51
|
Saunier M, Bönnemann CG, Durbeej M, Allamand V. 212th ENMC International Workshop: Animal models of congenital muscular dystrophies, Naarden, The Netherlands, 29-31 May 2015. Neuromuscul Disord 2016; 26:252-9. [PMID: 26948708 DOI: 10.1016/j.nmd.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Affiliation(s)
- M Saunier
- UPMC Univ Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, Sorbonne Universités, F-75013 Paris, France
| | - C G Bönnemann
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD, USA
| | - M Durbeej
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - V Allamand
- UPMC Univ Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, GH Pitié-Salpêtrière, Sorbonne Universités, F-75013 Paris, France.
| | | |
Collapse
|
52
|
Gineste C, Hernandez A, Ivarsson N, Cheng AJ, Naess K, Wibom R, Lesko N, Bruhn H, Wedell A, Freyer C, Zhang SJ, Carlström M, Lanner JT, Andersson DC, Bruton JD, Wredenberg A, Westerblad H. Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy. Hum Mol Genet 2015; 24:6580-7. [PMID: 26374844 PMCID: PMC4634369 DOI: 10.1093/hmg/ddv361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/14/2015] [Accepted: 09/01/2015] [Indexed: 12/27/2022] Open
Abstract
Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Rolf Wibom
- Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Lesko
- Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Helene Bruhn
- Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden and Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Laboratory Medicine, Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | - Anna Wredenberg
- Department of Laboratory Medicine, Center for Inherited Metabolic Disease (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
53
|
Roy S, Šileikytė J, Schiavone M, Neuenswander B, Argenton F, Aubé J, Hedrick MP, Chung TDY, Forte MA, Bernardi P, Schoenen FJ. Discovery, Synthesis, and Optimization of Diarylisoxazole-3-carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem 2015; 10:1655-71. [PMID: 26286375 DOI: 10.1002/cmdc.201500284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/23/2023]
Abstract
The mitochondrial permeability transition pore (mtPTP) is a Ca(2+) -requiring mega-channel which, under pathological conditions, leads to the deregulated release of Ca(2+) and mitochondrial dysfunction, ultimately resulting in cell death. Although the mtPTP is a potential therapeutic target for many human pathologies, its potential as a drug target is currently unrealized. Herein we describe an optimization effort initiated around hit 1, 5-(3-hydroxyphenyl)-N-(3,4,5-trimethoxyphenyl)isoxazole-3-carboxamide, which was found to possess promising inhibitory activity against mitochondrial swelling (EC50 <0.39 μM) and showed no interference on the inner mitochondrial membrane potential (rhodamine 123 uptake EC50 >100 μM). This enabled the construction of a series of picomolar mtPTP inhibitors that also potently increase the calcium retention capacity of the mitochondria. Finally, the therapeutic potential and in vivo efficacy of one of the most potent analogues, N-(3-chloro-2-methylphenyl)-5-(4-fluoro-3-hydroxyphenyl)isoxazole-3-carboxamide (60), was validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.
Collapse
Affiliation(s)
- Sudeshna Roy
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA)
| | - Justina Šileikytė
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, 35131 (Italy)
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, 35131 (Italy)
| | - Benjamin Neuenswander
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA)
| | | | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA)
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037 (USA)
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037 (USA)
| | - Michael A Forte
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239 (USA).
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, 35131 (Italy).
| | - Frank J Schoenen
- University of Kansas Specialized Chemistry Center, 2304 Becker Drive, Lawrence, KS 66049 (USA).
| |
Collapse
|
54
|
Prevention of recurrent episodes of rhabdomyolysis with tacrolimus in a transplant recipient with myopathy. Am J Ther 2015; 21:e171-4. [PMID: 23429166 DOI: 10.1097/mjt.0b013e318274df46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic muscular disorders are known risk factors for rhabdomyolysis, which may result in acute kidney injury. Recurrent episodes of acute kidney injury can lead to chronic kidney disease and eventually end-stage renal failure. We describe a patient with chronic kidney disease that developed in the setting of recurrent rhabdomyolysis, resulting in the requirement for renal transplantation. After transplantation, the maintenance of tacrolimus trough concentrations above what is typically prescribed for standard renal transplant recipients appeared to confer protection from further episodes of rhabdomyolysis. This is consistent with previous case series that demonstrated a therapeutic benefit of the calcineurin inhibitor cyclosporine in collagen VI myopathies in the nontransplant population. This case report suggests the potential application of higher tacrolimus targets in patients who have undergone renal transplantation in the setting of recurrent rhabdomyolysis leading to end-stage renal failure.
Collapse
|
55
|
Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev Diabet Stud 2015; 12:134-56. [PMID: 26676666 DOI: 10.1900/rds.2015.12.134] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Runa Lindblom
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin Higgins
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melinda Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
56
|
Rashid MM, Runci A, Polletta L, Carnevale I, Morgante E, Foglio E, Arcangeli T, Sansone L, Russo MA, Tafani M. Muscle LIM protein/CSRP3: a mechanosensor with a role in autophagy. Cell Death Discov 2015; 1:15014. [PMID: 27551448 PMCID: PMC4981024 DOI: 10.1038/cddiscovery.2015.14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
Muscle LIM protein (MLP) is a microtubule-associated protein expressed in cardiac and muscle tissues that belongs to the cysteine-rich protein (CSRP/CRP) family. MLP has a central role during muscle development and for architectural maintenance of muscle cells. However, muscle cells rely on autophagy during differentiation and for structural maintenance. To study the role of MLP in autophagy, we have used C2C12 mouse myoblasts silenced or overexpressing MLP. Our results show that MLP contributes to the correct autophagosome formation and flux by interacting with LC3 as demonstrated by co-immunoprecipitation and PLA assay. In fact, MLP silencing results in decreased LC3-II staining and absent degradation of long-lived proteins. Moreover, MLP silencing impaired myoblasts differentiation as measured by decreased expression of MyoD1, MyoG1 and myosin heavy chain. Ultrastructural analysis revealed the presence of large empty autophagosomes in myoblasts and multimembranous structures in myotubes from MLP-silenced clones. Impaired autophagy in MLP-silenced cells resulted in increased susceptibility to apoptotic cell death. In fact, treatment of MLP-silenced C2C12 myoblasts and myotubes with staurosporine resulted in increased caspase-3 and PARP cleavage as well as increased percentage of cell death. In conclusion, we propose that MLP regulates autophagy during muscle cell differentiation or maintenance through a mechanism involving MLP/LC3-II interaction and correct autophagosome formation.
Collapse
Affiliation(s)
- M M Rashid
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - A Runci
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - L Polletta
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - I Carnevale
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - E Morgante
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - E Foglio
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - T Arcangeli
- Department of Experimental Medicine, University of Rome , Sapienza, Rome, Italy
| | - L Sansone
- Department of Cellular and Molecular Pathology, IRCCS San Raffaele , Rome, Italy
| | - M A Russo
- Consorzio MEBIC, San Raffaele University , Rome, Italy
| | - M Tafani
- Department of Experimental Medicine, University of Rome, Sapienza, Rome, Italy; Department of Cellular and Molecular Pathology, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
57
|
Radev Z, Hermel JM, Elipot Y, Bretaud S, Arnould S, Duchateau P, Ruggiero F, Joly JS, Sohm F. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS One 2015. [PMID: 26221953 PMCID: PMC4519248 DOI: 10.1371/journal.pone.0133986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.
Collapse
Affiliation(s)
- Zlatko Radev
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
| | - Jean-Michel Hermel
- UMR 9197, INRA-CASBAH team, NEURO-Psi, CNRS, Gif sur Yvette, France
- * E-mail: (FS); (JMH)
| | - Yannick Elipot
- UMR 9197, DECA team, NEURO-Psi, CNRS, Gif sur Yvette, France
| | - Sandrine Bretaud
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | - Florence Ruggiero
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - Frédéric Sohm
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
- * E-mail: (FS); (JMH)
| |
Collapse
|
58
|
Burr AR, Molkentin JD. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 2015; 22:1402-12. [PMID: 26088163 PMCID: PMC4532779 DOI: 10.1038/cdd.2015.65] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 01/19/2023] Open
Abstract
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.
