk of complications. On the other hand, the surgical approach is indicated in patients not suitable for endoscopic therapy. This review aimed to present and analyze the currently available medical, endoscopic, and surgical management of stricturing Crohn's disease.
Collapse
Affiliation(s)
- Fotios S. Fousekis
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (F.S.F.); (I.V.M.); (K.H.K.)
| | - Ioannis V. Mitselos
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (F.S.F.); (I.V.M.); (K.H.K.)
| | - Kostas Tepelenis
- Department of Surgery, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.T.); (G.P.-G.); (G.D.L.); (K.V.)
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.T.); (G.P.-G.); (G.D.L.); (K.V.)
| | - Konstantinos H. Katsanos
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (F.S.F.); (I.V.M.); (K.H.K.)
| | - Georgios D. Lianos
- Department of Surgery, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.T.); (G.P.-G.); (G.D.L.); (K.V.)
| | | | - Konstantinos Vlachos
- Department of Surgery, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (K.T.); (G.P.-G.); (G.D.L.); (K.V.)
| | - Dimitrios K. Christodoulou
- Department of Gastroenterology and Hepatology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece; (F.S.F.); (I.V.M.); (K.H.K.)
| |
Collapse
|
88
|
Chandrasinghe P. Surgical Management of Small Bowel Crohn's Disease. Front Surg 2022; 9:759668. [PMID: 35495760 PMCID: PMC9051431 DOI: 10.3389/fsurg.2022.759668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn's disease in the small bowel could present itself as an inflammatory stricture, a fibrotic stricture as penetrating disease or a combination of both. It is pertinent to differentiate the disease process as well as its extent to effectively manage the disease. Currently, a combination of medical and surgical therapies forms part of the treatment plan while the debate of which therapy is better continues. In managing the strictures, identification of the disease process through imaging plays a pivotal role as inflammatory strictures respond to anti-tumor necrosis factor (TNF) and biological agents, while fibrotic strictures require endoscopic or surgical intervention. Recent evidence suggests a larger role for surgical excision, particularly in ileocolic disease, while achieving a balance between disease clearance and bowel preservation. Several adaptations to the surgical technique, such as wide mesenteric excision, side to side or Kono-S anastomosis, and long-term metronidazole therapy, are being undertaken even though their absolute benefit is yet to be determined. Penetrating disease requires a broader multidisciplinary approach with a particular focus on nutrition, skincare, and intestinal failure management. The current guidance directs toward early surgical intervention for penetrating disease when feasible. Accurate preoperative imaging, medical management of active diseases, and surgical decision-making based on experience and evidence play a key role in success.
Collapse
|
89
|
Yang W, Dong H, Wang P, Xu Z, Xian J, Chen J, Wu H, Lou Y, Lin D, Zhong B. IL-36γ and IL-36Ra Reciprocally Regulate Colon Inflammation and Tumorigenesis by Modulating the Cell-Matrix Adhesion Network and Wnt Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103035. [PMID: 35119210 PMCID: PMC8981487 DOI: 10.1002/advs.202103035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/14/2021] [Indexed: 05/07/2023]
Abstract
Inflammatory bowel disease and colorectal cancer are associated with dysregulation of cytokine networks. However, it is challenging to target cytokines for effective intervention because of the overlapping functions and unpredictable interactions of cytokines in such diverse networks. Here, it is shown that IL-36γ and IL-36Ra, an agonist and an antagonist for IL-36R signaling respectively, reciprocally regulate the experimental colitis and the colon cancer development in mice. Knockout or neutralization of IL-36γ alleviates dextran sulfate sodium (DSS)-induced colitis and inhibits colon cancer development, whereas knockout of IL-36Ra exacerbates DSS-induced colitis and promotes colonic tumorigenesis in multiple colon cancer models in mice. Mechanistically, IL-36γ upregulates extracellular matrix and cell-matrix adhesion molecules and facilitates Wnt signaling, which is mitigated by IL-36Ra or IL-36γ neutralizing antibody. Consistently, IL-36γ levels are positively correlated with extracellular matrix levels and β-catenin levels in human colorectal tumor biopsies. These findings suggest the critical role of IL-36γ and IL-36Ra in gut inflammation and tumorigenesis and indicate that targeting the IL-36γ/IL-36Ra signal balance provides potential therapeutic strategy for inflammatory bowel disease and gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Yang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Hong‐Peng Dong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Peng Wang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Zhi‐Gao Xu
