51
|
Mutational Characteristics of Primary Mucosal Melanoma: A Systematic Review. Mol Diagn Ther 2022; 26:189-202. [PMID: 35195858 DOI: 10.1007/s40291-021-00572-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Primary mucosal melanomas (PMMs) are rare and clinically heterogeneous, including head and neck (HNMs), vulvovaginal (VVMs), conjunctival (CjMs), anorectal (ARMs) and penile (PMs) melanomas. While the prognosis of advanced cutaneous melanoma has noticeably improved using treatments with immune checkpoint inhibitors (ICIs) and molecules targeting BRAF and MEK, few advances have been made for PMMs because of their poorer response to ICIs and their different genetic profile. This prompted us to conduct a systematic review of molecular studies of PMMs to clarify their pathogenesis and potential therapeutic targets. METHODS All articles that examined gene mutations in PMMs were identified from the databases and selected based on predefined inclusion criteria. Mutation rate was calculated for all PMMs and each location group by relating the number of mutations identified to the total number of samples analysed. RESULTS Among 1,581 studies identified, 88 were selected. Overall, the frequency of KIT, BRAF and NRAS mutation was 13.5%, 12.9% and 12.1%, respectively. KIT mutation ranged from 6.4% for CjMs to 16.6% for ARMs, BRAF mutation from 8.6% for ARMs to 31.1% for CjMs, and NRAS mutation from 6.2% for ARMs to 18.5% for CjMs. Among 101 other genes analysed, 33 had mutation rates over 10%, including TTN, TSC1, POM121, NF1, MTOR and SF3B1. CONCLUSION In addition to BRAF, NRAS and KIT genes commonly studied, our systematic review identified significantly mutated genes that have already been associated (e.g., TSC1, mTOR, POLE or ATRX) or could be associated with (future) targeted therapies. PROSPERO ID CRD42020185552.
Collapse
|
52
|
Daggubati V, Raleigh DR, Sever N. Sterol regulation of developmental and oncogenic Hedgehog signaling. Biochem Pharmacol 2022; 196:114647. [PMID: 34111427 PMCID: PMC8648856 DOI: 10.1016/j.bcp.2021.114647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) family of lipid-modified signaling proteins directs embryonic tissue patterning and postembryonic tissue homeostasis, and dysregulated Hh signaling drives familial and sporadic cancers. Hh ligands bind to and inhibit the tumor suppressor Patched and allow the oncoprotein Smoothened (SMO) to accumulate in cilia, which in turn activates the GLI family of transcription factors. Recent work has demonstrated that endogenous cholesterol and oxidized cholesterol derivatives (oxysterols) bind and modulate SMO activity. Here we discuss the myriad sterols that activate or inhibit the Hh pathway, with emphasis on endogenous 24(S),25-epoxycholesterol and 3β,5α-dihydroxycholest-7-en-6-one, and propose models of sterol regulation of SMO. Synthetic inhibitors of SMO have long been the focus of drug development efforts. Here, we discuss the possible utility of steroidal SMO ligands or inhibitors of enzymes involved in sterol metabolism as cancer therapeutics.
Collapse
Affiliation(s)
- Vikas Daggubati
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA,Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - David R. Raleigh
- Departments of Radiation Oncology and Neurological Surgery, and Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Navdar Sever
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA,Corresponding author: Navdar Sever, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, LHRRB 405, Boston, MA 02115, USA, , Telephone: (617) 432-1612
| |
Collapse
|
53
|
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022; 12:31-46. [PMID: 35022204 DOI: 10.1158/2159-8290.cd-21-1059] [Citation(s) in RCA: 4706] [Impact Index Per Article: 1568.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.
Collapse
Affiliation(s)
- Douglas Hanahan
- Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland. The Swiss Institute for Experimental Cancer Research (ISREC) within the School of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. The Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
54
|
Joshi J, Patel H, Bhavnagari H, Tarapara B, Pandit A, Shah F. Eliminating Cancer Stem-Like Cells in Oral Cancer by Targeting Elementary Signaling Pathways. Crit Rev Oncog 2022; 27:65-82. [PMID: 37199303 DOI: 10.1615/critrevoncog.2022047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
55
|
Abstract
We present the update of the recommendations of the French society of oncological radiotherapy on radiotherapy of cutaneous cancers. The indications of radiotherapy for skin cancers are not clearly defined because of the lack of randomized trials or prospective studies. For basal cell carcinomas, radiotherapy frequently offers a good local control, but a randomized trial showed that surgery is more efficient and less toxic. Indications of radiotherapy are contra-indications of surgery for patients older than 60, non-sclerodermiform histology and located in non-sensitive areas. Adjuvant radiotherapy could be proposed to squamous cell carcinomas, in case of poor prognostic factors. Dose of 60 to 70Gy are usually required, and must be modulated to the size of the lesions. Adjuvant radiotherapy seems beneficial for desmoplastic melanomas but not for the other histological types. Prophylactic nodal irradiation (45 to 50Gy), for locally advanced tumors (massive nodal involvement), decreases the locoregional failure rate but do not increase survival. Adjuvant radio- therapy (50 to 56Gy) for Merkel cell carcinomas increases also the local control rate, as demonstrated by meta-analysis and a large epidemiological study. Nodal areas must be included, if there is no surgical exploration (sentinel lymph node dissection). Kaposi sarcomas are radiosensitive and could be treated with relatively low doses (24 to 30Gy). Also, cutaneous lymphomas are good indications for radiotherapy: B lymphomas are electively treated with limited fields. The role of total skin electron therapy for T-lymphomas is still discussed; but palliative radiotherapy is very efficient in case of cutaneous nodules.
Collapse
|
56
|
Lear JT, Dummer R, Guminski A. Using drug scheduling to manage adverse events associated with hedgehog pathway inhibitors for basal cell carcinoma. Oncotarget 2021; 12:2531-2540. [PMID: 34966484 PMCID: PMC8711575 DOI: 10.18632/oncotarget.28145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignancy and form of skin cancer worldwide; advanced BCC, either as locally advanced BCC (laBCC) or metastatic BCC (mBCC), can cause substantial tissue invasion and morbidity. Until the recent availability of the hedgehog pathway inhibitors (HHIs) sonidegib and vismodegib, treatment options for advanced BCC were limited. These agents demonstrate efficacy in patients with laBCC and mBCC; however, the adverse events (AEs) associated with these agents can lead to treatment interruption or discontinuation and reduced quality of life, all of which significantly impact long-term adherence to therapy, which might affect clinical outcome. Given that most AEs are class-related effects, switching HHIs does not appear to lead to a significantly different AE profile, underscoring the importance of maintaining patients on their first HHI. Interrupting treatment of sonidegib and vismodegib does not appear to undermine the efficacy of these agents and is therefore a practical option to manage AEs in order to maintain continued treatment and disease control.
Collapse
Affiliation(s)
- John T. Lear
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Reinhard Dummer
- Department of Dermatology, University Hospital, University of Zurich, Zurich, Switzerland
- Skin Cancer Center, University Hospital, University of Zurich, Zurich, Switzerland
| | - Alexander Guminski
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, Australia
- Faculty of Medicine, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
57
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
58
|
Frappaz D, Barritault M, Montané L, Laigle-Donadey F, Chinot O, Le Rhun E, Bonneville-Levard A, Hottinger AF, Meyronnet D, Bidaux AS, Garin G, Pérol D. MEVITEM-a phase I/II trial of vismodegib + temozolomide vs temozolomide in patients with recurrent/refractory medulloblastoma with Sonic Hedgehog pathway activation. Neuro Oncol 2021; 23:1949-1960. [PMID: 33825892 PMCID: PMC8563312 DOI: 10.1093/neuonc/noab087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vismodegib specifically inhibits Sonic Hedgehog (SHH). We report results of a phase I/II evaluating vismodegib + temozolomide (TMZ) in immunohistochemically defined SHH recurrent/refractory adult medulloblastoma. METHODS TMZ-naïve patients were randomized 2:1 to receive vismodegib + TMZ (arm A) or TMZ (arm B). Patients previously treated with TMZ were enrolled in an exploratory cohort of vismodegib (arm C). If the safety run showed no excessive toxicity, a Simon's 2-stage phase II design was planned to explore the 6-month progression-free survival (PFS-6). Stage II was to proceed if arm A PFS-6 was ≥3/9 at the end of stage I. RESULTS A total of 24 patients were included: arm A (10), arm B (5), and arm C (9). Safety analysis showed no excessive toxicity. At the end of stage I, the PFS-6 of arm A was 20% (2/10 patients, 95% unilateral lower confidence limit: 3.7%) and the study was prematurely terminated. The overall response rates (ORR) were 40% (95% CI, 12.2-73.8) and 20% (95% CI, 0.5-71.6) in arm A and B, respectively. In arm C, PFS-6 was 37.5% (95% CI, 8.8-75.5) and ORR was 22.2% (95% CI, 2.8-60.0). Among 11 patients with an expected sensitivity according to new generation sequencing (NGS), 3 had partial response (PR), 4 remained stable disease (SD) while out of 7 potentially resistant patients, 1 had PR and 1 SD. CONCLUSION The addition of vismodegib to TMZ did not add toxicity but failed to improve PFS-6 in SHH recurrent/refractory medulloblastoma. Prediction of sensitivity to vismodegib needs further refinements.
Collapse
Affiliation(s)
| | | | - Laure Montané
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| | | | - Olivier Chinot
- Neuro-Oncology Unit, La Timone Marseille, Marseille, France
| | - Emilie Le Rhun
- University of Lille, U-1192, F-59000 Lille, Lille, France
- Inserm, U-1192, F-59000 Lille, Lille, France
- General and Stereotaxic Neurosurgery Service, CHU Lille, Lille, France
- Oscar Lambret Center, Lille, France
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Andreas F Hottinger
- Brain and Spine Tumor Center, Departments of Clinical Neurosciences & Oncology, CHUV Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Gwenaële Garin
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| | - David Pérol
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| |
Collapse
|
59
|
Amézaga J, Ugartemendia G, Larraioz A, Bretaña N, Iruretagoyena A, Camba J, Urruticoechea A, Ferreri C, Tueros I. Omega 6 polyunsaturated fatty acids in red blood cell membrane are associated with xerostomia and taste loss in patients with breast cancer. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102336. [PMID: 34500308 DOI: 10.1016/j.plefa.2021.102336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Chemosensory and physical complaints are common disorders in cancer patients under chemotherapy treatments that may affect the food intake, leading to a decreased quality of life. Lipid metabolism is a major pathway of cancer proliferation, where erythrocyte membrane phospholipids and their fatty acid composition are promising tools for monitoring metabolic pathways. Relationship between lipid profile in erythrocyte membrane phospholipids and chemosensory alterations in 44 newly diagnosed patients with breast cancer was here investigated. Smell changes and xerostomia were the most common complaints, with xerostomia as the main influencing factor on the development of other taste disorders. Lipid profiles revealed significant negative correlation between diminution of linoleic acid levels and xerostomia as well as positive correlation between increased arachidonic acid and salty taste. The involvement of these polyunsaturated lipids suggests the importance of oxidative and nutritional conditions of cancer patients, which can affect the molecular status for taste signals.
