51
|
Li J, Shen G, Wang M, Huo X, Zhao F, Ren D, Zhao Y, Zhao J. Comparative efficacy and safety of first-line neoadjuvant treatments in triple-negative breast cancer: systematic review and network meta-analysis. Clin Exp Med 2023; 23:1489-1499. [PMID: 36152119 DOI: 10.1007/s10238-022-00894-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Neoadjuvant treatment options for triple-negative breast cancer (TNBC) are abundant, but the efficacy of different combinations of treatment options remains unclear. Our network meta-analysis aimed to evaluate the effectiveness and safety of various neoadjuvant treatment options in patients with TNBC. Literature reports published before March 31, 2022, were retrieved from the PubMed, Embase, Cochrane Library, main oncology conference of the European Society of Medical Oncology, American Society of Clinical Oncology, and San Antonio Breast Cancer Symposium databases. Pairwise and Bayesian network meta-analyses were performed to compare direct and indirect evidence, respectively. The primary outcome was pathological complete response (pCR). Comparison of efficiency between different treatment regimens was made by HRs and 95% confidence intervals (CIs). Overall, 26 studies, including 9714 TNBC patients, were assessed in this network meta-analysis. Results indicated that the pCR of immune checkpoint inhibitors plus platinum-containing regimens is better than other joint regimens. PCR rate of neoadjuvant chemotherapy regimens containing bevacizumab, platinum, poly(ADP-ribose) polymerase inhibitors, and immune checkpoint inhibitors was higher than those of standard chemotherapy agents. By performing a conjoint analysis of the pCR rate and safety endpoints, we found that immune checkpoint inhibitors plus platinum-containing regimens were well balanced in terms of efficacy and toxicity. Considering the efficacy and acceptable adverse events, neoadjuvant chemotherapy based on immune checkpoint inhibitors plus platinum may be considered as an option for patients with TNBC.
Collapse
Affiliation(s)
- Jinming Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Miaozhou Wang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xingfa Huo
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yi Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
52
|
Bansal I, Pandey AK, Ruwali M. Small-molecule inhibitors of kinases in breast cancer therapy: recent advances, opportunities, and challenges. Front Pharmacol 2023; 14:1244597. [PMID: 37711177 PMCID: PMC10498465 DOI: 10.3389/fphar.2023.1244597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and despite significant advancements in detection, treatment, and management of cancer, it is still the leading cause of malignancy related deaths in women. Understanding the fundamental biology of breast cancer and creating fresh diagnostic and therapeutic strategies have gained renewed focus in recent studies. In the onset and spread of breast cancer, a group of enzymes known as kinases are extremely important. Small-molecule kinase inhibitors have become a promising class of medications for the treatment of breast cancer owing to their capacity to specifically target kinases involved in the growth and progression of cancer. The creation of targeted treatments that block these kinases and the signalling pathways that they activate has completely changed how breast cancer is treated. Many of these targeted treatments have been approved for the treatment of breast cancer as clinical trials have demonstrated their great efficacy. CDK4/6 inhibitors, like palbociclib, abemaciclib, and ribociclib, EGFR inhibitors such as gefitinib and erlotinib and HER2-targeting small-molecule kinases like neratinib and tucatinib are some examples that have shown potential in treating breast cancer. Yet, there are still difficulties in the development of targeted medicines for breast cancer, such as figuring out which patient subgroups may benefit from these therapies and dealing with drug resistance problems. Notwithstanding these difficulties, kinase-targeted treatments for breast cancer still have a lot of potential. The development of tailored medicines will continue to be fuelled by the identification of novel targets and biomarkers for breast cancer as a result of advancements in genomic and proteomic technology.
Collapse
Affiliation(s)
- Isha Bansal
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-Ahmedabad), Gandhinagar, Gujarat, India
| | - Munindra Ruwali
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| |
Collapse
|
53
|
Gandhi S. Novel Biomarkers to Guide Immunotherapy De-Escalation in the Neoadjuvant Setting in Triple-Negative Breast Cancer. J Pers Med 2023; 13:1313. [PMID: 37763081 PMCID: PMC10532861 DOI: 10.3390/jpm13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has the highest incidence of disease recurrence and distant metastases among breast cancer subtypes, leading to significant rates of morbidity and mortality [...].
Collapse
Affiliation(s)
- Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
54
|
Bhardwaj PV, Wang Y, Brunk E, Spanheimer PM, Abdou YG. Advances in the Management of Early-Stage Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12478. [PMID: 37569851 PMCID: PMC10419523 DOI: 10.3390/ijms241512478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with both inter- and intratumor heterogeneity, thought to result in a more aggressive course and worse outcomes. Neoadjuvant therapy (NAT) has become the preferred treatment modality of early-stage TNBC as it allows for the downstaging of tumors in the breast and axilla, monitoring early treatment response, and most importantly, provides important prognostic information that is essential to determining post-surgical therapies to improve outcomes. It focuses on combinations of systemic drugs to optimize pathologic complete response (pCR). Excellent response to NAT has allowed surgical de-escalation in ideal candidates. Further, treatment algorithms guide the systemic management of patients based on their pCR status following surgery. The expanding knowledge of molecular pathways, genomic sequencing, and the immunological profile of TNBC has led to the use of immune checkpoint inhibitors and targeted agents, including PARP inhibitors, further revolutionizing the therapeutic landscape of this clinical entity. However, subgroups most likely to benefit from these novel approaches in TNBC remain elusive and are being extensively studied. In this review, we describe current practices and promising therapeutic options on the horizon for TNBC, surgical advances, and future trends in molecular determinants of response to therapy in early-stage TNBC.
Collapse
Affiliation(s)
- Prarthna V. Bhardwaj
- Division of Hematology-Oncology, University of Massachusetts Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Yue Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Brunk
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genomic Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Computational Medicine Program, UNC Chapel Hill, NC 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yara G. Abdou
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599, USA
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
55
|
Buffart LM, Bassi A, Stuiver MM, Aaronson NK, Sonke GS, Berkhof J, van de Ven PM. A Bayesian-adaptive decision-theoretic approach can reduce the sample sizes for multiarm exercise oncology trials. J Clin Epidemiol 2023; 159:190-198. [PMID: 37245703 DOI: 10.1016/j.jclinepi.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVES Adaptive designs may reduce trial sample sizes and costs. This study illustrates a Bayesian-adaptive decision-theoretic design applied to a multiarm exercise oncology trial. STUDY DESIGN AND SETTING In the Physical exercise during Adjuvant Chemotherapy Effectiveness Study (PACES) trial, 230 breast cancer patients receiving chemotherapy were randomized to supervised resistance and aerobic exercise (OnTrack), home-based physical activity (OncoMove) or usual care (UC). Data were reanalyzed as an adaptive trial using both Bayesian decision-theoretic and a frequentist group-sequential approach incorporating interim analyses after every 36 patients. Endpoint was chemotherapy treatment modifications (any vs. none). Bayesian analyses were performed for different continuation thresholds and settings with and without arm dropping and both in a 'pick-the-winner' and a 'pick-all-treatments-superior-to-control' setting. RESULTS Treatment modifications occurred in 34% of patients in UC and OncoMove vs. 12% in OnTrack (P = 0.002). Using a Bayesian-adaptive decision-theoretic design, OnTrack was identified as most effective after 72 patients in the 'pick-the-winner' setting and after 72-180 patients in the 'pick-all-treatments-superior-to-control' setting. In a frequentist setting, the trial would have been stopped after 180 patients, and the proportion of patients with treatment modifications was significantly lower for OnTrack than UC. CONCLUSION A Bayesian-adaptive decision-theoretic approach substantially reduced the sample size required for this three-arm exercise trial, especially in the 'pick-the-winner' setting.
Collapse
Affiliation(s)
- Laurien M Buffart
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Andrea Bassi
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martijn M Stuiver
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands; Center for Quality of Life, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johannes Berkhof
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Peter M van de Ven
- Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
56
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
57
|
Guven DC, Yildirim HC, Kus F, Erul E, Kertmen N, Dizdar O, Aksoy S. Optimal adjuvant treatment strategies for TNBC patients with residual disease after neoadjuvant treatment. Expert Rev Anticancer Ther 2023; 23:1049-1059. [PMID: 37224429 DOI: 10.1080/14737140.2023.2218090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION The therapeutic armamentarium for the neoadjuvant treatment of triple-negative breast cancer (TNBC) has significantly expanded with the hopes of improving pathological complete response (pCR) rates and the possibility of a cure. However, the data on optimal adjuvant treatment strategies for patients with residual disease after neoadjuvant treatment is limited. AREAS COVERED We discuss the available data on adjuvant treatment for residual TNBC after neoadjuvant treatment considering clinical trials. Additionally, we discuss ongoing trials to give perspectives on how the field may evolve in the next decade. EXPERT OPINION The available data support the use of adjuvant capecitabine for all patients and either adjuvant capecitabine or olaparib for patients with germline BRCA1 and BRCA2 mutations, according to availability. The CREATE-X study of capecitabine and OlympiA study of olaparib demonstrated disease-free and overall survival benefits. There is an unmet need for studies comparing these two options for patients with germline BRCA mutations. Further research is needed to delineate the use of immunotherapy in the adjuvant setting, molecular targeted therapy for patients with molecular alterations other than germline BRCA mutation, combinations, and antibody-drug conjugates to further improve outcomes.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Hasan Cagri Yildirim
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Fatih Kus
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Enes Erul
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
58
|
Teng X, Zhang J, Zhang X, Fan X, Zhou T, Huang YH, Wang L, Lee EYP, Yang R, Cai J. Noninvasive imaging signatures of HER2 and HR using ADC in invasive breast cancer: repeatability, reproducibility, and association with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:77. [PMID: 37381020 DOI: 10.1186/s13058-023-01674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The immunohistochemical test (IHC) of HER2 and HR can provide prognostic information and treatment guidance for invasive breast cancer patients. We aimed to develop noninvasive image signatures ISHER2 and ISHR of HER2 and HR, respectively. We independently evaluate their repeatability, reproducibility, and association with pathological complete response (pCR) to neoadjuvant chemotherapy. METHODS Pre-treatment DWI, IHC receptor status HER2/HR, and pCR to neoadjuvant chemotherapy of 222 patients from the multi-institutional ACRIN 6698 trial were retrospectively collected. They were pre-separated for development, independent validation, and test-retest. 1316 image features were extracted from DWI-derived ADC maps within manual tumor segmentations. ISHER2 and ISHR were developed by RIDGE logistic regression using non-redundant and test-retest reproducible features relevant to IHC receptor status. We evaluated their association with pCR using area under receiver operating curve (AUC) and odds ratio (OR) after binarization. Their reproducibility was further evaluated using the test-retest set with intra-class coefficient of correlation (ICC). RESULTS A 5-feature ISHER2 targeting HER2 was developed (AUC = 0.70, 95% CI 0.59 to 0.82) and validated (AUC = 0.72, 95% CI 0.58 to 0.86) with high perturbation repeatability (ICC = 0.92) and test-retest reproducibility (ICC = 0.83). ISHR was developed using 5 features with higher association with HR during development (AUC = 0.75, 95% CI 0.66 to 0.84) and validation (AUC = 0.74, 95% CI 0.61 to 0.86) and similar repeatability (ICC = 0.91) and reproducibility (ICC = 0.82). Both image signatures showed significant associations with pCR with AUC of 0.65 (95% CI 0.50 to 0.80) for ISHER2 and 0.64 (95% CI 0.50 to 0.78) for ISHER2 in the validation cohort. Patients with high ISHER2 were more likely to achieve pCR to neoadjuvant chemotherapy with validation OR of 4.73 (95% CI 1.64 to 13.65, P value = 0.006). Low ISHR patients had higher pCR with OR = 0.29 (95% CI 0.10 to 0.81, P value = 0.021). Molecular subtypes derived from the image signatures showed comparable pCR prediction values to IHC-based molecular subtypes (P value > 0.05). CONCLUSION Robust ADC-based image signatures were developed and validated for noninvasive evaluation of IHC receptors HER2 and HR. We also confirmed their value in predicting treatment response to neoadjuvant chemotherapy. Further evaluations in treatment guidance are warranted to fully validate their potential as IHC surrogates.
