51
|
Sayedyahossein S, Li Z, Hedman AC, Morgan CJ, Sacks DB. IQGAP1 Binds to Yes-associated Protein (YAP) and Modulates Its Transcriptional Activity. J Biol Chem 2016; 291:19261-73. [PMID: 27440047 DOI: 10.1074/jbc.m116.732529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/09/2023] Open
Abstract
During development, the Hippo signaling pathway regulates key physiological processes, such as control of organ size, regeneration, and stem cell biology. Yes-associated protein (YAP) is a major transcriptional co-activator of the Hippo pathway. The scaffold protein IQGAP1 interacts with more than 100 binding partners to integrate diverse signaling pathways. In this study, we report that IQGAP1 binds to YAP and modulates its activity. IQGAP1 and YAP co-immunoprecipitated from cells. In vitro analysis with pure proteins demonstrated a direct interaction between IQGAP1 and YAP. Analysis with multiple fragments of each protein showed that the interaction occurs via the IQ domain of IQGAP1 and the TEAD-binding domain of YAP. The interaction between IQGAP1 and YAP has functional effects. Knock-out of endogenous IQGAP1 significantly increased the formation of nuclear YAP-TEAD complexes. Transcription assays were performed with IQGAP1-null mouse embryonic fibroblasts and HEK293 cells with IQGAP1 knockdown by CRISPR/Cas9. Quantification demonstrated that YAP-TEAD-mediated transcription in cells lacking IQGAP1 was significantly greater than in control cells. These data reveal that IQGAP1 binds to YAP and modulates its co-transcriptional function, suggesting that IQGAP1 participates in Hippo signaling.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhigang Li
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew C Hedman
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Chase J Morgan
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - David B Sacks
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
52
|
Dorris ER, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, Smyth P, O'Leary JJ, Sheils O. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther 2016; 17:526-42. [PMID: 26828826 PMCID: PMC4910922 DOI: 10.1080/15384047.2016.1139230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncogenic mutations in BRAF are common in melanoma and thyroid carcinoma and drive constitutive activation of the MAPK pathway. Molecularly targeted therapies of this pathway improves survival compared to chemotherapy; however, responses tend to be short-lived as resistance invariably occursCell line models of melanoma and thyroid carcinoma, +/− BRAFV600E activating mutation, were treated with the MEK inhibitor PD0325901. Treated and naive samples were assayed for expression of key members of the MAPK pathway. Global microRNA expression profiling of naive and resistant cells was performed via next generation sequencingand indicated pluripotency pathways in resistance. Parental cell lines were progressed to holoclones to confirm the miRNA stemness profileMembers of the MIR302/373/374/520 family of embryonic stem cell specific cell cycle regulating (ESCC) microRNAs were identified as differentially expressed between resistant BRAFV600E melanoma and thyroid cell lines. Upregulated expression of gene and protein stemness markers, upregulated expression of MAPK pathway genes and downregulation of the ESCC MIR302 cluster in BRAFV600E melanoma indicated an increased stem-like phenotype in resistant BRAFV600E melanoma. Conversely, downregulated expression of gene and protein stemness markers, downregulated expression of MAPK pathway genes, upregulation of the ESCC MIR520 cluster, reeexpression of cell surface receptors, and induced differentiation-associated morphology in resistant BRAFV600E indicate a differentiated phenotype associated with MEK inhibitor resistance in BRAFV600E thyroid cellsThe differential patterns of resistance observed between BRAFV600E melanoma and thyroid cell lines may reflect tissue type or de novo differentiation, but could have significant impact on the response of primary and metastatic cells to MEK inhibitor treatment. This study provides a basis for the investigation of the cellular differentiation/self-renewal access and its role in resistance to MEK inhibition.
Collapse
Affiliation(s)
- Emma R Dorris
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Gordon Blackshields
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Gary Sommerville
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Mohsen Alhashemi
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Andrew Dias
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Victoria McEneaney
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Paul Smyth
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - John J O'Leary
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| | - Orla Sheils
- a Department of Histopathology , Sir Patrick Dun Research Lab, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
53
|
Norden PR, Kim DJ, Barry DM, Cleaver OB, Davis GE. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1. PLoS One 2016; 11:e0147758. [PMID: 26812085 PMCID: PMC4728208 DOI: 10.1371/journal.pone.0147758] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 01/18/2023] Open
Abstract
A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network assembly. Overall, this work defines novel key regulators and their functional roles during human EC tubulogenesis.
Collapse
Affiliation(s)
- Pieter R. Norden
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO, United States of America
| | - Dae Joong Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO, United States of America
| | - David M. Barry
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Ondine B. Cleaver
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - George E. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, MO, United States of America
| |
Collapse
|
54
|
Lu R, Herrera BB, Eshleman HD, Fu Y, Bloom A, Li Z, Sacks DB, Goldberg MB. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog 2015; 11:e1005200. [PMID: 26473364 PMCID: PMC4608727 DOI: 10.1371/journal.ppat.1005200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022] Open
Abstract
The intracellular bacterial pathogen Shigella infects and spreads through the human intestinal epithelium. Effector proteins delivered by Shigella into cells promote infection by modulating diverse host functions. We demonstrate that the effector protein OspB interacts directly with the scaffolding protein IQGAP1, and that the absence of either OspB or IQGAP1 during infection leads to larger areas of S. flexneri spread through cell monolayers. We show that the effect on the area of bacterial spread is due to OspB triggering increased cell proliferation at the periphery of infected foci, thereby replacing some of the cells that die within infected foci and restricting the area of bacterial spread. We demonstrate that OspB enhancement of cell proliferation results from activation of mTORC1, a master regulator of cell growth, and is blocked by the mTORC1-specific inhibitor rapamycin. OspB activation of mTORC1, and its effects on cell proliferation and bacterial spread, depends on IQGAP1. Our results identify OspB as a regulator of mTORC1 and mTORC1-dependent cell proliferation early during S. flexneri infection and establish a role for IQGAP1 in mTORC1 signaling. They also raise the possibility that IQGAP1 serves as a scaffold for the assembly of an OspB-mTORC1 signaling complex. During infection, Shigella spp. deliver into the cytoplasm of cells effector proteins that manipulate host cell processes in ways that promote infection and bacterial spread. We have discovered that the Shigella effector protein OspB interacts with the cellular scaffolding protein IQGAP1. OspB induces increased cell proliferation by activating mTORC1 kinase, a master regulator of cellular growth, in a manner that depends on IQGAP1. As IQGAP1 has been shown to interact with mTOR and with the mTORC1 activators ERK1/2, we propose that IQGAP1 serves as a scaffold for OspB activation of mTORC1. The presence of OspB and IQGAP1 lead to restricting the area of spread of S. flexneri in cell monolayers; our data support a model in which the effect of OspB and IQGAP1 on the area of S. flexneri spread is due to effects on cell proliferation locally within infected foci. As infection of cells and tissue by Shigella spp. leads to cell death, increased local cellular proliferation may serve to provide additional protective intracellular niches for the organism within infected tissue.