Collapse
Affiliation(s)
- A R Burr
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA
| | - J D Molkentin
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA [2] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Molecular Cardiovascular Biology, 240 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
59
|
Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 2015; 5:9. [PMID: 25834726 PMCID: PMC4381453 DOI: 10.1186/s13395-015-0033-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/19/2015] [Indexed: 11/13/2022] Open
Abstract
Background Alterations in skeletal muscle contractile activity necessitate an efficient remodeling mechanism. In particular, mitochondrial turnover is essential for tissue homeostasis during muscle adaptations to chronic use and disuse. While mitochondrial biogenesis appears to be largely governed by the transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α), selective mitochondrial autophagy (mitophagy) is thought to mediate organelle degradation. However, whether PGC-1α plays a direct role in autophagy is currently unclear. Methods To investigate the role of the co-activator in autophagy and mitophagy during skeletal muscle remodeling, PGC-1α knockout (KO) and overexpressing (Tg) animals were unilaterally denervated, a common model of chronic muscle disuse. Results Animals lacking PGC-1α exhibited diminished mitochondrial density alongside myopathic characteristics reminiscent of autophagy-deficient muscle. Denervation promoted an induction in autophagy and lysosomal protein expression in wild-type (WT) animals, which was partially attenuated in KO animals, resulting in reduced autophagy and mitophagy flux. PGC-1α overexpression led to an increase in lysosomal capacity as well as indicators of autophagy flux but exhibited reduced localization of LC3II and p62 to mitochondria, compared to WT animals. A correlation was observed between the levels of the autophagy-lysosome master regulator transcription factor EB (TFEB) and PGC-1α in muscle, supporting their coordinated regulation. Conclusions Our investigation has uncovered a regulatory role for PGC-1α in mitochondrial turnover, not only through biogenesis but also via degradation using the autophagy-lysosome machinery. This implies a PGC-1α-mediated cross-talk between these two opposing processes, working to ensure mitochondrial homeostasis during muscle adaptation to chronic disuse. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0033-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 Canada
| | - Eric Ma Desjardins
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 Canada
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, I-35121 Padova, Italy ; Venetian Institute of Molecular Medicine, 35129 Padova, Italy ; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, 4700 Keele St., Toronto, Ontario M3J 1P3 Canada
| |
Collapse
|
60
|
Zulian A, Tagliavini F, Rizzo E, Pellegrini C, Sardone F, Zini N, Maraldi NM, Santi S, Faldini C, Merlini L, Petronilli V, Bernardi P, Sabatelli P. Melanocytes from Patients Affected by Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy have Dysfunctional Mitochondria That Can be Rescued with Cyclophilin Inhibitors. Front Aging Neurosci 2014; 6:324. [PMID: 25477819 PMCID: PMC4238408 DOI: 10.3389/fnagi.2014.00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/06/2014] [Indexed: 11/13/2022] Open
Abstract
Ullrich congenital muscular dystrophy and Bethlem myopathy are caused by mutations in collagen VI (ColVI) genes, which encode an extracellular matrix protein; yet, mitochondria play a major role in disease pathogenesis through a short circuit caused by inappropriate opening of the permeability transition pore, a high-conductance channel, which causes a shortage in ATP production. We find that melanocytes do not produce ColVI yet they bind it at the cell surface, suggesting that this protein may play a trophic role and that its absence may cause lesions similar to those seen in skeletal muscle. We show that mitochondria in melanocytes of Ullrich congenital muscular dystrophy and Bethlem myopathy patients display increased size, reduced matrix density, and disrupted cristae, findings that suggest a functional impairment. In keeping with this hypothesis, mitochondria (i) underwent anomalous depolarization after inhibition of the F-ATP synthase with oligomycin, and (ii) displayed decreased respiratory reserve capacity. The non-immunosuppressive cyclophilin inhibitor NIM811 prevented mitochondrial depolarization in response to oligomycin in melanocytes from both Ullrich congenital muscular dystrophy and Bethlem myopathy patients, and partially restored the respiratory reserve of melanocytes from one Bethlem myopathy patient. These results match our recent findings on melanocytes from patients affected by Duchenne muscular dystrophy (Pellegrini et al., 2013), and suggest that skin biopsies may represent a minimally invasive tool to investigate mitochondrial dysfunction and to evaluate drug efficacy in ColVI-related myopathies and possibly in other muscle wasting conditions like aging sarcopenia.
Collapse
Affiliation(s)
- Alessandra Zulian
- Department of Biomedical Sciences, University of Padova , Padova , Italy ; CNR Neuroscience Institute , Padova , Italy
| | - Francesca Tagliavini
- CNR National Research Council of Italy, Institute of Molecular Genetics , Bologna , Italy ; SC Laboratory of Musculoskeletal Cell Biology, IOR , Bologna , Italy
| | - Erika Rizzo
- Department of Biomedical Sciences, University of Padova , Padova , Italy ; CNR Neuroscience Institute , Padova , Italy
| | | | - Francesca Sardone
- CNR National Research Council of Italy, Institute of Molecular Genetics , Bologna , Italy ; SC Laboratory of Musculoskeletal Cell Biology, IOR , Bologna , Italy
| | - Nicoletta Zini
- CNR National Research Council of Italy, Institute of Molecular Genetics , Bologna , Italy ; SC Laboratory of Musculoskeletal Cell Biology, IOR , Bologna , Italy
| | - Nadir Mario Maraldi
- CNR National Research Council of Italy, Institute of Molecular Genetics , Bologna , Italy
| | - Spartaco Santi
- CNR National Research Council of Italy, Institute of Molecular Genetics , Bologna , Italy ; SC Laboratory of Musculoskeletal Cell Biology, IOR , Bologna , Italy
| | - Cesare Faldini
- Rizzoli Orthopaedic Institute, University of Bologna , Bologna , Italy
| | - Luciano Merlini
- SC Laboratory of Musculoskeletal Cell Biology, IOR , Bologna , Italy
| | - Valeria Petronilli
- Department of Biomedical Sciences, University of Padova , Padova , Italy ; CNR Neuroscience Institute , Padova , Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova , Padova , Italy ; CNR Neuroscience Institute , Padova , Italy
| | - Patrizia Sabatelli
- CNR National Research Council of Italy, Institute of Molecular Genetics , Bologna , Italy ; SC Laboratory of Musculoskeletal Cell Biology, IOR , Bologna , Italy
| |
Collapse
|
61
|
Sorato E, Menazza S, Zulian A, Sabatelli P, Gualandi F, Merlini L, Bonaldo P, Canton M, Bernardi P, Di Lisa F. Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies. Free Radic Biol Med 2014; 75:40-7. [PMID: 25017965 PMCID: PMC4180008 DOI: 10.1016/j.freeradbiomed.2014.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Although mitochondrial dysfunction and oxidative stress have been proposed to play a crucial role in several types of muscular dystrophy (MD), whether a causal link between these two alterations exists remains an open question. We have documented that mitochondrial dysfunction through opening of the permeability transition pore plays a key role in myoblasts from patients as well as in mouse models of MD, and that oxidative stress caused by monoamine oxidases (MAO) is involved in myofiber damage. In the present study we have tested whether MAO-dependent oxidative stress is a causal determinant of mitochondrial dysfunction and apoptosis in myoblasts from patients affected by collagen VI myopathies. We find that upon incubation with hydrogen peroxide or the MAO substrate tyramine myoblasts from patients upregulate MAO-B expression and display a significant rise in reactive oxygen species (ROS) levels, with concomitant mitochondrial depolarization. MAO inhibition by pargyline significantly reduced both ROS accumulation and mitochondrial dysfunction, and normalized the increased incidence of apoptosis in myoblasts from patients. Thus, MAO-dependent oxidative stress is causally related to mitochondrial dysfunction and cell death in myoblasts from patients affected by collagen VI myopathies, and inhibition of MAO should be explored as a potential treatment for these diseases.
