51
|
Seixas AI, Holmes SE, Takeshima H, Pavlovich A, Sachs N, Pruitt JL, Silveira I, Ross CA, Margolis RL, Rudnicki DD. Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis. Ann Neurol 2012; 71:245-57. [PMID: 22367996 DOI: 10.1002/ana.22598] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Huntington disease-like 2 (HDL2) is a progressive, late onset autosomal dominant neurodegenerative disorder, with remarkable similarities to Huntington disease (HD). HDL2 is caused by a CTG/CAG repeat expansion. In the CTG orientation, the repeat is located within the alternatively spliced exon 2A of junctophilin-3 (JPH3), potentially encoding polyleucine and polyalanine, whereas on the strand antisense to JPH3, the repeat is in frame to encode polyglutamine. The JPH3 protein product serves to stabilize junctional membrane complexes and regulate neuronal calcium flux. We have previously demonstrated the potential pathogenic properties of JPH3 transcripts containing expanded CUG repeats. The aim of this study was to test the possibility that loss of JPH3 expression or expanded amino acid tracts also contribute to HDL2 pathogenesis. METHODS Transcripts from the HDL2 locus, and their protein products, were examined in HDL2, HD, and control frontal cortex. The effect of loss of Jph3 was examined in mice with partial or complete loss of Jph3. RESULTS Bidirectional transcription occurs at the HDL2 locus, although expression of antisense transcripts with expanded CAG repeats is limited. Protein products with expanded amino acid tracts were not detected in HDL2 brain. However, JPH3 transcripts and full-length JPH3 protein are decreased in HDL2 brain, and Jph3 hemizygous and null mice exhibit abnormal motor function. INTERPRETATION Our results suggest that the pathogenic mechanism of HDL2 is multifactorial, involving both a toxic gain of function of JPH3 RNA and a toxic loss of JPH3 expression.
Collapse
Affiliation(s)
- Ana I Seixas
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ng AN, Toresson H. Endoplasmic reticulum dynamics in hippocampal dendritic spines induced by agonists of type I metabotropic glutamate but not by muscarinic acetylcholine receptors. Synapse 2011; 65:351-5. [PMID: 21284010 DOI: 10.1002/syn.20887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/15/2010] [Indexed: 11/06/2022]
Abstract
Neurons in the hippocampus exhibit subpopulations of dendritic spines that contain endoplasmic reticulum (ER). ER in spines is important for synaptic activity and its associated Ca(2+) signaling. The dynamic distribution of ER to spines is regulated by diacylglycerol and partly mediated by protein kinase C, metalloproteinases and γ-secretase. In this study, we explored whether pharmacological activation of type I metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChRs) known to activate phospholipase C would have any effect on spine ER content. We found that DHPG (100 μM) but not carbachol (10 μM) caused a reduction in the number of spines with ER. We further found that ER Ca(2+) depletion triggered by thapsigargin (200 nM) had no effect on ER localization in spines.
Collapse
Affiliation(s)
- Ai Na Ng
- Department of Clinical Sciences Lund, Laboratory for Experimental Brain Research, Wallenberg Neuroscience Centre, Lund University, BMC A13, 221 84 Lund, Sweden.
| | | |
Collapse
|
53
|
Salyakina D, Ma DQ, Jaworski JM, Konidari I, Whitehead PL, Henson R, Martinez D, Robinson JL, Sacharow S, Wright HH, Abramson RK, Gilbert JR, Cuccaro ML, Pericak-Vance MA. Variants in several genomic regions associated with asperger disorder. Autism Res 2010; 3:303-10. [PMID: 21182207 PMCID: PMC4435556 DOI: 10.1002/aur.158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Asperger disorder (ASP) is one of the autism spectrum disorders (ASD) and is differentiated from autism largely on the absence of clinically significant cognitive and language delays. Analysis of a homogenous subset of families with ASP may help to address the corresponding effect of genetic heterogeneity on identifying ASD genetic risk factors. To examine the hypothesis that common variation is important in ASD, we performed a genome-wide association study (GWAS) in 124 ASP families in a discovery data set and 110 ASP families in a validation data set. We prioritized the top 100 association results from both cohorts by employing a ranking strategy. Novel regions on 5q21.1 (P = 9.7 × 10(-7) ) and 15q22.1-q22.2 (P = 7.3 × 10(-6) ) were our most significant findings in the combined data set. Three chromosomal regions showing association, 3p14.2 (P = 3.6 × 10(-6) ), 3q25-26 (P = 6.0 × 10(-5) ) and 3p23 (P = 3.3 × 10(-4) ) overlapped linkage regions reported in Finnish ASP families, and eight association regions overlapped ASD linkage areas. Our findings suggest that ASP shares both ASD-related genetic risk factors, as well as has genetic risk factors unique to the ASP phenotype.