Collapse
Affiliation(s)
- Richard Lu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bobby Brooke Herrera
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Heather D. Eshleman
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Fu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Alexander Bloom
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
55
|
Sun G, Liu Y, Wang K, Xu Z. miR-506 regulates breast cancer cell metastasis by targeting IQGAP1. Int J Oncol 2015; 47:1963-70. [PMID: 26398880 DOI: 10.3892/ijo.2015.3161] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA or miR)-506 is a novel miRNA related to the survival of breast cancer patients. However, the mechanism underlying miRNA-506 involvement in breast carcinogenesis remains unclear. In the present study, we found that miR-506 was downregulated in human breast malignant tissues and breast cancer cell lines by RT-qPCR analysis, and the expression level of miR-506 was decreased with the increasing of tumor stage. Subsequently, gain-of-function and loss-of-function experiments were performed in vitro, and the results from MTT assay, Transwell-Matrigel invasion assay and cell adhesion assay revealed that miR-506 suppresses cell proliferation, invasion and adhesion of breast cancer cells. Luciferase reporter assay revealed that IQ motif containing GTPase activating protein 1 (IQGAP1) is a direct target of miR-506. miR-506 represses the expression of IQGAP1 and its downstream extracellular signal regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathways, as demonstrated by the RT-qPCR and western blot analysis. Furthermore, we found that IQGAP1 rescues the effect of miR-506 on cell proliferation, invasion, adhesion, and the activation of ERK MAPK signaling. In conclusion, the present study is the first to provide evidence that miR-506 acts as a tumor suppressor, at least partially, by directly downregulating IQGAP1 in breast cancer cells. The miR-506/IQGAP1/ERK pathway may be a novel therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Guang Sun
- Breast Surgical Department of China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yanxi Liu
- Breast Surgical Department of China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Keren Wang
- Breast Surgical Department of China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zheli Xu
- Breast Surgical Department of China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
56
|
Fang X, Zhang B, Thisse B, Bloom GS, Thisse C. IQGAP3 is essential for cell proliferation and motility during zebrafish embryonic development. Cytoskeleton (Hoboken) 2015; 72:422-33. [PMID: 26286209 DOI: 10.1002/cm.21237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
IQGAPs are scaffolding proteins that regulate actin assembly, exocyst function, cell motility, morphogenesis, adhesion and division. Vertebrates express 3 family members: IQGAP1, IQGAP2, and IQGAP3. IQGAP1 is known to stimulate nucleation of branched actin filaments through N-WASP and the Arp2/3 complex following direct binding to cytoplasmic tails of ligand-activated growth factor receptors, including EGFR, VEGFR2 and FGFR1. By contrast, little is known about functions of IQGAP2 or IQGAP3. Using in situ hybridization on whole mount zebrafish (Danio rerio) embryos, we show that IQGAP1 and IQGAP2 are associated with discrete tissues and organs, while IQGAP3 is mainly expressed in proliferative cells throughout embryonic and larval development. Morpholino knockdowns of IQGAP1 and IQGAP2 have little effect on embryo morphology while loss of function of IQGAP3 affects both cell proliferation and cell motility. IQGAP3 morphant phenotypes are similar to those resulting from overexpression of dominant negative forms of Ras or of Fibroblast Growth Factor Receptor 1 (FGFR1), suggesting that IQGAP3 plays a role in FGFR1-Ras-ERK signaling. In support of this hypothesis, dominant negative forms of FGFR1 or Ras could be rescued by co-injection of zebrafish IQGAP3 mRNA, strongly suggesting that IQGAP3 acts as a downstream regulator of the FGFR1-Ras signaling pathway.
Collapse
Affiliation(s)
- Xiaolan Fang
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Bianhong Zhang
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia.,Institute of Biomedical Science, School of Science, East China Normal University, Shanghai, China
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, Virginia.,Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
57
|
Jin X, Liu Y, Liu J, Lu W, Liang Z, Zhang D, Liu G, Zhu H, Xu N, Liang S. The Overexpression of IQGAP1 and β-Catenin Is Associated with Tumor Progression in Hepatocellular Carcinoma In Vitro and In Vivo. PLoS One 2015; 10:e0133770. [PMID: 26252773 PMCID: PMC4529304 DOI: 10.1371/journal.pone.0133770] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023] Open
Abstract
The IQ-domain GTPase-activating protein 1 (IQGAP1) is a multifunctional scaffold protein, which interacts with diverse proteins to regulate cell adhesion and cell migration. The abnormal expression of IQGAP1 widely exists in many cancers, but biological roles of IQGAP1 cooperation with its interacting proteins to involve in tumorigenesis remain to clarify. In this study, we have found that IQGAP1 interacts with β-catenin and regulates β-catenin expression in hepatocellular carcinoma (HCC) cells. The expression levels of IQGAP1 and β-catenin and their associations have a positive correlation with cell metastasis ability in several HCC cell lines. The up-regulation of IQGAP1 and β-catenin improves cell proliferation and migration ability of HCC cells, whereas the knockdown of IQGAP1 by small interfering RNA can decrease β-catenin expression, which results in the reduction of cell proliferation and migration ability in vitro. In addition, a significantly higher expression of IQGAP1 and β-catenin also usually exists in human HCC tissues, especially their overexpression is clinicopathologically associated with tumor malignancy. Generally the overexpression and interactions of IQGAP1 and β-catenin contribute to HCC progression by promoting cell proliferation and migration.
Collapse
Affiliation(s)
- Xuewen Jin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Yuling Liu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Weiliang Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Ziwei Liang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
| | - Gang Liu
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing,100034, P. R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing,100034, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No.17, 3rd Section of People's South Road, Chengdu, 610041, P. R. China
- * E-mail:
| |
Collapse
|
58
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
59
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
60
|
Huang X, Jin Y, Zhou D, Xu G, Huang J, Shen L. IQGAP1 modulates the proliferation and migration of vascular smooth muscle cells in response to estrogen. Int J Mol Med 2015; 35:1460-6. [PMID: 25777140 DOI: 10.3892/ijmm.2015.2134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration has been proven to be a critical event in the development of varicosity. Variations in estrogen levels, a pathological event related to age and pregnancy, play a role in the pathogenesis of varicosity. Previous studies have reported a different response of VSMCs following estrogen stimulation. However, the exact mechanisms involved have not yet been elucidated. In the present study, we examined the responses of lesion and normal VSMCs treated with 10(-8) M 17β-estradiol (E2) for 24 h. A differential effect of exposure to E2 was observed in these cells. IQ-domain GTPase-activating protein 1 (IQGAP1), a scaffold protein, was overexpressed in the lesion VSMCs and was shown to modulate VSMC proliferation and migration in response to E2. Furthermore, the increased expression of IQGAP1 was found to be intimately associated with a high activity of estrogen receptor α (ERα), which has been implicated in the regulation of VSMC physiological function. Additionally, we found that two critical kinases, Akt and extracellular signal-regulated kinase (ERK), mediated the activation of ERα and VSMC proliferation. According to our results, we thus concluded that high levels of IQGAP1 in VSMCs regulate the physiological reaction of the cells in response to estrogen exposure, and that kinases are involved in the process by mediating ERα activation. In view of the essential role of IQGAP1 in the physiological function of VSMCs, targeting this molecule may prove to be a promising strategy for the treatment of varicosity.