Collapse
Affiliation(s)
- Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyu Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyu Fan
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu-Hua Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lu Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Elaine Yuen Phin Lee
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Y920, Lee Shau Kee Building, Hong Kong, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Hong Kong, China.
- Research Institute for Smart Aging, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
59
|
Yu K, Basu A, Yau C, Wolf DM, Goodarzi H, Bandyopadhyay S, Korkola JE, Hirst GL, Asare S, DeMichele A, Hylton N, Yee D, Esserman L, van ‘t Veer L, Sirota M. Computational drug repositioning for the identification of new agents to sensitize drug-resistant breast tumors across treatments and receptor subtypes. Front Oncol 2023; 13:1192208. [PMID: 37384294 PMCID: PMC10294228 DOI: 10.3389/fonc.2023.1192208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Drug resistance is a major obstacle in cancer treatment and can involve a variety of different factors. Identifying effective therapies for drug resistant tumors is integral for improving patient outcomes. Methods In this study, we applied a computational drug repositioning approach to identify potential agents to sensitize primary drug resistant breast cancers. We extracted drug resistance profiles from the I-SPY 2 TRIAL, a neoadjuvant trial for early stage breast cancer, by comparing gene expression profiles of responder and non-responder patients stratified into treatments within HR/HER2 receptor subtypes, yielding 17 treatment-subtype pairs. We then used a rank-based pattern-matching strategy to identify compounds in the Connectivity Map, a database of cell line derived drug perturbation profiles, that can reverse these signatures in a breast cancer cell line. We hypothesize that reversing these drug resistance signatures will sensitize tumors to treatment and prolong survival. Results We found that few individual genes are shared among the drug resistance profiles of different agents. At the pathway level, however, we found enrichment of immune pathways in the responders in 8 treatments within the HR+HER2+, HR+HER2-, and HR-HER2- receptor subtypes. We also found enrichment of estrogen response pathways in the non-responders in 10 treatments primarily within the hormone receptor positive subtypes. Although most of our drug predictions are unique to treatment arms and receptor subtypes, our drug repositioning pipeline identified the estrogen receptor antagonist fulvestrant as a compound that can potentially reverse resistance across 13/17 of the treatments and receptor subtypes including HR+ and triple negative. While fulvestrant showed limited efficacy when tested in a panel of 5 paclitaxel resistant breast cancer cell lines, it did increase drug response in combination with paclitaxel in HCC-1937, a triple negative breast cancer cell line. Conclusion We applied a computational drug repurposing approach to identify potential agents to sensitize drug resistant breast cancers in the I-SPY 2 TRIAL. We identified fulvestrant as a potential drug hit and showed that it increased response in a paclitaxel-resistant triple negative breast cancer cell line, HCC-1937, when treated in combination with paclitaxel.
Collapse
Affiliation(s)
- Katharine Yu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Hani Goodarzi
- University of California, San Francisco, San Francisco, CA, United States
| | | | - James E. Korkola
- Oregon Health and Science University, Portland, OR, United States
| | - Gillian L. Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Smita Asare
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- QuantumLeap Healthcare Collaborative, San Francisco, CA, United States
| | | | - Nola Hylton
- University of California, San Francisco, San Francisco, CA, United States
| | - Douglas Yee
- University of Minnesota, Minneapolis, MN, United States
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Laura van ‘t Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
60
|
Magbanua MJM, Brown Swigart L, Ahmed Z, Sayaman RW, Renner D, Kalashnikova E, Hirst GL, Yau C, Wolf DM, Li W, Delson AL, Asare S, Liu MC, Albain K, Chien AJ, Forero-Torres A, Isaacs C, Nanda R, Tripathy D, Rodriguez A, Sethi H, Aleshin A, Rabinowitz M, Perlmutter J, Symmans WF, Yee D, Hylton NM, Esserman LJ, DeMichele AM, Rugo HS, van 't Veer LJ. Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. Cancer Cell 2023; 41:1091-1102.e4. [PMID: 37146605 PMCID: PMC10330514 DOI: 10.1016/j.ccell.2023.04.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Circulating tumor DNA (ctDNA) analysis may improve early-stage breast cancer treatment via non-invasive tumor burden assessment. To investigate subtype-specific differences in the clinical significance and biology of ctDNA shedding, we perform serial personalized ctDNA analysis in hormone receptor (HR)-positive/HER2-negative breast cancer and triple-negative breast cancer (TNBC) patients receiving neoadjuvant chemotherapy (NAC) in the I-SPY2 trial. ctDNA positivity rates before, during, and after NAC are higher in TNBC than in HR-positive/HER2-negative breast cancer patients. Early clearance of ctDNA 3 weeks after treatment initiation predicts a favorable response to NAC in TNBC only. Whereas ctDNA positivity associates with reduced distant recurrence-free survival in both subtypes. Conversely, ctDNA negativity after NAC correlates with improved outcomes, even in patients with extensive residual cancer. Pretreatment tumor mRNA profiling reveals associations between ctDNA shedding and cell cycle and immune-associated signaling. On the basis of these findings, the I-SPY2 trial will prospectively test ctDNA for utility in redirecting therapy to improve response and prognosis.
Collapse
Affiliation(s)
| | | | - Ziad Ahmed
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rosalyn W Sayaman
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Gillian L Hirst
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Denise M Wolf
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wen Li
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy L Delson
- UCSF Breast Science Advocacy Core, San Francisco, CA 94143, USA
| | - Smita Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Minetta C Liu
- Natera, Inc., Austin, TX 78753, USA; Mayo Clinic, Rochester, MN 55905, USA
| | - Kathy Albain
- Loyola University Chicago, Maywood, IL 60153, USA
| | - A Jo Chien
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Rita Nanda
- University of Chicago, Chicago, IL 60637, USA
| | - Debu Tripathy
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | - Jane Perlmutter
- UCSF Breast Science Advocacy Core, San Francisco, CA 94143, USA
| | - W Fraser Symmans
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Yee
- University of Minnesota, Minneapolis, MN 55455, USA
| | - Nola M Hylton
- University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Hope S Rugo
- University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
61
|
Parker BA, Shatsky RA, Schwab RB, Wallace AM, Wolf DM, Hirst GL, Brown-Swigart L, Esserman LJ, van 't Veer LJ, Ghia EM, Yau C, Kipps TJ. Association of baseline ROR1 and ROR2 gene expression with clinical outcomes in the I-SPY2 neoadjuvant breast cancer trial. Breast Cancer Res Treat 2023; 199:281-291. [PMID: 37029329 PMCID: PMC10175386 DOI: 10.1007/s10549-023-06914-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/12/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE ROR1 and ROR2 are Type 1 tyrosine kinase-like orphan receptors for Wnt5a that are associated with breast cancer progression. Experimental agents targeting ROR1 and ROR2 are in clinical trials. This study evaluated whether expression levels of ROR1 or ROR2 correlated with one another or with clinical outcomes. METHODS We interrogated the clinical significance of high-level gene expression of ROR1 and/or ROR2 in the annotated transcriptome dataset from 989 patients with high-risk early breast cancer enrolled in one of nine completed/graduated/experimental and control arms in the neoadjuvant I-SPY2 clinical trial (NCT01042379). RESULTS High ROR1 or high ROR2 was associated with breast cancer subtypes. High ROR1 was more prevalent among hormone receptor-negative and human epidermal growth factor receptor 2-negative (HR-HER2-) tumors and high ROR2 was less prevalent in this subtype. Although not associated with pathologic complete response, high ROR1 or high ROR2 each was associated with event-free survival (EFS) in distinct subtypes. High ROR1 associated with a worse EFS in HR + HER2- patients with high post-treatment residual cancer burden (RCB-II/III) (HR 1.41, 95% CI = 1.11-1.80) but not in patients with minimal post-treatment disease (RCB-0/I) (HR 1.85, 95% CI = 0.74-4.61). High ROR2 associated with an increased risk of relapse in patients with HER2 + disease and RCB-0/I (HR 3.46, 95% CI = 1.33-9.020) but not RCB-II/III (HR 1.07, 95% CI = 0.69-1.64). CONCLUSION High ROR1 or high ROR2 distinctly identified subsets of breast cancer patients with adverse outcomes. Further studies are warranted to determine if high ROR1 or high ROR2 may identify high-risk populations for studies of targeted therapies.
Collapse
Affiliation(s)
- Barbara A Parker
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Rebecca A Shatsky
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard B Schwab
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anne M Wallace
- Department of Surgery and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gillian L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura J Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Emanuela M Ghia
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Thomas J Kipps
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
62
|
Han HS, Vikas P, Costa RLB, Jahan N, Taye A, Stringer-Reasor EM. Early-Stage Triple-Negative Breast Cancer Journey: Beginning, End, and Everything in Between. Am Soc Clin Oncol Educ Book 2023; 43:e390464. [PMID: 37335956 DOI: 10.1200/edbk_390464] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is a very heterogeneous and aggressive breast cancer subtype with a high risk of mortality, even if diagnosed early. The mainstay of early-stage breast cancer includes systemic chemotherapy and surgery, with or without radiation therapy. More recently, immunotherapy is approved to treat TNBC, but managing immune-rated adverse events while balancing efficacy is a challenge. The purpose of this review is to highlight the current treatment recommendations for early-stage TNBC and the management of immunotherapy toxicities.