- Institute of Hepatobiliary Diseases and Transplant CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiahuan Xian
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Jiachen Chen
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Hai Wu
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Yang Lou
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| |
Collapse
|
90
|
Bamias G, Pizarro TT, Cominelli F. Immunological Regulation of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:337-349. [PMID: 34904152 PMCID: PMC8919810 DOI: 10.1093/ibd/izab251] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a late-stage phenotype of inflammatory bowel disease (IBD), which underlies most of the long-term complications and surgical interventions in patients, particularly those with Crohn's disease. Despite these issues, antifibrotic therapies are still scarce, mainly due to the current lack of understanding concerning the pathogenetic mechanisms that mediate fibrogenesis in patients with chronic intestinal inflammation. In the current review, we summarize recent evidence regarding the cellular and molecular factors of innate and adaptive immunity that are considered critical for the initiation and amplification of extracellular matrix deposition and stricture formation. We focus on the role of cytokines by dissecting the pro- vs antifibrotic components of the immune response, while taking into consideration their temporal association to the progressive stages of the natural history of IBD. We critically present evidence from animal models of intestinal fibrosis and analyze inflammation-fibrosis interactions that occur under such experimental scenarios. In addition, we comment on recent findings from large-scale, single-cell profiling of fibrosis-relevant populations in IBD patients. Based on such evidence, we propose future potential targets for antifibrotic therapies to treat patients with IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- Gastrointestinal Unit, Third Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Theresa T Pizarro
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Departments of Pathology and Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
91
|
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L, Danese S. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 2022; 19:169-184. [PMID: 34876680 DOI: 10.1038/s41575-021-00543-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.
Collapse
Affiliation(s)
| | - Federica Ungaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Centre, Laboratory of Gastrointestinal Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INSERM NGERE, University of Lorraine, Vandoeuvre-les-Nancy, Nancy, France.,Nancy University Hospital, Vandoeuvre-les-Nancy, Nancy, France
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
92
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
93
|
Wang X, Liang Y, Wang H, Zhang B, Soong L, Cai J, Yi P, Fan X, Sun J. The Protective Role of IL-36/IL-36R Signal in Con A-Induced Acute Hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:861-869. [PMID: 35046104 PMCID: PMC8830780 DOI: 10.4049/jimmunol.2100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
The IL-36 family, including IL-36α, IL-36β, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Biao Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China; and
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX;
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
94
|
The role of IL-36 subfamily in intestinal disease. Biochem Soc Trans 2022; 50:223-230. [PMID: 35166319 DOI: 10.1042/bst20211264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Interleukin (IL)-36 is a subfamily, of the IL-1 super-family and includes IL-36α, IL-36β, IL-36γ, IL-38 and IL-36Ra. IL-36 cytokines are involved in the pathology of multiple tissues, including skin, lung, oral cavity, intestine, kidneys and joints. Recent studies suggest that IL-36 signaling regulates autoimmune disease in addition to antibacterial and antiviral responses. Most research has focused on IL-36 in skin diseases such as psoriasis, however, studies on intestinal diseases are also underway. This review outlines what is known about the bioactivity of the IL-36 subfamily and its role in the pathogenesis of intestinal diseases such as inflammatory bowel disease, colorectal cancer, gut dysbacteriosis and infection, and proposes that IL-36 may be a target for novel therapeutic strategies to prevent or treat intestinal diseases.
