51
|
Nguyen PD, de Bakker DEM, Bakkers J. Cardiac regenerative capacity: an evolutionary afterthought? Cell Mol Life Sci 2021; 78:5107-5122. [PMID: 33950316 PMCID: PMC8254703 DOI: 10.1007/s00018-021-03831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
Cardiac regeneration is the outcome of the highly regulated interplay of multiple processes, including the inflammatory response, cardiomyocyte dedifferentiation and proliferation, neovascularization and extracellular matrix turnover. Species-specific traits affect these injury-induced processes, resulting in a wide variety of cardiac regenerative potential between species. Indeed, while mammals are generally considered poor regenerators, certain amphibian and fish species like the zebrafish display robust regenerative capacity post heart injury. The species-specific traits underlying these differential injury responses are poorly understood. In this review, we will compare the injury induced processes of the mammalian and zebrafish heart, describing where these processes overlap and diverge. Additionally, by examining multiple species across the animal kingdom, we will highlight particular traits that either positively or negatively affect heart regeneration. Last, we will discuss the possibility of overcoming regeneration-limiting traits to induce heart regeneration in mammals.
Collapse
Affiliation(s)
- Phong D Nguyen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis E M de Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
52
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
53
|
Schuman ML, Peres Diaz LS, Aisicovich M, Ingallina F, Toblli JE, Landa MS, García SI. Cardiac Thyrotropin-releasing Hormone Inhibition Improves Ventricular Function and Reduces Hypertrophy and Fibrosis After Myocardial Infarction in Rats. J Card Fail 2021; 27:796-807. [PMID: 33865967 DOI: 10.1016/j.cardfail.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac thyrotropin-releasing hormone (TRH) is a tripeptide with still unknown functions. We demonstrated that the left ventricle (LV) TRH system is hyperactivated in spontaneously hypertensive rats and its inhibition prevented cardiac hypertrophy and fibrosis. Therefore, we evaluated whether in vivo cardiac TRH inhibition could improve myocardial function and attenuate ventricular remodeling in a rat model of myocardial infarction (MI). METHODS AND RESULTS In Wistar rats, MI was induced by a permanent left anterior descending coronary artery ligation. A coronary injection of a specific small interfering RNA against TRH was applied simultaneously. The control group received a scrambled small interfering RNA. Cardiac remodeling variables were evaluated one week later. In MI rats, TRH inhibition decreased LV end-diastolic (1.049 ± 0.102 mL vs 1.339 ± 0.102 mL, P < .05), and end-systolic volumes (0.282 ± 0.043 mL vs 0.515 ± 0.037 mL, P < .001), and increased LV ejection fraction (71.89 ± 2.80% vs 65.69 ± 2.85%, P < .05). Although both MI groups presented similar infarct size, small interfering RNA against TRH treatment attenuated the cardiac hypertrophy index and myocardial interstitial collagen deposition in the peri-infarct myocardium. These effects were accompanied by attenuation in the rise of transforming growth factor-β, collagen I, and collagen III, as well as the fetal genes (atrial natriuretic peptide, B-type natriuretic peptide, and beta myosin heavy chain) expression in the peri-infarct region. In addition, the expression of Hif1α and vascular endothelial growth factor significantly increased compared with all groups. CONCLUSIONS Cardiac TRH inhibition improves LV systolic function and attenuates ventricular remodeling after MI. These novel findings support the idea that TRH inhibition may serve as a new therapeutic strategy against the progression of heart failure.
Collapse
Affiliation(s)
- Mariano L Schuman
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ludmila S Peres Diaz
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maia Aisicovich
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Ingallina
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; University of Buenos Aires (UBA), School of Medicine, Institute of Medical Research "Alfredo Lanari," Department of Cardiology, Ciudad Autonoma de Buenos Aires, Argentina
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autonoma de Buenos Aires, Argentina
| | - Maria S Landa
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autonoma de Buenos Aires, Argentina
| | - Silvia I García
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autonoma de Buenos Aires, Argentina.
| |
Collapse
|
54
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
55
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
56
|
Liu Y, Wang M, Liang Y, Wang C, Naruse K, Takahashi K. Treatment of Oxidative Stress with Exosomes in Myocardial Ischemia. Int J Mol Sci 2021; 22:ijms22041729. [PMID: 33572188 PMCID: PMC7915208 DOI: 10.3390/ijms22041729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
A thrombus in a coronary artery causes ischemia, which eventually leads to myocardial infarction (MI) if not removed. However, removal generates reactive oxygen species (ROS), which causes ischemia–reperfusion (I/R) injury that damages the tissue and exacerbates the resulting MI. The mechanism of I/R injury is currently extensively understood. However, supplementation of exogenous antioxidants is ineffective against oxidative stress (OS). Enhancing the ability of endogenous antioxidants may be a more effective way to treat OS, and exosomes may play a role as targeted carriers. Exosomes are nanosized vesicles wrapped in biofilms which contain various complex RNAs and proteins. They are important intermediate carriers of intercellular communication and material exchange. In recent years, diagnosis and treatment with exosomes in cardiovascular diseases have gained considerable attention. Herein, we review the new findings of exosomes in the regulation of OS in coronary heart disease, discuss the possibility of exosomes as carriers for the targeted regulation of endogenous ROS generation, and compare the advantages of exosome therapy with those of stem-cell therapy. Finally, we explore several miRNAs found in exosomes against OS.
Collapse
|
57
|
Li L, Dai W, Li W, Zhang Y, Wu Y, Guan C, Zhang A, Huang H, Li Y. Integrated Network Pharmacology and Metabonomics to Reveal the Myocardial Protection Effect of Huang-Lian-Jie-Du-Tang on Myocardial Ischemia. Front Pharmacol 2021; 11:589175. [PMID: 33613277 PMCID: PMC7890363 DOI: 10.3389/fphar.2020.589175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Myocardial ischemia (MI) is one of the most common cardiovascular diseases with high incidence and mortality. Huang-Lian-Jie-Du-Tang (HLJDT) is a classic traditional Chinese prescription to clear “heat” and “poison”. In this study, we used a deliberate strategy integrating the methods of network pharmacology, pharmacodynamics, and metabonomics to investigate the molecular mechanism and potential targets of HLJDT in the treatment of MI. Firstly, by a network pharmacology approach, a global view of the potential compound-target-pathway network based on network pharmacology was constructed to provide a preliminary understanding of bioactive compounds and related targets of HLJDT for elucidating its molecular mechanisms in MI. Subsequently, in vivo efficacy of HLJDT was validated in a rat model. Meanwhile, the corresponding metabonomic profiles were used to explore differentially induced metabolic markers thus providing the metabolic mechanism of HLJDT in treating MI. The results demonstrated the myocardial protection effect of HLJDT on ischemia by a multicomponent-multitarget mode. This study highlights the reliability and effectiveness of a network pharmacology-based approach that identifies and validates the complex of natural compounds in HLJDT for illustrating the mechanism for the treatment of MI.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weixing Dai
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, China
| | - Wenting Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yumao Zhang
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanqin Wu
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenfeng Guan
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Anye Zhang
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Huang
- Department of Cardiovascular, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
58
|
Hu C, Li J, Du Y, Li J, Yang Y, Jia Y, Peng L, Qin Y, Wei Y. Impact of chronic intermittent hypoxia on the long non-coding RNA and mRNA expression profiles in myocardial infarction. J Cell Mol Med 2021; 25:421-433. [PMID: 33215878 PMCID: PMC7810970 DOI: 10.1111/jcmm.16097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.