Collapse
Affiliation(s)
- E Sorato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - S Menazza
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - A Zulian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - P Sabatelli
- Institute of Molecular Genetics, National Research Council of Italy, 40136 Bologna, Italy
| | - F Gualandi
- Department of Medical Science, Section of Medical Genetics, University of Ferrara, 44100 Ferrara, Italy
| | - L Merlini
- Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| | - P Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - M Canton
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - P Bernardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Neuroscience Institute, National Research Council of Italy, 35131 Padova, Italy
| | - F Di Lisa
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Neuroscience Institute, National Research Council of Italy, 35131 Padova, Italy.
| |
Collapse
|
62
|
Gattazzo F, Molon S, Morbidoni V, Braghetta P, Blaauw B, Urciuolo A, Bonaldo P. Cyclosporin A Promotes in vivo Myogenic Response in Collagen VI-Deficient Myopathic Mice. Front Aging Neurosci 2014; 6:244. [PMID: 25309428 PMCID: PMC4163991 DOI: 10.3389/fnagi.2014.00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/29/2014] [Indexed: 01/07/2023] Open
Abstract
Mutations of genes encoding for collagen VI cause various muscle diseases in humans, including Bethlem myopathy and Ullrich congenital muscular dystrophy. Collagen VI null (Col6a1 (-/-)) mice are affected by a myopathic phenotype with mitochondrial dysfunction, spontaneous apoptosis of muscle fibers, and defective autophagy. Moreover, Col6a1 (-/-) mice display impaired muscle regeneration and defective self-renewal of satellite cells after injury. Treatment with cyclosporin A (CsA) is effective in normalizing the mitochondrial, apoptotic, and autophagic defects of myofibers in Col6a1 (-/-) mice. A pilot clinical trial with CsA in Ullrich patients suggested that CsA may increase the number of regenerating myofibers. Here, we report the effects of CsA administration at 5 mg/kg body weight every 12 h in Col6a1 (-/-) mice on muscle regeneration under physiological conditions and after cardiotoxin (CdTx)-induced muscle injury. Our findings indicate that CsA influences satellite cell activity and triggers the formation of regenerating fibers in Col6a1 (-/-) mice. Data obtained on injured muscles show that under appropriate administration, regimens CsA is able to stimulate myogenesis in Col6a1 (-/-) mice by significantly increasing the number of myogenin (MyoG)-positive cells and of regenerating myofibers at the early stages of muscle regeneration. CsA is also able to ameliorate muscle regeneration of Col6a1 (-/-) mice subjected to multiple CdTx injuries, with a concurrent maintenance of the satellite cell pool. Our data show that CsA is beneficial for muscle regeneration in Col6a1 (-/-) mice.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova , Padova , Italy ; Interdepartmental Research Center E. Piaggio, University of Pisa , Pisa , Italy
| | - Sibilla Molon
- Department of Molecular Medicine, University of Padova , Padova , Italy
| | - Valeria Morbidoni
- Department of Molecular Medicine, University of Padova , Padova , Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova , Padova , Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova , Padova , Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
63
|
Lettmann S, Bloch W, Maaß T, Niehoff A, Schulz JN, Eckes B, Eming SA, Bonaldo P, Paulsson M, Wagener R. Col6a1 null mice as a model to study skin phenotypes in patients with collagen VI related myopathies: expression of classical and novel collagen VI variants during wound healing. PLoS One 2014; 9:e105686. [PMID: 25158062 PMCID: PMC4144880 DOI: 10.1371/journal.pone.0105686] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/22/2014] [Indexed: 12/02/2022] Open
Abstract
Patients suffering from collagen VI related myopathies caused by mutations in COL6A1, COL6A2 and COL6A3 often also display skin abnormalities, like formation of keloids or "cigarette paper" scars, dry skin, striae rubrae and keratosis pilaris (follicular keratosis). Here we evaluated if Col6a1 null mice, an established animal model for the muscle changes in collagen VI related myopathies, are also suitable for the study of mechanisms leading to the skin pathology. We performed a comprehensive study of the expression of all six collagen VI chains in unwounded and challenged skin of wild type and Col6a1 null mice. Expression of collagen VI chains is regulated in both skin wounds and bleomycin-induced fibrosis and the collagen VI α3 chain is proteolytically processed in both wild type and Col6a1 null mice. Interestingly, we detected a decreased tensile strength of the skin and an altered collagen fibril and basement membrane architecture in Col6a1 null mice, the latter being features that are also found in collagen VI myopathy patients. Although Col6a1 null mice do not display an overt wound healing defect, these mice are a relevant animal model to study the skin pathology in collagen VI related disease.
Collapse
Affiliation(s)
- Sandra Lettmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, German Sport University, Cologne, Germany
| | - Tobias Maaß
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
64
|
Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 2014; 126:5325-33. [PMID: 24293330 DOI: 10.1242/jcs.114041] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of recent studies have highlighted the importance of autophagy and the ubiquitin-proteasome in the pathogenesis of muscle wasting in different types of inherited muscle disorders. Autophagy is crucial for the removal of dysfunctional organelles and protein aggregates, whereas the ubiquitin-proteasome is important for the quality control of proteins. Post-mitotic tissues, such as skeletal muscle, are particularly susceptible to aged or dysfunctional organelles and aggregation-prone proteins. Therefore, these degradation systems need to be carefully regulated in muscles. Indeed, excessive or defective activity of the autophagy lysosome or ubiquitin-proteasome leads to detrimental effects on muscle homeostasis. A growing number of studies link abnormalities in the regulation of these two pathways to myofiber degeneration and muscle weakness. Understanding the pathogenic role of these degradative systems in each inherited muscle disorder might provide novel therapeutic targets to counteract muscle wasting. In this Commentary, we will discuss the current view on the role of autophagy lysosome and ubiquitin-proteasome in the pathogenesis of myopathies and muscular dystrophies, and how alteration of these degradative systems contribute to muscle wasting in inherited muscle disorders. We will also discuss how modulating autophagy and proteasome might represent a promising strategy for counteracting muscle loss in different diseases.
Collapse
Affiliation(s)
- Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | | | | |
Collapse
|
65
|
Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e171. [PMID: 24959844 PMCID: PMC4078762 DOI: 10.1038/mtna.2014.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 05/20/2014] [Indexed: 01/06/2023]
Abstract
Ullrich congenital muscular dystrophy (UCMD) is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R) mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.
Collapse
|
66
|
Maves L. Recent advances using zebrafish animal models for muscle disease drug discovery. Expert Opin Drug Discov 2014; 9:1033-45. [PMID: 24931439 DOI: 10.1517/17460441.2014.927435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Animal models have enabled great progress in the discovery and understanding of pharmacological approaches for treating muscle diseases like Duchenne muscular dystrophy. AREAS COVERED With this article, the author provides the reader with a description of the zebrafish animal model, which has been employed to identify and study pharmacological approaches to muscle disease. In particular, the author focuses on how both large-scale chemical screens and targeted drug treatment studies have established zebrafish as an important model for muscle disease drug discovery. EXPERT OPINION There are a number of opportunities arising for the use of zebrafish models for further developing pharmacological approaches to muscle diseases, including studying drug combination therapies and utilizing genome editing to engineer zebrafish muscle disease models. It is the author's particular belief that the availability of a wide range of zebrafish transgenic strains for labeling immune cell types, combined with live imaging and drug treatment of muscle disease models, should allow for new elegant studies demonstrating how pharmacological approaches might influence inflammation and the immune response in muscle disease.
Collapse
Affiliation(s)
- Lisa Maves
- University of Washington School of Medicine, Department of Pediatrics, Division of Cardiology , Seattle, WA , USA
| |
Collapse
|
67
|
Tagliavini F, Pellegrini C, Sardone F, Squarzoni S, Paulsson M, Wagener R, Gualandi F, Trabanelli C, Ferlini A, Merlini L, Santi S, Maraldi NM, Faldini C, Sabatelli P. Defective collagen VI α6 chain expression in the skeletal muscle of patients with collagen VI-related myopathies. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1604-12. [PMID: 24907562 PMCID: PMC4316388 DOI: 10.1016/j.bbadis.2014.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022]
Abstract
Collagen VI is a non-fibrillar collagen present in the extracellular matrix (ECM) as a complex polymer; the mainly expressed form is composed of α1, α2 and α3 chains; mutations in genes encoding these chains cause myopathies known as Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM). The collagen VI α6 chain is a recently identified component of the ECM of the human skeletal muscle. Here we report that the α6 chain was dramatically reduced in skeletal muscle and muscle cell cultures of genetically characterized UCMD, BM and MM patients, independently of the clinical phenotype, the gene involved and the effect of the mutation on the expression of the “classical” α1α2α3 heterotrimer. By contrast, the collagen VI α6 chain was normally expressed or increased in the muscle of patients affected by other forms of muscular dystrophy, the overexpression matching with areas of increased fibrosis. In vitro treatment with TGF-β1, a potent collagen inducer, promoted the collagen VI α6 chain deposition in the ECM of normal muscle cells, whereas, in cultures derived from collagen VI-related myopathy patients, the collagen VI α6 chain failed to develop a network outside the cells and accumulated in the endoplasmic reticulum. The defect of the α6 chain points to a contribution to the pathogenesis of collagen VI-related disorders. Collagen VI is an ECM component of the human skeletal muscle. We evaluated the α6 chain in collagen VI-related and other muscular dystrophies. The α6 chain was reduced in collagen VI-related diseases but not in other myopathies. A correlation between the α6 chain and fibrosis was demonstrated in MDC1A. The α6 chain is involved in the pathogenesis of collagen VI diseases and fibrosis.