Collapse
Affiliation(s)
- J Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio - Bizkaia, Spain
| | - G Ugartemendia
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - A Larraioz
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - N Bretaña
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - A Iruretagoyena
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - J Camba
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - A Urruticoechea
- Onkologikoa Foundation, Paseo Doctor Begiristain, 121, 20014 San Sebastián, Gipuzkoa, Spain
| | - C Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - I Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA). Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio - Bizkaia, Spain.
| |
Collapse
|
60
|
Peer E, Aichberger SK, Vilotic F, Gruber W, Parigger T, Grund-Gröschke S, Elmer DP, Rathje F, Ramspacher A, Zaja M, Michel S, Hamm S, Aberger F. Casein Kinase 1D Encodes a Novel Drug Target in Hedgehog-GLI-Driven Cancers and Tumor-Initiating Cells Resistant to SMO Inhibition. Cancers (Basel) 2021; 13:cancers13164227. [PMID: 34439381 PMCID: PMC8394935 DOI: 10.3390/cancers13164227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Uncontrolled activation of hedgehog (HH)—GLI signaling contributes to the development of several human malignancies. Targeted inhibition of the HH—GLI signaling cascade with small-molecule inhibitors can reduce cancer growth, but patient relapse is very common due to the development of drug resistance. Therefore, a high unmet medical need exists for new drug targets and inhibitors to achieve efficient and durable responses. In the current study, we identified CSNK1D as a novel drug target in the HH—GLI signaling pathway. Genetic and pharmacological inhibition of CSNK1D activity leads to suppression of oncogenic HH—GLI signaling, even in cancer cells in which already approved HH inhibitors are no longer effective due to resistance mechanisms. Inhibition of CSNK1D function reduces the malignant properties of so-called tumor-initiating cells, thereby limiting cancer growth and presumably metastasis. The results of this study form the basis for the development of efficient CSNK1D inhibitors for the therapy of HH—GLI-associated cancers. Abstract (1) Background: Aberrant activation of the hedgehog (HH)—GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH—GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH—GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Sophie Karoline Aichberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Filip Vilotic
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Wolfgang Gruber
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Thomas Parigger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg Cancer Research Institute, Cancer Cluster Salzburg, IIIrd Medical Department, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Sandra Grund-Gröschke
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Dominik Patrick Elmer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Florian Rathje
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Andrea Ramspacher
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mirko Zaja
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Susanne Michel
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Svetlana Hamm
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Fritz Aberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Correspondence: ; Tel.: +43-662-8044-5792
| |
Collapse
|
61
|
Pereira V, Torrejon J, Kariyawasam D, Berlanga P, Guerrini-Rousseau L, Ayrault O, Varlet P, Tauziède-Espariat A, Puget S, Bolle S, Beccaria K, Blauwblomme T, Brugières L, Grill J, Geoerger B, Dufour C, Abbou S. Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma. Neurooncol Adv 2021; 3:vdab097. [PMID: 34409296 PMCID: PMC8367281 DOI: 10.1093/noajnl/vdab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Smoothened inhibitors (SMOi) have shown activity in Sonic Hedgehog (SHH) medulloblastoma, however this therapeutic class was not developed in children due to severe effects reported on growth. We hereby report long-term follow-up of young patients treated with SMOi for recurrent medulloblastoma. Methods Clinical data on response and toxicity from patients treated with vismodegib or sonidegib from 2011 to 2019 for a SHH medulloblastoma were retrospectively reviewed. Methylation analysis and whole exome sequencing were performed whenever possible. Results All patients with a somatic PTCH1 mutation responded to SMOi (6/8), including 2 prolonged complete responses. One patient was free of disease 8.2 years after treatment. SMOi was challenged again for 3 patients. Two of them had a response, one with SMOi alone, the other one in combination with temozolomide despite previous progression under monotherapy. SMO resistance mutations were found in patients from biopsy at relapse. Combination with temozolomide or surgery plus radiotherapy was associated with very long disease control in 2 patients. The most severe adverse events were myalgia and growth plate fusion with metaphyseal sclerosis. Normal growth velocity was recovered for 1 patient although her final height was below estimated target height. Conclusions Targeting SMO in mutated PTCH1 is an interesting strategy for long-term responses. Combination of SMOi with chemotherapy or surgery and local radiotherapy is an appealing strategy to prevent early resistance and diminish SMOi exposure, especially in young patients. Inhibition of SHH pathway causes growth and development impairment but partial recovery of the growth velocity is possible.
Collapse
Affiliation(s)
- Victor Pereira
- Department of Pediatric Haematology and Oncology, Besançon University Hospital, Besançon, France.,Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Jacob Torrejon
- Curie University Institute, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Diabetology and Gynecology Department, Necker Enfant-Malades University Hospital, AP-HP, Paris, France.,Imagine Institute, Inserm U1163, Paris, France.,Cochin Institute, Inserm U1016, Paris, France
| | - Pablo Berlanga
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| | - Olivier Ayrault
- Curie University Institute, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Pascale Varlet
- Department of Neuropathology, Saint-anne Hospital, Paris, France
| | | | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker Enfants-Malades University Hospital, AP-HP, Paris, France
| | - Stéphanie Bolle
- Department of Radiation Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants-Malades University Hospital, AP-HP, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants-Malades University Hospital, AP-HP, Paris, France
| | - Laurence Brugières
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Christelle Dufour
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| | - Samuel Abbou
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| |
Collapse
|
62
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
63
|
Chow RY, Jeon US, Levee TM, Kaur G, Cedeno DP, Doan LT, Atwood SX. PI3K Promotes Basal Cell Carcinoma Growth Through Kinase-Induced p21 Degradation. Front Oncol 2021; 11:668247. [PMID: 34268113 PMCID: PMC8276170 DOI: 10.3389/fonc.2021.668247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Basal cell carcinoma (BCC) is a locally invasive epithelial cancer that is primarily driven by the Hedgehog (HH) pathway. Advanced BCCs are a critical subset of BCCs that frequently acquire resistance to Smoothened (SMO) inhibitors and identifying pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify a PI3K pathway expression signature in BCC. Pharmacological inhibition of PI3K activity in BCC cells significantly reduces cell proliferation and HH signaling. However, treatment of Ptch1fl/fl; Gli1-CreERT2 mouse BCCs with the PI3K inhibitor BKM120 results in a reduction of tumor cell growth with no significant effect on HH signaling. Downstream PI3K components aPKC and Akt1 showed a reduction in active protein, whereas their substrate, cyclin-dependent kinase inhibitor p21, showed a concomitant increase in protein stability. Our results suggest that PI3K promotes BCC tumor growth by kinase-induced p21 degradation without altering HH signaling.
Collapse
Affiliation(s)
- Rachel Y Chow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ung Seop Jeon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Taylor M Levee
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Gurleen Kaur
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Daniel P Cedeno
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Linda T Doan
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.,Department of Dermatology, University of California, Irvine, Irvine, CA, United States.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
64
|
Pan Y, Zhou J, Zhang W, Yan L, Lu M, Dai Y, Zhou H, Zhang S, Yang J. The Sonic Hedgehog signaling pathway regulates autophagy and migration in ovarian cancer. Cancer Med 2021; 10:4510-4521. [PMID: 34076346 PMCID: PMC8267163 DOI: 10.1002/cam4.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background The Sonic Hedgehog (SHH) signaling pathway plays an important role in various types of human cancers including ovarian cancer; however, its function and underlying mechanism in ovarian cancer are still not entirely understood. Methods We detected the expressions of SHH and SQSTM1 in borderline ovarian tumor tissues, epithelial ovarian cancer (EOC) tissues and benign ovarian tumor tissues. Cyclopamine (Cyp, a well‐known inhibitor of SHH signaling pathway) and chloroquine (CQ, the pharmaceutical inhibitor of autophagy) were used in vivo and in vitro (autophagic flux, CCK‐8 assay, wound healing assay, transwell assay, tumor xenograft model). The mechanism of action was explored through Quantitative RT‐PCR and Western Blot. Results We found up‐regulation of SHH and accumulation of SQSTM1/P62 in epithelial ovarian cancer. Cyp induced autophagy through the PI3K/AKT signaling pathway. Moreover, low‐dose Cyp and chloroquine (CQ) significantly promoted the migratory ability of SKOV3 cells. Conclusions Our findings suggest that inhibition of the SHH pathway and autophagy may be a potential and effective therapy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiena Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Yaojiang Township Central Hospital, Zhuji City, Zhejiang Province, China
| | - Weidan Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou City, Zhejiang Province, China
| | - Lili Yan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Beilun district hospital of traditional Chinese medicine, Ningbo city, Zhejiang Province, China
| | - Meifei Lu
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
65
|
Kahana A, Unsworth SP, Andrews CA, Chan MP, Bresler SC, Bichakjian CK, Durham AB, Demirci H, Elner VM, Nelson CC, Kim DS, Joseph SS, Swiecicki PL, Worden FP. Vismodegib for Preservation of Visual Function in Patients with Advanced Periocular Basal Cell Carcinoma: The VISORB Trial. Oncologist 2021; 26:e1240-e1249. [PMID: 33988881 PMCID: PMC8265335 DOI: 10.1002/onco.13820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Background Basal cell carcinoma (BCC) is a common skin cancer often curable by excision; however, for patients with BCC around the eye, excision places visual organs and function at risk. In this article, we test the hypothesis that use of the hedgehog inhibitor vismodegib will improve vision‐related outcomes in patients with orbital and extensive periocular BCC (opBCC). Materials and Methods In this open‐label, nonrandomized phase IV trial, we enrolled patients with globe‐ and lacrimal drainage system–threatening opBCC. To assess visual function in the context of invasive periorbital and lacrimal disease, we used a novel Visual Assessment Weighted Score (VAWS) in addition to standard ophthalmic exams. Primary endpoint was VAWS with a score of 21/50 (or greater) considered successful, signifying globe preservation. Tumor response was evaluated using RECIST v1.1. Surgical specimens were examined histologically by dermatopathologists. Results In 34 patients with opBCC, mean VAWS was 44/50 at baseline, 46/50 at 3 months, and 47/50 at 12 months or postsurgery. In total, 100% of patients maintained successful VAWS outcome at study endpoint. Compared with baseline, 3% (95% confidence interval [CI], 0.1–15.3) experienced major score decline (5+ points), 14.7% (95% CI, 5 to 31.1) experienced a minor decline (2–4 points), and 79.4% experienced a stable or improved score (95% CI, 62.1–91.3). A total of 56% (19) of patients demonstrated complete tumor regression by physical examination, and 47% (16) had complete regression by MRI/CT. A total of 79.4% (27) of patients underwent surgery, of which 67% (18) had no histologic evidence of disease, 22% (6) had residual disease with clear margins, and 11% (3) had residual disease extending to margins. Conclusion Vismodegib treatment, primary or neoadjuvant, preserves globe and visual function in patients with opBCC. Clinical trail identification number.NCT02436408. Implications for Practice Use of the antihedgehog inhibitor vismodegib resulted in preservation of end‐organ function, specifically with regard to preservation of the eye and lacrimal apparatus when treating extensive periocular basal cell carcinoma. Vismodegib as a neoadjuvant also maximized clinical benefit while minimizing toxic side effects. This is the first prospective clinical trial to demonstrate efficacy of neoadjuvant antihedgehog therapy for locally advanced periocular basal cell carcinoma, and the first such trial to demonstrate end‐organ preservation. This article reports the results of a prospective clinical trial of vismodegib for patients with basal cell carcinoma occurring in the orbital and periocular regions to assess whether such treatment helps to preserve visual organs and function.