Collapse
Affiliation(s)
- Xianchen Huang
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Yiqi Jin
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Dayong Zhou
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Guoxiong Xu
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Jian Huang
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Liming Shen
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
61
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
62
|
Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16:427-46. [PMID: 25722290 DOI: 10.15252/embr.201439834] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023] Open
Abstract
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Smith
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
63
|
IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol 2015; 25:171-84. [PMID: 25618329 DOI: 10.1016/j.tcb.2014.12.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
Since its discovery in 1994, recognized cellular functions for the scaffold protein IQGAP1 have expanded immensely. Over 100 unique IQGAP1-interacting proteins have been identified, implicating IQGAP1 as a critical integrator of cellular signaling pathways. Initial research established functions for IQGAP1 in cell-cell adhesion, cell migration, and cell signaling. Recent studies have revealed additional IQGAP1 binding partners, expanding the biological roles of IQGAP1. These include crosstalk between signaling cascades, regulation of nuclear function, and Wnt pathway potentiation. Investigation of the IQGAP2 and IQGAP3 homologs demonstrates unique functions, some of which differ from those of IQGAP1. Summarized here are recent observations that enhance our understanding of IQGAP proteins in the integration of diverse signaling pathways.
Collapse
|
64
|
Holck S, Nielsen HJ, Hammer E, Christensen IJ, Larsson LI. IQGAP1 in rectal adenocarcinomas: Localization and protein expression before and after radiochemotherapy. Cancer Lett 2015; 356:556-60. [DOI: 10.1016/j.canlet.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/13/2023]
|
65
|
Bhattacharya M, Sundaram A, Kudo M, Farmer J, Ganesan P, Khalifeh-Soltani A, Arjomandi M, Atabai K, Huang X, Sheppard D. IQGAP1-dependent scaffold suppresses RhoA and inhibits airway smooth muscle contraction. J Clin Invest 2014; 124:4895-8. [PMID: 25271629 DOI: 10.1172/jci76658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022] Open
Abstract
The intracellular scaffold protein IQGAP1 supports protein complexes in conjunction with numerous binding partners involved in multiple cellular processes. Here, we determined that IQGAP1 modulates airway smooth muscle contractility. Compared with WT controls, at baseline as well as after immune sensitization and challenge, Iqgap1-/- mice had higher airway responsiveness. Tracheal rings from Iqgap1-/- mice generated greater agonist-induced contractile force, even after removal of the epithelium. RhoA, a regulator of airway smooth muscle contractility, was activated in airway smooth muscle lysates from Iqgap1-/- mice. Likewise, knockdown of IQGAP1 in primary human airway smooth muscle cells increased RhoA activity. Immunoprecipitation studies indicated that IQGAP1 binds to both RhoA and p190A-RhoGAP, a GTPase-activating protein that normally inhibits RhoA activation. Proximity ligation assays in primary airway human smooth muscle cells and mouse tracheal sections revealed colocalization of p190A-RhoGAP and RhoA; however, these proteins did not colocalize in IQGAP1 knockdown cells or in Iqgap1-/- trachea. Compared with healthy controls, human subjects with asthma had decreased IQGAP1 expression in airway biopsies. Together, these data demonstrate that IQGAP1 acts as a scaffold that colocalizes p190A-RhoGAP and RhoA, inactivating RhoA and suppressing airway smooth muscle contraction. Furthermore, our results suggest that IQGAP1 has the potential to modulate airway contraction severity in acute asthma.
Collapse
|
66
|
Maertens O, Cichowski K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 2014; 55:1-14. [PMID: 24814062 DOI: 10.1016/j.jbior.2014.04.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
The RAS pathway is one of the most commonly deregulated pathways in human cancer. Mutations in RAS genes occur in nearly 30% of all human tumors. However in some tumor types RAS mutations are conspicuously absent or rare, despite the fact that RAS and downstream effector pathways are hyperactivated. Recently, RAS GTPase Activating Proteins (RAS GAPs) have emerged as an expanding class of tumor suppressors that, when inactivated, provide an alternative mechanism of activating RAS. RAS GAPs normally turn off RAS by catalyzing the hydrolysis of RAS-GTP. As such, the loss of a RAS GAP would be expected to promote excessive RAS activation. Indeed, this is the case for the NF1 gene, which plays an established role in a familial tumor predisposition syndrome and a variety of sporadic cancers. However, there are 13 additional RAS GAP family members in the human genome. We are only now beginning to understand why there are so many RAS GAPs, how they differentially function, and what their potential role(s) in human cancer are. This review will focus on our current understanding of RAS GAPs in human disease and will highlight important outstanding questions.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
67
|
Baxt LA, Goldberg MB. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One 2014; 9:e94653. [PMID: 24722587 PMCID: PMC3983221 DOI: 10.1371/journal.pone.0094653] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min.), the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr) by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG). Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.
Collapse
Affiliation(s)
- Leigh A. Baxt
- Department of Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
68
|
Erdemir HH, Li Z, Sacks DB. IQGAP1 binds to estrogen receptor-α and modulates its function. J Biol Chem 2014; 289:9100-12. [PMID: 24550401 DOI: 10.1074/jbc.m114.553511] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The estrogen receptor (ER) is a steroid hormone receptor that acts as a transcription factor, modulating genes that regulate a vast range of cellular functions. IQGAP1 interacts with several signaling proteins, cytoskeletal components, and transmembrane receptors, thereby serving as a scaffold to integrate signaling pathways. Both ERα and IQGAP1 contribute to breast cancer. In this study, we report that IQGAP1 binds ERα and ERβ. In vitro analysis with pure proteins revealed a direct interaction between IQGAP1 and ERα. Investigation with multiple short fragments of each protein showed that ERα binds to the IQ domain of IQGAP1, whereas the hinge region of ERα is responsible for binding IQGAP1. In addition, IQGAP1 and ERα co-immunoprecipitated from cells, and the association was modulated by estradiol. The interaction has functional effects. Knockdown of endogenous IQGAP1 attenuated the ability of estradiol to induce transcription of the estrogen-responsive genes pS2, progesterone receptor, and cyclin D1. These data reveal that IQGAP1 binds to ERα and modulates its transcriptional function, suggesting that IQGAP1 might be a target for therapy in patients with breast carcinoma.
Collapse
Affiliation(s)
- Huseyin H Erdemir
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
69
|
Matsunaga H, Kubota K, Inoue T, Isono F, Ando O. IQGAP1 selectively interacts with K-Ras but not with H-Ras and modulates K-Ras function. Biochem Biophys Res Commun 2014; 444:360-4. [PMID: 24462863 DOI: 10.1016/j.bbrc.2014.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
K-Ras is frequently mutated and activated especially in pancreatic cancers. To analyze K-Ras function, we have searched for K-Ras interacting proteins and found IQ motif containing GTPase activating protein 1 (IQGAP1) as a novel K-Ras binding protein. IQGAP1 has been known as a scaffold protein for B-Raf, MEK1/2 and ERK1/2. Here we showed that IQGAP1 selectively formed a complex with K-Ras but not with H-Ras, and recruited B-Raf to K-Ras. We found that IQ motif region of IQGAP1 interacted with K-Ras. Both active and inactive K-Ras interacted with IQGAP1, and effector domain mutants of K-Ras also associated with IQGAP1, indicating that IQGAP1 interacts with K-Ras irrespective of Ras-effectors like B-Raf. We also found that overexpression or knock-down of IQGAP1 affected the interaction between K-Ras and B-Raf, and IQGAP1 overexpression increased ERK1/2 phosphorylation in K-Ras dependent manner in PANC1 cells. Our data suggest that IQGAP1 has a novel mechanism to modulate K-Ras pathway.