Collapse
Affiliation(s)
- F Tagliavini
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - C Pellegrini
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - F Sardone
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - S Squarzoni
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - M Paulsson
- Center for Biochemistry, Center for Molecular Medicine (CMMC) and Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Germany
| | - R Wagener
- Center for Biochemistry, Center for Molecular Medicine (CMMC) and Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Germany
| | - F Gualandi
- Department of Medical Sciences, University of Ferrara, Italy
| | - C Trabanelli
- Department of Medical Sciences, University of Ferrara, Italy
| | - A Ferlini
- Department of Medical Sciences, University of Ferrara, Italy
| | - L Merlini
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - S Santi
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - N M Maraldi
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - C Faldini
- University of Bologna, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - P Sabatelli
- CNR-National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy.
| |
Collapse
|
68
|
Merlini L, Nishino I. 201st ENMC International Workshop: Autophagy in muscular dystrophies – Translational approach, 1–3 November 2013, Bussum, The Netherlands. Neuromuscul Disord 2014; 24:546-61. [DOI: 10.1016/j.nmd.2014.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/03/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
|
69
|
Zulian A, Rizzo E, Schiavone M, Palma E, Tagliavini F, Blaauw B, Merlini L, Maraldi NM, Sabatelli P, Braghetta P, Bonaldo P, Argenton F, Bernardi P. NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models. Hum Mol Genet 2014; 23:5353-63. [DOI: 10.1093/hmg/ddu254] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
70
|
Oxidative stress in muscular dystrophy: from generic evidence to specific sources and targets. J Muscle Res Cell Motil 2014; 35:23-36. [PMID: 24619215 DOI: 10.1007/s10974-014-9380-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/19/2014] [Indexed: 01/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases that share a common end-point represented by muscular wasting. MDs are caused by mutations in a variety of genes encoding for different molecules, including extracellular matrix, transmembrane and membrane-associated proteins, cytoplasmic enzymes and nuclear proteins. However, it is still to be elucidated how genetic mutations can affect the molecular mechanisms underlying the contractile impairment occurring in these complex pathologies. The intracellular accumulation of reactive oxygen species (ROS) is widely accepted to play a key role in contractile derangements occurring in the different forms of MDs. However, scarce information is available concerning both the most relevant sources of ROS and their major molecular targets. This review focuses on (i) the sources of ROS, with a special emphasis on monoamine oxidase, a mitochondrial enzyme, and (ii) the targets of ROS, highlighting the relevance of the oxidative modification of myofilament proteins.
Collapse
|
71
|
Pan TC, Zhang RZ, Arita M, Bogdanovich S, Adams SM, Gara SK, Wagener R, Khurana TS, Birk DE, Chu ML. A mouse model for dominant collagen VI disorders: heterozygous deletion of Col6a3 Exon 16. J Biol Chem 2014; 289:10293-10307. [PMID: 24563484 DOI: 10.1074/jbc.m114.549311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dominant and recessive mutations in collagen VI genes, COL6A1, COL6A2, and COL6A3, cause a continuous spectrum of disorders characterized by muscle weakness and connective tissue abnormalities ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Herein, we report the development of a mouse model for dominant collagen VI disorders by deleting exon 16 in the Col6a3 gene. The resulting heterozygous mouse, Col6a3(+/d16), produced comparable amounts of normal Col6a3 mRNA and a mutant transcript with an in-frame deletion of 54 bp of triple-helical coding sequences, thus mimicking the most common molecular defect found in dominant Ullrich congenital muscular dystrophy patients. Biosynthetic studies of mutant fibroblasts indicated that the mutant α3(VI) collagen protein was produced and exerted a dominant-negative effect on collagen VI microfibrillar assembly. The distribution of the α3(VI)-like chains of collagen VI was not altered in mutant mice during development. The Col6a3(+/d16) mice developed histopathologic signs of myopathy and showed ultrastructural alterations of mitochondria and sarcoplasmic reticulum in muscle and abnormal collagen fibrils in tendons. The Col6a3(+/d16) mice displayed compromised muscle contractile functions and thereby provide an essential preclinical platform for developing treatment strategies for dominant collagen VI disorders.
Collapse
Affiliation(s)
- Te-Cheng Pan
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rui-Zhu Zhang
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Machiko Arita
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Sasha Bogdanovich
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612
| | - Sudheer Kumar Gara
- Center for Biochemistry, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany; Center for Molecular Medicine, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany
| | - Tejvior S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
72
|
Alexeev V, Arita M, Donahue A, Bonaldo P, Chu ML, Igoucheva O. Human adipose-derived stem cell transplantation as a potential therapy for collagen VI-related congenital muscular dystrophy. Stem Cell Res Ther 2014; 5:21. [PMID: 24522088 PMCID: PMC4054951 DOI: 10.1186/scrt411] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Congenital muscular dystrophies (CMD) are a clinically and genetically heterogeneous group of neuromuscular disorders characterized by muscle weakness within the first two years of life. Collagen VI-related muscle disorders have recently emerged as one of the most common types of CMD. COL6 CMD is caused by deficiency and/or dysfunction of extracellular matrix (ECM) protein collagen VI. Currently, there is no specific treatment for this disabling and life-threatening disease. The primary cellular targets for collagen VI CMD therapy are fibroblasts in muscle, tendon and skin, as opposed to muscle cells for other types of muscular dystrophies. However, recent advances in stem cell research have raised the possibility that use of adult stem cells may provide dramatic new therapies for treatment of COL6 CMD. Methods Here, we developed a procedure for isolation of human stem cells from the adipose layer of neonatal skin. The adipose-derived stem cells (ADSC) were examined for expression of ECM and related genes using gene expression array analysis. The therapeutic potential of ADSC was assessed after a single intramuscular transplantation in collagen VI-deficient mice. Results Analysis of primary cultures confirmed that established ADSC represent a morphologically homogenous population with phenotypic and functional features of adult mesenchymal stem cells. A comprehensive gene expression analysis showed that ADSC express a vast array of ECM genes. Importantly, it was observed that ADSC synthesize and secrete all three collagen VI chains, suggesting suitability of ADSC for COL6 CMD treatment. Furthermore, we have found that a single intramuscular transplantation of ADSC into Col6a1−/−Rag1−/− mice under physiological and cardiotoxin-induced injury/regeneration conditions results in efficient engraftment and migration of stem cells within the skeletal muscle. Importantly, we showed that ADSC can survive long-term and continuously secrete the therapeutic collagen VI protein missing in the mutant mice. Conclusions Overall, our findings suggest that stem cell therapy can potentially provide a new avenue for the treatment of COL6 CMD and other muscular disorders and injuries.
Collapse
|
73
|
Apoptosis repressor with a CARD domain (ARC) restrains Bax-mediated pathogenesis in dystrophic skeletal muscle. PLoS One 2013; 8:e82053. [PMID: 24312627 PMCID: PMC3846897 DOI: 10.1371/journal.pone.0082053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
Myofiber wasting in muscular dystrophy has largely been ascribed to necrotic cell death, despite reports identifying apoptotic markers in dystrophic muscle. Here we set out to identify the contribution of canonical apoptotic pathways to skeletal muscle degeneration in muscular dystrophy by genetically deleting a known inhibitor of apoptosis, apoptosis repressor with a card domain (Arc), in dystrophic mouse models. Nol3 (Arc protein) genetic deletion in the dystrophic Sgcd or Lama2 null backgrounds showed exacerbated skeletal muscle pathology with decreased muscle performance compared with single null dystrophic littermate controls. The enhanced severity of the dystrophic phenotype associated with Nol3 deletion was caspase independent but dependent on the mitochondria permeability transition pore (MPTP), as the inhibitor Debio-025 partially rescued skeletal muscle pathology in Nol3 (-/-) Sgcd (-/-) double targeted mice. Mechanistically, Nol3 (-/-) Sgcd (-/-) mice showed elevated total and mitochondrial Bax protein levels, as well as greater mitochondrial swelling, suggesting that Arc normally restrains the cell death effects of Bax in skeletal muscle. Indeed, knockdown of Arc in mouse embryonic fibroblasts caused an increased sensitivity to cell death that was fully blocked in Bax Bak1 (genes encoding Bax and Bak) double null fibroblasts. Thus Arc deficiency in dystrophic muscle exacerbates disease pathogenesis due to a Bax-mediated sensitization of mitochondria-dependent death mechanisms.