Collapse
Affiliation(s)
- Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA.,Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Consultants in Ophthalmic and Facial Plastic Surgery, Southfield, Michigan, USA.,Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Shelby P Unsworth
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A Andrews
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - May P Chan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott C Bresler
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher K Bichakjian
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison B Durham
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA.,Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Victor M Elner
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine C Nelson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Denise S Kim
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Shannon S Joseph
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul L Swiecicki
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Section on Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Francis P Worden
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Section on Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
66
|
Avery JT, Zhang R, Boohaker RJ. GLI1: A Therapeutic Target for Cancer. Front Oncol 2021; 11:673154. [PMID: 34113570 PMCID: PMC8186314 DOI: 10.3389/fonc.2021.673154] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
GLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1’s role in regulating cell cycle, DNA replication and DNA damage repair processes. The consequences of GLI1 oncogenic activity, specifically the activity surrounding DNA damage repair proteins, such as NBS1, and cell cycle proteins, such as CDK1, can be linked to tumorigenesis and chemoresistance. Therefore, understanding the underlying mechanisms driving GLI1 dysregulation can provide prognostic and diagnostic biomarkers to identify a patient population that would derive therapeutic benefit from either direct inhibition of GLI1 or targeted therapy towards proteins downstream of GLI1 regulation.
Collapse
Affiliation(s)
- Justin T Avery
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| | - Ruowen Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rebecca J Boohaker
- Oncology Department, Drug Discovery Division, Southern Research, Birmingham, AL, United States
| |
Collapse
|
67
|
Rahman MM, Herath D, Bladen JC, Atkar R, Pirzado MS, Harwood C, Philpott MP, Neill GW. Differential expression of phosphorylated MEK and ERK correlates with aggressive BCC subtypes. Carcinogenesis 2021; 42:975-983. [PMID: 34003214 DOI: 10.1093/carcin/bgab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is associated with aberrant Hedgehog (HH) signalling through mutational inactivation of PTCH1; however, there is conflicting data regarding MEK/ERK signalling in BCC and the signalling pathway interactions in these carcinomas. To address this, expression of active phospho (p) MEK and ERK was examined in a panel of 15 non-aggressive and 14 aggressive BCCs. Although not uniformly expressed, both phospho-proteins were detected in the nuclei and/or cytoplasm of normal and tumour-associated epidermal cells however, whereas phospho-MEK (pMEK) was present in all non-aggressive BCCs (14/14), phospho-ERK (pERK) was rarely expressed (2/14). In contrast pERK expression was more prevalent in aggressive tumours (11/14). Interestingly, pMEK was only localized to the tumour mass whereas pERK was expressed in tumours and stroma of aggressive BCCs. Similarly, pERK (but not pMEK) was absent in mouse BCC-like tumours derived from X-ray irradiated Ptch1+/- mice with stromal pERK observed in myofibroblasts of the aggressive variant as well as in the tumour mass. RNA sequencing analysis of tumour epithelium and stroma of aggressive and non-aggressive BCC revealed the upregulation of epidermal growth factor receptor- and ERK-related pathways. Angiogenesis and immune response pathways were also upregulated in the stroma compared with the tumour. PTCH1 suppressed NEB1 immortalized keratinocytes (shPTCH1) display upregulated pERK that can be independent of MEK expression. Furthermore, epidermal growth factor pathway inhibitors affect the HH pathway by suppressing GLI1. These studies reveal differential expression of pERK between human BCC subtypes that maybe active by a pathway independent of MEK.
Collapse
Affiliation(s)
- Muhammad M Rahman
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Dimalee Herath
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - John C Bladen
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ravinder Atkar
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Muhammad S Pirzado
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Catherine Harwood
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Michael P Philpott
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Graham W Neill
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
68
|
Fan J, Li H, Kuang L, Zhao Z, He W, Liu C, Wang Y, Cheng SY, Chen W. Identification of a potent antagonist of smoothened in hedgehog signaling. Cell Biosci 2021; 11:46. [PMID: 33653381 PMCID: PMC7923671 DOI: 10.1186/s13578-021-00558-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hedgehog signaling is essential to the regulation of embryonic development, tissue homeostasis, and stem cell self-renewal, making it a prime target for developing cancer therapeutics. Given the close link between aberrant Hedgehog signaling and cancers, many small molecular compounds have been developed to inhibit Smoothened, a key signal transducer of this pathway, for treating cancer and several such compounds have been approved by the United States Food and Drug Administration (GDC-0449 and LDE-225). However, acquired drug resistance has emerged as an important obstacle to the effective use of these first generation Hedgehog pathway blockers. Thus, new Smoothened inhibitors that can overcome such resistance is an urgent need going forward. Results We established the Smoothened/βarrestin2-GFP high-throughput screening platform based on the mechanistic discovery of Hedgehog signaling pathway, and discovered several active small molecules targeting Smoothened including 0025A. Here we show that 0025A can block the translocation of βarrestin2-GFP to Smoothened, displace Bodipy-cyclopamine binding to wild-type Smoothened or mutant Smoothened-D473H, reduce the accumulation of Smo on primary cilia and the expression of Gli upon Hedgehog stimulation. In addition, we show that 0025A can effectively suppress hair follicle morphogenesis and hair growth in mice. Conclusions Our results demonstrate that 0025A is a potent antagonist targeting Smoothened wild-type and mutant receptors in the Hedgehog signaling pathway and may provide a new therapy for refractory cancers.
Collapse
Affiliation(s)
- Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Lun Kuang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zichen Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Chen Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Wei Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| |
Collapse
|
69
|
Forsaken Pharmaceutical: Glasdegib in Acute Myeloid Leukemia and Myeloid Diseases. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e415-e422. [PMID: 33547022 DOI: 10.1016/j.clml.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Advancements in the understanding of the pathogenesis of acute myeloid leukemia (AML) have led to the introduction and approval of a number of novel drugs in AML. Glasdegib, an oral hedgehog pathway inhibitor, was approved in 2018 in combination with low-dose cytarabine for the treatment of newly diagnosed AML in patients unfit for intensive chemotherapy. In this review, we discuss the preclinical rationale for glasdegib, important clinical trials that led to glasdegib's approval, and future trials of glasdegib in AML and other myeloid diseases. Notably, 2 large randomized, placebo-controlled phase 3 trials (AML BRIGHT 1019) are currently recruiting patients with newly diagnosed AML to evaluate glasdegib in combination with intensive chemotherapy or azacitidine, depending on the patient's ability to tolerate induction chemotherapy. While glasdegib and low-dose cytarabine have been eclipsed by venetoclax and hypomethylating agent combinations for newly diagnosed AML in the United States, we discuss other areas where glasdegib may still have an opportunity to improve outcomes in this devastating disease.
Collapse
|
70
|
Ichimiya S, Onishi H, Nagao S, Koga S, Sakihama K, Nakayama K, Fujimura A, Oyama Y, Imaizumi A, Oda Y, Nakamura M. GLI2 but not GLI1/GLI3 plays a central role in the induction of malignant phenotype of gallbladder cancer. Oncol Rep 2021; 45:997-1010. [PMID: 33650666 PMCID: PMC7860001 DOI: 10.3892/or.2021.7947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
We previously reported that Hedgehog (Hh) signal was enhanced in gallbladder cancer (GBC) and was involved in the induction of malignant phenotype of GBC. In recent years, therapeutics that target Hh signaling have focused on molecules downstream of smoothened (SMO). The three transcription factors in the Hh signal pathway, glioma‑associated oncogene homolog 1 (GLI1), GLI2, and GLI3, function downstream of SMO, but their biological role in GBC remains unclear. In the present study, the biological significance of GLI1, GLI2, and GLI3 were analyzed with the aim of developing novel treatments for GBC. It was revealed that GLI2, but not GLI1 or GLI3, was involved in the cell cycle‑mediated proliferative capacity in GBC and that GLI2, but not GLI1 or GLI3, was involved in the enhanced invasive capacity through epithelial‑mesenchymal transition. Further analyses revealed that GLI2 may function in mediating gemcitabine sensitivity and that GLI2 was involved in the promotion of fibrosis in a mouse xenograft model. Immunohistochemical staining of 66 surgically resected GBC tissues revealed that GLI2‑high expression patients had fewer numbers of CD3+ and CD8+ tumor‑infiltrating lymphocytes (TILs) and increased programmed cell death ligand 1 (PD‑L1) expression in cancer cells. These results suggest that GLI2, but not GLI1 or GLI3, is involved in proliferation, invasion, fibrosis, PD‑L1 expression, and TILs in GBC and could be a novel therapeutic target. The results of this study provide a significant contribution to the development of a new treatment for refractory GBC, which has few therapeutic options.