Collapse
Affiliation(s)
- Hyo Sook Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Praveen Vikas
- The University of Iowa Holden Comprehensive Cancer Center, Iowa City, IA
| | - Ricardo L B Costa
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Nusrat Jahan
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL
| | - Ammanuel Taye
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL
| | - Erica M Stringer-Reasor
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, AL
| |
Collapse
|
63
|
Wang H, Yee D, Potter D, Jewett P, Yau C, Beckwith H, Watson A, O'Grady N, Wilson A, Brain S, Pohlmann P, Blaes A. Impact of Body Mass Index on Pathological Response after Neoadjuvant Chemotherapy: Results from the I-SPY 2 trial. RESEARCH SQUARE 2023:rs.3.rs-2588168. [PMID: 37397981 PMCID: PMC10312926 DOI: 10.21203/rs.3.rs-2588168/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose Increased body mass index (BMI) has been associated with poor outcomes in women with breast cancer. We evaluated the association between BMI and pathological complete response (pCR) in the I-SPY 2 trial. Methods 978 patientsenrolled in the I-SPY 2 trial 3/2010-11/2016 and had a recorded baseline BMI prior to treatment were included in the analysis. Tumor subtypes were defined by hormone receptor and HER2 status. Pretreatment BMI was categorized as obese (BMI≥30 kg/m2), overweight (25≤BMI < 30 kg/m2), and normal/underweight (< 25 kg/m2). pCR was defined as elimination of detectable invasive cancer in the breast and lymph nodes (ypT0/Tis and ypN0) at the time of surgery. Logistic regression analysis was used to determine associations between BMI and pCR. Event-free survival (EFS) and overall survival (OS) between different BMI categories were examined using Cox proportional hazards regression. Results The median age in the study population was 49 years. pCR rates were 32.8% in normal/underweight, 31.4% in overweight, and 32.5% in obese patients. In univariable analysis, there was no significant difference in pCR with BMI. In multivariable analysis adjusted for race/ethnicity, age, menopausal status, breast cancer subtype, and clinical stage, there was no significant difference in pCR after neoadjuvant chemotherapy for obese compared with normal/underweight patients (OR = 1.1, 95% CI: 0.68-1.63, p = 0.83), and for overweight compared with normal/underweight (OR = 1, 95% CI: 0.64-1.47, p = 0.88). We tested for potential interaction between BMI and breast cancer subtype; however, the interaction was not significant in the multivariable model (p = 0.09). Multivariate Cox regression showed there was no difference in EFS (p = 0.81) or OS (p = 0.52) between obese, overweight, and normal/underweight breast cancer patients with a median follow-up time of 3.8 years. Conclusions We found no difference in pCR rates by BMI with actual body weight based neoadjuvant chemotherapy in this biologically high-risk breast cancer population in the I-SPY2 trial.
Collapse
Affiliation(s)
| | - Douglas Yee
- University of Minnesota Department of Medicine: University of Minnesota Twin Cities Department of Medicine
| | - David Potter
- University of Minnesota Department of Medicine: University of Minnesota Twin Cities Department of Medicine
| | - Patricia Jewett
- University of Minnesota Department of Medicine: University of Minnesota Twin Cities Department of Medicine
| | | | - Heather Beckwith
- University of Minnesota Department of Medicine: University of Minnesota Twin Cities Department of Medicine
| | | | | | | | | | - Paula Pohlmann
- MD Anderson Nellie B Connally Breast Center: The University of Texas MD Anderson Cancer Center Nellie B Connally Breast Center
| | | |
Collapse
|
64
|
Pandya K, Scher A, Omene C, Ganesan S, Kumar S, Ohri N, Potdevin L, Haffty B, Toppmeyer DL, George MA. Clinical efficacy of PARP inhibitors in breast cancer. Breast Cancer Res Treat 2023; 200:15-22. [PMID: 37129747 DOI: 10.1007/s10549-023-06940-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
BRCA1 and BRCA2 are key tumor suppressor genes that are essential for the homologous recombination DNA repair pathway. Loss of function mutations in these genes result in hereditary breast and ovarian cancer syndromes, which comprise approximately 5% of cases. BRCA1/2 mutations are associated with younger age of diagnosis and increased risk of recurrences. The concept of synthetic lethality led to the development of PARP inhibitors which cause cell cytotoxicity via the inhibition of PARP1, a key DNA repair protein, in cells with germline BRCA1/2 mutations. Although still poorly understood, the most well-acknowledged proposed mechanisms of action of PARP1 inhibition include the inhibition of single strand break repair, PARP trapping, and the upregulation of non-homologous end joining. Olaparib and talazoparib are PARP inhibitors that have been approved for the management of HER2-negative breast cancer in patients with germline BRCA1/2 mutations. This review article highlights the clinical efficacy of PARP inhibitors in patients with HER2-negative breast cancer in early and advanced settings.
Collapse
Affiliation(s)
- Karan Pandya
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alyssa Scher
- Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nisha Ohri
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lindsay Potdevin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Bruce Haffty
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deborah L Toppmeyer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mridula A George
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
65
|
Kaizer AM, Belli HM, Ma Z, Nicklawsky AG, Roberts SC, Wild J, Wogu AF, Xiao M, Sabo RT. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J Clin Transl Sci 2023; 7:e125. [PMID: 37313381 PMCID: PMC10260347 DOI: 10.1017/cts.2023.537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Clinical trials are constantly evolving in the context of increasingly complex research questions and potentially limited resources. In this review article, we discuss the emergence of "adaptive" clinical trials that allow for the preplanned modification of an ongoing clinical trial based on the accumulating evidence with application across translational research. These modifications may include terminating a trial before completion due to futility or efficacy, re-estimating the needed sample size to ensure adequate power, enriching the target population enrolled in the study, selecting across multiple treatment arms, revising allocation ratios used for randomization, or selecting the most appropriate endpoint. Emerging topics related to borrowing information from historic or supplemental data sources, sequential multiple assignment randomized trials (SMART), master protocol and seamless designs, and phase I dose-finding studies are also presented. Each design element includes a brief overview with an accompanying case study to illustrate the design method in practice. We close with brief discussions relating to the statistical considerations for these contemporary designs.
Collapse
Affiliation(s)
- Alexander M. Kaizer
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hayley M. Belli
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhongyang Ma
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrew G. Nicklawsky
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha C. Roberts
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Wild
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adane F. Wogu
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mengli Xiao
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy T. Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
66
|
Pore AA, Dhanasekara CS, Navaid HB, Vanapalli SA, Rahman RL. Comprehensive Profiling of Cancer-Associated Cells in the Blood of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy to Predict Pathological Complete Response. Bioengineering (Basel) 2023; 10:bioengineering10040485. [PMID: 37106672 PMCID: PMC10136335 DOI: 10.3390/bioengineering10040485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) can affect pathological complete response (pCR) in breast cancers; the resection that follows identifies patients with residual disease who are then offered second-line therapies. Circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) in the blood can be used as potential biomarkers for predicting pCR before resection. CTCs are of epithelial origin that undergo epithelial-to-mesenchymal transition to become more motile and invasive, thereby leading to invasive mesenchymal cells that seed in distant organs, causing metastasis. Additionally, CAMLs in the blood of cancer patients are reported to either engulf or aid the transport of cancer cells to distant organs. To study these rare cancer-associated cells, we conducted a preliminary study where we collected blood from patients treated with NAC after obtaining their written and informed consent. Blood was collected before, during, and after NAC, and Labyrinth microfluidic technology was used to isolate CTCs and CAMLs. Demographic, tumor marker, and treatment response data were collected. Non-parametric tests were used to compare pCR and non-pCR groups. Univariate and multivariate models were used where CTCs and CAMLs were analyzed for predicting pCR. Sixty-three samples from 21 patients were analyzed. The median(IQR) pre-NAC total and mesenchymal CTC count/5 mL was lower in the pCR vs. non-pCR group [1(3.5) vs. 5(5.75); p = 0.096], [0 vs. 2.5(7.5); p = 0.084], respectively. The median(IQR) post-NAC CAML count/5 mL was higher in the pCR vs. non-pCR group [15(6) vs. 6(4.5); p = 0.004]. The pCR group was more likely to have >10 CAMLs post-NAC vs. non-pCR group [7(100%) vs. 3(21.4%); p = 0.001]. In a multivariate logistic regression model predicting pCR, CAML count was positively associated with the log-odds of pCR [OR = 1.49(1.01, 2.18); p = 0.041], while CTCs showed a negative trend [Odds Ratio (OR) = 0.44(0.18, 1.06); p = 0.068]. In conclusion, increased CAMLs in circulation after treatment combined with lowered CTCs was associated with pCR.
Collapse
Affiliation(s)
- Adity A Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
67
|
Malhotra MK, Pahuja S, Kiesel BF, Appleman LJ, Ding F, Lin Y, Tawbi HA, Stoller RG, Lee JJ, Belani CP, Chen AP, Giranda VL, Shepherd SP, Emens LA, Ivy SP, Chu E, Beumer JH, Puhalla S. A phase 1 study of veliparib (ABT-888) plus weekly carboplatin and paclitaxel in advanced solid malignancies, with an expansion cohort in triple negative breast cancer (TNBC) (ETCTN 8620). Breast Cancer Res Treat 2023; 198:487-498. [PMID: 36853577 PMCID: PMC10710035 DOI: 10.1007/s10549-023-06889-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Veliparib is a poly-ADP-ribose polymerase (PARP) inhibitor, and it has clinical activity with every 3 weeks carboplatin and paclitaxel. In breast cancer, weekly paclitaxel is associated with improved overall survival. We aimed to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of veliparib with weekly carboplatin and paclitaxel as well as safety, pharmacokinetics, and preliminary clinical activity in triple negative breast cancer (TNBC). METHODS Patients with locally advanced/metastatic solid tumors and adequate organ function were eligible. A standard 3 + 3 dose-escalation design was followed by a TNBC expansion cohort. Veliparib doses ranging from 50 to 200 mg orally bid were tested with carboplatin (AUC 2) and paclitaxel (80 mg/m2) given weekly in a 21-day cycle. Adverse events (AE) were evaluated by CTCAE v4.0, and objective response rate (ORR) was determined by RECIST 1.1. RESULTS Thirty patients were enrolled, of whom 22 had TNBC. Two dose-limiting toxicities were observed. The RP2D was determined to be 150 mg PO bid veliparib with weekly carboplatin and paclitaxel 2 weeks on, 1 week off, based on hematologic toxicity requiring dose reduction in the first 5 cycles of treatment. The most common grade 3/4 AEs included neutropenia, anemia, and thrombocytopenia. PK parameters of veliparib were comparable to single-agent veliparib. In 23 patients with evaluable disease, the ORR was 65%. In 19 patients with TNBC with evaluable disease, the ORR was 63%. CONCLUSION Veliparib can be safely combined with weekly paclitaxel and carboplatin, and this triplet combination has promising clinical activity.
Collapse
Affiliation(s)
- Monica K Malhotra
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shalu Pahuja
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian F Kiesel
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Leonard J Appleman
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Fei Ding
- Biostatistics Facility, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yan Lin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hussein A Tawbi
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald G Stoller
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - James J Lee
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chandra P Belani
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, USA
- Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | | | | | - Leisha A Emens
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Therapeutics Program, Montefiore Einstein Cancer Center, Bronx, NY, USA
| | - Jan H Beumer
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
| | - Shannon Puhalla
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- UPMC Magee Women's Hospital, 300 Halket Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
68
|
Palazzo A, Ciccarese C, Iacovelli R, Cannizzaro MC, Stefani A, Salvatore L, Bria E, Tortora G. Major adverse cardiac events and cardiovascular toxicity with PARP inhibitors-based therapy for solid tumors: a systematic review and safety meta-analysis. ESMO Open 2023; 8:101154. [PMID: 36893518 PMCID: PMC10163166 DOI: 10.1016/j.esmoop.2023.101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) provided significant antitumor activity in various tumors, mainly carrying deleterious mutations of BRCA1/BRCA2 genes. Only few data are available regarding the cardiac and vascular safety profile of this drug class. We carried out a meta-analysis for assessing the incidence and relative risk (RR) of major adverse cardiovascular events (MACEs), hypertension, and thromboembolic events in patients with solid tumors treated with PARPi-based therapy. METHODS Prospective studies were identified by searching the Medline/PubMed, Cochrane Library, and ASCO Meeting abstracts. Data extraction was conducted according to the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) statement. Combined odds ratios (ORs), RRs, and 95% confidence intervals (CIs) were calculated using fixed- or random-effects methods, depending on studies heterogeneity. RevMan software for meta-analysis (v.5.2.3) was used to carry out statistical analyses. RESULTS Thirty-two studies were selected for the final analysis. The incidence of PARPi-related MACEs of any and high grade was 5.0% and 0.9%, respectively, compared with 3.6% and 0.9% in the control arms, corresponding to a significant increased risk of MACEs of any grade (Peto OR 1.62; P = 0.0009) but not of high grade (P = 0.49). The incidence of hypertension of any grade and high grade was 17.5% and 6.0% with PARPi, respectively, compared with 12.6% and 4.4% in the controls. Treatment with PARPi significantly increased the risk of hypertension of any grade (random-effects, RR = 1.53; P = 0.03) but not of high grade (random-effects, RR = 1.47; P = 0.09) compared with controls. Finally, PARPi-based therapies significantly increased the risk of thromboembolic events of any grade (Peto OR = 1.49, P = 0.004) and not of high grade (Peto OR = 1.31; P = 0.13) compared with controls. CONCLUSIONS PARPi-based therapy is associated with a significantly increased risk of MACEs, hypertension, and thromboembolic events of any grade compared with controls. The lack of a significant increased risk of high-grade events together with the absolute low incidence of these adverse events led not to consider routine cardiovascular monitoring as recommended in asymptomatic patients.