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW We provide a review of recent standards of care and therapeutic development in different forms of muscular dystrophies. This topic is relevant as the improved understanding of these disorders has not only led to a better definition of clinical course and to the development of standards of care for individual types of muscular dystrophies, but also culminated in different therapeutic approaches. RECENT FINDINGS Recent natural history studies have demonstrated the impact of new standards of care in different forms of muscular dystrophies, and identified areas of clinical management in which further developments are needed. The majority of the experimental studies are focused on Duchenne muscular dystrophy. Some of them target patients with specific mutations, such as antisense oligonucleotides, to induce exon skipping of specific mutations or drugs developed to allow read-through of nonsense mutations, whereas other therapies deal with secondary aspects of muscle degeneration, aiming, for example, at reducing inflammation or apoptosis, and may also be suitable for other forms of muscular dystrophies. SUMMARY The advances in the field of muscular dystrophy have resulted in improved clinical course and survival. The encouraging results of early experimental studies could further improve these outcomes in the future.
Collapse
|
75
|
Foley AR, Quijano-Roy S, Collins J, Straub V, McCallum M, Deconinck N, Mercuri E, Pane M, D'Amico A, Bertini E, North K, Ryan MM, Richard P, Allamand V, Hicks D, Lamandé S, Hu Y, Gualandi F, Auh S, Muntoni F, Bönnemann CG. Natural history of pulmonary function in collagen VI-related myopathies. ACTA ACUST UNITED AC 2013; 136:3625-33. [PMID: 24271325 DOI: 10.1093/brain/awt284] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spectrum of clinical phenotypes associated with a deficiency or dysfunction of collagen VI in the extracellular matrix of muscle are collectively termed 'collagen VI-related myopathies' and include Ullrich congenital muscular dystrophy, Bethlem myopathy and intermediate phenotypes. To further define the clinical course of these variants, we studied the natural history of pulmonary function in correlation to motor abilities in the collagen VI-related myopathies by analysing longitudinal forced vital capacity data in a large international cohort. Retrospective chart reviews of genetically and/or pathologically confirmed collagen VI-related myopathy patients were performed at 10 neuromuscular centres: USA (n = 2), UK (n = 2), Australia (n = 2), Italy (n = 2), France (n = 1) and Belgium (n = 1). A total of 486 forced vital capacity measurements obtained in 145 patients were available for analysis. Patients at the severe end of the clinical spectrum, conforming to the original description of Ullrich congenital muscular dystrophy were easily identified by severe muscle weakness either preventing ambulation or resulting in an early loss of ambulation, and demonstrated a cumulative decline in forced vital capacity of 2.6% per year (P < 0.0001). Patients with better functional abilities, in whom walking with/without assistance was achieved, were initially combined, containing both intermediate and Bethlem myopathy phenotypes in one group. However, one subset of patients demonstrated a continuous decline in pulmonary function whereas the other had stable pulmonary function. None of the patients with declining pulmonary function attained the ability to hop or run; these patients were categorized as intermediate collagen VI-related myopathy and the remaining patients as Bethlem myopathy. Intermediate patients had a cumulative decline in forced vital capacity of 2.3% per year (P < 0.0001) whereas the relationship between age and forced vital capacity in patients with Bethlem myopathy was not significant (P = 0.1432). Nocturnal non-invasive ventilation was initiated in patients with Ullrich congenital muscular dystrophy by 11.3 years (±4.0) and in patients with intermediate collagen VI-related myopathy by 20.7 years (±1.5). The relationship between maximal motor ability and forced vital capacity was highly significant (P < 0.0001). This study demonstrates that pulmonary function profiles can be used in combination with motor function profiles to stratify collagen VI-related myopathy patients phenotypically. These findings improve our knowledge of the natural history of the collagen VI-related myopathies, enabling proactive optimization of care and preparing this patient population for clinical trials.
Collapse
Affiliation(s)
- A Reghan Foley
- 1 Dubowitz Neuromuscular Centre, University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets. PLoS One 2013; 8:e77430. [PMID: 24223098 PMCID: PMC3819505 DOI: 10.1371/journal.pone.0077430] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022] Open
Abstract
Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered.
Collapse
|
77
|
Tagliavini F, Sardone F, Squarzoni S, Maraldi NM, Merlini L, Faldini C, Sabatelli P. Ultrastructural changes in muscle cells of patients with collagen VI-related myopathies. Muscles Ligaments Tendons J 2013; 3:281-286. [PMID: 24596691 PMCID: PMC3940501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Collagen VI is an extracellular matrix protein expressed in several tissues including skeletal muscle. Mutations in COL6A genes cause Bethlem Myopathy (BM), Ullrich Congenital Muscular Dystrophy (UCMD) and Myosclerosis Myopathy (MM). Collagen VI deficiency causes increased opening of the mitochondrial permeability transition pore (mPTP), leading to ultrastructural and functional alterations of mitochondria, amplified by impairment of autophagy. Here we report for the first time ultrastructural studies on muscle biopsies from BM and UCMD patients, showing swollen mitochondria with hypodense matrix, disorganized cristae and paracrystalline inclusions, associated with dilated sarcoplasmic reticulum and apoptotic changes. These data were supported by scanning electron microscopy analysis on BM and UCMD cultured cells, showing alterations of the mitochondrial network. Morphometric analysis also revealed a reduced short axis and depicted swelling in about 3% of mitochondria. These data demonstrate that mitochondrial defects underlie the pathogenetic mechanism in muscle tissue of patients affected by collagen VI myopathies.
Collapse
Affiliation(s)
- Francesca Tagliavini
- SC Laboratory of Muscoloskeletal Cell Biology, IOR, Bologna, Italy; CNR- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Francesca Sardone
- SC Laboratory of Muscoloskeletal Cell Biology, IOR, Bologna, Italy; CNR- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Stefano Squarzoni
- SC Laboratory of Muscoloskeletal Cell Biology, IOR, Bologna, Italy; CNR- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Nadir Mario Maraldi
- SC Laboratory of Muscoloskeletal Cell Biology, IOR, Bologna, Italy; CNR- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| | - Luciano Merlini
- SC Laboratory of Muscoloskeletal Cell Biology, IOR, Bologna, Italy
| | - Cesare Faldini
- University of Bologna, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Patrizia Sabatelli
- SC Laboratory of Muscoloskeletal Cell Biology, IOR, Bologna, Italy; CNR- National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy
| |
Collapse
|
78
|
Miscione MT, Bruno F, Ripamonti C, Nervuti G, Orsini R, Faldini C, Pellegrini M, Cocchi D, Merlini L. Body composition, muscle strength, and physical function of patients with Bethlem myopathy and Ullrich congenital muscular dystrophy. ScientificWorldJournal 2013; 2013:152684. [PMID: 24163611 PMCID: PMC3791808 DOI: 10.1155/2013/152684] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/14/2013] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To determine the contributions of body mass, adiposity, and muscularity to physical function and muscle strength in adult patients with Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD). MATERIALS AND METHODS Evaluation involved one UCMD and 7 BM patients. Body composition was determined by body mass index (BMI) and dual-energy-X-ray-absorptiometry (DXA), muscle strength by dynamometry, physical function by the distance walked in 6 minutes (6MWD), forced vital capacity (FVC) by a spirometer. RESULTS Six participants were of normal weight and 2 overweight based on BMI; all were sarcopenic based on appendicular fat free mass index (AFFMI); and 7 were sarcopenic obese based on AFFMI and % fat mass. Average muscle strength was reduced below 50% of normal. The 6MWD was in BM patients 30% less than normal. FVC was reduced in 4 of the BM patients. Muscle strength had a good correlation with the physical function variables. Correlation between muscle strength and BMI was poor; it was very high with AFFMI. AFFMI was the best single explicator of muscle strength and physical function. CONCLUSION Muscle mass determined by DXA explains most of the variability of the measures of muscle strength and physical function in patients with BM and UCMD.