Collapse
Affiliation(s)
- Chaowei Hu
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Jing Li
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yunhui Du
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Juan Li
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunyun Yang
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yifan Jia
- Department of CardiologyBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Lu Peng
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yongxiang Wei
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Otolaryngological Department of Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
59
|
Smith KA, Waypa GB, Dudley VJ, Budinger GRS, Abdala-Valencia H, Bartom E, Schumacker PT. Role of Hypoxia-Inducible Factors in Regulating Right Ventricular Function and Remodeling during Chronic Hypoxia-induced Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020; 63:652-664. [PMID: 32692928 DOI: 10.1165/rcmb.2020-0023oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension (PH) and right ventricular (RV) hypertrophy frequently develop in patients with hypoxic lung disease. Chronic alveolar hypoxia (CH) promotes sustained pulmonary vasoconstriction and pulmonary artery (PA) remodeling by acting on lung cells, resulting in the development of PH. RV hypertrophy develops in response to PH, but coronary arterial hypoxemia in CH may influence that response by activating HIF-1α (hypoxia-inducible factor 1α) and/or HIF-2α in cardiomyocytes. Indeed, other studies show that the attenuation of PH in CH fails to prevent RV remodeling, suggesting that PH-independent factors regulate RV hypertrophy. Therefore, we examined the role of HIFs in RV remodeling in CH-induced PH. We deleted HIF-1α and/or HIF-2α in hearts of adult mice that were then housed under normoxia or CH (10% O2) for 4 weeks. RNA-sequencing analysis of the RV revealed that HIF-1α and HIF-2α regulate the transcription of largely distinct gene sets during CH. RV systolic pressure increased, and RV hypertrophy developed in CH. The deletion of HIF-1α in smooth muscle attenuated the CH-induced increases in RV systolic pressure but did not decrease hypertrophy. The deletion of HIF-1α in cardiomyocytes amplified RV remodeling; this was abrogated by the simultaneous loss of HIF-2α. CH decreased stroke volume and cardiac output in wild-type but not in HIF-1α-deficient hearts, suggesting that CH may cause cardiac dysfunction via HIF-dependent signaling. Collectively, these data reveal that HIF-1 and HIF-2 act together in RV cardiomyocytes to orchestrate RV remodeling in CH, with HIF-1 playing a protective role rather than driving hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth Bartom
- Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
60
|
Li J, Thangaiyan R, Govindasamy K, Wei J. Anti-inflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals. Hum Exp Toxicol 2020; 40:915-927. [PMID: 33242989 DOI: 10.1177/0960327120975131] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the antihyperlipidemic and anti-inflammatory effect of zingiberene (ZBN) on isoproterenol-(ISO) induced myocardial infarction in rats. ZBN (10 mg/kg b.wt.) was orally administered to rats for 21 days and ISO (85 mg/kg b.wt.) was subcutaneously injected into the rats at 24 h intervals for the last 2 consecutive days. We observed increased serum creatine kinase, creatine kinase-MB, cardiac troponin T, and I levels in ISO-treated MI rats. Conversely, ZBN oral administration significantly prevented in cardiac marker enzyme activities in ISO-mediated rats. We also noticed that ZBN oral administration prevented ISO-induced expression of lipid peroxidative markers, total cholesterol, triglycerides, phospholipids, free fatty acids, very-low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) to the normal basal level. Furthermore, ZBN restored ISO-mediated antioxidant status, increased level of high-density lipoprotein cholesterol (HDL-C), and tissue phospholipids to the near-normal levels. Besides, ZBN pre-treatment significantly reduced the level of inflammatory markers (TNF-α, IL-6, NF-κB, and IL-1β) in ISO-induced MI in rats. We noticed that ZBN pretreatment inhibited the pro-apoptotic proteins Bax and cytochrome c and increased the Bcl-2 expression in ISO induced rats. The gene expression profiling by qRT-PCR array illustrates that ZBN treatment prevents the ISO mediated activation of cardiac markers, inflammatory, and fibrosis-related genes in the heart tissue. Taken together, pre-treatment with ZBN attenuated ISO-induced MI resolved exhibits the anti-inflammatory and antiapoptotic effect.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Cardiology, Xi'an Fourth Hospital, Xi'an, Shaanxi, China
| | - Radhiga Thangaiyan
- Department of Biochemistry and Biotechnology, 29895Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Kanimozhi Govindasamy
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - Jianxia Wei
- Department of Cardiology, The Third Affiliated Hospital of Xi 'an Medical College, Xi'an, Shaanxi, China
| |
Collapse
|
61
|
Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res 2020; 117:1257-1273. [PMID: 33063086 DOI: 10.1093/cvr/cvaa287] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction (MI) inflicts massive injury to the coronary microcirculation leading to vascular disintegration and capillary rarefication in the infarct region. Tissue repair after MI involves a robust angiogenic response that commences in the infarct border zone and extends into the necrotic infarct core. Technological advances in several areas have provided novel mechanistic understanding of postinfarction angiogenesis and how it may be targeted to improve heart function after MI. Cell lineage tracing studies indicate that new capillary structures arise by sprouting angiogenesis from pre-existing endothelial cells (ECs) in the infarct border zone with no meaningful contribution from non-EC sources. Single-cell RNA sequencing shows that ECs in infarcted hearts may be grouped into clusters with distinct gene expression signatures, likely reflecting functionally distinct cell populations. EC-specific multicolour lineage tracing reveals that EC subsets clonally expand after MI. Expanding EC clones may arise from tissue-resident ECs with stem cell characteristics that have been identified in multiple organs including the heart. Tissue repair after MI involves interactions among multiple cell types which occur, to a large extent, through secreted proteins and their cognate receptors. While we are only beginning to understand the full complexity of this intercellular communication, macrophage and fibroblast populations have emerged as major drivers of the angiogenic response after MI. Animal data support the view that the endogenous angiogenic response after MI can be boosted to reduce scarring and adverse left ventricular remodelling. The improved mechanistic understanding of infarct angiogenesis therefore creates multiple therapeutic opportunities. During preclinical development, all proangiogenic strategies should be tested in animal models that replicate both cardiovascular risk factor(s) and the pharmacotherapy typically prescribed to patients with acute MI. Considering that the majority of patients nowadays do well after MI, clinical translation will require careful selection of patients in need of proangiogenic therapies.
Collapse
Affiliation(s)
- Xuekun Wu
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Marc R Reboll
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
62
|
Abstract
Background: Early diagnosis in pancreatic cancer is key for improving prognosis. Hypoxia plays a critical role in tumor progression. Thus, an evaluation of associations between pancreatic tumor progression and markers of hypoxia is needed. Methods: We assessed the expression of hypoxia-inducible factors (HIF-1α and HIF-2α) by immuno-histochemical staining from 29 subjects with the following: pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), neuroendocrine tumor (NET), and pancreatic ductal adenocarcinoma (PDAC) and compared it to the expression in non-tumor samples. Results: Expression of HIF-1α increased significantly from PanIN (3.01 ± 0.17) to IPMN (7.63 ± 0.18), NET (9.10 ± 0.23) and PDAC samples (11.06 ± 0.15, p < 0.0001). Similar findings were observed for HIF-2α (p < 0.0001)}. A strong correlation between HIF-1α and HIF-2α expression was demonstrated (R2 = 0.8408, p < 0.0001). Conclusions: This data suggest that HIF-1α and HIF-2α may play a role in the progression from PanIN through PDAC. Further studies are necessary to confirm these findings and determine the effect of HIFs abrogation on tumor progression that can lead to novel therapies.
Collapse
|
63
|
Gambini E, Martinelli I, Stadiotti I, Vinci MC, Scopece A, Eramo L, Sommariva E, Resta J, Benaouadi S, Cogliati E, Paolin A, Parini A, Pompilio G, Savagner F. Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac Mesenchymal Progenitor Cells. Int J Mol Sci 2020; 21:ijms21207467. [PMID: 33050449 PMCID: PMC7590175 DOI: 10.3390/ijms21207467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Adult human cardiac mesenchymal progenitor cells (hCmPC) are multipotent resident populations involved in cardiac homeostasis and heart repair. Even if the mechanisms have not yet been fully elucidated, the stem cell differentiation is guided by the mitochondrial metabolism; however, mitochondrial approaches to identify hCmPC with enhanced stemness and/or differentiation capability for cellular therapy are not established. Here we demonstrated that hCmPCs sorted for low and high mitochondrial membrane potential (using a lipophilic cationic dye tetramethylrhodamine methyl ester, TMRM), presented differences in energy metabolism from preferential glycolysis to oxidative rates. TMRM-high cells are highly efficient in terms of oxygen consumption rate, basal and maximal respiration, and spare respiratory capacity compared to TMRM-low cells. TMRM-high cells showed characteristics of pre-committed cells and were associated with higher in vitro differentiation capacity through endothelial, cardiac-like, and, to a lesser extent, adipogenic and chondro/osteogenic cell lineage, when compared with TMRM-low cells. Conversely, TMRM-low showed higher self-renewal potential. To conclude, we identified two hCmPC populations with different metabolic profile, stemness maturity, and differentiation potential. Our findings suggest that metabolic sorting can isolate cells with higher regenerative capacity and/or long-term survival. This metabolism-based strategy to select cells may be broadly applicable to therapies.
Collapse
Affiliation(s)
- Elisa Gambini
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
- Correspondence:
| | - Ilenia Martinelli
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Maria Cristina Vinci
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Luana Eramo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
| | - Jessica Resta
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Sabrina Benaouadi
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Elisa Cogliati
- Treviso Tissue Bank Foundation, Via Antonio Scarpa 9, 31100 Treviso, Italy; (E.C.); (A.P.)
| | - Adolfo Paolin
- Treviso Tissue Bank Foundation, Via Antonio Scarpa 9, 31100 Treviso, Italy; (E.C.); (A.P.)
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy; (I.S.); (M.C.V.); (A.S.); (L.E.); (E.S.); (J.R.); (G.P.)
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Frederique Savagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, 31432 Toulouse, France; (I.M.); (S.B.); (A.P.); (F.S.)
| |
Collapse
|
64
|
Dittrich A, Hansen K, Simonsen MIT, Busk M, Alstrup AKO, Lauridsen H. Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms. Bioessays 2020; 42:e2000054. [PMID: 32914411 DOI: 10.1002/bies.202000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Indexed: 01/24/2023]
Abstract
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.