Collapse
Affiliation(s)
- A Palazzo
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - C Ciccarese
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
| | - R Iacovelli
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - M C Cannizzaro
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - A Stefani
- Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Salvatore
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Bria
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Tortora
- Medical Oncology Unit, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
69
|
Magbanua MJM, van ‘t Veer L, Clark AS, Chien AJ, Boughey JC, Han HS, Wallace A, Beckwith H, Liu MC, Yau C, Wileyto EP, Ordonez A, Solanki T, Hsiao F, Lee JC, Basu A, Swigart LB, Perlmutter J, Delson AL, Bayne L, Deluca S, Yee SS, Carpenter EL, Esserman LJ, Park JW, Chodosh LA, DeMichele A. Outcomes and clinicopathologic characteristics associated with disseminated tumor cells in bone marrow after neoadjuvant chemotherapy in high-risk early stage breast cancer: the I-SPY SURMOUNT study. Breast Cancer Res Treat 2023; 198:383-390. [PMID: 36689092 PMCID: PMC10290540 DOI: 10.1007/s10549-022-06803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Disseminated tumor cells (DTCs) expressing epithelial markers in the bone marrow are associated with recurrence and death, but little is known about risk factors predicting their occurrence. We detected EPCAM+/CD45- cells in bone marrow from early stage breast cancer patients after neoadjuvant chemotherapy (NAC) in the I-SPY 2 Trial and examined clinicopathologic factors and outcomes. METHODS Patients who signed consent for SURMOUNT, a sub-study of the I-SPY 2 Trial (NCT01042379), had bone marrow collected after NAC at the time of surgery. EPCAM+CD45- cells in 4 mLs of bone marrow aspirate were enumerated using immunomagnetic enrichment/flow cytometry (IE/FC). Patients with > 4.16 EPCAM+CD45- cells per mL of bone marrow were classified as DTC-positive. Tumor response was assessed using the residual cancer burden (RCB), a standardized approach to quantitate the extent of residual invasive cancer present in the breast and the axillary lymph nodes after NAC. Association of DTC-positivity with clinicopathologic variables and survival was examined. RESULTS A total of 73 patients were enrolled, 51 of whom had successful EPCAM+CD45- cell enumeration. Twenty-four of 51 (47.1%) were DTC-positive. The DTC-positivity rate was similar across receptor subtypes, but DTC-positive patients were significantly younger (p = 0.0239) and had larger pretreatment tumors compared to DTC-negative patients (p = 0.0319). Twenty of 51 (39.2%) achieved a pathologic complete response (pCR). While DTC-positivity was not associated with achieving pCR, it was significantly associated with higher RCB class (RCB-II/III, 62.5% vs. RCB-0/I; 33.3%; Chi-squared p = 0.0373). No significant correlation was observed between DTC-positivity and distant recurrence-free survival (p = 0.38, median follow-up = 3.2 years). CONCLUSION DTC-positivity at surgery after NAC was higher in younger patients, those with larger tumors, and those with residual disease at surgery.
Collapse
Affiliation(s)
| | | | | | - A. Jo Chien
- University of California San Francisco, San Francisco, CA
| | | | | | - Anne Wallace
- University of California San Diego, San Diego, CA
| | | | | | - Christina Yau
- University of California San Francisco, San Francisco, CA
| | | | - Andrea Ordonez
- University of California San Francisco, San Francisco, CA
| | - Tulasi Solanki
- University of California San Francisco, San Francisco, CA
| | - Feng Hsiao
- University of California San Francisco, San Francisco, CA
| | - Jen Chieh Lee
- University of California San Francisco, San Francisco, CA
| | - Amrita Basu
- University of California San Francisco, San Francisco, CA
| | | | | | - Amy L. Delson
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | - John W. Park
- University of California San Francisco, San Francisco, CA
| | | | | |
Collapse
|
70
|
Li C, Hao M, Fang Z, Ding J, Duan S, Yi F, Wei Y, Zhang W. PARP inhibitor plus chemotherapy versus chemotherapy alone in patients with triple-negative breast cancer: a systematic review and meta-analysis based on randomized controlled trials. Cancer Chemother Pharmacol 2023; 91:203-217. [PMID: 36725727 DOI: 10.1007/s00280-023-04506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chemotherapy is the standard treatment for triple-negative breast cancer (TNBC). Whether the addition of PARP inhibitors improves treatment efficacy remains controversial clinically. Thus, we performed a meta-analysis to compare the efficacy and safety of combination treatment (PC) and chemotherapy alone (CA). METHODS Relevant studies were identified through searches of 7 databases. The primary endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS We screened 317 studies and included seven RCTs involving 2091 patients in the final analysis. PC tended to have better efficacy than CA according to PFS (HR [hazard ratio]: 0.83 [0.75, 0.93], p = 0.001), OS (HR: 0.89 [0.76,1.03], p = 0.11) and overall response rate (ORR) (RR [risk ratio]: 1.19 [0.97,1.46], p = 0.10). However, grade 3-5 AEs (RR: 1.50 [0.87,2.61], p = 0.15) were observed in the PC group. In the PC arm, the 10 most-reported grade 3-5 AEs were neutropenia (62.8%), anemia (28.5%), thrombocytopenia (26.4%), lymphopenia (19.05%), leukopenia (16.9%), fatigue (5%), heart failure (4.76%), lung infection (4.76%), thromboembolic events (4.76%) and ventricular tachycardia (4.76%). Similar results for pathological complete response (pCR), total AEs, rate of complete response (CR), stable disease (SD) and progressive disease (PD), breast conservation rate (BCR), and drug discontinuation (DD) rate were found between the two groups. CONCLUSIONS For TNBC treatment, the combination of PARP inhibitors and chemotherapy appears to be superior to chemotherapy alone with better antitumor efficacy. However, its higher rate of AEs needs to be taken seriously. More high-quality RCTs are needed to confirm these results.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meiqi Hao
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zige Fang
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiatong Ding
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
71
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
72
|
Clinical Utility of Genomic Tests Evaluating Homologous Recombination Repair Deficiency (HRD) for Treatment Decisions in Early and Metastatic Breast Cancer. Cancers (Basel) 2023; 15:cancers15041299. [PMID: 36831640 PMCID: PMC9954086 DOI: 10.3390/cancers15041299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most frequently occurring cancer worldwide. With its increasing incidence, it is a major public health problem, with many therapeutic challenges such as precision medicine for personalized treatment. Thanks to next-generation sequencing (NGS), progress in biomedical technologies, and the use of bioinformatics, it is now possible to identify specific molecular alterations in tumor cells-such as homologous recombination deficiencies (HRD)-enabling us to consider using DNA-damaging agents such as platinum salts or PARP inhibitors. Different approaches currently exist to analyze impairment of the homologous recombination pathway, e.g., the search for specific mutations in homologous recombination repair (HRR) genes, such as BRCA1/2; the use of genomic scars or mutational signatures; or the development of functional tests. Nevertheless, the role and value of these different tests in breast cancer treatment decisions remains to be clarified. In this review, we summarize current knowledge on the clinical utility of genomic tests, evaluating HRR deficiency for treatment decisions in early and metastatic breast cancer.
Collapse
|
73
|
Systemic Therapy for Hereditary Breast Cancers. Hematol Oncol Clin North Am 2023; 37:203-224. [PMID: 36435611 DOI: 10.1016/j.hoc.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Approximately 5% to 10% of all breast cancers are hereditary; many of which are caused by pathogenic variants in genes required for homologous recombination, including BRCA1 and BRCA2. Here we discuss systemic treatment for such breast cancers, including approved chemotherapeutic approaches and also targeted treatment approaches using poly-(ADP ribose) polymerase inhibitors. We also discuss experimental approaches to treating hereditary breast cancer, including new small molecule DNA repair inhibitors and also immunomodulatory agents. Finally, we discuss how drug resistance emerges in patients with hereditary breast cancer, how this might be delayed or prevented, and how biomarker-adapted treatment is molding the future management of hereditary breast cancer.
Collapse
|
74
|
Chen X, Wen Q, Kou L, Xie X, Li J, Li Y. Incidence and risk of hypertension associated with PARP inhibitors in cancer patients: a systematic review and meta-analysis. BMC Cancer 2023; 23:107. [PMID: 36717798 PMCID: PMC9887889 DOI: 10.1186/s12885-023-10571-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To analyze the incidence and risk of hypertension associated with poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors in cancer patients and provide reference for clinicians. METHODS We used R software to conduct a meta-analysis of phase II/III randomized controlled trials (RCT) on PARP inhibitors for cancer treatment published in PubMed, Embase, Clinical Trials, Cochrane Library and Web of Science from inception to July 29th, 2022. RESULTS We included 32 RCTs with 10,654 participants for this meta-analysis. For total PARP inhibitors, the incidence and risk ratio of all-grade hypertension were 12% and 1.22 (95% CI: 0.91-1.65, P = 0.19, I2 = 81%), and the incidence and risk ratio of grade 3-4 hypertension were 4% and 1.24 (95% CI: 0.74-2.08, P = 0.42, I2 = 68%). Compared with the control group, the niraparib group, olaparib 800 mg/day group, and olaparib plus cediranib group increased the risk of any grade and grade 3-4 hypertension, while the veliparib group and rucaparib group did not increase the risk of any grade and grade 3-4 hypertension, and olaparib 200 mg-600 mg/day group (exclude olaparib plus cediranib regime) reduced the risk of any grade and grade 3-4 hypertension. CONCLUSION Olaparib 200-600 mg/day (excluding olaparib plus cediranib regimen) may be the most suitable PARP inhibitor for cancer patients with high risk of hypertension, followed by veliparib and rucaparib. Niraparib, olaparib 800 mg/day and olaparib combined with cediranib may increase the risk of developing hypertension in cancer patients, clinicians should strengthen the monitoring of blood pressure in cancer patients and give medication in severe cases.