Collapse
Affiliation(s)
- Hironori Matsunaga
- Oncology Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Kazuishi Kubota
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
| | - Tatsuya Inoue
- Discovery Science and Technology Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo, Japan
| | - Fujio Isono
- Frontier Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Osamu Ando
- Oncology Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan; U3 Pharma GmbH, Fraunhoferstr. 22, Martinsried, Planegg, Germany.
| |
Collapse
|
70
|
Swalve H, Floren C, Wensch-Dorendorf M, Schöpke K, Pijl R, Wimmers K, Brenig B. A study based on records taken at time of hoof trimming reveals a strong association between the IQ motif-containing GTPase-activating protein 1 (IQGAP1) gene and sole hemorrhage in Holstein cattle. J Dairy Sci 2014; 97:507-19. [DOI: 10.3168/jds.2013-6997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022]
|
71
|
Liu J, Guidry JJ, Worthylake DK. Conserved sequence repeats of IQGAP1 mediate binding to Ezrin. J Proteome Res 2013; 13:1156-66. [PMID: 24294828 DOI: 10.1021/pr400787p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian IQGAP proteins all feature multiple ∼50 amino acid sequence repeats near their N-termini, and little is known about the function of these "Repeats". We have expressed and purified the Repeats from human IQGAP1 to identify binding partners. We used mass spectrometry to identify 42 mouse kidney proteins that associate with the IQGAP1 Repeats including the ERM proteins ezrin, radixin, and moesin. ERM proteins have an N-terminal FERM domain (4.1, ezrin, radixin, moesin) through which they bind to protein targets and phosphatidylinositol 4,5-bisphosphate (PIP2) and a C-terminal actin-binding domain and function to link the actin cytoskeleton to distinct locations on the cell cortex. Isothermal titration calorimetry (ITC) reveals that the IQGAP1 Repeats directly bind to the ezrin FERM domain, while no binding is seen for full-length "autoinhibited" ezrin or a version of full-length ezrin intended to mimic the activated protein. ITC also indicates that the ezrin FERM domain binds to the Repeats from IQGAP2 but not the Repeats from IQGAP3. We conclude that IQGAP1 and IQGAP2 are positioned at the cell cortex by ERM proteins. We propose that the IQGAP3 Repeats may likewise bind to FERM domains for signaling purposes.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center , 1901 Perdido Street, New Orleans, Louisiana 70112, United States
| | | | | |
Collapse
|
72
|
Wu Y, Chen YC. Structure and function of IQ-domain GTPase-activating protein 1 and its association with tumor progression (Review). Biomed Rep 2013; 2:3-6. [PMID: 24649059 DOI: 10.3892/br.2013.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022] Open
Abstract
IQ-domain GTPase-activating proteins (IQGAPs) are evolutionary conserved multidomain proteins that are found in numerous organisms, from yeast to mammals. To date, three IQGAP proteins have been identified in humans, of which IQGAP1 is the best characterized. As a scaffold protein, IQGAP1 contains multiple protein-interacting domains, which modulate binding to target proteins. Recent mounting studies demonstrated a role for IQGAP1 in tumor progression, supported by the altered expression and subcellular distribution of IQGAP1 in tumors. The contribution of IQGAP1 to tumor progression appears to involve a complex interplay of cell functions by integrating diverse signal transduction pathways and coordinating activities, such as cell adhesion, migration, invasion, proliferation and angiogenesis.
Collapse
Affiliation(s)
- Yan Wu
- School of Medical Science and Medical Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yong-Chang Chen
- School of Medical Science and Medical Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
73
|
Tarone G, Sbroggiò M, Brancaccio M. Key role of ERK1/2 molecular scaffolds in heart pathology. Cell Mol Life Sci 2013; 70:4047-54. [PMID: 23532408 PMCID: PMC11114054 DOI: 10.1007/s00018-013-1321-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
The ability of cardiomyocytes to detect mechanical and humoral stimuli is critical for adaptation of the myocardium in response to new conditions and for sustaining the increased workload during stress. While certain stimuli mediate a beneficial adaptation to stress conditions, others result in maladaptive remodelling, ultimately leading to heart failure. Specific signalling pathways activating either adaptive or maladaptive cardiac remodelling have been identified. Paradoxically, however, in a number of cases, the transduction pathways involved in such opposing responses engage the same signalling proteins. A notable example is the Raf-MEK1/2-ERK1/2 signalling pathway that can control both adaptive and maladaptive remodelling. ERK1/2 signalling requires a signalosome complex where a scaffold protein drives the assembly of these three kinases into a linear pathway to facilitate their sequential phosphorylation, ultimately targeting specific effector molecules. Interestingly, a number of different Raf-MEK1/2-ERK1/2 scaffold proteins have been identified, and their role in determining the adaptive or maladaptive cardiac remodelling is a promising field of investigation for the development of therapeutic strategies capable of selectively potentiating the adaptive response.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, via Nizza, 52, 10126, Turin, Italy,
| | | | | |
Collapse
|
74
|
Ma Y, Jin Z, Huang J, Zhou S, Ye H, Jiang S, Yu K. IQGAP1 plays an important role in the cell proliferation of multiple myeloma via the MAP kinase (ERK) pathway. Oncol Rep 2013; 30:3032-8. [PMID: 24101133 DOI: 10.3892/or.2013.2785] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/23/2013] [Indexed: 11/05/2022] Open
Abstract
The present study was designed to explore the role of IQ motif-containing GTPase activating protein 1 (IQGAP1) in the cell proliferation of multiple myeloma (MM) via the MAP kinase (ERK) pathway. Reverse transcription‑polymerase chain reaction (RT-PCR) and western blot analysis were carried out to evaluate the expression of IQGAP1 in RPMI8226, U266 and KM3 cell lines and in primary MM cells from 4 MM patients. shRNA-expressing plasmids were used in RPMI8226 cells to knock down IQGAP1 and an MTT assay was used to examine the proliferative activity of the RPMI8226-shIQGAP1 (clone 1), RPMI8226-shRNA negative and untransfected RPMI8226 cells in subgroups stimulated with VEGF/IL-6 or without. Western blot analyses were then performed to examine the protein levels of p-ERK1/2, ERK1/2, AKT, p-AKT, STAT3, p-STAT3 in the RPMI8226-shIQGAP1 (clone 1), RPMI8226-shRNA negative and untransfected RPMI8226 cells. Co-immunoprecipitation was used to verify the interaction between the IQGAP1 scaffold and the MAP ERK kinase. We found that IQGAP1 was overexpressed in the human myeloma cell lines and in the patient MM cells. The proliferation rate in the RPMI8226 cells was decreased when IQGAP1 was knocked down with shRNA. IQGAP1 was found to affect RPMI8226 cell proliferation by regulation of the MAP kinase (ERK1/2) pathway; IQGAP1 scaffold-MAP kinase (ERK) interaction was noted in the human myeloma RPMI8226 cell lines. In conclusion, IQGAP1 plays an important role in the cell proliferation of MM via the MAP kinase (ERK) pathway.