Collapse
Affiliation(s)
- Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus N, 8200, Denmark.,Department of Biology (Zoophysiology), Aarhus University, Aarhus C, 8000, Denmark.,Leicester Royal Infirmary (East Midlands Forensic Pathology Unit), University of Leicester, Leicester, LE2 7LX, UK
| | | | - Morten Busk
- Department of Oncology (Experimental Clinical Oncology), Aarhus University Hospital, Aarhus N, 8200, Denmark.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | | | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| |
Collapse
|
65
|
Viswanadha VP, Dhivya V, Beeraka NM, Huang CY, Gavryushova LV, Minyaeva NN, Chubarev VN, Mikhaleva LM, Tarasov VV, Aliev G. The protective effect of piperine against isoproterenol-induced inflammation in experimental models of myocardial toxicity. Eur J Pharmacol 2020; 885:173524. [PMID: 32882215 DOI: 10.1016/j.ejphar.2020.173524] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) eventually exacerbates inflammatory response due to the release of inflammatory and pro-inflammatory factors. The aim of this study is to explore the protective efficacy of piperine supplementation against the inflammatory response in isoproterenol (ISO)-induced MI. Masson Trichome staining was executed to determine myocardial tissue architecture. Immunohistochemistry was performed for IL-6, TNF-α. RT-PCR studies were performed to ascertain the gene expression of IL-6, TNF-α, iNOS, eNOS, MMP-2, MMP-9, and collagen-III. Western blotting was performed to determine expression of HIF-1α, VEGF, Nrf-2, NF-ƙB, Cox-2, p-38, phospho-p38, ERK-1/2, phospho-ERK-1/2, and collagen-I. HIF-1α, VEGF, and iNOS expression were significantly upregulated with concomitant decline in eNOS expression in the heart myocardial tissue of rats received ISO alone whereas piperine pretreatment prevented these changes in ISO administered rats. Current results revealed ROS-mediated activation of MAPKs, namely, p-p38, p-ERK1/2 in the heart tissue of ISO administered group. Piperine pretreatment significantly prevented these changes in ISO treated group. NF-κB is involved in the modulation of gene expressions responsible for tissue repair. ISO-induced NF-κB-p65 expression was significantly reduced in the group pretreated with piperine and mitigated extent of myocardial inflammation. A significant increase in cardiac fibrosis upon ISO treatment was reported due to the increased hydroxyproline content, MMP-2 & 9 and upregulation of collagen-I protein compared to control group. All these cardiac hypertrophy markers were decreased in 'piperine pretreated ISO administered group' compared to group received ISO injection. Current findings concluded that piperine as a nutritional intervention could prevent inflammation of myocardium in ISO-induced MI.
Collapse
Affiliation(s)
- Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India; China Medical University, Lifu Teaching Building 12F, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Velumani Dhivya
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Narasimha Murthy Beeraka
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- China Medical University, Lifu Teaching Building 12F, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Liliya V Gavryushova
- Department of Therapeutic Dentistry, Saratov State Medical University named after V.I. Razumovsky, 410012, Saratov, Russia
| | - Nina N Minyaeva
- National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow, 101000, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, Moscow, 117418, Russia
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia; Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, Moscow, 117418, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
66
|
Chang CY, Chien YJ, Lin PC, Chen CS, Wu MY. Nonthyroidal Illness Syndrome and Hypothyroidism in Ischemic Heart Disease Population: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab 2020; 105:5847674. [PMID: 32459357 DOI: 10.1210/clinem/dgaa310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 02/05/2023]
Abstract
CONTEXT The association of non-thyroidal illness syndrome (NTIS) and hypothyroidism with the prognosis in ischemic heart disease (IHD) population is inconclusive. OBJECTIVE We aimed to evaluate the influence of NTIS and hypothyroidism on all-cause mortality and major adverse cardiac events (MACE) in IHD population. DATA SOURCES We searched PubMed, EMBASE, Scopus, Web of Science, and Cochrane Library from inception through February 17, 2020. STUDY SELECTION Original articles enrolling IHD patients, comparing all-cause mortality and MACE of NTIS and hypothyroidism with those of euthyroidism, and providing sufficient information for meta-analysis were considered eligible. DATA EXTRACTION Relevant information and numerical data were extracted for methodological assessment and meta-analysis. DATA SYNTHESIS Twenty-three studies were included. The IHD population with NTIS was associated with higher risk of all-cause mortality (hazard ratio [HR] = 2.61; 95% confidence interval [CI] = 1.89-3.59) and MACE (HR = 2.22; 95% CI = 1.71-2.89) than that without. In addition, the IHD population with hypothyroidism was also associated with higher risk of all-cause mortality (HR = 1.47; 95% CI = 1.10-1.97) and MACE (HR = 1.53; 95% CI = 1.19-1.97) than that without. In the subgroup analysis, the acute coronary syndrome (ACS) subpopulation with NTIS was associated with higher risk of all-cause mortality (HR = 3.30; 95% CI = 2.43-4.48) and MACE (HR = 2.19; 95% CI = 1.45-3.30). The ACS subpopulation with hypothyroidism was also associated with higher risk of all-cause mortality (HR = 1.67; 95% CI = 1.17-2.39). CONCLUSIONS The IHD population with concomitant NTIS or hypothyroidism was associated with higher risk of all-cause mortality and MACE. Future research is required to provide evidence of the causal relationship and to elucidate whether normalizing thyroid function parameters can improve prognosis.
Collapse
Affiliation(s)
- Chun-Yu Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yung-Jiun Chien
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Po-Chen Lin
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chien-Sheng Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
67
|
Li J, Li Y, Atakan MM, Kuang J, Hu Y, Bishop DJ, Yan X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants (Basel) 2020; 9:E656. [PMID: 32722013 PMCID: PMC7464156 DOI: 10.3390/antiox9080656] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
High-intensity exercise/training, especially interval exercise/training, has gained popularity in recent years. Hypoxic training was introduced to elite athletes half a century ago and has recently been adopted by the general public. In the current review, we have summarised the molecular adaptive responses of skeletal muscle to high-intensity exercise/training, focusing on mitochondrial biogenesis, angiogenesis, and muscle fibre composition. The literature suggests that (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) PGC-1α, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor 1-alpha (HIF1-α) might be the main mediators of skeletal muscle adaptations to high-intensity exercises in hypoxia. Exercise is known to be anti-inflammatory, while the effects of hypoxia on inflammatory signalling are more complex. The anti-inflammatory effects of a single session of exercise might result from the release of anti-inflammatory myokines and other cytokines, as well as the downregulation of Toll-like receptor signalling, while training-induced anti-inflammatory effects may be due to reductions in abdominal and visceral fat (which are main sources of pro-inflammatory cytokines). Hypoxia can lead to inflammation, and inflammation can result in tissue hypoxia. However, the hypoxic factor HIF1-α is essential for preventing excessive inflammation. Disease-induced hypoxia is related to an upregulation of inflammatory signalling, but the effects of exercise-induced hypoxia on inflammation are less conclusive. The effects of high-intensity exercise under hypoxia on skeletal muscle molecular adaptations and inflammatory signalling have not been fully explored and are worth investigating in future studies. Understanding these effects will lead to a more comprehensive scientific basis for maximising the benefits of high-intensity exercise.
Collapse
Affiliation(s)
- Jia Li
- College of Physical Education, Southwest University, Chongqing 400715, China;
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - Muhammed M. Atakan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Division of Nutrition and Metabolism in Exercise, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Yang Hu
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100192, China; (Y.L.); (Y.H.)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia; (M.M.A.); (J.K.); (D.J.B.)
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
| |
Collapse
|
68
|
Yu ZP, Yu HQ, Li J, Li C, Hua X, Sheng XS. Troxerutin attenuates oxygen‑glucose deprivation and reoxygenation‑induced oxidative stress and inflammation by enhancing the PI3K/AKT/HIF‑1α signaling pathway in H9C2 cardiomyocytes. Mol Med Rep 2020; 22:1351-1361. [PMID: 32626962 PMCID: PMC7339651 DOI: 10.3892/mmr.2020.11207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a complex pathological process that occurs when tissues are reperfused following a prolonged period of ischemia. Troxerutin has been reported to have cardioprotective functions. However, the underlying mechanism by which troxerutin protects against MI/R injury has not been fully elucidated. The aim of the present study was to explore whether troxerutin-mediated protection against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell injury was associated with the inhibition of oxidative stress and the inflammatory response by regulating the PI3K/AKT/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. The results of the present study suggested that troxerutin pretreatment prevented the OGD/R-induced reduction in cell viability, and the increase in lactate dehydrogenase activity and apoptosis. Troxerutin reversed OGD/R-induced the inhibition of the PI3K/AKT/HIF-1α signaling pathway as demonstrated by the increased expression of PI3K and HIF-1α, and the increased ratio of phosphorylated AKT/AKT. LY294002, a selective PI3K inhibitor, inhibited the PI3K/AKT/HIF-1α signaling pathway and further attenuated the protective effect of troxerutin against OGD/R-induced H9C2 cell damage. Furthermore, small interfering (si)RNA-mediated knockdown of HIF-1α reduced troxerutin-induced protection against OGD/R injury. Troxerutin pretreatment alleviated OGD/R-induced oxidative stress, as demonstrated by the reduced generation of reactive oxygen species and malonaldehyde content, and the increased activities of superoxide dismutase and glutathione peroxidase, which were reduced by HIF-1α-siRNA. Troxerutin-induced decreases in the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α in OGD/R conditions were also reduced by HIF-1α-siRNA. The results from the present study indicated that troxerutin aggravated OGD/R-induced H9C2 cell injury by inhibiting oxidative stress and the inflammatory response. The primary underlying protective mechanism of troxerutin was mediated by the activation of the PI3K/AKT/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Zhang-Ping Yu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Han-Qiao Yu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Jun Li
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Chao Li
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xian Hua
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xiao-Sheng Sheng
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
69
|
Peterson KM, Franchi F, Olthoff M, Chen IY, Paulmurugan R, Rodriguez-Porcel M. Pathway-specific reporter genes to study stem cell biology. Stem Cells 2020; 38:808-814. [PMID: 32129537 PMCID: PMC11443457 DOI: 10.1002/stem.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
Little is known on the phenotypic characteristics of stem cells (SCs) after they are transplanted to the myocardium, in part due to lack of noninvasive platforms to study SCs directly in the living subject. Reporter gene imaging has played a valuable role in the noninvasive assessment of cell fate in vivo. In this study, we validated a pathway-specific reporter gene that can be used to noninvasively image the phenotype of SCs transplanted to the myocardium. Rat mesenchymal SCs (MSCs) were studied for phenotypic evidence of myogenic characteristics under in vitro conditions. After markers of myogenic characteristics were identified, we constructed a reporter gene sensor, comprising the firefly luciferase (Fluc) reporter gene driven by the troponin T (TnT) promoter (cardio MSCs had threefold expression in polymerase chain reaction compared to control MSCs) using a two-step signal amplification strategy. MSCs transfected with TnT-Fluc were studied and validated under in vitro conditions, showing a strong signal after MSCs acquired myogenic characteristics. Lastly, we observed that cardio MSCs had higher expression of the reporter sensor compared to control cells (0.005 ± 0.0005 vs 0.0025 ± 0.0008 Tnt-Fluc/ubiquitin-Fluc, P < .05), and that this novel sensor can detect the change in the phenotype of MSCs directly in the living subject. Pathway-specific reporter gene imaging allows assessment of changes in the phenotype of MSCs after delivery to the ischemic myocardium, providing important information on the phenotype of these cells. Imaging sensors like the one described here are critical to better understanding of the changes that SCs undergo after transplantation.