Collapse
Affiliation(s)
- Xiu Chen
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China ,grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- grid.488387.8Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Liqiu Kou
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China ,grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China ,grid.410578.f0000 0001 1114 4286School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Li
- grid.488387.8Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yaling Li
- grid.488387.8Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
75
|
Szefler B, Czeleń P. Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin-A Review. Int J Mol Sci 2023; 24:ijms24021548. [PMID: 36675064 PMCID: PMC9862491 DOI: 10.3390/ijms24021548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Pt (II) derivatives show anti-cancer activity by interacting with nucleobases of DNA, thus causing some spontaneous and non-spontaneous reactions. As a result, mono- and diaqua products are formed which further undergo complexation with guanine or adenine. Consequently, many processes are triggered, which lead to the death of the cancer cell. The theoretical and experimental studies confirm that such types of interactions can also occur with other chemical compounds. The vitamins from B group have a similar structure to the nucleobases of DNA and have aromatic rings with single-pair orbitals. Theoretical and experimental studies were performed to describe the interactions of B vitamins with Pt (II) derivatives such as cisplatin, oxaliplatin and carboplatin. The obtained results were compared with the values for guanine. Two levels of simulations were implemented at the theoretical level, namely, B3LYP/6-31G(d,p) with LANL2DZ bases set for platinum atoms and MN15/def2-TZVP. The polarizable continuum model (IEF-PCM preparation) and water as a solvent were used. UV-Vis spectroscopy was used to describe the drug-nucleobase and drug-B vitamin interactions. Values of the free energy (ΔGr) show spontaneous reactions with mono- and diaqua derivatives of cisplatin and oxaliplatin; however, interactions with diaqua derivatives are more preferable. The strength of these interactions was also compared. Carboplatin products have the weakest interaction with the studied structures. The presence of non-covalent interactions was demonstrated in the tested complexes. A good agreement between theory and experiment was also demonstrated.
Collapse
|
76
|
Siddiqui S, Haf Davies E, Afshar M, Denlinger LC. Clinical Trial Design Innovations for Precision Medicine in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:395-412. [PMID: 37464130 DOI: 10.1007/978-3-031-32259-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Severe asthma is a spectrum disorder with numerous subsets, many of which are defined by clinical history and a general predisposition for T2 inflammation. Most of the approved therapies for severe asthma have required clinical trial designs with population enrichment for exacerbation frequency and/or elevation of blood eosinophils. Moving beyond this framework will require trial designs that increase efficiency for studying nondominant subsets and continue to improve upon biomarker signatures. In addition to reviewing the current literature on biomarker-informed trials for severe asthma, this chapter will also review the advantages of master protocols and adaptive design methods for establishing the efficacy of new interventions in prospectively defined subsets of patients. The incorporation of methods that allow for data collection outside of traditional study visits at academic centers, called remote decentralized trial design, is a growing trend that may increase diversity in study participation and allow for enhanced resiliency during the COVID-19 pandemic. Finally, reaching the goals of precision medicine in asthma will require increased emphasis on effectiveness studies. Recent advances in real-world data utilization from electronic health records are also discussed with a view toward pragmatic trial designs that could also incorporate the evaluation of biomarker signatures.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College, London, England, UK
| | | | - Majid Afshar
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Loren C Denlinger
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
77
|
Krecko LK, Lautner MA, Wilke LG. Clinical Trials That Have Informed the Modern Management of Breast Cancer. Surg Oncol Clin N Am 2023; 32:27-46. [PMID: 36410920 DOI: 10.1016/j.soc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Randomized controlled trials have informed the historical evolution of breast cancer management, distilling operative and nonoperative treatments to achieve disease control and improve survival while maximizing quality of life and minimizing complications. The authors describe landmark trials investigating and influencing the following aspects of breast cancer care: extent of breast surgery; axillary management; neoadjuvant and adjuvant therapies; and selection of chemotherapy versus endocrine therapy via application of genomic assays.
Collapse
Affiliation(s)
- Laura K Krecko
- Department of Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue K4/642, Madison, WI 53792, USA. https://twitter.com/LauraKrecko
| | - Meeghan A Lautner
- Department of Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue K4/624, Madison, WI 53792, USA. https://twitter.com/mlautnermd
| | - Lee G Wilke
- Department of Surgery, University of Wisconsin Hospital and Clinics, 600 Highland Avenue K4/624, Madison, WI 53792, USA.
| |
Collapse
|
78
|
Lin P, Wan WJ, Kang T, Qin LF, Meng QX, Wu XX, Qin HY, Lin YQ, He Y, Yang H. Molecular hallmarks of breast multiparametric magnetic resonance imaging during neoadjuvant chemotherapy. LA RADIOLOGIA MEDICA 2023; 128:171-183. [PMID: 36680710 PMCID: PMC9860227 DOI: 10.1007/s11547-023-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE To identify molecular basis of four parameters obtained from dynamic contrast-enhanced magnetic resonance imaging, including functional tumor volume (FTV), longest diameter (LD), sphericity, and contralateral background parenchymal enhancement (BPE). MATERIAL AND METHODS Pretreatment-available gene expression profiling and different treatment timepoints MRI features were integrated for Spearman correlation analysis. MRI feature-related genes were submitted to hypergeometric distribution-based gene functional enrichment analysis to identify related Kyoto Encyclopedia of Genes and Genomes annotation. Gene set variation analysis was utilized to assess the infiltration of distinct immune cells, which were used to determine relationships between immune phenotypes and medical imaging phenotypes. The clinical significance of MRI and relevant molecular features were analyzed to identify their prediction performance of neoadjuvant chemotherapy (NAC) and prognostic impact. RESULTS Three hundred and eighty-three patients were included for integrative analysis of MRI features and molecular information. FTV, LD, and sphericity measurements were most positively significantly correlated with proliferation-, signal transmission-, and immune-related pathways, respectively. However, BPE did not show marked correlation relationships with gene expression alteration status. FTV, LD and sphericity all showed significant positively or negatively correlated with some immune-related processes and immune cell infiltration levels. Sphericity decreased at 3 cycles after treatment initiation was also markedly negatively related to baseline sphericity measurements and immune signatures. Its decreased status could act as a predictor for prediction of response to NAC. CONCLUSION Different MRI features capture different tumor molecular characteristics that could explain their corresponding clinical significance.
Collapse
Affiliation(s)
- Peng Lin
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China ,Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Image, Nanning, Guangxi People’s Republic of China
| | - Wei-Jun Wan
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Tong Kang
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Lian-feng Qin
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Qiu-xue Meng
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Xiao-xin Wu
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Hong-yan Qin
- grid.256607.00000 0004 1798 2653Department of Medical Imaging, Guangxi Medical University, Nanning, Guangxi People’s Republic of China
| | - Yi-qun Lin
- grid.12955.3a0000 0001 2264 7233Department of Radiology, Dongnan Hospital of Ximen University, School of Medicine, Xiamen University, Xiamen, Fujian People’s Republic of China
| | - Yun He
- grid.412594.f0000 0004 1757 2961Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi People’s Republic of China ,Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Image, Nanning, Guangxi People’s Republic of China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China. .,Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Image, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
79
|
Phadke S. Optimization of Neoadjuvant Therapy for Early-Stage Triple-Negative and HER2 + Breast Cancer. Curr Oncol Rep 2022; 24:1779-1789. [PMID: 36181611 DOI: 10.1007/s11912-022-01331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Neoadjuvant, or pre-operative, therapy for the treatment of early-stage breast cancer has several potential benefits, especially for patients with triple-negative or HER2 + subtypes. This review provides an overview of optimal practices for utilizing neoadjuvant therapy, guidelines for decision-making, and ongoing clinical trials that are expected to help refine therapy choices. RECENT FINDINGS For triple-negative disease, the addition of the checkpoint inhibitor pembrolizumab to chemotherapy has shown remarkable efficacy, increasing response rates and survival. In the HER2 + setting, we are now able to safely avoid use of anthracyclines in most patients and refine adjuvant treatment choices based on response to neoadjuvant therapy. Results from recent clinical studies highlight advancements in systemic therapy and mark steps toward precision medicine, although reliable biomarkers of therapy response are still needed.
Collapse
Affiliation(s)
- Sneha Phadke
- Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
80
|
Lang JE, Forero-Torres A, Yee D, Yau C, Wolf D, Park J, Parker BA, Chien AJ, Wallace AM, Murthy R, Albain KS, Ellis ED, Beckwith H, Haley BB, Elias AD, Boughey JC, Yung RL, Isaacs C, Clark AS, Han HS, Nanda R, Khan QJ, Edmiston KK, Stringer-Reasor E, Price E, Joe B, Liu MC, Brown-Swigart L, Petricoin EF, Wulfkuhle JD, Buxton M, Clennell JL, Sanil A, Berry S, Asare SM, Wilson A, Hirst GL, Singhrao R, Asare AL, Matthews JB, Melisko M, Perlmutter J, Rugo HS, Symmans WF, van 't Veer LJ, Hylton NM, DeMichele AM, Berry DA, Esserman LJ. Safety and efficacy of HSP90 inhibitor ganetespib for neoadjuvant treatment of stage II/III breast cancer. NPJ Breast Cancer 2022; 8:128. [PMID: 36456573 PMCID: PMC9715670 DOI: 10.1038/s41523-022-00493-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
HSP90 inhibitors destabilize oncoproteins associated with cell cycle, angiogenesis, RAS-MAPK activity, histone modification, kinases and growth factors. We evaluated the HSP90-inhibitor ganetespib in combination with standard chemotherapy in patients with high-risk early-stage breast cancer. I-SPY2 is a multicenter, phase II adaptively randomized neoadjuvant (NAC) clinical trial enrolling patients with stage II-III breast cancer with tumors 2.5 cm or larger on the basis of hormone receptors (HR), HER2 and Mammaprint status. Multiple novel investigational agents plus standard chemotherapy are evaluated in parallel for the primary endpoint of pathologic complete response (pCR). Patients with HER2-negative breast cancer were eligible for randomization to ganetespib from October 2014 to October 2015. Of 233 women included in the final analysis, 140 were randomized to the standard NAC control; 93 were randomized to receive 150 mg/m2 ganetespib every 3 weeks with weekly paclitaxel over 12 weeks, followed by AC. Arms were balanced for hormone receptor status (51-52% HR-positive). Ganetespib did not graduate in any of the biomarker signatures studied before reaching maximum enrollment. Final estimated pCR rates were 26% vs. 18% HER2-negative, 38% vs. 22% HR-negative/HER2-negative, and 15% vs. 14% HR-positive/HER2-negative for ganetespib vs control, respectively. The predicted probability of success in phase 3 testing was 47% HER2-negative, 72% HR-negative/HER2-negative, and 19% HR-positive/HER2-negative. Ganetespib added to standard therapy is unlikely to yield substantially higher pCR rates in HER2-negative breast cancer compared to standard NAC, and neither HSP90 pathway nor replicative stress expression markers predicted response. HSP90 inhibitors remain of limited clinical interest in breast cancer, potentially in other clinical settings such as HER2-positive disease or in combination with anti-PD1 neoadjuvant chemotherapy in triple negative breast cancer.Trial registration: www.clinicaltrials.gov/ct2/show/NCT01042379.