Collapse
Affiliation(s)
- Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shinjiro Nagao
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kukiko Sakihama
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
71
|
Veleta KA, Cleveland AH, Babcock BR, He YW, Hwang D, Sokolsky-Papkov M, Gershon TR. Antiapoptotic Bcl-2 family proteins BCL-xL and MCL-1 integrate neural progenitor survival and proliferation during postnatal cerebellar neurogenesis. Cell Death Differ 2020; 28:1579-1592. [PMID: 33293647 DOI: 10.1038/s41418-020-00687-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022] Open
Abstract
The tendency of brain cells to undergo apoptosis in response to exogenous events varies across neural development, with apoptotic threshold dependent on proliferation state. Proliferative neural progenitors show a low threshold for apoptosis, while terminally differentiated neurons are relatively refractory. To define the mechanisms linking proliferation and apoptotic threshold, we examined the effect of conditionally deleting Bcl2l1, the gene that codes the antiapoptotic protein BCL-xL, in cerebellar granule neuron progenitors (CGNPs), and of co-deleting Bcl2l1 homologs, antiapoptotic Mcl-1, or pro-apoptotic Bax. We found that cerebella in conditional Bcl2l1-deleted (Bcl-xLcKO) mice were severely hypoplastic due to the increased apoptosis of CGNPs and their differentiated progeny, the cerebellar granule neurons (CGNs). Apoptosis was highest as Bcl-xLcKO CGNPs exited the cell cycle to initiate differentiation, with proliferating Bcl-xLcKO CGNPs relatively less affected. Despite the overall reduction in cerebellar growth, SHH-dependent proliferation was prolonged in Bcl-xLcKO mice, as more CGNPs remained proliferative in the second postnatal week. Co-deletion of Bax rescued the Bcl-xLcKO phenotype, while co-deletion of Mcl-1 enhanced the phenotype. These findings show that CGNPs require BCL-xL to regulate BAX-dependent apoptosis, and that this role can be partially compensated by MCL-1. Our data further show that BCL-xL expression regulates MCL-1 abundance in CGNPs, and suggest that excessive MCL-1 in Bcl-xLcKO mice prolongs CGNP proliferation by binding SUFU, resulting in increased SHH pathway activation. Accordingly, we propose that BCL-xL and MCL-1 interact with each other and with developmental mechanisms that regulate proliferation, to adjust the apoptotic threshold as CGNPs progress through postnatal neurogenesis to CGNs.
Collapse
Affiliation(s)
- Katherine A Veleta
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Abigail H Cleveland
- UNC Cancer Cell Biology Training Program, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Benjamin R Babcock
- Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - You-Wen He
- Department of Immunology, Duke University, Durham, NC, 27708, USA
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy R Gershon
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Neurology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
72
|
Altun E, Schwartzman G, Cartron AM, Khachemoune A. Beyond Mohs surgery and excisions: A focused review of treatment options for subtypes of basal cell carcinoma. Dermatol Ther 2020; 34:e14476. [PMID: 33125804 DOI: 10.1111/dth.14476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
Basal cell carcinoma (BCC) is the most common nonmelanoma skin cancer. It originates from undifferentiated cells in the basal cell layer of the epidermis or from the outer root sheath of the hair follicle. The most important factor in development of BCC is ultraviolet radiation. Surgery is considered the gold standard of treatment for BCC. However, nonsurgical options are available for individuals who are unsuitable for surgery. The purpose of this review is to summarize the efficacy and indications of alternative, nonsurgical treatments that can be used in the management of BCC. An extensive literature review was performed for the nonsurgical options for the treatment of BCC. Resources searched included PubMed and Google Scholars, limited to the years 1995 to 2020. Key words searched included BCC, destructive methods, photodynamic therapy (PDT), radiotherapy, topical medication, laser, hedgehog pathway inhibitors (HPIs). The most relevant results such as systematic reviews, randomized controlled trials, or comparative studies were selected to provide a summary for the most common nonsurgical methods used for treating BCC. Effective nonsurgical treatments for BCC include destructive methods (eg, curettage alone, cryosurgery, or electrodessication), PDT, topical medications, radiotherapy, laser, and HPIs. Nonsurgical therapeutic alternatives are safe and effective for the treatment of BCC. Factors such as tumor location, size, and histopathological subtype should be taken into consideration when selecting optimal treatment. In addition to clinical factors, cosmetic results and patient preference should be considered.
Collapse
Affiliation(s)
- Ece Altun
- Department of Dermatology, Medipol Mega University Hospital, İstanbul, Turkey
| | - Gabrielle Schwartzman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | | | - Amor Khachemoune
- Department of Dermatology, State University of New York Downstate, Brooklyn, New York, USA.,Department of Dermatology, Veterans Health Administration, Brooklyn, New York, USA
| |
Collapse
|
73
|
Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit. Proc Natl Acad Sci U S A 2020; 117:28838-28846. [PMID: 33139559 DOI: 10.1073/pnas.2011560117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of the Hedgehog pathway may have therapeutic value for improved bone healing, taste receptor cell regeneration, and alleviation of colitis or other conditions. Systemic pathway activation, however, may be detrimental, and agents amenable to tissue targeting for therapeutic application have been lacking. We have developed an agonist, a conformation-specific nanobody against the Hedgehog receptor Patched1 (PTCH1). This nanobody potently activates the Hedgehog pathway in vitro and in vivo by stabilizing an alternative conformation of a Patched1 "switch helix," as revealed by our cryogenic electron microscopy structure. Nanobody-binding likely traps Patched in one stage of its transport cycle, thus preventing substrate movement through the Patched1 sterol conduit. Unlike the native Hedgehog ligand, this nanobody does not require lipid modifications for its activity, facilitating mechanistic studies of Hedgehog pathway activation and the engineering of pathway activating agents for therapeutic use. Our conformation-selective nanobody approach may be generally applicable to the study of other PTCH1 homologs.
Collapse
|
74
|
Abstract
Background: The hedgehog pathway (HH) is one of the key regulators involved in many biological events. Malfunction of this pathway is associated with a variety of diseases including several types of cancers. Methods: We collected data from public databases and conducted a comprehensive search linking the HH pathway with female cancers. In addition, we overviewed clinical trials of targeting HH pathway in female cancers. Results: The activation of HH pathway and its role in female cancers, including breast cancer, ovarian cancer, cervical cancer, endometrial cancer, and uterine leiomyosarcoma were summarized. Treatment options targeting SMO and GLI in HH pathway were reviewed and discussed. Conclusions: The hedgehog pathway was shown to be activated in several types of female cancers. Therefore, targeting HH pathway may be considered as a therapeutic option to be acknowledged in the treatment of female cancers.
Collapse
Affiliation(s)
| | | | | | - Qiwei Yang
- Corresponding Author: Dr. Qiwei Yang, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA, Tel: 312-996-5689;
| |
Collapse
|
75
|
Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: a therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24:1159-1181. [PMID: 32990091 DOI: 10.1080/14728222.2020.1823967] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is a heterogeneous tumor of the cerebellum that is divided into four main subgroups with distinct molecular and clinical features. Sonic Hedgehog MB (SHH-MB) is the most genetically understood and occurs predominantly in childhood. Current therapies consist of aggressive and non-targeted multimodal approaches that are often ineffective and cause long-term complications. These problems intensify the need to develop molecularly targeted therapies to improve outcome and reduce treatment-related morbidities. In this scenario, Hedgehog (HH) signaling, a developmental pathway whose deregulation is involved in the pathogenesis of several malignancies, has emerged as an attractive druggable pathway for SHH-MB therapy. AREAS COVERED This review provides an overview of the advancements in the HH antagonist research field. We place an emphasis on Smoothened (SMO) and glioma-associated oncogene homolog (GLI) inhibitors and immunotherapy approaches that are validated in preclinical SHH-MB models and that have therapeutic potential for MB patients. Literature from Pubmed and data reported on ClinicalTrial.gov up to August 2020 were considered. EXPERT OPINION Extensive-omics analysis has enhanced our knowledge and has transformed the way that MB is studied and managed. The clinical use of SMO antagonists has yet to be determined, however, future GLI inhibitors and multitargeting approaches are promising.
Collapse
Affiliation(s)
| | - Francesca Ghirga
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Francesca Bufalieri
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, University of Rome La Sapienza, 00185 , Rome, Italy
| | - Paola Infante
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia , 00161, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome La Sapienza , 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza , 00161, Rome, Italy
| |
Collapse
|
76
|
Booker BE, Steg AD, Kovac S, Landen CN, Amm HM. The use of hedgehog antagonists in cancer therapy: a comparison of clinical outcomes and gene expression analyses. Cancer Biol Ther 2020; 21:873-883. [PMID: 32914706 DOI: 10.1080/15384047.2020.1806640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hedgehog (HH) signaling, a critical developmental pathway, has been implicated in cancer initiation and progression. With vismodegib and sonidegib having been approved for clinical use, increasing numbers of HH inhibitors alone and in combination with chemotherapies are in clinical trials. Here we highlight the clinical research on HH antagonists and the genetics of response to these compounds in human cancers. Selectivity of HH inhibitors, determined by decreased pathway transcriptional activity, has been demonstrated in many clinical trials. Patients with advanced/metastatic basal cell carcinoma have benefited the most, whereas HH antagonists did little to improve survival rates in other cancers. Correlation between clinical response and HH gene expression vary among different cancer types. Predicting response and resistance to HH inhibitors presents a challenge and continues to remain an important area of research. New approaches combine standard of care chemotherapies and molecularly targeted therapies to increase the clinical utility of HH inhibitors.