Collapse
Affiliation(s)
- Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | | | | | | | | | | | | |
Collapse
|
75
|
Wang XX, Li XZ, Zhai LQ, Liu ZR, Chen XJ, Pei Y. Overexpression of IQGAP1 in human pancreatic cancer. Hepatobiliary Pancreat Dis Int 2013; 12:540-5. [PMID: 24103286 DOI: 10.1016/s1499-3872(13)60085-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic cancer is a highly aggressive malignant tumor with the lowest survival rate. A better understanding of the molecular mechanisms which contribute to pancreatic cancer occurrence and progression will aid in the development of new approaches to the early diagnosis, prevention, and treatment of this deadly disease. The scaffold protein IQGAP1 shows elevated levels in a variety of cancer types. Currently, we investigated whether or not IQGAP1 is also overexpressed in pancreatic cancer. METHODS IQGAP1 expression was examined in pancreatic cancer and normal tissues adjacent to cancerous tissues (adjacent tissues) by Western blotting and real-time RT-PCR as well as in paraffin sections of tissue microarray by immunohistochemistry. The correlations between IQGAP1 expression and various clinicopathological characteristics were analyzed. RESULTS Western blotting and real-time RT-PCR revealed that the levels of IQGAP1 protein and mRNA expression in pancreatic cancer tissues were significantly increased compared with adjacent tissues. Immunohistochemistry analysis on tissue microarray showed that IQGAP1 protein expression was significantly higher in pancreatic cancer (80.0%, 48/60) compared with adjacent tissues (18.3%, 11/60) (P<0.001). Moreover, overexpression of IQGAP1 was shown to be associated with the grades of tumor differentiation (P<0.05). CONCLUSION The overexpression of IQGAP1 may play an important role in pancreatic cancer occurrence and progression, and IQGAP1 may serve as a novel molecular target for the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | | | |
Collapse
|
76
|
Vetterkind S, Poythress RH, Lin QQ, Morgan KG. Hierarchical scaffolding of an ERK1/2 activation pathway. Cell Commun Signal 2013; 11:65. [PMID: 23987506 PMCID: PMC3846746 DOI: 10.1186/1478-811x-11-65] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022] Open
Abstract
Background Scaffold proteins modulate cellular signaling by facilitating assembly of specific signaling pathways. However, there is at present little information if and how scaffold proteins functionally interact with each other. Results Here, we show that two scaffold proteins, caveolin-1 and IQGAP1, are required for phosphorylation of the actin associated pool of extracellular signal regulated kinase 1 and 2 (ERK1/2) in response to protein kinase C activation. We show by immunofluorescence and proximity ligation assays, that IQGAP1 tethers ERK1/2 to actin filaments. Moreover, siRNA experiments demonstrate that IQGAP1 is required for activation of actin-bound ERK1/2. Caveolin-1 is also necessary for phosphorylation of actin-bound ERK1/2 in response to protein kinase C, but is dispensible for ERK1/2 association with actin. Simultaneous knock down of caveolin-1 and IQGAP1 decreases total phorbol ester-induced ERK1/2 phosphorylation to the same degree as single knock down of either caveolin-1 or IQGAP1, indicating that caveolin-1 and IQGAP1 operate in the same ERK activation pathway. We further show that caveolin-1 knock down, but not IQGAP1 knock down, reduces C-Raf phosphorylation in response to phorbol ester stimulation. Conclusions Based on our data, we suggest that caveolin-1 and IQGAP1 assemble distinct signaling modules, which are then linked in a hierarchical arrangement to generate a functional ERK1/2 activation pathway.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
77
|
Choi S, Thapa N, Hedman AC, Li Z, Sacks DB, Anderson RA. IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration. EMBO J 2013; 32:2617-30. [PMID: 23982733 DOI: 10.1038/emboj.2013.191] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/29/2013] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylinositol 4,5 bisphosphate (PIP₂) is a key lipid messenger for regulation of cell migration. PIP₂ modulates many effectors, but the specificity of PIP₂ signalling can be defined by interactions of PIP₂-generating enzymes with PIP₂ effectors. Here, we show that type Iγ phosphatidylinositol 4-phosphate 5-kinase (PIPKIγ) interacts with the cytoskeleton regulator, IQGAP1, and modulates IQGAP1 function in migration. We reveal that PIPKIγ is required for IQGAP1 recruitment to the leading edge membrane in response to integrin or growth factor receptor activation. Moreover, IQGAP1 is a PIP₂ effector that directly binds PIP₂ through a polybasic motif and PIP₂ binding activates IQGAP1, facilitating actin polymerization. IQGAP1 mutants that lack PIPKIγ or PIP₂ binding lose the ability to control directional cell migration. Collectively, these data reveal a synergy between PIPKIγ and IQGAP1 in the control of cell migration.
Collapse
Affiliation(s)
- Suyong Choi
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
78
|
Cheung KL, Lee JH, Shu L, Kim JH, Sacks DB, Kong ANT. The Ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway. J Biol Chem 2013; 288:22378-86. [PMID: 23788642 DOI: 10.1074/jbc.m112.444182] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new Nrf2 interaction partner that we have published previously, was found to modulate MEK-ERK-mediated Nrf2 activation and induction of phase II detoxifying/antioxidant genes. Nrf2 binds directly to the IQ domain (amino acids 699-905) of IQGAP1. Knockdown of IQGAP1 significantly attenuated phenethyl isothiocyanate- or MEK-mediated activation of the MEK-ERK-Nrf2 pathway. Knockdown of IQGAP1 also attenuated MEK-mediated increased stability of Nrf2, which in turn was associated with a decrease in the nuclear translocation of Nrf2 and a decrease in the expression of phase II detoxifying/antioxidant genes. In the aggregate, these results suggest that IQGAP1 may play an important role in the MEK-ERK-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ka Lung Cheung
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
79
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
80
|
Deswal S, Meyer A, Fiala GJ, Eisenhardt AE, Schmitt LC, Salek M, Brummer T, Acuto O, Schamel WWA. Kidins220/ARMS Associates with B-Raf and the TCR, Promoting Sustained Erk Signaling in T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:1927-35. [DOI: 10.4049/jimmunol.1200653] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
81
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
82
|
Abstract
PURPOSE The aim of this study was to characterize the clinical phenotype of patients with tetrasomy of the distal 15q chromosome in the form of a neocentric marker chromosome and to evaluate whether the phenotype represents a new clinical syndrome or is a phenocopy of Shprintzen-Goldberg syndrome. METHODS We carried out comprehensive clinical evaluation of four patients who were identified with a supernumerary marker chromosome. The marker chromosome was characterized by G-banding, fluorescence in situ hybridization, single nucleotide polymorphism oligonucleotide microarray analysis, and immunofluorescence with antibodies to centromere protein C. RESULTS The marker chromosomes were categorized as being neocentric with all showing tetrasomy for regions distal to 15q25 and the common region of overlap being 15q26→qter. CONCLUSION Tetrasomy of 15q26 likely results in a distinct syndrome as the patients with tetrasomy 15q26 share a strikingly more consistent phenotype than do the patients with Shprintzen-Goldberg syndrome, who show remarkable clinical variation.