Collapse
Affiliation(s)
- Karen M Peterson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michaela Olthoff
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian Y Chen
- Cardiology Section, Medical Services, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Cardiovascular Institute, Stanford University, Stanford, California, USA
| | - Ramasamy Paulmurugan
- Cardiovascular Institute, Stanford University, Stanford, California, USA
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
70
|
Wilmes V, Lux C, Niess C, Gradhand E, Verhoff MA, Kauferstein S. Changes in gene expression patterns in postmortem human myocardial infarction. Int J Legal Med 2020; 134:1753-1763. [PMID: 32399898 PMCID: PMC7417407 DOI: 10.1007/s00414-020-02311-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
In murine models, the expression of inducible nitric oxide synthase (iNOS) in myocardial infarction (MI) has been reported to be the result of tissue injury and inflammation. In the present study, mRNA expression of iNOS, hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) was investigated in postmortem human infarction hearts. Since HIF-1α is the inducible subunit of the transcription factor HIF-1, which regulates transcription of iNOS and VEGF, the interrelation between the three genes was observed, to examine the molecular processes during the emergence of MI. iNOS and VEGF mRNAs were found to be significantly upregulated in the affected regions of MI hearts in comparison to healthy controls. Upregulation of HIF-1α was also present but not significant. Correlation analysis of the three genes indicated a stronger and significant correlation between HIF-1α and iNOS mRNAs than between HIF-1α and VEGF. The results of the study revealed differences in the expression patterns of HIF-1 downstream targets. The stronger transcription of iNOS by HIF-1 in the affected regions of MI hearts may represent a pathological process, since no correlation of iNOS and HIF-1α mRNA was found in non-affected areas of MI hearts. Oxidative stress is considered to cause molecular changes in MI, leading to increased iNOS expression. Therefore, it may also represent a forensic marker for detection of early changes in heart tissue.
Collapse
Affiliation(s)
- Verena Wilmes
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | - Constantin Lux
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Constanze Niess
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Elise Gradhand
- Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marcel A Verhoff
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
71
|
Pauli N, Kuligowska A, Krzystolik A, Dziedziejko V, Safranow K, Rać M, Chlubek D, Rać ME. The circulating vascular endothelial growth factor is only marginally associated with an increased risk for atherosclerosis. Minerva Cardioangiol 2020; 68:332-338. [PMID: 32326675 DOI: 10.23736/s0026-4725.20.04995-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Vascular endothelial growth factor-A (VEGF-A) is a protein that plays a role in the formation and function of blood vessels, promotes increased vascular permeability or migration of monocytes through endothelial layers. We have tested the hypothesis that plasma levels of VEGF-A may be associated with biochemical and radiological parameters as a marker of cardiovascular risk in Caucasian patients with early-onset CAD. METHODS The study group included 100 patients: 75 men not older than 50 years and 25 women not older than 55 years at the moment of CAD diagnosis. The control group (patients without CAD) comprised 50 healthy cases. ELISA test was used to measure plasma concentrations of VEGF. Doppler ultrasound of carotid and peripheral arteries was carried out in each patient. Serum glucose, complete lipid profile, ApoA1, ApoB, Lp(a) and blood count were measured in each case. RESULTS Only very weak correlations of plasma VEGF levels with biochemical cardiovascular risk factors in the CAD subjects have been demonstrated. In the study group, VEGF concentration was significantly positively correlated with the same blood parameters as white blood cells, platelets, plateletcrit, apolipoprotein B, total and LDL cholesterol fraction. The plaque of common carotid arteries and bifurcation was present in 39% of CAD patients, however, there was no significant association between VEGF plasma concentration and any measured parameters in Doppler ultrasound of carotid and peripheral arteries. CONCLUSIONS The circulating VEGF is only marginally associated with an increased risk for atherosclerosis.
Collapse
Affiliation(s)
- Natalia Pauli
- Department of Cardiology, Regional Hospital, Gorzów Wielkopolski, Poland
| | - Agnieszka Kuligowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | | | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Michał Rać
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Monika E Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland -
| |
Collapse
|
72
|
Chavkin NW, Hirschi KK. Single Cell Analysis in Vascular Biology. Front Cardiovasc Med 2020; 7:42. [PMID: 32296715 PMCID: PMC7137757 DOI: 10.3389/fcvm.2020.00042] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The ability to quantify DNA, RNA, and protein variations at the single cell level has revolutionized our understanding of cellular heterogeneity within tissues. Via such analyses, individual cells within populations previously thought to be homogeneous can now be delineated into specific subpopulations expressing unique sets of genes, enabling specialized functions. In vascular biology, studies using single cell RNA sequencing have revealed extensive heterogeneity among endothelial and mural cells even within the same vessel, key intermediate cell types that arise during blood and lymphatic vessel development, and cell-type specific responses to disease. Thus, emerging new single cell analysis techniques are enabling vascular biologists to elucidate mechanisms of vascular development, homeostasis, and disease that were previously not possible. In this review, we will provide an overview of single cell analysis methods and highlight recent advances in vascular biology made possible through single cell RNA sequencing.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Karen K Hirschi
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States.,Departments of Medicine and Genetics, Cardiovascular Research Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
73
|
Youyou Z, Yalei Y, Jie Z, Chuhuai G, Liang L, Liang R. Molecular biomarkers of cantharidin‐induced cardiotoxicity in Sprague‐Dawley rats: Troponin T, vascular endothelial growth factor and hypoxia inducible factor‐1α. J Appl Toxicol 2020; 40:1153-1161. [DOI: 10.1002/jat.3974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Zhang Youyou
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yu Yalei
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Zhang Jie
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Guan Chuhuai
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Liu Liang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ren Liang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
74
|
Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood) 2020; 245:911-921. [PMID: 32148090 DOI: 10.1177/1535370220911604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT Copper promotes angiogenesis, but the mechanistic insights have not been fully elucidated until recently. In addition, the significance of copper promotion of angiogenesis in myocardial regeneration was increasingly revealed. Copper critically participates in the regulation of hypoxia-inducible factor 1 (HIF-1) of angiogenic gene expression. Interestingly, myocardial ischemia causes copper efflux from the heart, leading to suppression of angiogenesis, although HIF-1α, the critical subunit of HIF-1, remains accumulated in the ischemic myocardium. Strategies targeting copper specific delivery to the ischemic myocardium lead to selective activation of HIF-1-regulated angiogenic gene expression. Vascularization of the ischemic myocardium re-establishes the tissue injury microenvironment, and rebuilds the conduit for communication between the tissue injury signals and the remote regenerative responses including stem cells. This process promotes myocardial regeneration. Thus, a simple and effective copper supplementation to the ischemic myocardium would become a novel therapeutic approach to the treatment of patients with ischemic heart diseases.
Collapse
Affiliation(s)
- Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Xin Song
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Dan Yang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
75
|
Liu SP, Shibu MA, Tsai FJ, Hsu YM, Tsai CH, Chung JG, Yang JS, Tang CH, Wang S, Li Q, Huang CY. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond) 2020; 17:12. [PMID: 32021640 PMCID: PMC6995207 DOI: 10.1186/s12986-020-0432-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 01/24/2023] Open
Abstract
Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. Methods The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. Results The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. Conclusion The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α.