Collapse
Affiliation(s)
- D Salyakina
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010; 125:260-85. [PMID: 19931307 PMCID: PMC2823855 DOI: 10.1016/j.pharmthera.2009.10.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
55
|
Baluska F. Cell-cell channels, viruses, and evolution: via infection, parasitism, and symbiosis toward higher levels of biological complexity. Ann N Y Acad Sci 2009; 1178:106-19. [PMID: 19845631 DOI: 10.1111/j.1749-6632.2009.04995.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Between prokaryotic cells and eukaryotic cells there is dramatic difference in complexity which represents a problem for the current version of the cell theory, as well as for the current version of evolution theory. In the past few decades, the serial endosymbiotic theory of Lynn Margulis has been confirmed. This results in a radical departure from our understanding of living systems: the eukaryotic cell represents de facto"cells-within-cell." Higher order "cells-within-cell" situations are obvious at the eukaryotic cell level in the form of secondary and tertiary endosymbiosis, or in the male and female gametophytes of higher plants. The next challenge of the current version of the cell theory is represented by the fact that the multicellular fungi and plants are, in fact, supracellular assemblies as their cells are not physically separated from each other. Moreover, there are also examples of alliances and mergings between multicellular organisms. Infection, especially the viral one, but also bacterial and fungal infections, followed by symbiosis, is proposed to act as the major force that drives the biological evolution toward higher complexity.
Collapse
|
56
|
Kakizawa S, Moriguchi S, Ikeda A, Iino M, Takeshima H. Functional crosstalk between cell-surface and intracellular channels mediated by junctophilins essential for neuronal functions. THE CEREBELLUM 2009; 7:385-91. [PMID: 18607668 DOI: 10.1007/s12311-008-0040-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Junctophilins (JPs) contribute to the formation of junctional membrane complexes between the plasma membrane and the endoplasmic/sarcoplasmic reticulum, and provide a structural platform for channel communication during excitation-contraction coupling in muscle cells. In the brain, two neuronal JP subtypes are widely expressed in neurons. Recent studies have defined the essential role of neural JPs in the communication between cell-surface and intracellular channels, which modulates the excitability and synaptic plasticity of neurons in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
57
|
Berrout J, Isokawa M. Homeostatic and stimulus-induced coupling of the L-type Ca2+ channel to the ryanodine receptor in the hippocampal neuron in slices. Cell Calcium 2009; 46:30-8. [PMID: 19411104 DOI: 10.1016/j.ceca.2009.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 02/20/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
Abstract
Activity-dependent increase in cytosolic calcium ([Ca(2+)](i)) is a prerequisite for many neuronal functions. We previously reported a strong direct depolarization, independent of glutamate receptors, effectively caused a release of Ca(2+) from ryanodine-sensitive stores and induced the synthesis of endogenous cannabinoids (eCBs) and eCB-mediated responses. However, the cellular mechanism that initiated the depolarization-induced Ca(2+)-release is not completely understood. In the present study, we optically recorded [Ca(2+)](i) from CA1 pyramidal neurons in the hippocampal slice and directly monitored miniature Ca(2+) activities and depolarization-induced Ca(2+) signals in order to determine the source(s) and properties of [Ca(2+)](i)-dynamics that could lead to a release of Ca(2+) from the ryanodine receptor. In the absence of depolarizing stimuli, spontaneously occurring miniature Ca(2+) events were detected from a group of hippocampal neurons. This miniature Ca(2+) event persisted in the nominal Ca(2+)-containing artificial cerebrospinal fluid (ACSF), and increased in frequency in response to the bath-application of caffeine and KCl. In contrast, nimodipine, the antagonist of the L-type Ca(2+) channel (LTCC), a high concentration of ryanodine, the antagonist of the ryanodine receptor (RyR), and thapsigargin (TG) reduced the occurrence of the miniature Ca(2+) events. When a brief puff-application of KCl was given locally to the soma of individual neurons in the presence of glutamate receptor antagonists, these neurons generated a transient increase in the [Ca(2+)](i) in the dendrosomal region. This [Ca(2+)](i)-transient was sensitive to nimodipine, TG, and ryanodine suggesting that the [Ca(2+)](i)-transient was caused primarily by the LTCC-mediated Ca(2+)-influx and a release of Ca(2+) from RyR. We observed little contribution from N- or