Collapse
|
83
|
Malarkannan S, Awasthi A, Rajasekaran K, Kumar P, Schuldt KM, Bartoszek A, Manoharan N, Goldner NK, Umhoefer CM, Thakar MS. IQGAP1: a regulator of intracellular spacetime relativity. THE JOURNAL OF IMMUNOLOGY 2012; 188:2057-63. [PMID: 22345702 DOI: 10.4049/jimmunol.1102439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.
Collapse
Affiliation(s)
- Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Gorman JA, Babich A, Dick CJ, Schoon RA, Koenig A, Gomez TS, Burkhardt JK, Billadeau DD. The cytoskeletal adaptor protein IQGAP1 regulates TCR-mediated signaling and filamentous actin dynamics. THE JOURNAL OF IMMUNOLOGY 2012; 188:6135-44. [PMID: 22573807 DOI: 10.4049/jimmunol.1103487] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Ras GTPase-activating-like protein IQGAP1 is a multimodular scaffold that controls signaling and cytoskeletal regulation in fibroblasts and epithelial cells. However, the functional role of IQGAP1 in T cell development, activation, and cytoskeletal regulation has not been investigated. In this study, we show that IQGAP1 is dispensable for thymocyte development as well as microtubule organizing center polarization and cytolytic function in CD8(+) T cells. However, IQGAP1-deficient CD8(+) T cells as well as Jurkat T cells suppressed for IQGAP1 were hyperresponsive, displaying increased IL-2 and IFN-γ production, heightened LCK activation, and augmented global phosphorylation kinetics after TCR ligation. In addition, IQGAP1-deficient T cells exhibited increased TCR-mediated F-actin assembly and amplified F-actin velocities during spreading. Moreover, we found that discrete regions of IQGAP1 regulated cellular activation and F-actin accumulation. Taken together, our data suggest that IQGAP1 acts as a dual negative regulator in T cells, limiting both TCR-mediated activation kinetics and F-actin dynamics via distinct mechanisms.
Collapse
Affiliation(s)
- Jacquelyn A Gorman
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1122] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
86
|
Yin N, Shi J, Wang D, Tong T, Wang M, Fan F, Zhan Q. IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer. Biochem Biophys Res Commun 2012; 421:64-9. [PMID: 22483753 DOI: 10.1016/j.bbrc.2012.03.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 11/19/2022]
Abstract
IQGAP1, a ubiquitously expressed scaffold protein, has been identified in a wide range of organisms. It participates in multiple aspects of cellular events by binding to and regulating numerous interacting proteins. In our present study, we identified a new IQGAP1 binding protein named Aurora-A which is an oncogenic protein and overexpressed in various types of human tumors. In vitro analysis with GST-Aurora-A fusion proteins showed a physical interaction between Aurora-A and IQGAP1. Moreover, the binding also occurred in HeLa cells as endogenous Aurora-A co-immunoprecipitated with IQGAP1 from the cell lysates. Overexpression of IQGAP1 resulted in an elevation of both expression and activity of Aurora-A kinase. Endogenous IQGAP1 knockdown by siRNA promoted Aurora-A degradation whereas IQGAP1 overexpression enhanced the stability of Aurora-A. Additionally, we documented that the IQGAP1-induced cell proliferation was suppressed by knocking down Aurora-A expression. Taken together, our results showed an unidentified relationship between Aurora-A and IQGAP1, and provided a new insight into the molecular mechanism by which IQGAP1 played a regulatory role in cancer.
Collapse
Affiliation(s)
- Ning Yin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Pan Jia Yuan Nan Li, Beijing 100021, China
| | | | | | | | | | | | | |
Collapse
|
87
|
Elliott SF, Allen G, Timson DJ. Biochemical analysis of the interactions of IQGAP1 C-terminal domain with CDC42. World J Biol Chem 2012; 3:53-60. [PMID: 22451851 PMCID: PMC3312201 DOI: 10.4331/wjbc.v3.i3.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To understand the interaction of human IQGAP1 and CDC42, especially the effects of phosphorylation and a cancer-associated mutation.
METHODS: Recombinant CDC42 and a novel C-terminal fragment of IQGAP1 were expressed in, and purified from, Escherichia coli. Site directed mutagenesis was used to create coding sequences for three phosphomimicking variants (S1441E, S1443D and S1441E/S1443D) and to recapitulate a cancer-associated mutation (M1231I). These variant proteins were also expressed and purified. Protein-protein crosslinking using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was used to investigate interactions between the C-terminal fragment and CDC42. These interactions were quantified using surface plasmon resonance measurements. Molecular modelling was employed to make predictions about changes to the structure and flexibility of the protein which occur in the cancer-associated variant.
RESULTS: The novel, C-terminal region of human IQGAP1 (residues 877-1558) is soluble following expression and purification. It is also capable of binding to CDC42, as judged by crosslinking experiments. Interaction appears to be strongest in the presence of added GTP. The three phosphomimicking mutants had different affinities for CDC42. S1441E had an approximately 200-fold reduction in affinity compared to wild type. This was caused largely by a dramatic reduction in the association rate constant. In contrast, both S1443D and the double variant S1441E/S1443D had similar affinities to the wild type. The cancer-associated variant, M1231I, also had a similar affinity to wild type. However, in the case of this variant, both the association and dissociation rate constants were reduced approximately 10-fold. Molecular modelling of the M1231I variant, based on the published crystal structure of part of the C-terminal region, revealed no gross structural changes compared to wild type (root mean square deviation of 0.564 Å over 5556 equivalent atoms). However, predictions of the flexibility of the polypeptide backbone suggested that some regions of the variant protein had greatly increased rigidity compared to wild type. One such region is a loop linking the proposed CDC42 binding site with the helix containing the altered residue. It is suggested that this increase in rigidity is responsible for the observed changes in association and dissociation rate constants.
CONCLUSION: The consequences of introducing negative charge at Ser-1441 or Ser-1443 in IQGAP1 are different. The cancer-associated variant M1231I exerts its effects partly by rigidifying the protein.
Collapse
Affiliation(s)
- Sarah F Elliott
- Sarah F Elliott, George Allen, David J Timson, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, United Kingdom
| | | | | |
Collapse
|
88
|
Sbroggiò M, Bertero A, Velasco S, Fusella F, De Blasio E, Bahou WF, Silengo L, Turco E, Brancaccio M, Tarone G. ERK1/2 activation in heart is controlled by melusin, focal adhesion kinase and the scaffold protein IQGAP1. J Cell Sci 2012; 124:3515-24. [PMID: 22010199 DOI: 10.1242/jcs.091140] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) signalling is a key pathway in cardiomyocyte hypertrophy and survival in response to many different stress stimuli. We have previously characterized melusin as a muscle-specific chaperone protein capable of ERK1/2 signalling activation in the heart. Here, we show that in the heart, melusin forms a supramolecular complex with the proto-oncogene c-Raf, MEK1/2 (also known as MAPKK1/2) and ERK1/2 and that melusin-bound mitogen-activated protein kinases (MAPKs) are activated by pressure overload. Moreover, we demonstrate that both focal adhesion kinase (FAK) and IQ motif-containing GTPase activating protein 1 (IQGAP1), a scaffold protein for the ERK1/2 signalling cascade, are part of the melusin complex and are required for ERK1/2 activation in response to pressure overload. Finally, analysis of isolated neonatal cardiomyocytes indicates that both FAK and IQGAP1 regulate melusin-dependent cardiomyocyte hypertrophy and survival through ERK1/2 activation.