Collapse
Affiliation(s)
- Shih-Ping Liu
- 1Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- 2College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Fuu-Jen Tsai
- 3School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan.,4China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- 4China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- 6Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shulin Wang
- 8Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518 Guangdong China
| | - Qiaowen Li
- 8Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518 Guangdong China
| | - Chih-Yang Huang
- 2College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.,7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,9Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
76
|
Affiliation(s)
| | - Javid Moslehi
- Division of Cardiovascular MedicineClinical PharmacologyCardio‐Oncology ProgramVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
- Division of OncologyVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| |
Collapse
|
77
|
Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S, Xia Z. Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: a randomized controlled trial. Eur Heart J 2019; 39:1028-1037. [PMID: 28329231 PMCID: PMC6018784 DOI: 10.1093/eurheartj/ehx030] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023] Open
Abstract
Aims Remote ischaemic preconditioning (RIPC) by inducing brief ischaemia in distant tissues protects the heart against myocardial ischaemia-reperfusion injury (IRI) in children undergoing open-heart surgery, although its effectiveness in adults with comorbidities is controversial. The effectiveness and mechanism of RIPC with respect to myocardial IRI in children with tetralogy of Fallot (ToF), a severe cyanotic congenital cardiac disease, undergoing open heart surgery are unclear. We hypothesized that RIPC can confer cardioprotection in children undergoing ToF repair surgery. Methods and results Overall, 112 ToF children undergoing radical open cardiac surgery using cardiopulmonary bypass (CPB) were randomized to either a RIPC group (n = 55) or a control group (n = 57). The RIPC protocol consisted of three cycles of 5-min lower limb occlusion and 5-min reperfusion using a cuff-inflator. Serum inflammatory cytokines and cardiac injury markers were measured before surgery and after CPB. Right ventricle outflow tract (RVOT) tissues were collected during the surgery to assess hypoxia-inducible factor (Hif)-1α and other signalling proteins. Cardiac mitochondrial injury was assessed by electron microscopy. The primary results showed that the length of stay in the intensive care unit (ICU) was longer in the control group than in the RIPC group (52.30 ± 13.43 h vs. 47.55 ± 10.34 h, respectively, P = 0.039). Patients in the control group needed longer post-operative ventilation time compared to the RIPC group (35.02 ± 6.56 h vs. 31.96 ± 6.60 h, respectively, P = 0.016). The levels of post-operative serum troponin-T at 12 and 18 h, CK-MB at 24 h, as well as the serum h-FABP levels at 6 h, after CPB were significantly lower, which was coincident with significantly higher protein expression of cardiac Hif-1α, p-Akt, p-STAT3, p-STAT5, and p-eNOS and less vacuolization of mitochondria in the RIPC group compared to the control group. Conclusion In ToF children undergoing open heart surgery, RIPC attenuates myocardial IRI and improves the short-term prognosis.
Collapse
Affiliation(s)
- Qingping Wu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Tingting Wang
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shiqiang Chen
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Quanjun Zhou
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Haobo Li
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| | - Na Hu
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yinglu Feng
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shanglong Yao
- Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,Department of Anaesthesiology, University of Hong Kong, 102 Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
78
|
André E, De Pauw A, Verdoy R, Brusa D, Bouzin C, Timmermans A, Bertrand L, Balligand JL. Changes of Metabolic Phenotype of Cardiac Progenitor Cells During Differentiation: Neutral Effect of Stimulation of AMP-Activated Protein Kinase. Stem Cells Dev 2019; 28:1498-1513. [PMID: 31530214 DOI: 10.1089/scd.2019.0129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac progenitor cells (CPCs) in the adult mammalian heart, as well as exogenous CPCs injected at the border zone of infarcted tissue, display very low differentiation rate into cardiac myocytes and marginal repair capacity in the injured heart. Emerging evidence supports an obligatory metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) during stem cells differentiation, suggesting that pharmacological modulation of metabolism may improve CPC differentiation and, potentially, healing properties. In this study, we investigated the metabolic transition underlying CPC differentiation toward cardiac myocytes. In addition, we tested whether activators of adenosine monophosphate-activated protein kinase (AMPK), known to promote mitochondrial biogenesis in other cell types would also improve CPC differentiation. Stem cell antigen 1 (Sca1+) CPCs were isolated from adult mouse hearts and their phenotype compared with more mature neonatal rat cardiac myocytes (NRCMs). Under normoxia, glucose consumption and lactate release were significantly higher in CPCs than in NRCMs. Both parameters were increased in hypoxia together with increased abundance of Glut1 (glucose transporter), of the monocarboxylic transporter Mct4 (lactate efflux mediator) and of Pfkfb3 (key regulator of glycolytic rate). CPC proliferation was critically dependent on glucose and glutamine availability in the media. Oxygen consumption analysis indicates that, compared with NRCMs, CPCs exhibited lower basal and maximal respirations with lower Tomm20 protein expression and mitochondrial DNA content. This CPC metabolic phenotype profoundly changed upon in vitro differentiation, with a decrease of glucose consumption and lactate release together with increased abundance of Tnnt2, Pgc-1α, Tomm20, and mitochondrial DNA content. Proliferative CPCs express both alpha1 and -2 catalytic subunits of AMPK that is activated by A769662. However, A769662 or resveratrol (an activator of Pgc-1α and AMPK) did not promote either mitochondrial biogenesis or CPC maturation during their differentiation. We conclude that although CPC differentiation is accompanied with an increase of mitochondrial oxidative metabolism, this is not potentiated by activation of AMPK in these cells.
Collapse
Affiliation(s)
- Emilie André
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aurélia De Pauw
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Roxane Verdoy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- I2P Imaging Platform, Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Aurélie Timmermans
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research (CARD), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
79
|
Maternal physical activity prevents the overexpression of hypoxia-inducible factor 1-α and cardiorespiratory dysfunction in protein malnourished rats. Sci Rep 2019; 9:14406. [PMID: 31594995 PMCID: PMC6783408 DOI: 10.1038/s41598-019-50967-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Maternal physical activity attenuates cardiorespiratory dysfunctions and transcriptional alterations presented by the carotid body (CB) of rats. Rats performed physical activity and were classified as inactive/active. During gestation and lactation, mothers received either normoprotein (NP-17% protein) or low-protein diet (LP-8% protein). In offspring, biochemical serum levels, respiratory parameters, cardiovascular parameters and the mRNA expression of hypoxia-inducible factor 1-alpha (HIF-1α), tyrosine hydroxylase (TH) and purinergic receptors were evaluate. LP-inactive pups presented lower RF from 1st to 14th days old, and higher RF at 30 days than did NP-inactive and NP-active pups. LP-inactive pups presented with reduced serum protein, albumin, cholesterol and triglycerides levels and an increased fasting glucose level compared to those of NP-inactive and NP-active groups. LP and LP-inactive animals showed an increase in the cardiac variability at the Low-Frequency bands, suggesting a major influence of sympathetic nervous activity. In mRNA analyses, LP-inactive animals showed increased HIF-1α expression and similar expression of TH and purinergic receptors in the CB compared to those of NP groups. All these changes observed in LP-inactive pups were reversed in the pups of active mothers (LP-active). Maternal physical activity is able to attenuate the metabolic, cardiorespiratory and HIF-1α transcription changes induced by protein malnutrition.
Collapse
|
80
|
Sun Z, Li X, Zheng X, Cao P, Yu B, Wang W. Stromal cell-derived factor-1/CXC chemokine receptor 4 axis in injury repair and renal transplantation. J Int Med Res 2019; 47:5426-5440. [PMID: 31581874 PMCID: PMC6862890 DOI: 10.1177/0300060519876138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy has shown promise in treating a variety of pathologies, such as myocardial infarction, ischaemic stroke and organ transplantation. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) axis plays a key role in stem cell mobilization. This review describes the important role of SDF-1 in tissue injury and how it works in tissue revascularization and regeneration via CXCR4. Furthermore, factors influencing the SDF-1/CXCR4 axis and its clinical potential in ischaemia reperfusion injury, such as renal transplantation, are discussed. Exploring signalling pathways of the SDF-1/CXCR4 axis will contribute to the development of stem cell therapy so that more clinical problems can be solved. Controlling directional homing of stem cells through the SDF-1/CXCR4 axis is key to improving the efficacy of stem cell therapy for tissue injury. CXCR4 antagonists may also be effective in increasing circulating levels of adult stem cells, thereby exerting beneficial effects on damaged or inflamed tissues in diseases that are currently not treated by standard approaches.
Collapse
Affiliation(s)
- Zejia Sun
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xin Li
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xiang Zheng
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Peng Cao
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Baozhong Yu
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Wei Wang
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
81
|
Vagnozzi RJ, Sargent MA, Lin SCJ, Palpant NJ, Murry CE, Molkentin JD. Genetic Lineage Tracing of Sca-1 + Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation 2019; 138:2931-2939. [PMID: 29991486 DOI: 10.1161/circulationaha.118.035210] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.
Collapse
Affiliation(s)
- Ronald J Vagnozzi
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Michelle A Sargent
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Suh-Chin J Lin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia (N.J.P.)