Collapse
|
95
|
Frühbeck G, Gómez-Ambrosi J, Ramírez B, Mentxaka A, Rodríguez A, Becerril S, Reina G, Valentí V, Moncada R, Silva C, Catalán V. Increased Levels of Interleukin-36 in Obesity and Type 2 Diabetes Fuel Adipose Tissue Inflammation by Inducing Its Own Expression and Release by Adipocytes and Macrophages. Front Immunol 2022; 13:832185. [PMID: 35222417 PMCID: PMC8863603 DOI: 10.3389/fimmu.2022.832185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 02/03/2023] Open
Abstract
Interleukin (IL)-36 is a recently described cytokine with well-known functions in the regulation of multiple inflammatory diseases. Since no data exists on how this cytokine regulates adipose tissue (AT) homeostasis, we aimed to explore the function of a specific isoform, IL-36γ, an agonist, in human obesity and obesity-associated type 2 diabetes as well as in AT inflammation and fibrosis. Plasma IL-36γ was measured in 91 participants in a case-control study and the effect of weight loss was evaluated in 31 patients with severe obesity undergoing bariatric surgery. Gene expression levels of IL36G and its receptor were analyzed in relevant human metabolic tissues. The effect of inflammatory factors and IL-36γ was determined in vitro in human adipocytes and macrophages. We found, for the first time, that the increased (P<0.05) circulating levels of IL-36γ in patients with obesity decreased (P<0.001) after weight and fat loss achieved by Roux-en-Y gastric bypass and that gene expression levels of IL36G were upregulated in the visceral AT (P<0.05) and in the peripheral blood mononuclear cells (P<0.01) from patients with obesity. We also demonstrated increased (P<0.05) expression levels of Il36g in the epididymal AT from diet-induced obese mice. IL36G was significantly enhanced (P<0.001) by LPS in human adipocytes and monocyte-derived macrophages, while no changes were found after the incubation with anti-inflammatory cytokines. The addition of IL-36γ for 24 h strongly induced (P<0.01) its own expression as well as key inflammatory and chemoattractant factors with no changes in genes associated with fibrosis. Furthermore, adipocyte-conditioned media obtained from patients with obesity increased (P<0.01) the release of IL-36γ and the expression (P<0.05) of cathepsin G (CTSG) in monocyte-derived macrophages. These findings provide, for the first time, evidence about the properties of IL-36γ in the regulation of AT-chronic inflammation, emerging as a link between AT biology and the obesity-associated comorbidities.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain,*Correspondence: Victoria Catalán, ; Gema Frühbeck,
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Mentxaka
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Gabriel Reina
- Department of Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victor Valentí
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain,*Correspondence: Victoria Catalán, ; Gema Frühbeck,
| |
Collapse
|
96
|
Deng L, Guo H, Wang S, Liu X, Lin Y, Zhang R, Tan W. The Attenuation of Chronic Ulcerative Colitis by (R)-salbutamol in Repeated DSS-Induced Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9318721. [PMID: 35178163 PMCID: PMC8843997 DOI: 10.1155/2022/9318721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Racemic salbutamol ((RS)-sal), which consist of the same amount of (R)-sal and (S)-sal, has been used for asthma and COPD due to its bronchodilation effect. However, the effect of (R)-sal on repeated dextran sulfate sodium (DSS)-induced chronic colitis has not yet been investigated. In this study evaluated the potential effect of (R)-, (S)-, and (RS)-sal in mice with repeated DSS-induced chronic colitis and investigated the underlying mechanisms. Here, we verified that chronic colitis was significantly attenuated by (R)-sal, which was evidenced by notably mitigated body weight loss, disease activity index (DAI), splenomegaly, colonic lengths shortening, and histopathological scores. (R)-sal treatment noticeably diminished the levels of inflammatory cytokines (such as TNF-α, IL-6, IL-1β, and IFN-γ). Notably, the efficacy of (R)-sal was better than that of (RS)-sal. Further research revealed that (R)-sal mitigated colonic CD4 leukocyte infiltration, decreased NF-κB signaling pathway activation, improved the Nrf-2/HO-1 signaling pathway, and increased the expression of ZO-1 and occludin. In addition, (R)-sal suppressed the levels of TGF-β1, α-SMA, and collagen in mice with chronic colitis. Furthermore, the 16S rDNA sequences analyzed of the intestinal microbiome revealed that (R)-sal could mitigate the intestinal microbiome structure and made it more similar to the control group, which mainly by relieving the relative abundance of pathogens (such as Bacteroides) and increasing the relative abundance of probiotics (such as Akkermansia). Therefore, (R)-sal ameliorates repeated DSS-induced chronic colitis in mice by improving inflammation, suppressing oxidative stress, mitigating intestinal barrier function, relieving intestinal fibrosis, and regulating the intestinal microbiome community. These results indicate that (R)-sal maybe a novel treatment alternative for chronic colitis.