P/Q-type Ca(2+) channels. The coupling between LTCC and RyR was direct and independent of synaptic activities. Immunohistochemical study revealed a cellular localization of LTCC and RyR in a juxtaposed configuration in the proximal dendrites and soma. We conclude in the hippocampal CA1 neuron that: (1) homeostatic fluctuation of the resting membrane potential may be sufficient to initiate functional coupling between LTCC and RyR; (2) the juxtaposed localization of LTCC and RyR has anatomical advantage of synchronizing a Ca(2+)-release from RyR upon the opening of LTCC; and (3) the synchronized Ca(2+)-release from RyR occurs immediately after the activation of LTCC and determines the peak amplitude of depolarization-induced global increase in dendrosomal [Ca(2+)](i).
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Biological Sciences, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520, USA
| | | |
Collapse
|
58
|
Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XHT. Molecular evolution of the junctophilin gene family. Physiol Genomics 2009; 37:175-86. [PMID: 19318539 DOI: 10.1152/physiolgenomics.00017.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Junctophilins (JPHs) are members of a junctional membrane complex protein family important for the physical approximation of plasmalemmal and sarcoplasmic/endoplasmic reticulum membranes. As such, JPHs facilitate signal transduction in excitable cells between plasmalemmal voltage-gated calcium channels and intracellular calcium release channels. To determine the molecular evolution of the JPH gene family, we performed a phylogenetic analysis of over 60 JPH genes from over 40 species and compared conservation across species and different isoforms. We found that JPHs are evolutionary highly conserved, in particular the membrane occupation and recognition nexus motifs found in all species. Our data suggest that an ancestral form of JPH arose at the latest in a common metazoan ancestor and that in vertebrates four isoforms arose, probably following two rounds of whole genome duplications. By combining multiple prediction techniques with sequence alignments, we also postulate the presence of new important functional regions and candidate sites for posttranslational modifications. The increasing number of available sequences yields significant insight into the molecular evolution of JPHs. Our analysis is consistent with the emerging concept that JPHs serve dual important functions in excitable cells: structural assembly of junctional membrane complexes and regulation of intracellular calcium signaling pathways.
Collapse
Affiliation(s)
- Alejandro Garbino
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
59
|
Yamazaki D, Yamazaki T, Takeshima H. New molecular components supporting ryanodine receptor-mediated Ca2+ release: Roles of junctophilin and TRIC channel in embryonic cardiomyocytes. Pharmacol Ther 2009; 121:265-72. [DOI: 10.1016/j.pharmthera.2008.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 01/01/2023]
|
60
|
Abstract
The Na-K-ATPase is an energy-transducing ion pump that converts the free energy of ATP into transmembrane ion gradients. It also serves as a functional receptor for cardiotonic steroids such as ouabain and digoxin. Binding of ouabain to the Na-K-ATPase can activate calcium signaling in a cell-specific manner. The exquisite calcium modulation via the Na-K-ATPase is achieved by the ability of the pump to integrate signals from numerous protein and non-protein molecules, including ion transporters, channels, protein kinases/phosphatases, as well as cellular Na+. This review focuses on the unique properties of the Na-K-ATPase and its role in the formation of different calcium-signaling microdomains.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | | |
Collapse
|
61
|
Tokuhiro K, Hirose M, Miyagawa Y, Tsujimura A, Irie S, Isotani A, Okabe M, Toyama Y, Ito C, Toshimori K, Takeda K, Oshio S, Tainaka H, Tsuchida J, Okuyama A, Nishimune Y, Tanaka H. Meichroacidin containing the membrane occupation and recognition nexus motif is essential for spermatozoa morphogenesis. J Biol Chem 2008; 283:19039-48. [PMID: 18453535 DOI: 10.1074/jbc.m708590200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meichroacidin (MCA) is a highly hydrophilic protein that contains the membrane occupation and recognition nexus motif. MCA is expressed during the stages of spermatogenesis from pachytene spermatocytes to mature sperm development and is localized in the male meiotic metaphase chromosome and sperm flagellum. MCA sequences are highly conserved in Ciona intestinalis, Cyprinus carpio, and mammals. To investigate the physiological role of MCA, we generated MCA-disrupted mutant mice; homozygous MCA mutant males were infertile, but females were not. Sperm was rarely observed in the caput epididymidis of MCA mutant males. However, little to no difference was seen in testis mass between wild-type and mutant mice. During sperm morphogenesis, elongated spermatids had retarded flagellum formation and might increase phagocytosis by Sertoli cells. Immunohistochemical analysis revealed that MCA interacts with proteins located on the outer dense fibers of the flagellum. The testicular sperm of MCA mutant mice was capable of fertilizing eggs successfully via intracytoplasmic sperm injection and generated healthy progeny. Our results suggest that MCA is essential for sperm flagellum formation and the production of functional sperm.