Collapse
Affiliation(s)
- Maria Teresa Miscione
- Department of Orthopaedics, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| | - Francesca Bruno
- Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Ripamonti
- Medicina Generale, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| | - Giuliana Nervuti
- Direzione Sanitaria, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| | - Riccardo Orsini
- Department of Orthopaedics, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Orthopaedics, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| | - Massimo Pellegrini
- Department of Public Health Sciences, University of Modena and Reggio Emilia, 41122 Modena, Italy
| | - Daniela Cocchi
- Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Luciano Merlini
- Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, IRCCS, 40136 Bologna, Italy
| |
Collapse
|
79
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
80
|
Bernardi P, Bonaldo P. Mitochondrial dysfunction and defective autophagy in the pathogenesis of collagen VI muscular dystrophies. Cold Spring Harb Perspect Biol 2013; 5:a011387. [PMID: 23580791 DOI: 10.1101/cshperspect.a011387] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ullrich Congenital Muscular Dystrophy (UCMD), Bethlem Myopathy (BM), and Congenital Myosclerosis are diseases caused by mutations in the genes encoding the extracellular matrix protein collagen VI. A dystrophic mouse model, where collagen VI synthesis was prevented by targeted inactivation of the Col6a1 gene, allowed the investigation of pathogenesis, which revealed the existence of a Ca(2+)-mediated dysfunction of mitochondria and sarcoplasmic reticulum, and of defective autophagy. Key events are dysregulation of the mitochondrial permeability transition pore, an inner membrane high-conductance channel that for prolonged open times causes mitochondrial dysfunction, and inadequate removal of defective mitochondria, which amplifies the damage. Consistently, the Col6a1(-/-) myopathic mice could be cured through inhibition of cyclophilin D, a matrix protein that sensitizes the pore to opening, and through stimulation of autophagy. Similar defects contribute to disease pathogenesis in patients irrespective of the genetic lesion causing the collagen VI defect. These studies indicate that permeability transition pore opening and defective autophagy represent key elements for skeletal muscle fiber death, and provide a rationale for the use of cyclosporin A and its nonimmunosuppressive derivatives in patients affected by collagen VI myopathies, a strategy that holds great promise for treatment.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy.
| | | |
Collapse
|
81
|
Pellegrini C, Zulian A, Gualandi F, Manzati E, Merlini L, Michelini ME, Benassi L, Marmiroli S, Ferlini A, Sabatelli P, Bernardi P, Maraldi NM. Melanocytes--a novel tool to study mitochondrial dysfunction in Duchenne muscular dystrophy. J Cell Physiol 2013; 228:1323-31. [PMID: 23169061 PMCID: PMC3601437 DOI: 10.1002/jcp.24290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/09/2012] [Indexed: 12/19/2022]
Abstract
Dystrophin is a subsarcolemmal protein that, by linking the actin cytoskeleton to the extracellular matrix via dystroglycans, is critical for the integrity of muscle fibers. Here, we report that epidermal melanocytes, obtained from conventional skin biopsy, express dystrophin with a restricted localization to the plasma membrane facing the dermal–epidermal junction. In addition the full-length muscle isoform mDp427 was clearly detectable in melanocyte cultures as assessed by immunohistochemistry, RNA, and Western blot analysis. Melanocytes of Duchenne muscular dystrophy (DMD) patients did not express dystrophin, and the ultrastructural analysis revealed typical mitochondrial alterations similar to those occurring in myoblasts from the same patients. Mitochondria of melanocytes from DMD patients readily accumulated tetramethylrhodamine methyl ester, indicating that they are energized irrespective of the presence of dystrophin but, at variance from mitochondria of control donors, depolarized upon the addition of oligomycin, suggesting that they are affected by a latent dysfunction unmasked by inhibition of the ATP synthase. Pure melanocyte cultures can be readily obtained by conventional skin biopsies and may be a feasible and reliable tool alternative to muscle biopsy for functional studies in dystrophinopathies. The mitochondrial dysfunction occurring in DMD melanocytes could represent a promising cellular biomarker for monitoring dystrophinopathies also in response to pharmacological treatments. J. Cell. Physiol. 228: 1323–1331, 2013. © 2012 Wiley Periodicals, Inc.
Collapse
|
82
|
Abstract
Muscular dystrophies are a heterogeneous group of inherited disorders that share similar clinical features and dystrophic changes on muscle biopsy. An improved understanding of their molecular bases has led to more accurate definitions of the clinical features associated with known subtypes. Knowledge of disease-specific complications, implementation of anticipatory care, and medical advances have changed the standard of care, with an overall improvement in the clinical course, survival, and quality of life of affected people. A better understanding of the mechanisms underlying the molecular pathogenesis of several disorders and the availability of preclinical models are leading to several new experimental approaches, some of which are already in clinical trials. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, and therapeutic developments.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | | |
Collapse
|
83
|
Sabatelli P, Palma E, Angelin A, Squarzoni S, Urciuolo A, Pellegrini C, Tiepolo T, Bonaldo P, Gualandi F, Merlini L, Bernardi P, Maraldi NM. Critical evaluation of the use of cell cultures for inclusion in clinical trials of patients affected by collagen VI myopathies. J Cell Physiol 2012; 227:2927-35. [PMID: 21953374 PMCID: PMC3415679 DOI: 10.1002/jcp.23039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagen VI myopathies (Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM), and myosclerosis myopathy) share a common pathogenesis, that is, mitochondrial dysfunction due to deregulation of the permeability transition pore (PTP). This effect was first identified in the Col6a1(-/-) mouse model and then in muscle cell cultures from UCMD and BM patients; the normalizing effect of cyclosporin A (CsA) confirmed the pathogenic role of PTP opening. In order to determine whether mitochondrial performance can be used as a criterion for inclusion in clinical trials and as an outcome measure of the patient response to therapy, it is mandatory to establish whether mitochondrial dysfunction is conserved in primary cell cultures from UCMD and BM patients. In this study we report evidence that mitochondrial dysfunction and the consequent increase of apoptotic rate can be detected not only, as previously reported, in muscle, but also in fibroblast cell cultures established from muscle biopsies of collagen VI-related myopathic patients. However, the mitochondrial phenotype is no longer maintained after nine passages in culture. These data demonstrate that the dire consequences of mitochondrial dysfunction are not limited to myogenic cells, and that this parameter can be used as a suitable diagnostic criterion, provided that the cell culture conditions are carefully established.
Collapse
Affiliation(s)
- P Sabatelli
- CNR-National Research Council of Italy, Institute of Molecular Genetics c/o IOR, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 2012; 7:1415-23. [PMID: 22024752 DOI: 10.4161/auto.7.12.17877] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.
Collapse
Affiliation(s)
- Paolo Grumati
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
85
|
Andersson DC, Meli AC, Reiken S, Betzenhauser MJ, Umanskaya A, Shiomi T, D'Armiento J, Marks AR. Leaky ryanodine receptors in β-sarcoglycan deficient mice: a potential common defect in muscular dystrophy. Skelet Muscle 2012; 2:9. [PMID: 22640601 PMCID: PMC3605002 DOI: 10.1186/2044-5040-2-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disruption of the sarcolemma-associated dystrophin-glycoprotein complex underlies multiple forms of muscular dystrophy, including Duchenne muscular dystrophy and sarcoglycanopathies. A hallmark of these disorders is muscle weakness. In a murine model of Duchenne muscular dystrophy, mdx mice, cysteine-nitrosylation of the calcium release channel/ryanodine receptor type 1 (RyR1) on the skeletal muscle sarcoplasmic reticulum causes depletion of the stabilizing subunit calstabin1 (FKBP12) from the RyR1 macromolecular complex. This results in a sarcoplasmic reticular calcium leak via defective RyR1 channels. This pathological intracellular calcium leak contributes to reduced calcium release and decreased muscle force production. It is unknown whether RyR1 dysfunction occurs also in other muscular dystrophies. METHODS To test this we used a murine model of Limb-Girdle muscular dystrophy, deficient in β-sarcoglycan (Sgcb-/-). RESULTS Skeletal muscle RyR1 from Sgcb-/- deficient mice were oxidized, nitrosylated, and depleted of the stabilizing subunit calstabin1, which was associated with increased open probability of the RyR1 channels. Sgcb-/- deficient mice exhibited decreased muscle specific force and calcium transients, and displayed reduced exercise capacity. Treating Sgcb-/- mice with the RyR stabilizing compound S107 improved muscle specific force, calcium transients, and exercise capacity. We have previously reported similar findings in mdx mice, a murine model of Duchenne muscular dystrophy. CONCLUSIONS Our data suggest that leaky RyR1 channels may underlie multiple forms of muscular dystrophy linked to mutations in genes encoding components of the dystrophin-glycoprotein complex. A common underlying abnormality in calcium handling indicates that pharmacological targeting of dysfunctional RyR1 could be a novel therapeutic approach to improve muscle function in Limb-Girdle and Duchenne muscular dystrophies.
Collapse
Affiliation(s)
- Daniel C Andersson
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | |
Collapse
|
87
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
88
|
Cyclosporine A in Ullrich congenital muscular dystrophy: long-term results. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:139194. [PMID: 22028947 PMCID: PMC3199070 DOI: 10.1155/2011/139194] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022]
Abstract
Six individuals with Ullrich congenital muscular dystrophy (UCMD) and mutations in the genes-encoding collagen VI, aging 5–9, received 3–5 mg/kg of cyclosporine A (CsA) daily for 1 to 3.2 years. The primary outcome measure was the muscle strength evaluated with a myometer and expressed as megalimbs. The megalimbs score showed significant improvement (P = 0.01) in 5 of the 6 patients. Motor function did not change. Respiratory function deteriorated in all. CsA treatment corrected mitochondrial dysfunction, increased muscle regeneration, and decreased the number of apoptotic nuclei. Results from this study demonstrate that long-term treatment with CsA ameliorates performance in the limbs, but not in the respiratory muscles of UCMD patients, and that it is well tolerated. These results suggest considering a trial of CsA or nonimmunosuppressive cyclosporins, that retains the PTP-desensitizing properties of CsA, as early as possible in UCMD patients when diaphragm is less compromised.