Collapse
Affiliation(s)
- Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Haihua Guo
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Shanping Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Xiaoming Liu
- Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yue Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Rui Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Wen Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Post-Doctoral Innovation Base, Jinan University Affiliation, Yuanzhi Health Technology Co., Ltd., Hengqin New District, Zhuhai, Guangdong 519000, China
| |
Collapse
|
97
|
Therapeutic Targeting of Intestinal Fibrosis in Crohn's Disease. Cells 2022; 11:cells11030429. [PMID: 35159238 PMCID: PMC8834168 DOI: 10.3390/cells11030429] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Intestinal fibrosis is one of the most threatening complications of Crohn’s disease. It occurs in more than a third of patients with this condition, is associated with increased morbidity and mortality, and surgery often represents the only available therapeutic option. The mechanisms underlying intestinal fibrosis are partly known. Studies conducted so far have shown a relevant pathogenetic role played by mesenchymal cells (especially myofibroblasts), cytokines (e.g., transforming growth factor-β), growth factors, microRNAs, intestinal microbiome, matrix stiffness, and mesenteric adipocytes. Further studies are still necessary to elucidate all the mechanisms involved in intestinal fibrosis, so that targeted therapies can be developed. Although several pre-clinical studies have been conducted so far, no anti-fibrotic therapy is yet available to prevent or reverse intestinal fibrosis. The aim of this review is to provide an overview of the main therapeutic targets currently identified and the most promising anti-fibrotic therapies, which may be available in the near future.
Collapse
|
98
|
Ohno M, Imai T, Chatani M, Nishida A, Inatomi O, Kawahara M, Hoshino T, Andoh A. The anti-inflammatory and protective role of interleukin-38 in inflammatory bowel disease. J Clin Biochem Nutr 2022; 70:64-71. [PMID: 35068683 PMCID: PMC8764106 DOI: 10.3164/jcbn.21-104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-38 exerts an anti-inflammatory function by binding to several cytokine receptors, including the IL-36 receptor. In this study, we evaluated IL-38 expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD) and investigated its functions. IL-38 mRNA expression in endoscopic biopsy samples was evaluated using quantitative PCR. IL-38 protein expression was analyzed using immunohistochemical technique. Dextran sulfate sodium-induced colitis was induced in C57BL/6 background IL-38KO mice. The IL-38 mRNA and protein expression were enhanced in the active mucosa of ulcerative colitis, but not in Crohn's disease. The ratio of IL-36γ to IL-38 mRNA expression was significantly elevated in the active mucosa of UC patients. Immunofluorescence staining revealed that B cells are the major cellular source of IL-38 in the colonic mucosa. IL-38 dose-dependently suppressed the IL-36γ-induced mRNA expression of CXC chemokines (CXCL1, CXCL2, and CXCL8) in HT-29 and T84 cells. IL-38 inhibited the IL-36γ-induced activation of nuclear-factor kappa B (NF-κB) and mitogen-activated protein kinases in HT-29 cells. DSS-colitis was significantly exacerbated in IL-38KO mice compared to wild type mice. In conclusion, IL-38 may play an anti-inflammatory and protective role in the pathophysiology of IBD, in particular ulcerative colitis, through the suppression of IL-36-induced inflammatory responses.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Takayuki Imai
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Motoharu Chatani
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Asahimachi, Kurume 830-0011, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| |
Collapse
|
99
|
D’Haens G, Rieder F, Feagan BG, Higgins PD, Panes J, Maaser C, Rogler G, Löwenberg M, van der Voort R, Pinzani M, Peyrin-Biroulet L, Danese S, IOIBD Fibrosis Working Group. Challenges in the Pathophysiology, Diagnosis, and Management of Intestinal Fibrosis in Inflammatory Bowel Disease. Gastroenterology 2022; 162:26-31. [PMID: 31254502 PMCID: PMC7680655 DOI: 10.1053/j.gastro.2019.05.072] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/16/2019] [Accepted: 10/03/2020] [Indexed: 01/03/2023]