Collapse
Affiliation(s)
- Keizo Tokuhiro
- TANAKA Project, Center for Advanced Science and Innovation, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ng AN, Toresson H. Gamma-secretase and metalloproteinase activity regulate the distribution of endoplasmic reticulum to hippocampal neuron dendritic spines. FASEB J 2008; 22:2832-42. [PMID: 18424769 DOI: 10.1096/fj.07-103903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuronal endoplasmic reticulum (ER) contributes to many physiological and pathological processes in the brain. A subset of dendritic spines on hippocampal neurons contains ER that may contribute to synapse-specific intracellular signaling. Distribution of ER to spines is dynamic, but knowledge of the regulatory mechanisms is lacking. In live cell imaging experiments we now show that cultured hippocampal neurons rapidly lost ER from spines after phorbol ester treatment. ER loss was reduced by inhibiting gamma-secretase (DAPT at 2 microM) and metalloproteinase (TAPI-0 and GM6001 at 4 microM) activity. Inhibition of protein kinase C also diminished loss of ER by preventing exit of ER from spines. Furthermore, gamma-secretase and metalloproteinase inhibition, in the absence of phorbol ester, triggered a dramatic increase in spine ER content. Metalloproteinases and gamma-secretase cleave several transmembrane proteins. Many of these substrates are known to localize to adherens junctions, a structural specialization with which spine ER interacts. One interesting possibility is thus that ER content within spines may be regulated by proteolytic activity affecting adherens junctions. Our data demonstrate a hitherto unknown role for these two proteolytic activities in regulating dynamic aspects of cellular ultrastructure, which is potentially important for cellular calcium homeostasis and several intracellular signaling pathways.
Collapse
Affiliation(s)
- Ai Na Ng
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Centre, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden
| | | |
Collapse
|
63
|
Jin B, Tao Q, Peng J, Soo HM, Wu W, Ying J, Fields CR, Delmas AL, Liu X, Qiu J, Robertson KD. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 2008; 17:690-709. [PMID: 18029387 DOI: 10.1093/hmg/ddm341] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genome-wide DNA methylation patterns are established and maintained by the coordinated action of three DNA methyltransferases (DNMTs), DNMT1, DNMT3A and DNMT3B. DNMT3B hypomorphic germline mutations are responsible for two-thirds of immunodeficiency, centromere instability, facial anomalies (ICF) syndrome cases, a rare recessive disease characterized by immune defects, instability of pericentromeric satellite 2-containing heterochromatin, facial abnormalities and mental retardation. The molecular defects in transcription, DNA methylation and chromatin structure in ICF cells remain relatively uncharacterized. In the present study, we used global expression profiling to elucidate the role of DNMT3B in these processes using cell lines derived from ICF syndrome and normal individuals. We show that there are significant changes in the expression of genes critical for immune function, development and neurogenesis that are highly relevant to the ICF phenotype. Approximately half the upregulated genes we analyzed were marked with low-level DNA methylation in normal cells that was lost in ICF cells, concomitant with loss of repressive histone modifications, particularly H3K27 trimethylation, and gains in transcriptionally active H3K9 acetylation and H3K4 trimethylation marks. In addition, we consistently observed loss of binding of the SUZ12 component of the PRC2 polycomb repression complex and DNMT3B to derepressed genes, including a number of homeobox genes critical for immune system, brain and craniofacial development. We also observed altered global levels of certain histone modifications in ICF cells, particularly ubiquitinated H2AK119. Therefore, this study provides important new insights into the role of DNMT3B in modulating gene expression and chromatin structure and reveals new connections between DNMT3B and polycomb-mediated repression.