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle (C.E.M.)
| | - Jeffery D Molkentin
- Department of Pediatrics (R.J.V., M.A.S., S.-C.J.L., J.D.M.), Cincinnati Children's Hospital Medical Center, OH.,Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
82
|
Zarkasi KA, Jen-Kit T, Jubri Z. Molecular Understanding of the Cardiomodulation in Myocardial Infarction and the Mechanism of Vitamin E Protections. Mini Rev Med Chem 2019; 19:1407-1426. [DOI: 10.2174/1389557519666190130164334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/10/2018] [Accepted: 01/12/2019] [Indexed: 12/13/2022]
Abstract
:
Myocardial infarction is a major cause of deaths globally. Modulation of several molecular
mechanisms occurs during the initial stages of myocardial ischemia prior to permanent cardiac tissue
damage, which involves both pathogenic as well as survival pathways in the cardiomyocyte. Currently,
there is increasing evidence regarding the cardioprotective role of vitamin E in alleviating the disease.
This fat-soluble vitamin does not only act as a powerful antioxidant; but it also has the ability to regulate
several intracellular signalling pathways including HIF-1, PPAR-γ, Nrf-2, and NF-κB that influence
the expression of a number of genes and their protein products. Essentially, it inhibits the molecular
progression of tissue damage and preserves myocardial tissue viability. This review aims to summarize
the molecular understanding of the cardiomodulation in myocardial infarction as well as the
mechanism of vitamin E protection.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Tan Jen-Kit
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
83
|
González-Herrera L, Márquez-Ruiz AB, Serrano MJ, Ramos V, Lorente JA, Valenzuela A. mRNA expression patterns in human myocardial tissue, pericardial fluid and blood, and its contribution to the diagnosis of cause of death. Forensic Sci Int 2019; 302:109876. [PMID: 31419595 DOI: 10.1016/j.forsciint.2019.109876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/11/2019] [Accepted: 07/20/2019] [Indexed: 11/18/2022]
Abstract
Gene expression has become an interesting research area in forensic pathology to investigate the process of death at the molecular level. The aims of this study were to analyze changes in gene expression patterns in relation to the cause of death, and to propose new molecular markers of myocardial ischemia of potential use for the postmortem diagnosis of early ischemic heart damage in cases of sudden cardiac death (SCD). We determined mRNA levels of five proteins related with ischemic myocardial damage and repair - TNNI3, MYL3, TGFB1, MMP9 and VEGFA - in specific sites of the myocardium, blood and pericardial fluid in samples from 30 cadavers with different causes of death (SCD, multiple trauma, mechanical asphyxia, and other natural deaths). TNNI3 expression in blood, and MMP9 expression in pericardial fluid, were significantly higher when the cause of death was mechanical asphyxia, probably because of the more sensitive response of these proteins to acute systemic hypoxia/ischemia. Specifically, among SCD cases, increased MYL3, VEGFA and MMP9 values in the anterior wall of the right ventricle were found when the confirmed cause of death was acute myocardial infarction (AMI). Higher TGFB1 expression was found in the interventricular septum when AMI was not the cause of death, most likely as a reflection of the short duration of ischemia. Molecular biology techniques can provide complementary tools for the forensic diagnosis of early ischemic myocardial damage and AMI, and may make it possible to determine the duration and severity of myocardial ischemia.
Collapse
Affiliation(s)
- Lucas González-Herrera
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain.
| | - Ana Belén Márquez-Ruiz
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - María José Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Valentín Ramos
- Forensic Pathology Service, Legal Medicine Institute of Malaga, C./Fiscal Luís Portero García 6, 29010 Málaga, Spain
| | - José Antonio Lorente
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Aurora Valenzuela
- Department of Forensic Medicine, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
84
|
García Gómez-Heras S, Largo C, Larrea JL, Vega-Clemente L, Calderón Flores M, Ruiz-Pérez D, García-Olmo D, García-Arranz M. Main histological parameters to be evaluated in an experimental model of myocardial infarct treated by stem cells on pigs. PeerJ 2019; 7:e7160. [PMID: 31367480 PMCID: PMC6657680 DOI: 10.7717/peerj.7160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction has been carefully studied in numerous experimental models. Most of these models are based on electrophysiological and functional data, and pay less attention to histological discoveries. During the last decade, treatment using advanced therapies, mainly cell therapy, has prevailed from among all the options to be studied for treating myocardial infarction. In our study we wanted to show the fundamental histological parameters to be evaluated during the development of an infarction on an experimental model as well as treatment with mesenchymal stem cells derived from adipose tissue applied intra-lesionally. The fundamental parameters to study in infarcted tissue at the histological level are the cells involved in the inflammatory process (lymphocytes, macrophages and M2, neutrophils, mast cells and plasma cells), neovascularization processes (capillaries and arterioles) and cardiac cells (cardiomyocytes and Purkinje fibers). In our study, we used intramyocardial injection of mesenchymal stem cells into the myocardial infarction area 1 hour after arterial occlusion and allowed 1 month of evolution before analyzing the modifications on the normal tissue inflammatory infiltrate. Acute inflammation was shortened, leading to chronic inflammation with abundant plasma cells and mast cells and complete disappearance of neutrophils. Another benefit was an increase in the number of vessels formed. Cardiomyocytes and Purkinje fibers were better conserved, both from a structural and metabolic point of view, possibly leading to reduced morbidity in the long term. With this study we present the main histological aspects to be evaluated in future assays, complementing or explaining the electrophysiological and functional findings.
Collapse
Affiliation(s)
| | - Carlota Largo
- Experimental Surgery, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Jose Luis Larrea
- Surgical Cardiology Department, La Paz University Hospital, Madrid, Spain
| | - Luz Vega-Clemente
- Cell Therapy laboratory, Health Research Institute, Fundación Jiménez Diaz, Madrid, Spain
| | | | - Daniel Ruiz-Pérez
- Experimental Surgery, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Damián García-Olmo
- Cell Therapy laboratory, Health Research Institute, Fundación Jiménez Diaz, Madrid, Spain
| | - Mariano García-Arranz
- Cell Therapy laboratory, Health Research Institute, Fundación Jiménez Diaz, Madrid, Spain
| |
Collapse
|
85
|
Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med 2019; 51:1-13. [PMID: 31221962 PMCID: PMC6586801 DOI: 10.1038/s12276-019-0235-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of hypoxia-inducible factor (HIF), numerous studies on the hypoxia signaling pathway have been performed. The role of HIF stabilization during hypoxia has been extended from the induction of a single gene erythropoietin to the upregulation of a couple of hundred downstream targets, which demonstrates the complexity and importance of the HIF signaling pathway. Accordingly, HIF and its downstream targets are emerging as novel therapeutic options to treat various organ injuries. In this review, we discuss the current understanding of HIF signaling in four different organ systems, including the heart, lung, liver, and kidney. We also discuss the divergent roles of HIF in acute and chronic disease conditions and their revealed functions. Finally, we introduce some of the efforts that are being performed to translate our current knowledge in hypoxia signaling to clinical medicine.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, MD Anderson UT Health Graduate School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cynthia Ju
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
86
|
Fan Y, Lu M, Yu XA, He M, Zhang Y, Ma XN, Kou J, Yu BY, Tian J. Targeted Myocardial Hypoxia Imaging Using a Nitroreductase-Activatable Near-Infrared Fluorescent Nanoprobe. Anal Chem 2019; 91:6585-6592. [PMID: 30994329 DOI: 10.1021/acs.analchem.9b00298] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of a highly selective and sensitive imaging probe for accurate detection of myocardial hypoxia will be helpful to estimate the degree of ischemia and subsequently guide personalized treatment. However, an efficient optical approach for hypoxia monitoring in myocardial ischemia is still lacking. In this work, a cardiomyocyte-specific and nitroreductase-activatable near-infrared nanoprobe has been developed for selective and sensitive imaging of myocardial hypoxia. The nanoprobe is a liposome-based nanoarchitecture which is functionalized with a peptide (GGGGDRVYIHPF) for targeting heart cells and encapsulating a nitrobenzene-substituted BODIPY for nitroreductase imaging. The nanoprobe can specifically recognize and bind to angiotensin II type 1 receptor that is overexpressed on the ischemic heart cells by the peptide and is subsequently uptaken into heart cells, in which the probe is released and activated by hypoxia-related nitroreductase to produce fluorescence emission at 713 nm. The in vitro response of the nanoprobe toward nitroreductase resulted in 55-fold fluorescence enhancement with the limit of detection as low as 7.08 ng/mL. Confocal fluorescence imaging confirmed the successful uptake of nanoprobe by hypoxic heart cells and intracellular detection of nitroreductase. More significantly, in vivo imaging of hypoxia in a murine model of myocardial ischemia was achieved by the nanoprobe with high sensitivity and good biocompatibility. Therefore, this work presents a new tool for targeted detection of myocardial hypoxia and will promote the investigation of the hypoxia-related physiological and pathological process of ischemic heart disease.