Collapse
Affiliation(s)
- Mauro Sbroggiò
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Molecular Biotechnology Center, via Nizza, 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
ZONG CHUANYUE, ZHANG XIANLONG, XIE YING, CHENG JIAWEN. Transforming growth factor-β inhibits IQ motif containing guanosine triphosphatase activating protein 1 expression in lung fibroblasts via the nuclear factor-κB signaling pathway. Mol Med Rep 2012; 12:442-8. [DOI: 10.3892/mmr.2015.3353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/26/2015] [Indexed: 11/06/2022] Open
|
90
|
Salmonella enterica serotype Typhimurium usurps the scaffold protein IQGAP1 to manipulate Rac1 and MAPK signalling. Biochem J 2012; 440:309-18. [PMID: 21851337 DOI: 10.1042/bj20110419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salmonella enterica serotype Typhimurium invades eukaryotic cells by re-arranging the host-cell cytoskeleton. However, the precise mechanisms by which Salmonella induces cytoskeletal changes remain undefined. IQGAP1 (IQ motif-containing GTPase-activating protein 1) is a scaffold protein that binds multiple proteins including actin, the Rho GTPases Rac1 and Cdc42 (cell division cycle 42), and components of the MAPK (mitogen-activated protein kinase) pathway. We have shown previously that optimal invasion of Salmonella into HeLa cells requires IQGAP1. In the present paper, we use IQGAP1-null MEFs (mouse embryonic fibroblasts) and selected well-characterized IQGAP1 mutant constructs to dissect the molecular determinants of Salmonella invasion. Knockout of IQGAP1 expression reduced Salmonella invasion into MEFs by 75%. Reconstituting IQGAP1-null MEFs with wild-type IQGAP1 completely rescued invasion. By contrast, reconstituting IQGAP1-null cells with mutant IQGAP1 constructs that specifically lack binding to either Cdc42 and Rac1 (termed IQGAP1ΔMK24), actin, MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase] or ERK only partially restored Salmonella entry. Cell-permeant inhibitors of Rac1 activation or MAPK signalling reduced Salmonella invasion into control cells by 50%, but had no effect on bacterial entry into IQGAP1-null MEFs. Importantly, the ability of IQGAP1ΔMK24 to promote Salmonella invasion into IQGAP1-null cells was abrogated by chemical inhibition of MAPK signalling. Collectively, these results imply that the scaffolding function of IQGAP1, which integrates Rac1 and MAPK signalling, is usurped by Salmonella to invade fibroblasts and suggest that IQGAP1 may be a potential therapeutic target for Salmonella pathogenesis.
Collapse
|
91
|
White CD, Erdemir HH, Sacks DB. IQGAP1 and its binding proteins control diverse biological functions. Cell Signal 2011; 24:826-34. [PMID: 22182509 DOI: 10.1016/j.cellsig.2011.12.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/04/2011] [Indexed: 12/26/2022]
Abstract
IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.
Collapse
Affiliation(s)
- Colin D White
- Department of Pathology, Beth Israel Deaconess Medical Centre and Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
92
|
Wortzel I, Seger R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer 2011; 2:195-209. [PMID: 21779493 DOI: 10.1177/1947601911407328] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is a central signaling pathway that regulates a wide variety of stimulated cellular processes, including mainly proliferation, differentiation, and survival, but apoptosis and stress response as well. The ability of this linear cascade to induce so many distinct and even opposing effects after various stimulations raises the question as to how the signaling specificity of the cascade is regulated. Over the past years, several specificity-mediating mechanisms have been elucidated, including temporal regulation, scaffolding interactions, crosstalks with other signaling components, substrate competition, and multiple components in each tier of the cascade. In addition, spatial regulation of various components of the cascade is probably one of the main ways by which signals can be directed to some downstream targets and not to others. In this review, we describe first the components of the ERK1/2 cascade and their mode of regulation by kinases, phosphatases, and scaffold proteins. In the second part, we focus on the role of MEK1/2 and ERK1/2 compartmentalization in the nucleus, mitochondria, endosomes, plasma membrane, cytoskeleton, and Golgi apparatus. We explain that this spatial distribution may direct ERK1/2 signals to regulate the organelles' activities. However, it can also direct the activity of the cascade's components to the outer surface of the organelles in order to bring them to close proximity to specific cytoplasmic targets. We conclude that the dynamic localization of the ERK1/2 cascade components is an important regulatory mechanism in determining the signaling specificity of the cascade, and its understanding should shed a new light on the understanding of many stimulus-dependent processes.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
93
|
Abstract
General or brain-region-specific decreases in spine number or morphology accompany major neuropsychiatric disorders. It is unclear, however, whether changes in spine density are specific for an individual mental process or disorder and, if so, which molecules confer such specificity. Here we identify the scaffolding protein IQGAP1 as a key regulator of dendritic spine number with a specific role in cognitive but not emotional or motivational processes. We show that IQGAP1 is an important component of NMDAR multiprotein complexes and functionally interacts with the NR2A subunits and the extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling pathway. Mice lacking the IQGAP1 gene exhibited significantly lower levels of surface NR2A and impaired ERK activity compared to their wild-type littermates. Accordingly, primary hippocampal cultures of IQGAP1(-/-) neurons exhibited reduced surface expression of NR2A and disrupted ERK signaling in response to NR2A-dependent NMDAR stimulation. These molecular changes were accompanied by region-specific reductions of dendritic spine density in key brain areas involved in cognition, emotion, and motivation. IQGAP1 knock-outs exhibited marked long-term memory deficits accompanied by impaired hippocampal long-term potentiation (LTP) in a weak cellular learning model; in contrast, LTP was unaffected when induced with stronger stimulation paradigms. Anxiety- and depression-like behavior remained intact. On the basis of these findings, we propose that a dysfunctional IQGAP1 gene contributes to the cognitive deficits in brain disorders characterized by fewer dendritic spines.
Collapse
|
94
|
Pelikan-Conchaudron A, Le Clainche C, Didry D, Carlier MF. The IQGAP1 protein is a calmodulin-regulated barbed end capper of actin filaments: possible implications in its function in cell migration. J Biol Chem 2011; 286:35119-28. [PMID: 21730051 DOI: 10.1074/jbc.m111.258772] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IQGAP1 is a large modular protein that displays multiple partnership and is thought to act as a scaffold in coupling cell signaling to the actin and microtubule cytoskeletons in cell migration, adhesion, and cytokinesis. However the molecular mechanisms underlying the activities of IQGAP1 are poorly understood in part because of its large size, poor solubility and lack of functional assays to challenge biochemical properties in various contexts. We have purified bacterially expressed recombinant human IQGAP1. The protein binds Cdc42, Rac1, and the CRIB domain of N-WASP in a calmodulin-sensitive fashion. We further show that in addition to bundling of filaments via a single N-terminal calponin-homology domain, IQGAP1 actually regulates actin assembly. It caps barbed ends, with a higher affinity for ADP-bound terminal subunits (K(B) = 4 nM). The barbed end capping activity is inhibited by calmodulin, consistent with calmodulin binding to IQGAP1 with a K(C) of 40 nm, both in the absence and presence of Ca(2+) ions. The barbed end capping activity resides in the C-terminal half of IQGAP1. It is possible that the capping activity of IQGAP1 accounts for its stimulation of cell migration. We further find that bacterially expressed recombinant IQGAP1 fragments easily co-purify with nucleic acids that turn out to activate N-WASP protein to branch filaments with Arp2/3 complex. The present results open perspectives for tackling the function of IQGAP1 in more complex reconstituted systems.