Collapse
|
89
|
von Stockum S, Basso E, Petronilli V, Sabatelli P, Forte MA, Bernardi P. Properties of Ca(2+) transport in mitochondria of Drosophila melanogaster. J Biol Chem 2011; 286:41163-41170. [PMID: 21984833 DOI: 10.1074/jbc.m111.268375] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the pathways for Ca(2+) transport in mitochondria of the fruit fly Drosophila melanogaster. We demonstrate the presence of ruthenium red (RR)-sensitive Ca(2+) uptake, of RR-insensitive Ca(2+) release, and of Na(+)-stimulated Ca(2+) release in energized mitochondria, which match well characterized Ca(2+) transport pathways of mammalian mitochondria. Following larger matrix Ca(2+) loading Drosophila mitochondria underwent spontaneous RR-insensitive Ca(2+) release, an event that in mammals is due to opening of the permeability transition pore (PTP). Like the PTP of mammals, Drosophila Ca(2+)-induced Ca(2+) release could be triggered by uncoupler, diamide, and N-ethylmaleimide, indicating the existence of regulatory voltage- and redox-sensitive sites and was inhibited by tetracaine. Unlike PTP-mediated Ca(2+) release in mammals, however, it was (i) insensitive to cyclosporin A, ubiquinone 0, and ADP; (ii) inhibited by P(i), as is the PTP of yeast mitochondria; and (iii) not accompanied by matrix swelling and cytochrome c release even in KCl-based medium. We conclude that Drosophila mitochondria possess a selective Ca(2+) release channel with features intermediate between the PTP of yeast and mammals.
Collapse
Affiliation(s)
- Sophia von Stockum
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy
| | - Emy Basso
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy
| | - Valeria Petronilli
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics at the Istituto Ortopedico Rizzoli, I-40126 Bologna, Italy
| | - Michael A Forte
- Vollum Institute, Oregon Health & Sciences University, Portland, Oregon 97239
| | - Paolo Bernardi
- Consiglio Nazionale delle Ricerche Institute of Neuroscience and Department of Biomedical Sciences, University of I-35121 Padova, Italy.
| |
Collapse
|
90
|
H-1
Collagen VI myopathies: pathogenic
mechanisms and novel therapeutic
perspectives. ACTA MYOLOGICA 2011. [PMCID: PMC3235844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
ColVI myopathies: where do we stand, where do we go? Skelet Muscle 2011; 1:30. [PMID: 21943391 PMCID: PMC3189202 DOI: 10.1186/2044-5040-1-30] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/23/2011] [Indexed: 02/08/2023] Open
Abstract
Collagen VI myopathies, caused by mutations in the genes encoding collagen type VI (ColVI), represent a clinical continuum with Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) at each end of the spectrum, and less well-defined intermediate phenotypes in between. ColVI myopathies also share common features with other disorders associated with prominent muscle contractures, making differential diagnosis difficult. This group of disorders, under-recognized for a long time, has aroused much interest over the past decade, with important advances made in understanding its molecular pathogenesis. Indeed, numerous mutations have now been reported in the COL6A1, COL6A2 and COL6A3 genes, a large proportion of which are de novo and exert dominant-negative effects. Genotype-phenotype correlations have also started to emerge, which reflect the various pathogenic mechanisms at play in these disorders: dominant de novo exon splicing that enables the synthesis and secretion of mutant tetramers and homozygous nonsense mutations that lead to premature termination of translation and complete loss of function are associated with early-onset, severe phenotypes. In this review, we present the current state of diagnosis and research in the field of ColVI myopathies. The past decade has provided significant advances, with the identification of altered cellular functions in animal models of ColVI myopathies and in patient samples. In particular, mitochondrial dysfunction and a defect in the autophagic clearance system of skeletal muscle have recently been reported, thereby opening potential therapeutic avenues.
Collapse
|
92
|
Abstract
The collagen VI-related myopathy known as Ullrich congenital muscular dystrophy is an early-onset disease that combines substantial muscle weakness with striking joint laxity and progressive contractures. Patients might learn to walk in early childhood; however, this ability is subsequently lost, concomitant with the development of frequent nocturnal respiratory failure. Patients with intermediate phenotypes of collagen VI-related myopathy display a lesser degree of weakness and a longer period of ambulation than do individuals with Ullrich congenital muscular dystrophy, and the spectrum of disease finally encompasses mild Bethlem myopathy, in which ambulation persists into adulthood. Dominant and recessive autosomal mutations in the three major collagen VI genes-COL6A1, COL6A2, and COL6A3-can underlie this entire clinical spectrum, and result in deficient or dysfunctional microfibrillar collagen VI in the extracellular matrix of muscle and other connective tissues, such as skin and tendons. The potential effects on muscle include progressive dystrophic changes, fibrosis and evidence for increased apoptosis, which potentially open avenues for pharmacological intervention. Optimized respiratory management, including noninvasive nocturnal ventilation together with careful orthopedic management, are the current mainstays of treatment and have already led to a considerable improvement in life expectancy for children with Ullrich congenital muscular dystrophy.
Collapse
|
93
|
Narula N, Zaragoza MV, Sengupta PP, Li P, Haider N, Verjans J, Waymire K, Vannan M, Wallace DC. Adenine nucleotide translocase 1 deficiency results in dilated cardiomyopathy with defects in myocardial mechanics, histopathological alterations, and activation of apoptosis. JACC Cardiovasc Imaging 2011; 4:1-10. [PMID: 21232697 DOI: 10.1016/j.jcmg.2010.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/15/2010] [Accepted: 06/28/2010] [Indexed: 12/30/2022]
Abstract
OBJECTIVES the aim of this study was to test the hypothesis that chronic mitochondrial energy deficiency causes dilated cardiomyopathy, we characterized the hearts of age-matched young and old adenine nucleotide translocator (ANT)1 mutant and control mice. BACKGROUND ANTs export mitochondrial adenosine triphosphate into the cytosol and have a role in the regulation of the intrinsic apoptosis pathway. Mitochondrial energy deficiency has been hypothesized, on the basis of indirect evidence, to be a factor in the pathophysiology of dilated cardiomyopathies. Ant1 inactivation should limit adenosine triphosphate for contraction and calcium transport, thereby resulting in early cardiac dysfunction with later dilation and heart failure. METHODS we conducted a multiyear study of 73 mutant (Ant1-/-) and 57 control (Ant1+/+) mice, between the ages of 2 and 21 months. Hearts were characterized by cardiac anatomy, echocardiographic imaging with velocity vector analysis, histopathology, and apoptosis assays. RESULTS the Ant1-/- mice developed a distinctive concentric dilated cardiomyopathy, characterized by substantial myocardial hypertrophy and ventricular dilation, with cardiac function declining earlier in age as compared to control mice. Left ventricular circumferential, radial, and rotational mechanics were reduced even in the younger mutants with preserved systolic function. Histopathologic analysis demonstrated increased myocyte hypertrophy, fibrosis, and calcification in the mutant mice as compared with control mice. Furthermore, increased cytoplasmic cytochrome c levels and caspase 3 activation were observed in the mutant mice. CONCLUSIONS our results demonstrate that mitochondrial energy deficiency is sufficient to cause dilated cardiomyopathy, confirming that energy defects are a factor in this disease. Energy deficiency initially leads to early mechanical dysfunction before a decline in left ventricular systolic function. Chronic energy deficiency with age then leads to heart failure. Our results now allow us to use the Ant1-/- mouse model for testing new therapies for ANT1 mutant patients.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Cardiomegaly/enzymology
- Cardiomegaly/physiopathology
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Echocardiography
- Female
- Histocytochemistry
- Male
- Mice
- Mice, Mutant Strains
- Mitochondria, Heart/metabolism
- Mitochondrial ADP, ATP Translocases/deficiency
- Mitochondrial ADP, ATP Translocases/genetics
- Mutation
- Myocardial Contraction
- Myocardium/pathology
- Stroke Volume
Collapse
Affiliation(s)
- Nupoor Narula
- Center for Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ricchelli F, Šileikytė J, Bernardi P. Shedding light on the mitochondrial permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:482-90. [DOI: 10.1016/j.bbabio.2011.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 01/18/2023]
|
95
|
Gualandi F, Curci R, Sabatelli P, Martoni E, Bovolenta M, Maraldi MN, Merlini L, Ferlini AA. Macrophages: A minimally invasive tool for monitoring collagen VI myopathies. Muscle Nerve 2011; 44:80-4. [DOI: 10.1002/mus.21999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 01/22/2023]
|
96
|
Daussin FN, Godin R, Ascah A, Deschênes S, Burelle Y. Cyclophilin-D is dispensable for atrophy and mitochondrial apoptotic signalling in denervated muscle. J Physiol 2011; 589:855-61. [PMID: 21224232 PMCID: PMC3060365 DOI: 10.1113/jphysiol.2010.202036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/28/2010] [Indexed: 01/22/2023] Open
Abstract
In the present study, we specifically determined whether the regulatory protein cyclophilin-D (CypD), and by extension opening of the permeability transition pore (PTP), is involved in the activation of mitochondria-derived apoptotic signalling previously described in skeletal muscle following loss of innervation. For this purpose, CypD-defficient (CypD-KO) mice and their littermate controls were submitted to unilateral sciatic nerve transection, and mitochondrial resistance to Ca2+-induced opening of the PTP, and muscle apoptotic signalling were investigated 14 days post-surgery. Denervation caused atrophy, facilitated Ca2+-induced opening of the PTP in vitro in permeabilized muscle fibres, and activation of the apoptotic proteolytic cascade in the whole muscle of both mouse strains. In CypD-KO mice, mitochondrial resistance to Ca2+-induced PTP opening was greater than in WT mice, in both the normal and the denervated state, indicating that lack of CypD desensitized to PTP opening. However, denervation in CypD-KO mice still resulted in a facilitation of PTP opening compared to normally innervated contralateral muscle, indicating that in vitro additional factors could poise mitochondria from denervated muscle toward PTP opening. At the whole muscle level, lack of CypD, despite conferring greater resistance to PTP opening, did not protect against atrophy, release of mitochondrial pro-apoptotic factors and activation of caspases following denervation. Altogether, these results provide direct evidence that CypD-dependent PTP opening is dispensable for atrophy and apoptotic signalling in skeletal muscle following denervation.