Collapse
Affiliation(s)
- Burthia E Booker
- Oral and Maxillofacial Surgery, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Adam D Steg
- McWhorter School of Pharmacy, Samford University , Birmingham, AL, USA
| | - Stefan Kovac
- McWhorter School of Pharmacy, Samford University , Birmingham, AL, USA
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia , Charlottesville, VA, USA
| | - Hope M Amm
- Oral and Maxillofacial Surgery, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
77
|
Carr RM, Duma N, McCleary-Wheeler AL, Almada LL, Marks DL, Graham RP, Smyrk TC, Lowe V, Borad MJ, Kim G, Johnson GB, Allred JB, Yin J, Lim VS, Bekaii-Saab T, Ma WW, Erlichman C, Adjei AA, Fernandez-Zapico ME. Targeting of the Hedgehog/GLI and mTOR pathways in advanced pancreatic cancer, a phase 1 trial of Vismodegib and Sirolimus combination. Pancreatology 2020; 20:1115-1122. [PMID: 32778368 DOI: 10.1016/j.pan.2020.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Preclinical data indicated a functional and molecular interaction between Hedgehog (HH)/GLI and PI3K-AKT-mTOR pathways promoting pancreatic ductal adenocarcinoma (PDAC). A phase I study was conducted of Vismodegib and Sirolimus combination to evaluate maximum tolerated dose (MTD) and preliminary anti-tumor efficacy. METHODS Cohort I included advanced solid tumors patients following a traditional 3 + 3 design. Vismodegib was orally administered at 150 mg daily with Sirolimus starting at 3 mg daily, increasing to 6 mg daily at dose level 2. Cohort II included only metastatic PDAC patients. Anti-tumor efficacy was evaluated every two cycles and target assessment at pre-treatment and after a single cycle. RESULTS Nine patient were enrolled in cohort I and 22 patients in cohort II. Twenty-eight patients were evaluated for dose-limiting toxicities (DLTs). One DLT was observed in each cohort, consisting of grade 2 mucositis and grade 3 thrombocytopenia. The MTD for Vismodegib and Sirolimus were 150 mg daily and 6 mg daily, respectively. The most common grade 3-4 toxicities were fatigue, thrombocytopenia, dehydration, and infections. A total of 6 patients had stable disease. No partial or complete responses were observed. Paired biopsy analysis before and after the first cycle in cohort II consistently demonstrated reduced GLI1 expression. Conversely, GLI and mTOR downstream targets were not significantly affected. CONCLUSIONS The combination of Vismodegib and Sirolimus was well tolerated. Clinical benefit was limited to stable disease in a subgroup of patients. Targeting efficacy demonstrated consistent partial decreases in HH/GLI signaling with limited impact on mTOR signaling. These findings conflict with pre-clinical models and warrant further investigations.
Collapse
Affiliation(s)
- Ryan M Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Narjust Duma
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Angela L McCleary-Wheeler
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - David L Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine Pathology, Mayo Clinic, Rochester, MN, USA
| | - Thomas C Smyrk
- Department of Laboratory Medicine Pathology, Mayo Clinic, Rochester, MN, USA
| | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology-Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - George Kim
- Division of Hematology-Oncology, The George Washington University, Washington, DC, USA
| | | | - Jacob B Allred
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jun Yin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Vun-Sin Lim
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Tanios Bekaii-Saab
- Division of Hematology-Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Wen We Ma
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Charles Erlichman
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA
| | - Alex A Adjei
- Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA; Department of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55902, USA.
| |
Collapse
|
78
|
Suzuki T. [Research on Analysis of Final Diagnosis and Prognostic Factors, and Development of New Therapeutic Drugs for Malignant Tumors (Especially Malignant Pediatric Tumors)]. YAKUGAKU ZASSHI 2020; 140:229-271. [PMID: 32009046 DOI: 10.1248/yakushi.19-00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outcomes of treatment for malignant pediatric tumors including leukemia are improving by conventional multimodal treatment with strong chemotherapy, surgical resection, radiotherapy, and bone marrow transplantation. However, patients with advanced neuroblastoma, metastatic Ewing's sarcoma family of tumor (ESFT), and metastatic osteosarcoma continue to have an extremely poor prognosis. Therefore novel therapeutic strategies are urgently needed to improve their survival. Apoptotic cell death is a key mechanism for normal cellular homeostasis. Intact apoptotic mechanisms are pivotal for embryonic development, tissue remodeling, immune regulation, and tumor regression. Genetic aberrations disrupting programmed cell death often underpin tumorigenesis and drug resistance. Moreover, it has been suggested that apoptosis or cell differentiation proceeds to spontaneous regression in early stage neuroblastoma. Therefore apoptosis or cell differentiation is a critical event in this cancer. We extracted many compounds from natural plants (Angelica keiskei, Alpinia officiarum, Lycaria puchury-major, Brassica rapa) or synthesized cyclophane pyridine, indirubin derivatives, vitamin K3 derivatives, burchellin derivatives, and GANT61, and examined their effects on apoptosis, cell differentiation, and cell cycle in neuroblastoma and ESFT cell lines compared with normal cells. Some compounds were very effective against these tumor cells. These results suggest that they may be applicable as an efficacious and safe drug for the treatment of malignant pediatric tumors.
Collapse
Affiliation(s)
- Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University
| |
Collapse
|
79
|
Singh J, Suryan A, Kumar S, Sharma S. Phthalazinone Scaffold: Emerging Tool in the Development of Target Based Novel Anticancer Agents. Anticancer Agents Med Chem 2020; 20:2228-2245. [PMID: 32767957 DOI: 10.2174/1871520620666200807220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/22/2022]
Abstract
Phthalazinones are important nitrogen-rich heterocyclic compounds which have been a topic of considerable medicinal interest because of their diversified pharmacological activities. This versatile scaffold forms a common structural feature for many bioactive compounds, which leads to the design and development of novel anticancer drugs with fruitful results. The current review article discusses the progressive development of novel phthalazinone analogues that are targets for various receptors such as PARP, EGFR, VEGFR-2, Aurora kinase, Proteasome, Hedgehog pathway, DNA topoisomerase and P-glycoprotein. It describes mechanistic insights into the anticancer properties of phthalazinone derivatives and also highlights various simple and economical techniques for the synthesis of phthalazinones.
Collapse
Affiliation(s)
- Jyoti Singh
- Chandigarh College of Pharmacy, Landran, Punjab, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | - Shweta Sharma
- Chandigarh College of Pharmacy, Landran, Punjab, India
| |
Collapse
|
80
|
Saddozai UAK, Wang F, Cheng Y, Lu Z, Akbar MU, Zhu W, Li Y, Ji X, Guo X. Gene expression profile identifies distinct molecular subtypes and potential therapeutic genes in Merkel cell carcinoma. Transl Oncol 2020; 13:100816. [PMID: 32771971 PMCID: PMC7412862 DOI: 10.1016/j.tranon.2020.100816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare primary cutaneous neoplasm of neuroendocrine carcinoma of the skin. About 80% of the MCC occurs due to Merkel cell polyomavirus (MCPyV) and 20% of the tumors usually occur due to severe UV exposure which is a more aggressive type of MCC. It tends to have an increased incidence rate among elderly and immunosuppressed individuals. On therapeutic level, sub-classification of MCC through molecular subtyping has emerged as a promising technique for MCC prognosis. In current study, two consistent distinct molecular subtypes of MCCs were identified using gene expression profiling data. Subtypes I MCCs were associated with spliceosome, DNA replication and cellular pathways. On the other hand, genes overexpressed in subtype II were found active in TNF signalling pathway and MAPK signalling pathway. We proposed different therapeutic targets based on subtype specificity, such as PTCH1, CDKN2A, AURKA in case of subtype I and MCL1, FGFR2 for subtype II. Such findings may provide fruitful knowledge to understand the intrinsic subtypes of MCCs and the pathways involved in distinct subtype oncogenesis, and will further advance the knowledge in developing a specific therapeutic strategy for these MCC subtypes. Merkel cell carcinoma (MCC) a rare and highly aggressive neuroendocrine carcinoma of the skin Sub-classification of MCC through molecular subtyping Identification of two distinct molecular subtypes of MCCs using gene expression profiling data Classification of different therapeutic targets based on subtype specificity
Collapse
Affiliation(s)
- Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yu Cheng
- Pharmacy Department, Luoyang maternal and Child Health Hospital, Luoyang 471023, China
| | - Zhang Lu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Wan Zhu
- Department of Anesthesia, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xinying Ji
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
81
|
Hung HC, Liu CC, Chuang JY, Su CL, Gean PW. Inhibition of Sonic Hedgehog Signaling Suppresses Glioma Stem-Like Cells Likely Through Inducing Autophagic Cell Death. Front Oncol 2020; 10:1233. [PMID: 32793494 PMCID: PMC7393230 DOI: 10.3389/fonc.2020.01233] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) often recurs after radio- and chemotherapies leading to poor prognosis. Glioma stem-like cells (GSCs) contribute to drug resistance and recurrence. Thus, understanding cellular mechanism underlying the growth of GSCs is critical for the treatment of GBM. Here GSCs were isolated from human U87 GBM cells with magnetic-activated cell sorting (MACS) using CD133 as a marker. The CD133+ cells highly expressed sonic hedgehog (Shh) and were capable of forming tumor spheroids in vitro and tumor in vivo. Athymic mice received intracranial injection of luciferase transduced parental and CD133+ GBM cells was utilized as orthotopic GBM model. Inhibited Shh by LDE225 delayed GBM growth in vivo, and downregulated Ptch1 and Gli1. CD133+ cell proliferation was more sensitive to inhibition by LDE225 than that of CD133− cells. Treatment with LDE225 significantly reduced CD133+-derived tumor spheroid formation. Large membranous vacuoles appeared in the LDE225-treated cells concomitant with the conversion of LC3-I to LC3-II. In addition, LDE225-induced cell death was mitigated in the presence of autophagy inhibitor 3-methyladenine (3-MA). Tumor growth was much slower in Shh shRNA-knockdown mice than in control RNA-transfected mice. Conversely, tumor growth was faster in Shh overexpressed mice. Furthermore, combination of LDE225 and rapamycin treatment resulted in additive effect on LC3-I to LC3-II conversion and reduction in cell viability. However, LDE225 did not affect the phosphorylated level of mTOR. Similarly, amiodarone, an mTOR-independent autophagy enhancer, reduced CD133+ cell viability and tumor spheroid formation in vitro and exhibited anti-tumor activity in vivo. These results suggest that Shh inhibitor induces autophagy of CD133+ cells likely through mTOR independent pathway. Targeting Shh signal pathway may overcome chemoresistance and provide a therapeutic strategy for patients with malignant gliomas.