Collapse
Affiliation(s)
- Bilian Jin
- Department of Biochemistry and Molecular Biology, UF Shands Cancer Center Program in Cancer Genetics, Epigenetics, and Tumor Virology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Weisleder N, Takeshima H, Ma J. Immuno-proteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. Cell Calcium 2008; 43:1-8. [PMID: 18061662 PMCID: PMC3059838 DOI: 10.1016/j.ceca.2007.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 12/20/2022]
Abstract
A comprehensive understanding of excitation-contraction (E-C) coupling in skeletal and cardiac muscle requires that all the major components of the Ca(2+) release machinery be resolved. We utilized a unique immuno-proteomic approach to generate a monoclonal antibody library that targets proteins localized to the skeletal muscle triad junction, which provides a structural context to allow efficient E-C coupling. Screening of this library has identified several mitsugumins (MG); proteins that can be localized to the triad junction in mammalian skeletal muscle. Many of these proteins, including MG29 and junctophilin, are important components in maintaining the structural integrity of the triad junction. Other triad proteins, such as calumin, play a more direct role in regulation of muscle Ca(2+) homeostasis. We have recently identified a family of trimeric intracellular cation-selective (TRIC) channels that allow for K(+) movement into the endoplasmic or sarcoplasmic reticulum to counter a portion of the transient negative charge produced by Ca(2+) release into the cytosol. Further study of TRIC channel function and other novel mitsugumins will increase our understanding of E-C coupling and Ca(2+) homoeostasis in muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, NJ 08854, USA
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Jianjie Ma
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, NJ 08854, USA
| |
Collapse
|
65
|
Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 2007; 104:20090-5. [PMID: 18077435 DOI: 10.1073/pnas.0710131104] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.
Collapse
|
66
|
Ikeda A, Miyazaki T, Kakizawa S, Okuno Y, Tsuchiya S, Myomoto A, Saito SY, Yamamoto T, Yamazaki T, Iino M, Tsujimoto G, Watanabe M, Takeshima H. Abnormal features in mutant cerebellar Purkinje cells lacking junctophilins. Biochem Biophys Res Commun 2007; 363:835-9. [PMID: 17904530 DOI: 10.1016/j.bbrc.2007.09.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 09/13/2007] [Indexed: 01/30/2023]
Abstract
Junctional membrane complexes (JMCs) generated by junctophilins are required for Ca(2+)-mediated communication between cell-surface and intracellular channels in excitable cells. Knockout mice lacking neural junctophilins (JP-DKO) show severe motor defects and irregular cerebellar plasticity due to abolished channel crosstalk in Purkinje cells (PCs). To precisely understand aberrations in JP-DKO mice, we further analyzed the mutant PCs. During the induction of cerebellar plasticity via electrical stimuli, JP-DKO PCs showed insufficient depolarizing responses. Immunochemistry detected mild impairment in synaptic maturation and hyperphosphorylation of protein kinase Cgamma in JP-DKO PCs. Moreover, gene expression was slightly altered in the JP-DKO cerebellum. Therefore, the mutant PCs bear marginal but widespread abnormalities, all of which likely cause cerebellar motor defects in JP-DKO mice.