Collapse
Affiliation(s)
- Frederic N Daussin
- Département de kinésiologie, Université de Montréal, C.P. 6128, Succursalle Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
97
|
Azzolin L, Antolini N, Calderan A, Ruzza P, Sciacovelli M, Marin O, Mammi S, Bernardi P, Rasola A. Antamanide, a derivative of Amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore. PLoS One 2011; 6:e16280. [PMID: 21297983 PMCID: PMC3030572 DOI: 10.1371/journal.pone.0016280] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022] Open
Abstract
Antamanide is a cyclic decapeptide derived from the fungus Amanita phalloides. Here we show that antamanide inhibits the mitochondrial permeability transition pore, a central effector of cell death induction, by targeting the pore regulator cyclophilin D. Indeed, (i) permeability transition pore inhibition by antamanide is not additive with the cyclophilin D-binding drug cyclosporin A, (ii) the inhibitory action of antamanide on the pore requires phosphate, as previously shown for cyclosporin A; (iii) antamanide is ineffective in mitochondria or cells derived from cyclophilin D null animals, and (iv) abolishes CyP-D peptidyl-prolyl cis-trans isomerase activity. Permeability transition pore inhibition by antamanide needs two critical residues in the peptide ring, Phe6 and Phe9, and is additive with ubiquinone 0, which acts on the pore in a cyclophilin D-independent fashion. Antamanide also abrogates mitochondrial depolarization and the ensuing cell death caused by two well-characterized pore inducers, clotrimazole and a hexokinase II N-terminal peptide. Our findings have implications for the comprehension of cyclophilin D activity on the permeability transition pore and for the development of novel pore-targeting drugs exploitable as cell death inhibitors.
Collapse
Affiliation(s)
- Luca Azzolin
- Department of Biomedical Sciences University of Padova and CNR Institute of Neuroscience, Padova, Italy
| | - Nicola Antolini
- Department of Chemical Sciences, University of Padova and CNR Institute of Biomolecular Chemistry, Padova, Italy
| | - Andrea Calderan
- Department of Chemical Sciences, University of Padova and CNR Institute of Biomolecular Chemistry, Padova, Italy
| | - Paolo Ruzza
- Department of Chemical Sciences, University of Padova and CNR Institute of Biomolecular Chemistry, Padova, Italy
| | - Marco Sciacovelli
- Department of Biomedical Sciences University of Padova and CNR Institute of Neuroscience, Padova, Italy
| | - Oriano Marin
- Department of Biological Chemistry, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova and CNR Institute of Biomolecular Chemistry, Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences University of Padova and CNR Institute of Neuroscience, Padova, Italy
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences University of Padova and CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
98
|
Expression of the Collagen VI α5 and α6 Chains in Normal Human Skin and in Skin of Patients with Collagen VI-Related Myopathies. J Invest Dermatol 2011; 131:99-107. [DOI: 10.1038/jid.2010.284] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
99
|
Ascah A, Khairallah M, Daussin F, Bourcier-Lucas C, Godin R, Allen BG, Petrof BJ, Des Rosiers C, Burelle Y. Stress-induced opening of the permeability transition pore in the dystrophin-deficient heart is attenuated by acute treatment with sildenafil. Am J Physiol Heart Circ Physiol 2011; 300:H144-53. [DOI: 10.1152/ajpheart.00522.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Susceptibility of cardiomyocytes to stress-induced damage has been implicated in the development of cardiomyopathy in Duchenne muscular dystrophy, a disease caused by the lack of the cytoskeletal protein dystrophin in which heart failure is frequent. However, the factors underlying the disease progression are unclear and treatments are limited. Here, we tested the hypothesis of a greater susceptibility to the opening of the mitochondrial permeability transition pore (PTP) in hearts from young dystrophic ( mdx) mice (before the development of overt cardiomyopathy) when subjected to a stress protocol and determined whether the prevention of a PTP opening is involved in the cardioprotective effect of sildenafil, which we have previously reported in mdx mice. Using the 2-deoxy-[3H]glucose method to quantify the PTP opening in ex vivo perfused hearts, we demonstrate that when compared with those of controls, the hearts from young mdx mice subjected to ischemia-reperfusion (I/R) display an excessive PTP opening as well as enhanced activation of cell death signaling, mitochondrial oxidative stress, cardiomyocyte damage, and poorer recovery of contractile function. Functional analyses in permeabilized cardiac fibers from nonischemic hearts revealed that in vitro mitochondria from mdx hearts display normal respiratory function and reactive oxygen species handling, but enhanced Ca2+ uptake velocity and premature opening of the PTP, which may predispose to I/R-induced injury. The administration of a single dose of sildenafil to mdx mice before I/R prevented excessive PTP opening and its downstream consequences and reduced tissue Ca2+ levels. Furthermore, mitochondrial Ca2+ uptake velocity was reduced following sildenafil treatment. In conclusion, beyond our documentation that an increased susceptibility to the opening of the mitochondrial PTP in the mdx heart occurs well before clinical signs of overt cardiomyopathy, our results demonstrate that sildenafil, which is already administered in other pediatric populations and is reported safe and well tolerated, provides efficient protection against this deleterious event, likely by reducing cellular Ca2+ loading and mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruce G. Allen
- Montreal Heart Institute and
- Medicine, Université de Montréal; and
| | - Basil J. Petrof
- Meakins-Christie Laboratories and Respiratory Division, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
100
|
Bönnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:81-96. [PMID: 21496625 DOI: 10.1016/b978-0-08-045031-5.00005-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutations in the genes COL6A1, COL6A2, and COL6A3, coding for three α chains of collagen type VI, underlie a spectrum of myopathies, ranging from the severe congenital muscular dystrophy-type Ullrich (UCMD) to the milder Bethlem myopathy (BM), with disease manifestations of intermediate severity in between. UCMD is characterized by early-onset weakness, associated with pronounced distal joint hyperlaxity and the early onset or early progression of more proximal contractures. In the most severe cases ambulation is not achieved, or it may be achieved only for a limited period of time. BM may be of early or later onset, but is milder in its manifestations, typically allowing for ambulation well into adulthood, whereas typical joint contractures are frequently prominent. A genetic spectrum is emerging, with BM being caused mostly by dominantly acting mutations, although rarely recessive inheritance of BM is also possible, whereas both dominantly as well as recessively acting mutations underlie UCMD.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD 20892-3705, USA.
| |
Collapse
|