Collapse
Affiliation(s)
- Yunshi Fan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Mi Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Xie-An Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Miaoling He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Xiao-Nan Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Junping Kou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, Cellular and Molecular Biology Center, School of Traditional Chinese Pharmacy , China Pharmaceutical University , Nanjing 211198 , P.R. China
| |
Collapse
|
87
|
Wang H, Lyu Y, Liao Q, Jin L, Xu L, Hu Y, Yu Y, Guo K. Effects of Remote Ischemic Preconditioning in Patients Undergoing Off-Pump Coronary Artery Bypass Graft Surgery. Front Physiol 2019; 10:495. [PMID: 31110480 PMCID: PMC6501551 DOI: 10.3389/fphys.2019.00495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose This study aimed to evaluate effects of remote ischemic preconditioning (RIPC) on myocardial injury in patients undergoing off-pump coronary artery bypass graft surgery (OPCABG). Methods Sixty-five patients scheduled for the OPCABG were randomly assigned to control (n = 32) or RIPC group (n = 33). All patients received general anesthesia. Before the surgical incision, RIPC was induced on an upper limb with repeated 5-min ischemia and 5-min reperfusion for four times. Blood samples were collected from right internal jugular vein. Plasma levels of IL-6, IL-8, IL-10, TNF-α, cTnT, HFABP, IMA, and MDA were detected at pre-operatively and 0, 6, 18, 24, 48, 72, and 120 h after the surgery. Left internal mammary artery (LIMA) and great saphenous vein (GSV) was cut into 2–3 mm for Western blot analysis of Hif-1α. Results In the present study, RIPC treatment significantly reduced plasma levels of cardiac troponin T (p < 0.05), heart-type fatty acid binding protein (p < 0.05), ischemia modified albumin (p < 0.05), malondialdehyde (p < 0.05), as well as plasma levels of pro-inflammatory cytokines including IL-6, IL-8, and TNF-α (P < 0.05, respectively). RIPC treatment significantly increased hypoxia-inducible factor-1α (p < 0.05) expression as well. Mechanical ventilation time for postoperative patients was shortened in RIPC group than those in control group (17.4 ± 3.8 h vs. 19.7 ± 2.9 h, respectively, p < 0.05). Conclusion RIPC by upper limb ischemia shortens mechanical ventilation time in patients undergoing OPCABG. RIPC treatment reduces postoperative myocardial enzyme expression and pro-inflammatory cytokine production. RIPC is a protective therapeutic approach in the coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Lyu
- Department of Anesthesiology, Yunnan Baoshan Anli Hospital, Baoshan, China
| | - Qingwu Liao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
88
|
Huang B, Huang LF, Zhao L, Zeng Z, Wang X, Cao D, Yang L, Ye Z, Chen X, Liu B, He TC, Wang X. Microvesicles (MIVs) secreted from adipose-derived stem cells (ADSCs) contain multiple microRNAs and promote the migration and invasion of endothelial cells. Genes Dis 2019; 7:225-234. [PMID: 32215292 PMCID: PMC7083715 DOI: 10.1016/j.gendis.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) such as microvesicles (MIVs) play an important role in intercellular communications. MIVs are small membrane vesicles sized 100–1000 nm in diameter that are released by many types of cells, such as mesenchymal stem cells (MSCs), tumor cells and adipose-derived stem cells (ADSC). As EVs can carry out autocrine and paracrine functions by controlling multiple cell processes, it is conceivable that EVs can be used as delivery vehicles for treating several clinical conditions, such as to improve cardiac angiogenesis after myocardial infarction (MI). Here, we seek to investigate whether ADSC-derived MIVs contain microRNAs that regulate angiogenesis and affect cell migration of endothelial cells. We first characterized the ADSC-derived MIVs and found that the MIVs had a size range of 100–300 nm, and expressed the MIV marker protein Alix. We then analyzed the microRNAs in ADSCs and ADSC-derived MIVs and demonstrated that ADSC-derived MIVs selectively released a panel of microRNAs, several of which were related to angiogenesis, including two members of the let-7 family. Furthermore, we demonstrated that ADSC-derived MIVs promoted the cell migration and invasion of the HUVEC endothelial cells. The PKH26-labeled ADSC-derived MIVs were effectively uptaken into the cytoplasm of HUVEC cells. Collectively, our results demonstrate that the ADSC-derived MIVs can promote migration and invasion abilities of endothelial cells, suggesting pro-angiogenetic potential. Future studies should focus on investigating the roles and mechanisms through which ADSC-derived MIVs regulate angiogenesis.
Collapse
Affiliation(s)
- Bo Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lin-Feng Huang
- Department of Clinical Laboratory Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Ling Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Daigui Cao
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and The Affiliated Hospitals of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Orthopaedic Surgery, Chongqing General Hospital Affiliated with the University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Clinical Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266061, China
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA.,Department of Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiaozhong Wang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
89
|
Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:831-843. [DOI: 10.1016/j.bbadis.2018.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
|
90
|
Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K, Wang N. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol 2019; 234:17690-17703. [PMID: 30793306 DOI: 10.1002/jcp.28395] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Proangiogenesis is generally regarded as an effective approach for treating ischemic heart disease. Vascular endothelial growth factor (VEGF)-A is a strong and essential proangiogenic factor. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy are implicated in the process of angiogenesis. This study is designed to clarify the regulatory mechanisms underlying VEGF-A, ROS, ER stress, autophagy, and angiogenesis in acute myocardial infarction (AMI). A mouse model of AMI was successfully established by occluding the left anterior descending coronary artery. Compared with the sham-operated mice, the microvessel density, VEGF-A content, ROS production, expression of vascular endothelial cadherin, positive expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/Bip), and LC3 puncta in CD31-positive endothelial cells of the ischemic myocardium were overtly elevated. Moreover, VEGF-A exposure predominantly increased the expression of beclin-1, autophagy-related gene (ATG) 4, ATG5, inositol-requiring enzyme-1 (IRE-1), GRP78/Bip, and LC3-II/LC3-I as well as ROS production in the human umbilical vein endothelial cells (HUVECs) in a dose and time-dependent manner. Both beclin-1 small interfering RNA and 3-methyladenine treatment predominantly mitigated VEGF-A-induced tube formation and migration of HUVECs, but they failed to elicit any notable effect on VEGF-A-increased expression of GRP78/Bip. Tauroursodeoxycholic acid not only obviously abolished VEGF-A-induced increase of IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I, but also negated VEGF-A-induced tube formation and migration of HUVECs. Furthermore, N-acetyl- l-cysteine markedly abrogated VEGF-A-increased ROS production, IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I in the HUVECs. Taken together, our data demonstrated that increased spontaneous production of VEGF-A may induce angiogenesis after AMI through initiating ROS-ER stress-autophagy axis in the vascular endothelial cells.
Collapse
Affiliation(s)
- Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Qin Fei
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Hui Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Xianzhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.,Department of Laboratory Animals, Hunan Key Laboratory of Animal Models for Human Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| |
Collapse
|
91
|
Wu Z, Zhang W, Kang YJ. Copper affects the binding of HIF-1α to the critical motifs of its target genes. Metallomics 2019; 11:429-438. [PMID: 30566157 DOI: 10.1039/c8mt00280k] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Copper regulates the target gene selection of HIF-1α under hypoxic conditions by affecting HIF-1α-DNA binding patterns across the genome.
Collapse
Affiliation(s)
- Zhijuan Wu
- Regenerative Medicine Research Center
- Sichuan University West China Hospital
- Chengdu
- China
| | - Wenjing Zhang
- Regenerative Medicine Research Center
- Sichuan University West China Hospital
- Chengdu
- China
- Memphis Institute of Regenerative Medicine
| | - Y. James Kang
- Regenerative Medicine Research Center
- Sichuan University West China Hospital
- Chengdu
- China
- Memphis Institute of Regenerative Medicine
| |
Collapse
|
92
|
Tsao CJ, Pandolfi L, Wang X, Minardi S, Lupo C, Evangelopoulos M, Hendrickson T, Shi A, Storci G, Taraballi F, Tasciotti E. Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44344-44353. [PMID: 30511828 DOI: 10.1021/acsami.8b19975] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Collapse
Affiliation(s)
- Christopher J Tsao
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Laura Pandolfi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Xin Wang
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Silvia Minardi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Cristina Lupo
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Troy Hendrickson
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- MD/PhD Program , Texas A&M College of Medicine , 8441 Riverside Parkway , Bryan , Texas 77807 , United States
| | - Aaron Shi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Gianluca Storci
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Francesca Taraballi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| | - Ennio Tasciotti
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| |
Collapse
|
93
|
Du Y, Ge Y, Xu Z, Aa N, Gu X, Meng H, Lin Z, Zhu D, Shi J, Zhuang R, Wu X, Wang X, Yang Z. Hypoxia-Inducible Factor 1 alpha (HIF-1α)/Vascular Endothelial Growth Factor (VEGF) Pathway Participates in Angiogenesis of Myocardial Infarction in Muscone-Treated Mice: Preliminary Study. Med Sci Monit 2018; 24:8870-8877. [PMID: 30531686 PMCID: PMC6295139 DOI: 10.12659/msm.912051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiogenesis plays a crucial role in myocardial infarction (MI) treatment by ameliorating myocardial remodeling, thus improving cardiac function and preventing heart failure. Muscone has been reported to have beneficial effects on cardiac remodeling in MI mice. However, the effects of muscone on angiogenesis in MI mice and its underlying mechanisms remain unknown. MATERIAL AND METHODS Mice were randomly divided into sham, MI, and MI+muscone groups. The MI mouse model was established by ligating the left anterior descending coronary artery. Mice in the sham group received the same procedure except for ligation. Mice were administered muscone or an equivalent volume of saline for 4 consecutive weeks. Cardiac function was evaluated by echocardiograph after MI for 2 and 4 weeks. Four weeks later, all mice were sacrificed and Masson's trichrome staining was used to assess myocardial fibrosis. Isolectin B4 staining was applied to evaluate the angiogenesis in mouse hearts. Immunohistochemistry, Western blot analysis, and quantitative real-time polymerase chain reaction (qPCR) were performed to analyze expression levels of HIF-1a and its downstream genes. RESULTS Compared with the MI group, muscone treatment significantly improved cardiac function and reduced myocardial fibrosis. Moreover, muscone enhanced angiogenesis in the peri-infarct region and p-VEGFR2 expression in the vascular endothelial cells. Western blot analysis and qPCR showed that muscone upregulated expression levels of HIF-1a and VEGFA. CONCLUSIONS Muscone improved cardiac function in MI mice through augmented angiogenesis. The potential mechanism of muscone treatment in regulating angiogenesis of MI mice was upregulating expression levels of HIF-1α and VEGFA.