Collapse
Affiliation(s)
- Hui-Chi Hung
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Lin Su
- Division of Natural Sciences, Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
82
|
Abstract
Abstract
Purpose of Review
Skin cancers account for more than 40% of all cancers in the USA and continue to rise in incidence. It is prudent to understand the current burden and pathogenesis of photocarcinogenesis and preventive measures.
Recent Findings
Insights into recently discovered mechanisms have paved way for potential targets for prevention and therapeutics. Nicotinamide has shown promising results as an oral chemopreventive agent. UVB affects the DHODH pathway of pyrimidine synthesis via STAT 3. DHODH inhibition by leflunomide may be a potential targeted chemoprevention strategy. A photolyase containing sunscreen, which repairs UV-damaged DNA, effectively reduced new precancerous lesions. Several antioxidants and anti-inflammatory agents including many phytochemicals ameliorate the process of photocarcinogenesis in preclinical and clinical studies, e.g., green tea polyphenols, Polypodium leucotomos extract, and Timosaponin A III. Diet can potentially affect skin cancer risk by its ability to modify oxidative stress and cell signaling pathways.
Summary
Photocarcinogenesis is a multi-step process. An in-depth understanding is instrumental in development of novel agents for prevention and treatment of skin cancers.
Collapse
|
83
|
Tran U, Zhang GC, Eom R, Billingsley KL, Ondrus AE. Small Molecule Intervention in a Protein Kinase C-Gli Transcription Factor Axis. ACS Chem Biol 2020; 15:1321-1327. [PMID: 32479053 DOI: 10.1021/acschembio.0c00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrations in the Hedgehog (Hh) signaling pathway are responsible for a broad range of human cancers, yet only a subset rely on the activity of the clinical target, Smoothened (Smo). Emerging cases of cancers that are insensitive to Smo-targeting drugs demand new therapeutic targets and agents for inhibition. As such, we sought to pursue a recently discovered connection between the Hedgehog pathway transcription factors, the glioma-associated oncogene homologues (Glis), and protein kinase C (PKC) isozymes. Here, we report our assessment of a structurally diverse library of PKC effectors for their influence on Gli function. Using cell lines that employ distinct mechanisms of Gli activation up- and downstream of Smo, we identify a PKC effector that acts as a nanomolar Gli antagonist downstream of Smo through a mitogen-activated protein kinase kinase (MEK)-independent mechanism. This agent provides a unique tool to illuminate crosstalk between PKC isozymes and Hh signaling and new opportunities for therapeutic intervention in Hh pathway-dependent cancers.
Collapse
Affiliation(s)
- UyenPhuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States
| | - Grace C. Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| | - Ryan Eom
- Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave, Ithaca, New York 14853, United States
| | - Kelvin L. Billingsley
- Department of Chemistry and Biochemistry, California State University Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States
| | - Alison E. Ondrus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
84
|
Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E, Farahmand L. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84:106535. [PMID: 32361569 DOI: 10.1016/j.intimp.2020.106535] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
During the past recent years, various therapies emerged in the era of breast cancer. Breast cancer is a heterogeneous disease in which genetic and environmental factors are involved. Breast cancer stem cells (BCSCs) are the main player in the aggressiveness of different tumors and also, these cells are the main challenge in cancer treatment. Moreover, the major obstacle to achieve an effective treatment is resistance to therapies. There are various types of treatment for breast cancer (BC) patients. Therefore, in this review, we present the current treatments, novel approaches such as antibody-drug conjugation systems (ADCs), nanoparticles (albumin-, metal-, lipid-, polymer-, micelle-based nanoparticles), and BCSCs-based therapies. Furthermore, prognostic and predictive biomarkers will be discussed also biomarkers that have been applied by some tests such as Oncotype DX, Mamm αPrint, and uPA/PAI-1 are regarded as suitable prognostic and predictive factors in breast cancer.
Collapse
Affiliation(s)
- Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Zarei
- Department of Biomaterials and Tissue Engineering, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Student Research Committee, Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
85
|
Choudhury A, Neumann NM, Raleigh DR, Lang UE. Clinical Implications of Primary Cilia in Skin Cancer. Dermatol Ther (Heidelb) 2020; 10:233-248. [PMID: 31997226 PMCID: PMC7090118 DOI: 10.1007/s13555-020-00355-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a cell surface organelle that is an important component of cellular biology. While it was once believed to be a vestigial structure without biologic function, it is now known to have essential roles in critical cellular signaling pathways such as Hedgehog (HH) and Wnt. The HH and Wnt pathways are involved in pathogenesis of basal cell carcinoma and melanoma, respectively, and this knowledge is now beginning to inform therapeutic and diagnostic options for patients. The purpose of this review is to familiarize clinicians with primary cilia biology and how this complex cellular organelle has started to translate into clinical care.
Collapse
Affiliation(s)
- Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Neil M Neumann
- Department of Pathology, Dermatopathology Service, University of California, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Ursula E Lang
- Department of Pathology, Dermatopathology Service, University of California, San Francisco, CA, USA.
- Department of Dermatology, University of California, San Francisco, CA, USA.
| |
Collapse
|
86
|
|
87
|
Monaco SE, Pantanowitz L, Xing J, Cuda J, Kammula US. Cytologic Evaluation of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy. Am J Clin Pathol 2020; 153:513-523. [PMID: 31895425 PMCID: PMC11485275 DOI: 10.1093/ajcp/aqz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Novel immunotherapeutic options for refractory metastatic cancer patients include adoptive cell therapies such as tumor infiltrating lymphocytes (TILs). This study characterizes the clinicopathologic findings in a cohort of TIL specimens. METHODS Patients with metastatic malignancy who were eligible had TILs from their metastases grown and expanded and then sent to pathology. RESULTS A total of 11 TIL specimens (10 melanoma, 1 adenocarcinoma) from patients enrolled in an experimental clinical trial were reviewed. All specimens showed more than 200 lymphoid cells, stained positive for lymphoid markers confirming an activated cytotoxic T-cell immunophenotype, and morphologically showed an intermediate-sized population with immature chromatin and frequent mitoses. Six cases (55%) showed large cells with nucleomegaly and prominent nucleoli. CONCLUSIONS This report is the first describing cytopathologic findings of autologous TIL therapy including adequacy guidelines and expected cytomorphologic and immunophenotypic findings. To meet this novel clinical demand, a predefined cytology protocol to rapidly process and interpret these specimens needs to be established.
Collapse
Affiliation(s)
- Sara E Monaco
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Juan Xing
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jackie Cuda
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Udai S Kammula
- Solid Tumor Cellular Immunotherapy Program, Hillman Cancer Center, Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
88
|
Lin DI, Hemmerich A, Edgerly C, Duncan D, Severson EA, Huang RSP, Ramkissoon SH, Connor YD, Shea M, Hecht JL, Ali SM, Vergilio JA, Ross JS, Elvin JA. Genomic profiling of BCOR-rearranged uterine sarcomas reveals novel gene fusion partners, frequent CDK4 amplification and CDKN2A loss. Gynecol Oncol 2020; 157:357-366. [PMID: 32156473 DOI: 10.1016/j.ygyno.2020.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Genomic alterations of BCOR via ZC3H7B-BCOR fusion or BCOR internal tandem duplication (ITD) define a subset of endometrial stromal sarcoma (ESS). The goals of this study were to: 1) determine the molecular landscape of BCOR-rearranged ESS, 2) to identify novel BCOR fusion gene partners in ESS and their associated clinicopathological characteristics, and 3) to potentially unravel targetable genomic alterations in BCOR-mutated ESS. METHODS A retrospective database search of a CLIA-certified molecular laboratory was performed for uterine sarcomas that contained BCOR rearrangements or BCOR ITD. The cases were previously assayed by comprehensive genomic profiling via both DNA- and RNA-based targeted next generation sequencing during the course of clinical care. Clinicopathological and genomic data was centrally re-reviewed. RESULTS We identify largest cohort of BCOR-rearranged ESS to date (n = 40), which included 31 cases with canonical ZC3H7B-BCOR fusion as well as 8 cases with novel BCOR gene rearrangement partners, such as BCOR-L3MBTL2, EP300-BCOR, BCOR-NUTM2G, BCOR-RALGPS1, BCOR-MAP7D2, RGAG1-BCOR, ING3-BCOR, BCOR-NUGGC, KMT2D-BCOR, CREBBP-BCOR and 1 case with BCOR internal rearrangement. Re-review of cases with novel rearrangements demonstrated sarcomas with spindle, epithelioid or small round cell components and frequent myxoid stromal change. Comprehensive genomic profiling revealed high frequency of CDK4 and MDM2 amplification in 38% and 45% of BCOR-rearranged cases, respectively, and homozygous deletion of CDKN2A, which encodes an inhibitor of CDK4 in 28% of cases. Notably, CDK4 and MDM2 amplification was absent in all cases from 15 different ESS cases harboring BCOR ITD. CONCLUSIONS Alterations of CDK4 pathway members, for which targeted therapy is clinically available (i.e. palbociclib), via CDK4 amplification or CDKN2A loss, contributes to the pathogenesis of BCOR-rearranged uterine sarcomas, which may have therapeutic implications.