Collapse
Affiliation(s)
- Julie E Lang
- University of Southern California, Los Angeles, USA.
| | | | | | - Christina Yau
- University of California San Francisco, San Francisco, USA
| | - Denise Wolf
- University of California San Francisco, San Francisco, USA
| | - John Park
- University of California San Francisco, San Francisco, USA
| | | | - A Jo Chien
- University of California San Francisco, San Francisco, USA
| | - Anne M Wallace
- University of California San Francisco, San Francisco, USA
| | - Rashmi Murthy
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kathy S Albain
- Loyola University Chicago Stritch School of Medicine, Maywood, USA
| | | | | | | | | | | | | | | | - Amy S Clark
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Elissa Price
- University of California San Francisco, San Francisco, USA
| | - Bonnie Joe
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | | | - Ruby Singhrao
- University of California San Francisco, San Francisco, USA
| | - Adam L Asare
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | | | | | | | - Hope S Rugo
- University of California San Francisco, San Francisco, USA
| | | | | | - Nola M Hylton
- University of California San Francisco, San Francisco, USA
| | | | | | | |
Collapse
|
81
|
Osdoit M, Yau C, Symmans WF, Boughey JC, Ewing CA, Balassanian R, Chen YY, Krings G, Wallace AM, Zare S, Fadare O, Lancaster R, Wei S, Godellas CV, Tang P, Tuttle TM, Klein M, Sahoo S, Hieken TJ, Carter JM, Chen B, Ahrendt G, Tchou J, Feldman M, Tousimis E, Zeck J, Jaskowiak N, Sattar H, Naik AM, Lee MC, Rosa M, Khazai L, Rendi MH, Lang JE, Lu J, Tawfik O, Asare SM, Esserman LJ, Mukhtar RA. Association of Residual Ductal Carcinoma In Situ With Breast Cancer Recurrence in the Neoadjuvant I-SPY2 Trial. JAMA Surg 2022; 157:1034-1041. [PMID: 36069821 PMCID: PMC9453630 DOI: 10.1001/jamasurg.2022.4118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Importance Pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer strongly correlates with overall survival and has become the standard end point in neoadjuvant trials. However, there is controversy regarding whether the definition of pCR should exclude or permit the presence of residual ductal carcinoma in situ (DCIS). Objective To examine the association of residual DCIS in surgical specimens after neoadjuvant chemotherapy for breast cancer with survival end points to inform standards for the assessment of pathologic complete response. Design, Setting, and Participants The study team analyzed the association of residual DCIS after NAC with 3-year event-free survival (EFS), distant recurrence-free survival (DRFS), and local-regional recurrence (LRR) in the I-SPY2 trial, an adaptive neoadjuvant platform trial for patients with breast cancer at high risk of recurrence. This is a retrospective analysis of clinical specimens and data from the ongoing I-SPY2 adaptive platform trial of novel therapeutics on a background of standard of care for early breast cancer. I-SPY2 participants are adult women diagnosed with stage II/III breast cancer at high risk of recurrence. Interventions Participants were randomized to receive taxane and anthracycline-based neoadjuvant therapy with or without 1 of 10 investigational agents, followed by definitive surgery. Main Outcomes and Measures The presence of DCIS and EFS, DRFS, and LRR. Results The study team identified 933 I-SPY2 participants (aged 24 to 77 years) with complete pathology and follow-up data. Median follow-up time was 3.9 years; 337 participants (36%) had no residual invasive disease (residual cancer burden 0, or pCR). Of the 337 participants with pCR, 70 (21%) had residual DCIS, which varied significantly by tumor-receptor subtype; residual DCIS was present in 8.5% of triple negative tumors, 15.6% of hormone-receptor positive tumors, and 36.6% of ERBB2-positive tumors. Among those participants with pCR, there was no significant difference in EFS, DRFS, or LRR based on presence or absence of residual DCIS. Conclusions and Relevance The analysis supports the definition of pCR as the absence of invasive disease after NAC regardless of the presence or absence of DCIS. Trial Registration ClinicalTrials.gov Identifier NCT01042379.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Middle Aged
- Young Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Neoadjuvant Therapy
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm, Residual/drug therapy
- Receptor, ErbB-2
- Retrospective Studies
- Adaptive Clinical Trials as Topic
Collapse
Affiliation(s)
- Marie Osdoit
- Department of Surgery, University of California San Francisco, San Francisco
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco
| | - W. Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | | | - Cheryl A. Ewing
- Department of Surgery, University of California San Francisco, San Francisco
| | - Ron Balassanian
- Department of Pathology, University of California San Francisco, San Francisco
| | - Yunn-Yi Chen
- Department of Pathology, University of California San Francisco, San Francisco
| | - Gregor Krings
- Department of Pathology, University of California San Francisco, San Francisco
| | - Anne M Wallace
- Department of Surgery, University of California San Diego, La Jolla
| | - Somaye Zare
- Department of Pathology, University of California San Diego, La Jolla
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, La Jolla
| | - Rachael Lancaster
- Department of Surgery, University of Alabama at Birmingham, Birmingham
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham
| | - Constantine V. Godellas
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Ping Tang
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Todd M Tuttle
- Department of Surgery, University of Minnesota, Minneapolis
| | - Molly Klein
- Laboratory Medicine and Pathology, Masonic Cancer Center, Minneapolis, Minnesota
| | - Sunati Sahoo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Tina J. Hieken
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jodi M. Carter
- Laboratory Medicine and Pathology, May Clinic, Rochester, Minnesota
| | - Beiyun Chen
- Laboratory Medicine and Pathology, May Clinic, Rochester, Minnesota
| | | | - Julia Tchou
- Department of Surgery, University of Pennsylvania, Philadelphia
| | - Michael Feldman
- Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Eleni Tousimis
- Department of Surgery, Georgetown University, Washington, DC
| | - Jay Zeck
- Pathology and Laboratory Medicine, Georgetown University, Washington, DC
| | | | - Husain Sattar
- Department of Pathology, University of Chicago, Illinois
| | - Arpana M. Naik
- Department of Surgery, Oregon Health & Science University, Portland
| | | | - Marilin Rosa
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Laila Khazai
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Mara H. Rendi
- Department of Pathology, University of Washington, Seattle
| | - Julie E. Lang
- Department of Surgery, University of Southern California, Los Angeles
| | - Janice Lu
- Department of Medicine, University of Southern California, Los Angeles
| | - Ossama Tawfik
- Department of Pathology, University of Kansas, Kansas City
| | | | - Laura J. Esserman
- Department of Surgery, University of California San Francisco, San Francisco
| | - Rita A. Mukhtar
- Department of Surgery, University of California San Francisco, San Francisco
| |
Collapse
|
82
|
Leligdowicz A, Harhay MO, Calfee CS. Immune Modulation in Sepsis, ARDS, and Covid-19 - The Road Traveled and the Road Ahead. NEJM EVIDENCE 2022; 1:EVIDra2200118. [PMID: 38319856 DOI: 10.1056/evidra2200118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Immune Modulation in Sepsis, ARDS, and Covid-19Leligdowicz et al. consider the history and future of immunomodulating therapies in sepsis and ARDS, including ARDS due to Covid-19, and remark on the larger challenge of clinical research on therapies for syndromes with profound clinical and biologic heterogeneity.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Department of Medicine, Division of Critical Care Medicine, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Michael O Harhay
- Clinical Trials Methods and Outcomes Lab, Palliative and Advanced Illness Research (PAIR) Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Carolyn S Calfee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco
| |
Collapse
|
83
|
Yu Y, Zhang J, Lin Y, Kang S, Lv X, Song C. Efficacy and safety of neoadjuvant therapy for triple-negative breast cancer: a Bayesian network meta-analysis. Expert Rev Anticancer Ther 2022; 22:1141-1151. [PMID: 36103214 DOI: 10.1080/14737140.2022.2125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Numerous studies have concentrated on neoadjuvant therapies for treating triple-negative breast cancer (TNBC) that improve the pathological complete response (pCR) rate but remain controversial. We conducted a network meta-analysis (NMA) to objectively explore the efficacy and safety of different neoadjuvant regimens. METHODS Phase II/III randomized clinical trials that compared different neoadjuvant therapies for TNBC were included. NMA and pairwise meta-analysis were performed using WinBUGS (version 1.4.3) and Review Manager 5.3. RESULTS Forty-four studies with 8459 patients met the eligibility criteria. The NMA of pCR showed that programmed cell death Protein-1 and programmed cell death Ligand-1 inhibitors (PD-1/PD-L1), bevacizumab (Bev), zoledronic acid (ZOL), and platinum salts plus poly polymerase inhibitors (Pt+PARPi) may be favorable for TNBC neoadjuvant therapy. Chemotherapy combined with platinum salts or nanoparticle albumin-bound paclitaxel (Nab-p) has additional beneficial effects. However, neo-type drugs may also have increased toxicity. CONCLUSION PD-1/PD-L1, Bev, ZOL, and Pt+ PARPi-containing regimens improved the pCR rate compared to traditional chemotherapy, including anthracyclines and taxanes. Chemotherapy with platinum salts or Nab-p improved the pCR rate. Nevertheless, the balance between efficacy and toxicity should be evaluated rigorously. PD-1/PD-L1-containing regimens appear to be the most favorable for TNBC neoadjuvant therapy, with good efficacy and tolerance.
Collapse
Affiliation(s)
- Yushuai Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jie Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shaohong Kang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xinyin Lv
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chuangui Song
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
84
|
Hesperidin Inhibits the p53-MDMXInteraction-Induced Apoptosis of Non-Small-Cell Lung Cancer and Enhances the Antitumor Effect of Carboplatin. JOURNAL OF ONCOLOGY 2022; 2022:5308577. [PMID: 36157229 PMCID: PMC9507700 DOI: 10.1155/2022/5308577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
Objective This study aimed to observe the effect of hesperidin on the apoptosis, proliferation, and invasion of non-small-cell lung cancer, as well as to explore the possible mechanism. The inhibitory effect of hesperidin combined with carboplatin on non-small-cell lung cancer was also investigated. Methods A549 and NCI-H460 cells were treated with different concentrations of hesperidin (10, 50, and 100 μM). The effect of siRNA knockdown on MDMX on the antitumor effect of hesperidin was observed. CCK-8 was used to detect cell activity. The apoptosis rate was determined by TUNEL. The transwell assay detects the ability of cell migration and invasion. The expression levels of the apoptosis-related proteins p53, MDM2, MDMX, p21, PUMA, Bcl-2, and Bax were detected by qRT-PCR. Cell-proliferation and transwell assays were used to detect the effects of the combined use of hesperidin and carboplatin on lung cancer cells. Results Hesperidin significantly inhibited the activity and invasion of A549 and NCI-H460 cells in a dose-dependent manner. Hesperidin also induced the apoptosis of A549 and NCI-H460 cells. Hesperidin further inhibited the interaction between p53 and MDMX, increased the expression of p53, and played an anticancer role. The combination of hesperidin and carboplatin showed the most obvious antitumor effect. Conclusion Hesperidin can inhibit lung cancer by inhibiting the interaction between p53 and MDMX. Moreover, the combination of hesperidin and carboplatin can inhibit the migration and invasion of lung cancer cell lines through p53 upregulation, thereby increasing the antitumor effect of carboplatin.