Collapse
Affiliation(s)
- Atsushi Ikeda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Matsushita Y, Furukawa T, Kasanuki H, Nishibatake M, Kurihara Y, Ikeda A, Kamatani N, Takeshima H, Matsuoka R. Mutation of junctophilin type 2 associated with hypertrophic cardiomyopathy. J Hum Genet 2007; 52:543-548. [PMID: 17476457 DOI: 10.1007/s10038-007-0149-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 03/31/2007] [Indexed: 11/25/2022]
Abstract
Junctophilin subtypes, designated as JPH1 approximately 4, are protein components of junctional complexes and play essential roles in cellular Ca2+ signaling in excitable cells. Knockout mice lacking the cardiac-type Jph2 die of embryonic cardiac arrest, and the mutant cardiac myocytes exhibit impaired formation of peripheral couplings and arrhythmic Ca2+ signaling caused by functional uncoupling between dihydropyridine and ryanodine receptor channels. Based on these observations, we hypothesized that mutations of JPH2 could cause human genetic cardiac diseases. Among 195 Japanese patients (148 index cases and 47 affected family members) with hypertrophic cardiomyopathy (HCM), two heterozygous nonsynonymous nucleotide transitions, G505S and R436C, were newly found in JPH2. When Fisher's exact test was used to compare index cases with HCM to unrelated Japanese healthy controls in the frequencies of mutant alleles, only the G505S mutation showed statistical significance (4/296 HCM patients and 0/472 control individuals, P=0.022). This result was still significant after Bonferroni's correction for multiple comparisons (P=0.044). To the best of our knowledge, this is the first report on JPH2 mutation associated with HCM.
Collapse
Affiliation(s)
- Yoshihisa Matsushita
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Division of Integrated Medical Sciences, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toru Furukawa
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Division of Integrated Medical Sciences, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Kasanuki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Makoto Nishibatake
- Department of Pediatrics, Kagoshima Seikyo General Hospital, Kagoshima, Japan
| | - Yachiyo Kurihara
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Atsushi Ikeda
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Science, Kyoto, Japan
| | - Naoyuki Kamatani
- Division of Genomic Medicine, Department of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Science, Kyoto, Japan
| | - Rumiko Matsuoka
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Division of Integrated Medical Sciences, Institute of Advanced Biomedical Engineering and Science, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
- Division of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
68
|
Hotta S, Morimura K, Ohya S, Muraki K, Takeshima H, Imaizumi Y. Ryanodine receptor type 2 deficiency changes excitation-contraction coupling and membrane potential in urinary bladder smooth muscle. J Physiol 2007; 582:489-506. [PMID: 17363382 PMCID: PMC2075324 DOI: 10.1113/jphysiol.2007.130302] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The possibility that the ryanodine receptor type 2 (RyR2) can function as the major Ca(2+)-induced Ca(2+) release (CICR) channel in excitation-contraction (E-C) coupling was examined in smooth muscle cells (SMCs) isolated from urinary bladder (UB) of RyR2 heterozygous KO mice (RyR2+/-). RyR2 mRNA expression in UB from RyR2+/- was much lower than that in wild-type (RyR2+/+. In single UBSMCs from RyR2+/+, membrane depolarization under voltage clamp initially induced several local Ca(2+) transients (hot spots) in peripheral areas of the cell. Then, Ca(2+) waves spread from Ca(2+) hot spots to other areas of the myocyte. The number of Ca(2+) hot spots elicited by a short depolarization (< 20 ms) in UBSMCs of RyR2+/- was significantly smaller than in those of RyR2+/+. The force development induced either by direct electrical stimulation or by 10 microm acetylcholine in tissue segments of RyR2+/- was smaller than and comparable to those in RyR2+/+, respectively. The frequency of spontaneous transient outward currents in single myocytes and the membrane depolarization by 1 microm paxilline in tissue segments from RyR2+/- were significantly lower and smaller than those in RyR2+/+, respectively. The urination frequency and volume per voiding in RyR2+/- were significantly increased and reduced, respectively, compared with RyR2+/+. In conclusion, RyR2 plays a crucial role in the regulation of CICR during E-C coupling and also in the regulation of resting membrane potential, presumably via the modulation of Ca(2+)-dependent K(+) channel activity in UBSMCs and, thereby, has a pivotal role in the control of bladder activity.