Collapse
Affiliation(s)
- Douglas I Lin
- Foundation Medicine Inc., Cambridge, MA, United States of America.
| | - Amanda Hemmerich
- Foundation Medicine Inc., Morrisville, NC, United States of America
| | - Claire Edgerly
- Foundation Medicine Inc., Morrisville, NC, United States of America
| | - Daniel Duncan
- Foundation Medicine Inc., Morrisville, NC, United States of America
| | - Eric A Severson
- Foundation Medicine Inc., Morrisville, NC, United States of America
| | | | - Shakti H Ramkissoon
- Foundation Medicine Inc., Morrisville, NC, United States of America; Wake Forest Comprehensive Cancer Center, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Yamicia D Connor
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Meghan Shea
- Department of Internal Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, MA, United States of America
| | - Jo-Anne Vergilio
- Foundation Medicine Inc., Cambridge, MA, United States of America
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, MA, United States of America; Upstate Medical University, Syracuse, NY, United States of America
| | - Julia A Elvin
- Foundation Medicine Inc., Cambridge, MA, United States of America
| |
Collapse
|
89
|
Zhang R, Ma J, Avery JT, Sambandam V, Nguyen TH, Xu B, Suto MJ, Boohaker RJ. GLI1 Inhibitor SRI-38832 Attenuates Chemotherapeutic Resistance by Downregulating NBS1 Transcription in BRAF V600E Colorectal Cancer. Front Oncol 2020; 10:241. [PMID: 32185127 PMCID: PMC7058788 DOI: 10.3389/fonc.2020.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1. Non-canonical activation of GLI1 is driven through oncogenic pathways in CRC, like the BRAFV600E mutation. GLI1 was identified as a novel regulator of NBS1 and discovered that by knocking down GLI1 levels in vitro, diminished NBS1 expression, increased DNA damage/apoptosis, and re-sensitization of 5-FU resistant cancer to treatment was observed. Furthermore, a novel GLI1 inhibitor, SRI-38832, which exhibited pharmacokinetic properties suitable for in vivo testing, was identified. GLI1 inhibition in a murine BRAFV600E variant xenograft model of CRC resulted in the same down-regulation of NBS1 observed in vitro as well as significant reduction of tumor growth/burden. GLI1 inhibition could therefore be a therapeutic option for 5-FU resistant and BRAFV600E variant CRC patients.
Collapse
Affiliation(s)
- Ruowen Zhang
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Jinlu Ma
- Department of Radiation Oncology, First Affiliated Hospital, Xian Jiaotong University, Xi'an, China
| | - Justin T. Avery
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Vijaya Sambandam
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Theresa H. Nguyen
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Bo Xu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mark J. Suto
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| | - Rebecca J. Boohaker
- Southern Research, Division of Drug Discovery, Birmingham, AL, United States
| |
Collapse
|
90
|
Scriba LD, Bornstein SR, Santambrogio A, Mueller G, Huebner A, Hauer J, Schedl A, Wielockx B, Eisenhofer G, Andoniadou CL, Steenblock C. Cancer Stem Cells in Pheochromocytoma and Paraganglioma. Front Endocrinol (Lausanne) 2020; 11:79. [PMID: 32158431 PMCID: PMC7051940 DOI: 10.3389/fendo.2020.00079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Pheochromocytoma (PCC) and paraganglioma (PGL) are rare neuroendocrine tumors associated with high cardiovascular morbidity and variable risk of malignancy. The current therapy of choice is surgical resection. Nevertheless, PCCs/PGLs are associated with a lifelong risk of tumor persistence or recurrence. A high rate of germline or somatic mutations in numerous genes has been found in these tumors. For some, the tumorigenic processes are initiated during embryogenesis. Such tumors carry gene mutations leading to pseudohypoxic phenotypes and show more immature characteristics than other chromaffin cell tumors; they are also often multifocal or metastatic and occur at an early age, often during childhood. Cancer stem cells (CSCs) are cells with an inherent ability of self-renewal, de-differentiation, and capacity to initiate and maintain malignant tumor growth. Targeting CSCs to inhibit cancer progression has become an attractive anti-cancer therapeutic strategy. Despite progress for this strategy for solid tumors such as neuroblastoma, brain, breast, and colon cancers, no substantial advance has been made employing similar strategies in PCCs/PGLs. In the current review, we discuss findings related to the identification of normal chromaffin stem cells and CSCs, pathways involved in regulating the development of CSCs, and the importance of the stem cell niche in development and maintenance of CSCs in PCCs/PGLs. Additionally, we examine the development and feasibility of novel CSC-targeted therapeutic strategies aimed at eradicating especially recurrent and metastatic tumors.
Collapse
Affiliation(s)
- Laura D. Scriba
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom
| | - Alice Santambrogio
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Gregor Mueller
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Huebner
- Children's Hospital, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Ben Wielockx
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cynthia L. Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
91
|
Cozzani R, Del Aguila R, Carrizo M, Sanchez S, Gonzalez A. Efficacy and safety profile of vismodegib in a real-world setting cohort of patients with advanced basal cell carcinoma in Argentina. Int J Dermatol 2020; 59:627-632. [PMID: 32034775 DOI: 10.1111/ijd.14780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND OBJECTIVES Vismodegib (Erivedge® ), a hedgehog pathway inhibitor, is approved to treat metastatic or locally advanced basal cell carcinoma (BCC) not suitable for surgery or radiotherapy. Our main objectives were to study the objective response rate (ORR) assessed by treating physicians and safety of vismodegib in a real-world practice setting in Argentina. MATERIAL AND METHODS This is a prospective cohort study in real-world practice. We included consecutive adult patients treated in Argentina with locally advanced or metastatic BCC not suitable for surgery or radiotherapy. Patients were followed until the end of the study, death, or loss to follow-up, whichever occurred first. Patients received 150 mg vismodegib PO daily. RESULT We included in the analysis 63 patients who received treatment. Locally advanced BCC was present in 57 (90.4%) and metastatic disease in two (3.2%). ORR was observed in 46 patients (73%; 95% CI: 60.3-83.4), with partial response in 36 (57%; 95% CI: 44-69.5) and complete response in 10 (16%; 95% CI: 7.8-27.2). As to safety, 48 (76.2%) patients had at least one adverse event (AE). The most frequently observed AEs were muscular spasms in 25 (39.6%); dysgeusia in 23 (36.5%); alopecia in nine (14.2%); weight loss in seven (11.1%); and ageusia in (9.5%) patients. Serious AEs were observed in 11 (17%) patients with one episode of deep vein thrombosis and pulmonary embolism resulting in death. CONCLUSION Our study provides additional evidence of the efficacy and tolerability of vismodegib in patients with locally advanced or metastatic BCC in a real-world practice.
Collapse
Affiliation(s)
- Romina Cozzani
- Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxana Del Aguila
- Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Abel Gonzalez
- Instituto Médico Especializado Alexander Fleming, Buenos Aires, Argentina
| | | |
Collapse
|
92
|
Castanheira A, Boaventura P, Pais Clemente M, Soares P, Mota A, Lopes JM. Head and neck cutaneous basal cell carcinoma: what should the otorhinolaryngology head and neck surgeon care about? ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2020; 40:5-18. [PMID: 31388193 PMCID: PMC7147542 DOI: 10.14639/0392-100x-2245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022]
Abstract
Cutaneous basal cell carcinoma (cBCC) is the most common malignancy diagnosed in the human population. cBCC presents an increasing incidence which, in the near future, will be higher than all other cancers combined. The majority of cBCC are located in the head and the neck. A diversity of management modalities is currently available; nonetheless, surgical excision remains the main modality of treatment. cBCC rarely metastasises and presents a low mortality rate. cBCC morbidity is influenced by local invasion and destruction, especially in the face, where function and aesthetics are major issues. Easy accessibility to the face and skin on the neck makes cBCC an important issue for otorhinolaryngology head and neck surgeons who must be aware and committed in its management, as the main modality of treatment continues to be surgical. The aim of this review is to present a brief and practical overview of head and neck cBCC management for ear, nose and throat (ENT) surgeons, discussing key issues about its epidemiology, risk factors, diagnosis and pathogenesis.
Collapse
Affiliation(s)
- António Castanheira
- Department of Otorhinolaryngology, Centro Hospitalar de Trás-os-Montes e Alto Douro, Vila Real, Portugal
- FMUP-Faculty of Medicine
| | - Paula Boaventura
- FMUP-Faculty of Medicine
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal
| | | | - Paula Soares
- FMUP-Faculty of Medicine
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal
| | - Alberto Mota
- FMUP-Faculty of Medicine
- Department of Dermatology of Centro Hospitalar São João, Porto, Portugal
| | - José Manuel Lopes
- FMUP-Faculty of Medicine
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal
| |
Collapse
|
93
|
Lu T, Yang Y, Jin JY, Kågedal M. Analysis of Longitudinal-Ordered Categorical Data for Muscle Spasm Adverse Event of Vismodegib: Comparison Between Different Pharmacometric Models. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:96-105. [PMID: 31877239 PMCID: PMC7020275 DOI: 10.1002/psp4.12487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/11/2019] [Indexed: 01/23/2023]
Abstract
Longitudinal‐ordered categorical data, common in clinical trials, can be effectively analyzed with nonlinear mixed effect models. In this article, we systematically evaluated the performance of three different models in longitudinal muscle spasm adverse event (AE) data obtained from a clinical trial for vismodegib: a proportional odds (PO) model, a discrete‐time Markov model, and a continuous‐time Markov model. All models developed based on weekly spaced data can reasonably capture the proportion of AE grade over time; however, the PO model overpredicted the transition frequency between grades and the cumulative probability of AEs. The influence of data frequency (daily, weekly, or unevenly spaced) was also investigated. The PO model performance reduced with increased data frequency, and the discrete‐time Markov model failed to describe unevenly spaced data, but the continuous‐time Markov model performed consistently well. Clinical trial simulations were conducted to illustrate the muscle spasm resolution time profile during the 8‐week dose interruption period after 12 weeks of continuous treatment.