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD) that is usually the consequence of chronic inflammation. Although the currently available anti-inflammatory therapies have had little impact on intestinal fibrosis in Crohn’s disease (CD), increased understanding of the pathophysiology and the development of therapies targeting fibrogenic pathways hold promise for the future. One of the critical challenges is how reduction or reversal of intestinal fibrosis should be defined and measured in the setting of clinical trials and drug approval. The International Organization for Inflammatory Bowel Disease (IOIBD) organized a workshop in Amsterdam, The Netherlands, on December 19th and 20th, 2018 in an attempt to review the current knowledge of the biological background, diagnosis, treatment of intestinal fibrosis and clinical trial endpoints. Basic and clinical scientists discussed the pathophysiology of intestinal fibrosis, the current status of biomarkers and imaging modalities in stenosing CD, and recent clinical studies in this area. Researchers from outside of the IBD field presented advances in the understanding of fibrotic processes in other organs, such as the skin, liver and lungs. Lastly, the design of clinical trials with antifibrotic therapy for IBD was discussed, with priority on patient populations, patient reported outcomes (PROs) and imaging. This report summarizes the key findings, discussions and conclusions of the workshop.
Collapse
Affiliation(s)
- Geert D’Haens
- Amsterdam University Medical Center, Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Brian G. Feagan
- Western University, Department of Medicine, London, ON, Canada
| | - Peter D.R. Higgins
- University of Michigan Medical School, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Julian Panes
- Hospital Clínic de Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Christian Maaser
- University Teaching Hospital Lüneburg, Outpatients Department of Gastroenterology, Lüneburg, Germany
| | - Gerhard Rogler
- University Hospital Zurich, Department of Gastroenterology and Hepatology, and University of Zurich, Zurich, Switzerland
| | - Mark Löwenberg
- Amsterdam University Medical Center, Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | | | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Laurent Peyrin-Biroulet
- University Hospital of Nancy, University of Lorraine, Department of Hepato-Gastroenterology and Inserm U954, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- IBD Center, Humanitas Clinical and Research Hospital, Humanitas University, Milan, Italy
| | | |
Collapse
|
100
|
IL-36 cytokines imprint a colitogenic phenotype on CD4 + T helper cells. Mucosal Immunol 2022; 15:491-503. [PMID: 35177818 PMCID: PMC9038530 DOI: 10.1038/s41385-022-00488-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 02/04/2023]
Abstract
IL-36 cytokines are emerging as potent orchestrators of intestinal inflammation and are being implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the mechanisms through which these cytokines mediate these effects remain to be fully uncovered. Here, we report specifically elevated expression of IL-36α, and not IL-36β or IL-36γ in the serum of newly diagnosed, treatment naïve, paediatric IBD patients and identify T cells as primary cellular mediators of IL-36 responses in the inflamed gut. IL-36R expression on CD4+ T cells was found to promote intestinal pathology in a murine model of colitis. Consistent with these effects, IL-36R can act as a potent instructor of CD4+ T cell differentiation in vivo, enhancing Th1 responses, while inhibiting the generation of Tregs. In addition, loss of IL-36 responsiveness significantly reduced the migration of pathogenic CD4+ T cells towards intestinal tissues and IL-36 was found to act, uniquely among IL-1 family members, to induce the expression of gut homing receptors in proinflammatory murine and human CD4+ T cells. These data reveal an important role for IL-36 cytokines in driving the colitogenic potential of CD4+ T cells and identify a new mechanism through which they may contribute to disease pathogenesis.
Collapse
|