Collapse
|
85
|
Caramelo O, Silva C, Caramelo F, Frutuoso C, Pinto L, Almeida-Santos T. Efficacy of different neoadjuvant treatment regimens in BRCA-mutated triple negative breast cancer: a systematic review and meta-analysis. Hered Cancer Clin Pract 2022; 20:34. [PMID: 36085046 PMCID: PMC9463858 DOI: 10.1186/s13053-022-00242-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Triple negative breast cancer (TNBC) is an aggressive breast cancer strongly associated with BRCA mutation. Standard neoadjuvant chemotherapy remains the standard of care for early stage TNBC, the optimal chemotherapy regimen is still a matter of discussion. Other agents, such as poly-ADP-ribosyl polymerase inhibitors (PARPi) and anti-vascular endothelial growth factor (VEGF) antibodies were evaluated in the neoadjuvant setting. This systematic review and meta-analysis intend to evaluate the impact of neoadjuvant treatments in pCR rates in TNBC gBRCA mutation, beyond traditional standard chemotherapy. METHODS PubMed, Clinicaltrials.gov, Cochrane CENTRAL, Embase and key oncological meetings for trials were searched for studies reporting neoadjuvant chemo-immunotherapy in BRCA positive TNBC. RESULTS Out of 1238 records reviewed, thirty-one trials were included, resulting in a total 619 BRCA-mutated TNBC patients. In BRCA mutated TNBC patients who received cisplatin in monotherapy the proportion of patients who achieved pCR was 0.53 (95%CI [0.30, 0.76]), and when treatment combined standard chemotherapy and platin derivatives the proportion of pCR increased to 0.62 (95% CI [0.48, 0.76]). The group of patients treated with platin derivatives, anthracyclines ± taxanes achieved the highest proportion of pCR, 0.66. Patients treated with PARPi alone show a pCR proportion of 0.55 (95% CI [0.30, 0.81]); and when standard chemotherapy and platin derivatives were combined with PARPi the proportion of pCR did not vary. CONCLUSIONS Patients with BRCA mutated TNBC treated with cisplatin in monotherapy demonstrate inferior proportion in the pCR achievement when compared with standard chemotherapy plus platin derivates. The best pCR was achieved with platin derivates in association with anthracyclines ± taxanes. No difference in pCR was found between PARPi alone vs PARPi with standard chemotherapy.
Collapse
Affiliation(s)
- Olga Caramelo
- Gynecology Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.
| | - Cristina Silva
- Faculty of Pharmacy of the University of Coimbra, Rua Filipe Simões n° 33, 3000-186, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, iCBR - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Cristina Frutuoso
- Gynecology Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Leonor Pinto
- Oncology Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Centre for Fertility Preservation, Human Reproduction Department, Coimbra Hospital and University Centre (CHUC), EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra, Azinhaga de Santa Comba - Celas, 3000-548, Coimbra, Portugal
| |
Collapse
|
86
|
PARP inhibitors in small cell lung cancer: The underlying mechanisms and clinical implications. Biomed Pharmacother 2022; 153:113458. [DOI: 10.1016/j.biopha.2022.113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
|
87
|
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 2022; 15:121. [PMID: 36038913 PMCID: PMC9422136 DOI: 10.1186/s13045-022-01341-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer (BC) with a poor prognosis. Current treatment options are limited to surgery, adjuvant chemotherapy and radiotherapy; however, a proportion of patients have missed the surgical window at the time of diagnosis. TNBC is a highly heterogeneous cancer with specific mutations and aberrant activation of signaling pathways. Hence, targeted therapies, such as those targeting DNA repair pathways, androgen receptor signaling pathways, and kinases, represent promising treatment options against TNBC. In addition, immunotherapy has also been demonstrated to improve overall survival and response in TNBC. In this review, we summarize recent key advances in therapeutic strategies based on molecular subtypes in TNBC.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141700. .,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, 142290.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
88
|
Garufi G, Carbognin L, Schettini F, Seguí E, Di Leone A, Franco A, Paris I, Scambia G, Tortora G, Fabi A. Updated Neoadjuvant Treatment Landscape for Early Triple Negative Breast Cancer: Immunotherapy, Potential Predictive Biomarkers, and Novel Agents. Cancers (Basel) 2022; 14:cancers14174064. [PMID: 36077601 PMCID: PMC9454536 DOI: 10.3390/cancers14174064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In recent years, several agents have been tested in randomized clinical trials in addition to anthracycline and taxane-based neoadjuvant chemotherapy (NACT) in early-stage triple-negative breast cancer (TNBC) to improve pathological complete response rate and, ultimately, survival outcome. Platinum agents, immune checkpoint inhibitors (ICIs), and PARP-inhibitors are the most extensively studied, while established predictors of their efficacy are lacking. Based on the biological features of TNBC, the purpose of this review is to provide an overview of the role of platinum agents, immunotherapy, and novel target therapies in the neoadjuvant setting. Moreover, based on safety issues and financial costs, we provide an overview of potential biomarkers associated with increased likelihood of benefit from the addition of platinum, ICIs, and novel target therapies to NACT. Abstract Triple-negative breast cancer (TNBC) is characterized by the absence of hormone receptor and HER2 expression, and therefore a lack of therapeutic targets. Anthracyclines and taxane-based neoadjuvant chemotherapy have historically been the cornerstone of treatment of early TNBC. However, genomic and transcriptomic analyses have suggested that TNBCs include various subtypes, characterized by peculiar genomic drivers and potential therapeutic targets. Therefore, several efforts have been made to expand the therapeutic landscape of early TNBC, leading to the introduction of platinum and immunomodulatory agents into the neoadjuvant setting. This review provides a comprehensive overview of the currently available evidence regarding platinum agents and immune-checkpoint-inhibitors for the neoadjuvant treatment of TNBC, as well as the novel target therapies that are currently being evaluated in this setting. Taking into account the economic issues and the side effects of the expanding therapeutic options, we focus on the potential efficacy biomarkers of the emerging therapies, in order to select the best therapeutic strategy for each specific patient.
Collapse
Affiliation(s)
- Giovanna Garufi
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| | - Luisa Carbognin
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Elia Seguí
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
| | - Alba Di Leone
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Antonio Franco
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giovanni Scambia
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giampaolo Tortora
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Senology, Department of Woman and Child Health and Public Health, Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| |
Collapse
|
89
|
Predictive biomarkers for molecularly targeted therapies and immunotherapies in breast cancer. Arch Pharm Res 2022; 45:597-617. [PMID: 35982262 DOI: 10.1007/s12272-022-01402-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Globally, breast cancer is the most common malignancy in women. Substantial efforts have been made to develop novel therapies, including targeted therapies and immunotherapies, for patients with breast cancer who do not respond to standard therapies. Consequently, new targeted therapies, such as cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase inhibitor, and antibody-drug conjugates targeting human epidermal growth factor receptor 2 or trophoblast cell surface antigen-2, and immune checkpoint inhibitor targeting programmed cell death-1, have been developed and are now in clinical use. However, only some patients have benefited from these novel therapies; therefore, the identification and validation of reliable or more accurate biomarkers for predicting responses to these agents remain a major challenge. This review summarizes the currently available predictive biomarkers for breast cancer and describes recent efforts undertaken to identify potential predictive markers for molecularly targeted therapies and immune checkpoint inhibitors.
Collapse
|
90
|
Tailoring neoadjuvant treatment of HR-positive/HER2-negative breast cancers: Which role for gene expression assays? Cancer Treat Rev 2022; 110:102454. [PMID: 35987149 DOI: 10.1016/j.ctrv.2022.102454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
Abstract
Neoadjuvant chemotherapy (NACT) for breast cancer (BC) increases surgical and conservative surgery chances. However, a significant proportion of patients will not be eligible for conservative surgery following NACT because of large tumor size and/or low chemosensitivity, especially for hormone receptor (HR)-positive/ human epidermal growth factor receptor 2 (HER2)-negative tumors, for which pathological complete response rates are lower than for other BC subtypes. On the other hand, for luminal BC neoadjuvant endocrine therapy could represent a valid alternative. Several gene expression assays have been introduced into clinical practice in last decades, in order to define prognosis more accurately than clinico-pathological features alone and to predict the benefit of adjuvant treatments. A series of studies have demonstrated the feasibility of using core needle biopsy for gene expression risk testing, finding a high concordance rate in the risk result between biopsy sample and surgical samples. Based on these premises, recent efforts have focused on the utility of gene expression signatures to guide therapeutic decisions even in the neoadjuvant setting. Several prospective and retrospective studies have investigated the correlation between gene expression risk score from core needle biopsy before neoadjuvant therapy and the likelihood of 1) clinical and pathological response to neoadjuvant chemotherapy and endocrine therapy, 2) conservative surgery after neoadjuvant chemotherapy and endocrine therapy, and 3) survival following neoadjuvant chemotherapy and endocrine therapy. The purpose of this review is to provide an overview of the potential clinical utility of the main commercially available gene expression panels (Oncotype DX, MammaPrint, EndoPredict, Prosigna/PAM50 and Breast Cancer Index) in the neoadjuvant setting, in order to better inform decision making for luminal BC beyond the exclusive contribution of clinico-pathological features.
Collapse
|
91
|
Zhang H, Katerji H, Turner BM, Audeh W, Hicks DG. HER2-low breast cancers: incidence, HER2 staining patterns, clinicopathologic features, MammaPrint and BluePrint genomic profiles. Mod Pathol 2022; 35:1075-1082. [PMID: 35184150 DOI: 10.1038/s41379-022-01019-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/30/2022]
Abstract
Recently, clinical trials have demonstrated promising efficacy for novel HER2-targeted therapies in HER2-low breast cancers, raising the prospect of including a HER2-low category (immunohistochemical [IHC] score of 1+, or 2+ with non-amplified in-situ hybridization [ISH]) in the HER2 evaluation of breast cancers. In order to better understand this newly-proposed HER2 category, we investigated the incidence, HER2 staining patterns, clinicopathologic features, and genomic profile of HER2-low breast cancers. HER2-stained slides of 281 consecutive breast cancers were re-reviewed and the clinicopathologic information, MammaPrint, and BluePrint results of these cases were retrospectively analyzed. HER2-low breast cancers were identified in 31% of cases and were more common in estrogen receptor (ER)-positive than ER-negative breast cancers (33.6% vs 15%, p = 0.017). HER2-low cancers were generally clinical stages I-II (79%), ER-positive (93.1%), had homogenous HER2 staining (59.2%), HER2 IHC score of 1+ (87.4%), ductal phenotype (81.6%), histologic grades of 1 or 2 (94.2%) and luminal molecular subtypes (94.3%). Three HER2-low patients received neoadjuvant chemotherapy and none of them achieved pathologic complete response. When compared to HER2-negative (IHC of 0+) and HER2-positive (IHC of 3+ or IHC of 2+ with amplified ISH) cancers, HER2-low breast cancers had significantly lower Ki-67 (p = 0.03 and p < 0.01, respectively) and higher ER positivity (p = 0.01 and p = 0.03, respectively). HER2-low breast cancers were less likely to be basal molecular subtype when compared to HER2-negative cancers (p < 0.01) and were less likely to have a HER2 molecular subtype when compared to HER2-positive cancers (p < 0.01). When adjusted for ER status, there was no significant difference on all the examined variables between HER2-low and HER2-negative groups. Our study provides valuable baseline characteristics of HER2-low breast cancers deriving from consecutive, real-world cases with a consensus confirmation of HER2 status, and would help to increase our understanding of this newly-proposed HER2 category in breast cancers.