Collapse
Affiliation(s)
- Tong Lu
- Department of Clinical Pharmacology, Genentech, Inc, South San Francisco, California, USA
| | - Yujie Yang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Jin Y Jin
- Department of Clinical Pharmacology, Genentech, Inc, South San Francisco, California, USA
| | - Matts Kågedal
- Department of Clinical Pharmacology, Genentech, Inc, South San Francisco, California, USA
| |
Collapse
|
94
|
Grund-Gröschke S, Stockmaier G, Aberger F. Hedgehog/GLI signaling in tumor immunity - new therapeutic opportunities and clinical implications. Cell Commun Signal 2019; 17:172. [PMID: 31878932 PMCID: PMC6933925 DOI: 10.1186/s12964-019-0459-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Uncontrolled activation of the Hedgehog/Glioma-associated oncogene (HH/GLI) pathway is a potent oncogenic driver signal promoting numerous cancer hallmarks such as proliferation, survival, angiogenesis, metastasis and metabolic rewiring. Several HH pathway inhibitors have already been approved for medical therapy of advanced and metastatic basal cell carcinoma and acute myeloid leukemia with partially impressive therapeutic activity. However, de novo and acquired resistance as well as severe side effects and unexplained lack of therapeutic efficacy are major challenges that urgently call for improved treatment options with more durable responses. The recent breakthroughs in cancer immunotherapy have changed our current understanding of targeted therapy and opened up promising therapeutic opportunities including combinations of selective cancer pathway and immune checkpoint inhibitors. Although HH/GLI signaling has been intensely studied with respect to the classical hallmarks of cancer, its role in the modulation of the anti-tumoral immune response has only become evident in recent studies. These have uncovered HH/GLI regulated immunosuppressive mechanisms such as enhanced regulatory T-cell formation and production of immunosuppressive cytokines. In light of these exciting novel data on oncogenic HH/GLI signaling in immune cross-talk and modulation, we summarize and connect in this review the existing knowledge from different HH-related cancers and chronic inflammatory diseases. This is to provide a basis for the investigation and evaluation of novel treatments combining immunotherapeutic strategies with approved as well as next-generation HH/GLI inhibitors. Further, we also critically discuss recent studies demonstrating a possible negative impact of current HH/GLI pathway inhibitors on the anti-tumoral immune response, which may explain some of the disappointing results of several oncological trials with anti-HH drugs. Video abstract. (9500 kb)
Collapse
Affiliation(s)
- Sandra Grund-Gröschke
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria
| | - Georg Stockmaier
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, Hellbrunner Strasse, 34, 5020, Salzburg, Austria.
| |
Collapse
|
95
|
Efficacy, rate of tumor response, and safety of a short course (12-24 weeks) of oral vismodegib in various histologic subtypes (infiltrative, nodular, and superficial) of high-risk or locally advanced basal cell carcinoma, in an open-label, prospective case series clinical trial. J Am Acad Dermatol 2019; 82:946-954. [PMID: 31836564 DOI: 10.1016/j.jaad.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Vismodegib demonstrated 60% response rates in the ERIVANCE trial. Basal cell carcinoma has various histopathologies. Their effect on response is unclear. OBJECTIVE The purpose of this study was to determine whether basal cell carcinoma histopathology affected vismodegib response. METHODS This phase 2b, single-center, prospective case series study compared the efficacy of vismodegib in infiltrative, nodular, and superficial basal cell carcinomas treated for 12 or 24 weeks in 27 patients. Patients had 1 target lesion and up to 3 nontarget lesions. RESULTS Twenty-seven patients were enrolled, with 65 tumors (27 target lesions/38 nontarget lesions). At 24 weeks, most basal cell carcinomas achieved histologic clearance, with positive biopsy results in 10.5% of target lesions, 30.4% of nontarget lesions, and 21.4% overall. No statistical differences were observed between histopathologic subtypes. One hundred percent of patients experienced an adverse event, 94% grade 1 or 2. The most common adverse events were dysgeusia/loss of taste (86%), muscle spasms (82%), and alopecia (71%). Clinically progressive disease during treatment was low (1.5%). Two patients had recurrence within 1 year of treatment. LIMITATIONS Limitations included sample size of basal cell carcinoma histopathologic subtypes, sampling punch biopsies, and short follow-up. CONCLUSIONS Basal cell histopathologic subtype did not significantly affect response to vismodegib. Each subtype was observed to completely respond at 12 weeks of therapy, 24 weeks, or both.
Collapse
|
96
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
97
|
Williams NM, Rajabi-Estarabadi A, Long J, Gurnani P, Al-Asgah E, Nouri K. Cells to Surgery Quiz: December 2019. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
98
|
Gualdi G, Monari P, Calzavara‐Pinton P, Caravello S, Fantini F, Bornacina C, Specchio F, Argenziano G, Simonetti V, Caccavale S, La Montagna M, Cecchi R, Landi C, Simonacci M, Dusi D, Puviani M, Zucchi A, Zampieri P, Inchaurraga MAG, Savoia F, Melandri D, Capo A, Amerio P. When basal cell carcinomas became giant: an Italian multicenter study. Int J Dermatol 2019; 59:377-382. [DOI: 10.1111/ijd.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Giulio Gualdi
- Department of Medicine and Aging Science and Dermatologic Clinic University “G. d'Annunzio”, Chieti‐Pescara Chieti Italy
| | - Paola Monari
- Department of Dermatology University of Brescia, Spedali Civili Brescia Brescia Italy
| | | | - Simone Caravello
- Department of Dermatology University of Brescia, Spedali Civili Brescia Brescia Italy
| | | | | | - Francesca Specchio
- Skin Cancer Unit Arcispedale Santa Maria Nuova IRCCS Reggio Emilia Italy
| | | | - Vito Simonetti
- Skin Cancer Unit Arcispedale Santa Maria Nuova IRCCS Reggio Emilia Italy
| | | | | | | | - Christian Landi
- Azienda USL della Romagna Surgical Department U.O. Dermatologia Rimini Italy
| | | | - Daniele Dusi
- Dermatology Unit Ospedale di Macerata Macerata Italy
| | - Mario Puviani
- Dermatology and Dermatologic Surgery Unit Ospedale Sassuolo Modena Italy
| | - Alfredo Zucchi
- Section of Dermatology Department of Clinical and Experimental Medicine Parma University Parma Italy
| | | | | | | | | | - Alessandra Capo
- Department of Medicine and Aging Science and Dermatologic Clinic University “G. d'Annunzio”, Chieti‐Pescara Chieti Italy
| | - Paolo Amerio
- Department of Medicine and Aging Science and Dermatologic Clinic University “G. d'Annunzio”, Chieti‐Pescara Chieti Italy
| |
Collapse
|
99
|
Herms F, Lambert J, Grob JJ, Haudebourg L, Bagot M, Dalac S, Dutriaux C, Guillot B, Jeudy G, Mateus C, Monestier S, Mortier L, Poulalhon N, Prey S, Robert C, Vabres P, Lebbe C, Meyer N, Basset-Seguin N. Follow-Up of Patients With Complete Remission of Locally Advanced Basal Cell Carcinoma After Vismodegib Discontinuation: A Multicenter French Study of 116 Patients. J Clin Oncol 2019; 37:3275-3282. [PMID: 31609670 DOI: 10.1200/jco.18.00794] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Vismodegib is a hedgehog pathway inhibitor indicated for the treatment of locally advanced basal cell carcinoma (laBCC), with an objective response rate of 65%, including a 32% complete response (CR). However, adverse effects often lead to drug discontinuation. The objective of our study was to evaluate long-term responses, predictive factors, and management of relapse after vismodegib discontinuation. METHODS An observational retrospective study was conducted in nine French oncodermatology units. We included patients with laBCC with CR on vismodegib who discontinued treatment between March 2012 and January 2016; we reviewed charts up to June 2016. The primary objective was to evaluate median relapse-free survival (RFS). Secondary objectives were risk factors associated with RFS, relapse, and death and treatment modalities after relapse and their efficacy. RESULTS One hundred sixteen patients with laBCC were included. The median RFS was 18.4 months (95% CI, 13.5 to 24.8 months). The RFS rate at 36 months was 35.4% (95% CI, 22.5% to 47.9%) for the total population and 40.0% (95% CI, 25.7% to 53.7%) for patients without Gorlin syndrome. LaBCC to the limbs and trunk was the only variable independently associated with a higher risk of relapse (hazard ratio, 2.77; 95% CI, 1.23 to 6.22; P = .019). Twenty-seven patients (50%) who experienced relapse during follow-up were retreated with vismodegib, with an objective response in 23 (objective response rate, 85%; CR rate, 37%; partial response rate, 48%) and eligibility for surgery in 24 (42%). CONCLUSION Long-term response after vismodegib discontinuation is frequent. Most patients who experience a relapse still respond to vismodegib rechallenge.
Collapse
Affiliation(s)
- Florian Herms
- Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Paris, France
| | - Jerome Lambert
- Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Paris, France
| | | | - Luc Haudebourg
- Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Paris, France
| | - Martine Bagot
- Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Paris, France
| | | | - Caroline Dutriaux
- University of Bordeaux, Bordeaux, France.,CHU Bordeaux, Bordeaux, France
| | | | | | | | | | | | | | - Sorilla Prey
- University of Bordeaux, Bordeaux, France.,CHU Bordeaux, Bordeaux, France
| | | | | | - Celeste Lebbe
- Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Paris, France
| | - Nicolas Meyer
- Institut Universitaire du Cancer et CHU de Toulouse, Toulouse, France
| | | |
Collapse
|
100
|
Martins PC, Filipe RV, Barbosa R, Julião I, Azevedo R, Ribeiro M, de Sousa A. Basal cell carcinoma: multimodal treatment and the role of neoadjuvant vismodegib. Autops Case Rep 2019; 9:e2019116. [PMID: 31641658 PMCID: PMC6771444 DOI: 10.4322/acr.2019.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer. It generally has an indolent course with low rates of metastasis and mortality. However, BCC is locally invasive and can cause significant morbidity due to destructive local spread. We report our experience with a patient who was referred to our skin cancer unit due to a previously neglected lesion on the parietal region of the scalp, which had developed for 7 years. The patient was prescribed vismodegib on the basis that surgery could cause excessive functional and aesthetic damage. The patient had an objective partial response after 20 months of treatment. He was then submitted to radical skin excision, leaving a large defect that was reconstructed using a free latissimus dorsi muscle flap. The patient recovered well, and at the 1-year follow-up there were no signs of local recurrence. Our case demonstrates the value of vismodegib treatment prior to surgery in a locally advanced, high-risk scalp BCC and highlights the importance of an individualized and specialized approach with these patients, within a multidisciplinary team.
Collapse
Affiliation(s)
- Pedro Carvalho Martins
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Surgical Oncology Service. Porto, Portugal
| | - Rita Valença Filipe
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Reconstructive and Plastic Surgery Service. Porto, Portugal
| | - Rui Barbosa
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Reconstructive and Plastic Surgery Service. Porto, Portugal
| | - Ivo Julião
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Medical Oncology Service. Porto, Portugal
| | - Rosa Azevedo
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Pathological Anatomy Service. Porto, Portugal
| | - Matilde Ribeiro
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Reconstructive and Plastic Surgery Service. Porto, Portugal
| | - Abreu de Sousa
- Instituto Português de Oncologia do Porto Francisco Gentil, Entidade Pública Empresarial, Surgical Oncology Service. Porto, Portugal
| |
Collapse
|