Collapse
Affiliation(s)
- Shingo Hotta
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan
| | | | | | | | | | | |
Collapse
|
69
|
Kakizawa S, Kishimoto Y, Hashimoto K, Miyazaki T, Furutani K, Shimizu H, Fukaya M, Nishi M, Sakagami H, Ikeda A, Kondo H, Kano M, Watanabe M, Iino M, Takeshima H. Junctophilin-mediated channel crosstalk essential for cerebellar synaptic plasticity. EMBO J 2007; 26:1924-33. [PMID: 17347645 PMCID: PMC1847665 DOI: 10.1038/sj.emboj.7601639] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 02/08/2007] [Indexed: 12/18/2022] Open
Abstract
Functional crosstalk between cell-surface and intracellular ion channels plays important roles in excitable cells and is structurally supported by junctophilins (JPs) in muscle cells. Here, we report a novel form of channel crosstalk in cerebellar Purkinje cells (PCs). The generation of slow afterhyperpolarization (sAHP) following complex spikes in PCs required ryanodine receptor (RyR)-mediated Ca(2+)-induced Ca(2+) release and the subsequent opening of small-conductance Ca(2+)-activated K(+) (SK) channels in somatodendritic regions. Despite the normal expression levels of these channels, sAHP was abolished in PCs from mutant mice lacking neural JP subtypes (JP-DKO), and this defect was restored by exogenously expressing JPs or enhancing SK channel activation. The stimulation paradigm for inducing long-term depression (LTD) at parallel fiber-PC synapses adversely established long-term potentiation in the JP-DKO cerebellum, primarily due to the sAHP deficiency. Furthermore, JP-DKO mice exhibited impairments of motor coordination and learning, although normal cerebellar histology was retained. Therefore, JPs support the Ca(2+)-mediated communication between voltage-gated Ca(2+) channels, RyRs and SK channels, which modulates the excitability of PCs and is fundamental to cerebellar LTD and motor functions.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kishimoto
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kouichi Hashimoto
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sapporo, Japan
| | - Taisuke Miyazaki
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sapporo, Japan
| | - Kazuharu Furutani
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidemi Shimizu
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Miyuki Nishi
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Hiroyuki Sakagami
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Ikeda
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Hisatake Kondo
- Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Kano
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan. Tel.: +81 75 753 4572; Fax: +81 75 753 4605; E-mail:
| |
Collapse
|
70
|
Phimister AJ, Lango J, Lee EH, Ernst-Russell MA, Takeshima H, Ma J, Allen PD, Pessah IN. Conformation-dependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J Biol Chem 2007; 282:8667-77. [PMID: 17237236 DOI: 10.1074/jbc.m609936200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Junctophilin 1 (JP1), a 72-kDa protein localized at the skeletal muscle triad, is essential for stabilizing the close apposition of T-tubule and sarcoplasmic reticulum membranes to form junctions. In this study we report that rapid and selective labeling of hyper-reactive thiols found in both JP1 and ryanodine receptor type 1 (RyR1) with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin, a fluorescent thiol-reactive probe, proceeded 12-fold faster under conditions that minimize RyR1 gating (e.g. 10 mM Mg2+) compared with conditions that promote high channel activity (e.g. 100 microM Ca2+, 10 mM caffeine, 5 mM ATP). The reactivity of these thiol groups was very sensitive to oxidation by naphthoquinone, H2O2, NO, or O2, all known modulators of the RyR1 channel complex. Using preparative SDS-PAGE, in-gel tryptic digestion, high pressure liquid chromatography, and mass spectrometry-based peptide sequencing, we identified 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin-thioether adducts on three cysteine residues of JP1 (101, 402, and 627); the remaining five cysteines of JP1 were unlabeled. Co-immunoprecipitation experiments demonstrated a physical interaction between JP1 and RyR1 that, like thiol reactivity, was sensitive to RyR1 conformation and chemical status of the hyper-reactive cysteines of JP1 and RyR1. These findings support a model in which JP1 interacts with the RyR1 channel complex in a conformationally sensitive manner and may contribute integral redox-sensing properties through reactive sulfhydryl chemistry.
Collapse
Affiliation(s)
- Andrew J Phimister
- Department of Veterinary Molecular Biosciences and Center for Children's Environmental Health and Disease Prevention, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|