Collapse
Affiliation(s)
- Yingqiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xin Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhou Lin
- Department of Cardiology, Wuxi No. 3 People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China (mainland)
| | - Dongxiao Zhu
- Department of Cardiac Ultrasound, Wuxi No. 3 People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China (mainland)
| | - Jingjing Shi
- Department of Cardiology, Wuxi No. 3 People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China (mainland)
| | - Ruijuan Zhuang
- Department of Cardiology, Wuxi No. 3 People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China (mainland)
| | - Xueming Wu
- Department of Cardiology, Wuxi No. 3 People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China (mainland)
| | - Xiaoyan Wang
- Department of Cardiology, Wuxi No. 3 People's Hospital Affiliated to Nantong University, Wuxi, Jiangsu, China (mainland)
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
94
|
Mihanfar A, Nejabati HR, Fattahi A, latifi Z, Faridvand Y, Pezeshkian M, Jodati AR, Safaie N, Afrasiabi A, Nouri M. SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomed Pharmacother 2018; 108:367-373. [DOI: 10.1016/j.biopha.2018.09.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
|
95
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
96
|
Fauzia E, Barbhuyan TK, Shrivastava AK, Kumar M, Garg P, Khan MA, Robertson AAB, Raza SS. Chick Embryo: A Preclinical Model for Understanding Ischemia-Reperfusion Mechanism. Front Pharmacol 2018; 9:1034. [PMID: 30298003 PMCID: PMC6160536 DOI: 10.3389/fphar.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R)-related disorders, such as stroke, myocardial infarction, and peripheral vascular disease, are among the most frequent causes of disease and death. Tissue injury or death may result from the initial ischemic insult, primarily determined by the magnitude and duration of the interruption in blood supply and then by the subsequent reperfusion-induced damage. Various in vitro and in vivo models are currently available to study I/R mechanism in the brain and other tissues. However, thus far, no in ovo I/R model has been reported for understanding the I/R mechanisms and for faster drug screening. Here, we developed an in ovo Hook model of I/R by occluding and releasing the right vitelline artery of a chick embryo at 72 h of development. To validate the model and elucidate various underlying survival and death mechanisms, we employed imaging (Doppler blood flow imaging), biochemical, and blotting techniques and evaluated the cell death mechanism: autophagy and inflammation caused by I/R. In conclusion, the present model is useful in parallel with established in vitro and in vivo I/R models to understand the mechanisms of I/R development and its treatment.
Collapse
Affiliation(s)
- Eram Fauzia
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Tarun Kumar Barbhuyan
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Amit Kumar Shrivastava
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Manish Kumar
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Paarth Garg
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| |
Collapse
|
97
|
Malandraki-Miller S, Lopez CA, Al-Siddiqi H, Carr CA. Changing Metabolism in Differentiating Cardiac Progenitor Cells-Can Stem Cells Become Metabolically Flexible Cardiomyocytes? Front Cardiovasc Med 2018; 5:119. [PMID: 30283788 PMCID: PMC6157401 DOI: 10.3389/fcvm.2018.00119] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
The heart is a metabolic omnivore and the adult heart selects the substrate best suited for each circumstance, with fatty acid oxidation preferred in order to fulfill the high energy demand of the contracting myocardium. The fetal heart exists in an hypoxic environment and obtains the bulk of its energy via glycolysis. After birth, the "fetal switch" to oxidative metabolism of glucose and fatty acids has been linked to the loss of the regenerative phenotype. Various stem cell types have been used in differentiation studies, but most are cultured in high glucose media. This does not change in the majority of cardiac differentiation protocols. Despite the fact that metabolic state affects marker expression and cellular function and activity, the substrate composition is currently being overlooked. In this review we discuss changes in cardiac metabolism during development, the various protocols used to differentiate progenitor cells to cardiomyocytes, what is known about stem cell metabolism and how consideration of metabolism can contribute toward maturation of stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Carolyn A. Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
98
|
Fatty Acids Prevent Hypoxia-Inducible Factor-1α Signaling Through Decreased Succinate in Diabetes. JACC Basic Transl Sci 2018; 3:485-498. [PMID: 30175272 PMCID: PMC6115650 DOI: 10.1016/j.jacbts.2018.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/02/2023]
Abstract
HIF-1α is activated following myocardial infarction, and is a critical transcription factor promoting survival in hypoxia. Type 2 diabetes blunts HIF-1α activation in ischemia and downstream adaptation to hypoxia. This effect is mediated by increased long-chain fatty acids, which prevent HIF-1α activation in hypoxia. Succinate promotes HIF-1α activation by inhibiting the regulatory HIF hydroxylases. Fatty acids decrease succinate concentrations in hypoxia, by blocking increased glycolysis and malate-aspartate shuttle activity. Pharmacologically activating HIF-1α or increasing succinate concentrations restores the hypoxic response and improves functional recovery post-ischemia in diabetes.
Hypoxia-inducible factor (HIF)-1α is essential following a myocardial infarction (MI), and diabetic patients have poorer prognosis post-MI. Could HIF-1α activation be abnormal in the diabetic heart, and could metabolism be causing this? Diabetic hearts had decreased HIF-1α protein following ischemia, and insulin-resistant cardiomyocytes had decreased HIF-1α-mediated signaling and adaptation to hypoxia. This was due to elevated fatty acid (FA) metabolism preventing HIF-1α protein stabilization. FAs exerted their effect by decreasing succinate concentrations, a HIF-1α activator that inhibits the regulatory HIF hydroxylase enzymes. In vivo and in vitro pharmacological HIF hydroxylase inhibition restored HIF-1α accumulation and improved post-ischemic functional recovery in diabetes.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DMF, dimethyl fumarate
- DMOG, dimethyloxalylglycine
- FA, fatty acid
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- HIF-1α
- IR, insulin resistance/resistant
- MI, myocardial infarction
- PHD, prolyl hydroxylase domain
- SSO, sulfo-N-succinimidyl oleate
- cardiovascular disease
- diabetes
- fatty acids
- hypoxia
- i.p., intraperitoneal
- metabolism
Collapse
|
99
|
Evidence of extensive atherosclerosis, coronary artery disease and myocardial infarction in the ApoE−/−:Ins2 mouse fed a western diet. Atherosclerosis 2018; 275:88-96. [DOI: 10.1016/j.atherosclerosis.2018.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 11/18/2022]
|
100
|
Wang M, Zhang WB, Song JL, Luan Y, Jin CY. Effect of Breviscapine on Recovery of Viable Myocardium and Left Ventricular Remodeling in Chronic Total Occlusion Patients After Revascularization: Rationale and Design for a Randomized Controlled Trial. Med Sci Monit 2018; 24:4602-4609. [PMID: 29970875 PMCID: PMC6064194 DOI: 10.12659/msm.906438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND How to speed the recovery of viable myocardium in chronic total occlusion (CTO) patients after revascularization is still an unsolved problem. Breviscapine is widely used in cardiovascular diseases. However, there has been no study focused on the effect of breviscapine on viable myocardium recovery and left ventricular remodeling after CTO revascularization. MATERIAL AND METHODS We propose to recruit 78 consecutive coronary artery disease (CAD) patients with CTO during a period of 12 months. They will be randomly assigned to receive either breviscapine (40 mg) or placebo in the following 12 months. Blood tests, electrocardiogram, and Major Adverse Cardiac Events (MACE) will be collected at baseline and the follow-up visits at 1, 3, 6, 9, and 12 months. Low-dose dobutamine MRI will be applied for the assessment of viable myocardium, microcirculation perfusion, and left ventricular remodeling, and the concentrations of angiogenic cytokine, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) will be investigated at baseline and at 1- and 12-month follow-up. The recovery of viable myocardium after revascularization in CTO patients was the primary endpoint. Improvement of microcirculation perfusion, left ventricular remodeling, peripheral concentrations of VEGF and bFGF as well as MACE will be the secondary endpoints. RESULTS Breviscapine treatment obviously improve the recovery of viable myocardium, myocardial microcirculation perfusion, and left ventricular remodeling after revascularization in CTO patients, and reduce the occurrence of MACE. We also will determine if breviscapine increases the peripheral blood angiogenic cytokine concentrations of VEGF and bFGF. CONCLUSIONS This study will aim to demonstrate the effect of breviscapine on the recovery of viable myocardium and left ventricular remodeling in CTO patients after revascularization.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wen-Bin Zhang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jia-le Song
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yi Luan
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chong-Ying Jin
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|