Collapse
Affiliation(s)
- Huina Zhang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Hani Katerji
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bradley M Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - David G Hicks
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
92
|
Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat 2022; 195:1-15. [PMID: 35834065 PMCID: PMC9338129 DOI: 10.1007/s10549-022-06665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Immunotherapy has started to transform the treatment of triple-negative breast cancer (TNBC), in part due to the unique immunogenicity of this breast cancer subtype. This review summarizes clinical studies of immunotherapy in advanced and early-stage TNBC. FINDINGS Initial studies of checkpoint blockade monotherapy demonstrated occasional responses, especially in patients with untreated programmed death-ligand 1 (PD-L1) positive advanced TNBC, but failed to confirm a survival advantage over chemotherapy. Nonetheless, pembrolizumab monotherapy has tumor agnostic approval for microsatellite instability-high or high tumor mutational burden cancers, and thus can be considered for select patients with advanced TNBC. Combination chemoimmunotherapy approaches have been more successful, and pembrolizumab is approved for PD-L1 positive advanced TNBC in combination with chemotherapy. This success has been translated to the curative setting, where pembrolizumab is now approved in combination with neoadjuvant chemotherapy for high-risk early-stage TNBC. CONCLUSION Immunotherapy has been a welcome addition to the growing armamentarium for TNBC, but responses remain limited to a subset of patients. Innovative strategies are under investigation in an attempt to induce immune responses in resistant tumors-with regimens incorporating small-molecule inhibitors, novel immune checkpoint targets, and intratumoral injections that directly alter the tumor microenvironment. As the focus shifts toward the use of immunotherapy for early-stage TNBC, it will be critical to identify those who derive the most benefit from treatment, given the potential for irreversible autoimmune toxicity and the lack of predictive accuracy of PD-L1 expression in the early-stage setting.
Collapse
Affiliation(s)
- Frederick M Howard
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA.
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| |
Collapse
|
93
|
Lu JY, Alvarez Soto A, Anampa JD. The landscape of systemic therapy for early stage triple negative breast cancer. Expert Opin Pharmacother 2022; 23:1291-1303. [PMID: 35818711 DOI: 10.1080/14656566.2022.2095902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with higher risk of disease recurrence and mortality than other breast cancer subtypes. Historically, chemotherapy has been the primary systemic treatment for early stage TNBC. Recent developments in immune checkpoint inhibitors (ICIs) and novel therapeutic agents have transformed the treatment of TNBC. AREAS COVERED This review provides a comprehensive overview of the current evidence on treatment of early stage TNBC. We highlight the incorporation of ICIs and other targeted therapies in (neo)adjuvant treatment and the ongoing development of novel therapeutic agents. EXPERT OPINION The landscape of early TNBC treatment is rapidly evolving which has given rise to the introduction of ICIs and PARP inhibitors into the systemic therapy. Despite modest improvement in pathologic complete response (pCR) rate, ICI plus chemotherapy significantly improves long-term outcomes and is now used in (neo)adjuvant treatment of patients with TNBC and high risk for disease recurrence. Capecitabine remains the standard adjuvant treatment for residual disease, with olaparib being an option for patients with germline BRCA1/2 mutations. Early detection of minimal residual disease may identify patients requiring additional therapy to prevent recurrence.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Oncology, Section of Breast Medical Oncology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Alvaro Alvarez Soto
- Department of Oncology, Section of Breast Medical Oncology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jesus D Anampa
- Department of Oncology, Section of Breast Medical Oncology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| |
Collapse
|
94
|
MacDonald I, Nixon NA, Khan OF. Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies. Curr Oncol 2022; 29:4768-4778. [PMID: 35877238 PMCID: PMC9317013 DOI: 10.3390/curroncol29070378] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women, with triple-negative breast cancer (TNBC) accounting for 10–20% of cases. Historically, fewer treatment options have existed for this subtype of breast cancer, with cytotoxic chemotherapy playing a predominant role. This article aims to review the current treatment paradigm for curative-intent TNBC, while also reviewing potential future developments in this landscape. In addition to chemotherapy, recent advances in the understanding of the molecular biology of TNBC have led to promising new studies of targeted and immune checkpoint inhibitor therapies in the curative-intent setting. The appropriate selection of TNBC patient subgroups with a higher likelihood of benefit from treatment is critical to identify the best treatment approach.
Collapse
Affiliation(s)
- Isaiah MacDonald
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Nancy A. Nixon
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Omar F. Khan
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada;
- Correspondence:
| |
Collapse
|
95
|
Xun X, Cao Q, Hong P, Rai S, Zhou Y, Liu R, Hu H. Efficacy and Safety of Capecitabine for Triple-Negative Breast Cancer: A Meta-Analysis. Front Oncol 2022; 12:899423. [PMID: 35875141 PMCID: PMC9300946 DOI: 10.3389/fonc.2022.899423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited treatment options and poor prognosis. Capecitabine, as a novel adjuvant chemotherapy for TNBCs, remains controversial. Therefore, we conducted this meta-analysis to assess the efficacy and safety of capecitabine for early-stage TNBCs combined with neo-/adjuvant chemotherapy. Methods We searched Medline, Embase, Web of Science, and Cochrane databases updated on Mar 18, 2022 for relevant RCTs. In all, 11 RCTs with 5,175 patients were included. We used hazard ratios (HRs) and odds ratios (ORs) to assess the differences between disease-free survival (DFS), overall survival (OS), and adverse events. Results Our study demonstrated significance differences in both DFS and OS (DFS: HR=0.77; 95% CI 0.68–0.86; OS: HR=0.73, 95% CI 0.63–0.85). In subgroup analysis, the lower dosage group showed higher DFS (HR=0.79, 95% CI 0.69–0.91), higher frequency (HR=0.72, 95%CI 0.62–0.83), and adjuvant chemotherapy (HR=0.74, 95% CI 0.65–0.84). However, capecitabine was also associated with a higher risk of diarrhea (OR=3.10, 95% CI 2.32–4.15), hand–foot syndrome (OR=25.79, 95% CI 15.32–43.42), and leukopenia (OR=2.08, 95% CI 1.13–3.84). Conclusion The addition of capecitabine to early-stage TNBC patients receiving standard adjuvant chemotherapy showed significant DFS and OS improvement with tolerable adverse events. The lower dosage and higher frequency of capecitabine combined with adjuvant chemotherapy demonstrated a better survival outcome.
Collapse
Affiliation(s)
- Xueqiong Xun
- Department of Thyroid and Breast Surgery, First People’s Hospital of Qujing, Qujing, China
| | - Qinguang Cao
- Department of Thyroid and Breast Surgery, First People’s Hospital of Qujing, Qujing, China
| | - Pan Hong
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saroj Rai
- Department of Orthopaedics and Trauma Surgery, Blue Cross Hospital, Kathmandu, Nepal
- Department of Orthopaedics and Trauma Surgery, Karama Medical Center, Dubai, United Arab Emirates
| | - Yeming Zhou
- Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruikang Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Ruikang Liu, ; Huiyong Hu,
| | - Huiyong Hu
- Department of Thyroid and Breast Surgery, First People’s Hospital of Qujing, Qujing, China
- *Correspondence: Ruikang Liu, ; Huiyong Hu,
| |
Collapse
|
96
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
97
|
Racine-Poon A, D’Amelio A, Sverdlov O, Haas T. OPTIM-ARTS—An Adaptive Phase II Open Platform Trial Design With Application to a Metastatic Melanoma Study. Stat Biopharm Res 2022. [DOI: 10.1080/19466315.2020.1749722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
98
|
Singer L, Weiss A, Bellon JR, King TA. Regional Nodal Management After Preoperative Systemic Therapy. Semin Radiat Oncol 2022; 32:228-236. [DOI: 10.1016/j.semradonc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Xiao Y, Gao W. Therapeutic pattern and progress of neoadjuvant treatment for triple-negative breast cancer. Oncol Lett 2022; 24:219. [PMID: 35720488 PMCID: PMC9178680 DOI: 10.3892/ol.2022.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease, accounting for about 15.0-20.0% of all breast cancer cases. TNBC is associated with early recurrence and metastasis, strong invasiveness and a poor prognosis. Chemotherapy is currently the mainstay of treatment for TNBC, and achievement of a pathological complete response is closely associated with a long-term good prognosis. Improving the long-term prognosis in patients with TNBC is a challenge in breast cancer treatment, and more clinical evidence is needed to guide the choice of treatment strategies. The current study reviews the conventional treatment modality for TNBC and the selection of neoadjuvant chemotherapy (NACT) regimens available. The research progress on optimizing NACT regimens is also reviewed, and the uniqueness of the treatment of this breast cancer subtype is emphasized, in order to provide reference for the clinical practice and research with regard to TNBC treatment.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Wencheng Gao
- Department of General Surgery, Dongguan Houjie Town People's Hospital, Dongguan, Guangdong 523962, P.R. China
| |
Collapse
|
100
|
Wolf DM, Yau C, Wulfkuhle J, Brown-Swigart L, Gallagher RI, Lee PRE, Zhu Z, Magbanua MJ, Sayaman R, O'Grady N, Basu A, Delson A, Coppé JP, Lu R, Braun J, Asare SM, Sit L, Matthews JB, Perlmutter J, Hylton N, Liu MC, Pohlmann P, Symmans WF, Rugo HS, Isaacs C, DeMichele AM, Yee D, Berry DA, Pusztai L, Petricoin EF, Hirst GL, Esserman LJ, van 't Veer LJ. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 2022; 40:609-623.e6. [PMID: 35623341 PMCID: PMC9426306 DOI: 10.1016/j.ccell.2022.05.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022]
Abstract
Using pre-treatment gene expression, protein/phosphoprotein, and clinical data from the I-SPY2 neoadjuvant platform trial (NCT01042379), we create alternative breast cancer subtypes incorporating tumor biology beyond clinical hormone receptor (HR) and human epidermal growth factor receptor-2 (HER2) status to better predict drug responses. We assess the predictive performance of mechanism-of-action biomarkers from ∼990 patients treated with 10 regimens targeting diverse biology. We explore >11 subtyping schemas and identify treatment-subtype pairs maximizing the pathologic complete response (pCR) rate over the population. The best performing schemas incorporate Immune, DNA repair, and HER2/Luminal phenotypes. Subsequent treatment allocation increases the overall pCR rate to 63% from 51% using HR/HER2-based treatment selection. pCR gains from reclassification and improved patient selection are highest in HR+ subsets (>15%). As new treatments are introduced, the subtyping schema determines the minimum response needed to show efficacy. This data platform provides an unprecedented resource and supports the usage of response-based subtypes to guide future treatment prioritization.
Collapse
Affiliation(s)
- Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA.
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Zelos Zhu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark J Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Rosalyn Sayaman
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Nicholas O'Grady
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy Delson
- Breast Science Advocacy Core, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean Philippe Coppé
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA
| | - Ruixiao Lu
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Jerome Braun
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey B Matthews
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Nola Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula Pohlmann
- MedStar Georgetown University Hospital, Georgetown University, Washington, DC 20057, USA
| | - W Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Lajos Pusztai
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA.
| |
Collapse
|