Collapse
Affiliation(s)
- Andrea Pelikan-Conchaudron
- Cytoskeleton Dynamics and Motility group, UPR 3289, Laboratoire d'Enzymologie et Biochimie Structurale, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
95
|
White CD, Li Z, Dillon DA, Sacks DB. IQGAP1 protein binds human epidermal growth factor receptor 2 (HER2) and modulates trastuzumab resistance. J Biol Chem 2011; 286:29734-47. [PMID: 21724847 DOI: 10.1074/jbc.m111.220939] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20-25% of breast cancers. Increased HER2 expression is an adverse prognostic factor and correlates with decreased patient survival. HER2-positive (HER2(+)) breast cancer is treated with trastuzumab. Unfortunately, some patients are intrinsically refractory to therapy, and many who do respond initially become resistant within 1 year. Understanding the molecular mechanisms underlying HER2 signaling and trastuzumab resistance is essential to reduce breast cancer mortality. IQGAP1 is a ubiquitously expressed scaffold protein that contains multiple protein interaction domains. By regulating its binding partners IQGAP1 integrates signaling pathways, several of which contribute to breast tumorigenesis. We show here that IQGAP1 is overexpressed in HER2(+) breast cancer tissue and binds directly to HER2. Knockdown of IQGAP1 decreases HER2 expression, phosphorylation, signaling, and HER2-stimulated cell proliferation, effects that are all reversed by reconstituting cells with IQGAP1. Reducing IQGAP1 up-regulates p27, and blocking this increase attenuates the growth inhibitory effects of IQGAP1 knockdown. Importantly, IQGAP1 is overexpressed in trastuzumab-resistant breast epithelial cells, and reducing IQGAP1 both augments the inhibitory effects of trastuzumab and restores trastuzumab sensitivity to trastuzumab-resistant SkBR3 cells. These data suggest that inhibiting IQGAP1 function may represent a rational strategy for treating HER2(+) breast carcinoma.
Collapse
Affiliation(s)
- Colin D White
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
96
|
Karki P, Li X, Schrama D, Fliegel L. B-Raf associates with and activates the NHE1 isoform of the Na+/H+ exchanger. J Biol Chem 2011; 286:13096-105. [PMID: 21345796 PMCID: PMC3075656 DOI: 10.1074/jbc.m110.165134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 02/03/2011] [Indexed: 01/03/2023] Open
Abstract
The serine/threonine kinase B-Raf is the second most frequently occurring human oncogene after Ras. Mutations of B-Raf occur with the highest incidences in melanoma, and the most common mutant, V600E, renders B-Raf constitutively active. The sodium proton exchanger isoform 1 (NHE1) is a ubiquitously expressed plasma membrane protein responsible for regulating intracellular pH, cell volume, cell migration, and proliferation. A screen of protein kinases that bind to NHE1 revealed that B-Raf bound to the cytosolic regulatory tail of NHE1. Immunoprecipitation of NHE1 from HeLa and HEK cells confirmed the association of B-Raf with NHE1 in vivo. The expressed and purified C-terminal 182 amino acids of the NHE1 protein were also shown to associate with B-Raf protein in vitro. Because treatment with the kinase inhibitor sorafenib decreased NHE1 activity in HeLa and HEK cells, we examined the role of B-Raf in regulating NHE1 in malignant melanoma cells. Melanoma cells with the B-Raf(V600E) mutation demonstrated increased resting intracellular pH that was dependent on elevated NHE1 activity. NHE1 activity after an acute acid load was also elevated in these cell lines. Moreover, inhibition of B-Raf activity by either sorafenib, PLX4720, or siRNA reduction of B-Raf levels abolished ERK phosphorylation and decreased NHE1 activity. These results demonstrate that B-Raf associates with and stimulates NHE1 activity and that B-Raf(V600E) also increases NHE1 activity that raises intracellular pH.
Collapse
Affiliation(s)
- Pratap Karki
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Xiuju Li
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - David Schrama
- the Division of Dermatology, Medical University of Graz, 8036 Graz, Austria
| | - Larry Fliegel
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| |
Collapse
|
97
|
Sbroggiò M, Carnevale D, Bertero A, Cifelli G, De Blasio E, Mascio G, Hirsch E, Bahou WF, Turco E, Silengo L, Brancaccio M, Lembo G, Tarone G. IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload. Cardiovasc Res 2011; 91:456-64. [PMID: 21493702 DOI: 10.1093/cvr/cvr103] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS The Raf-MEK1/2-ERK1/2 (ERK1/2-extracellular signal-regulated kinases 1/2) signalling cascade is crucial in triggering cardiac responses to different stress stimuli. Scaffold proteins are key elements in coordinating signalling molecules for their appropriate spatiotemporal activation. Here, we investigated the role of IQ motif-containing GTPase-activating protein 1 (IQGAP1), a scaffold for the ERK1/2 cascade, in heart function and remodelling in response to pressure overload. METHODS AND RESULTS IQGAP1-null mice have unaltered basal heart function. When subjected to pressure overload, IQGAP1-null mice initially develop a compensatory hypertrophy indistinguishable from that of wild-type (WT) mice. However, upon a prolonged stimulus, the hypertrophic response develops towards a thinning of left ventricular walls, chamber dilation, and a decrease in contractility, in an accelerated fashion compared with WT mice. This unfavourable cardiac remodelling is characterized by blunted reactivation of the foetal gene programme, impaired cardiomyocyte hypertrophy, and increased cardiomyocyte apoptosis. Analysis of signalling pathways revealed two temporally distinct waves of both ERK1/2 and AKT phosphorylation peaking, respectively, at 10 min and 4 days after aortic banding in WT hearts. IQGAP1-null mice show strongly impaired phosphorylation of MEK1/2-ERK1/2 and AKT following 4 days of pressure overload, but normal activation of these kinases after 10 min. Pull-down experiments indicated that IQGAP1 is able to bind the three components of the ERK cascade, namely c-Raf, MEK1/2, and ERK1/2, as well as AKT in the heart. CONCLUSION These data demonstrate, for the first time, a key role for the scaffold protein IQGAP1 in integrating hypertrophy and survival signals in the heart and regulating long-term left ventricle remodelling upon pressure overload.
Collapse
Affiliation(s)
- Mauro Sbroggiò
- Dipartimento di Genetica, Biologia e Biochimica, Molecular Biotechnology Center, Università di Torino, via Nizza 52, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
99
|
McNulty DE, Li Z, White CD, Sacks DB, Annan RS. MAPK scaffold IQGAP1 binds the EGF receptor and modulates its activation. J Biol Chem 2011; 286:15010-21. [PMID: 21349850 DOI: 10.1074/jbc.m111.227694] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular responses produced by EGF are mediated through the receptor (EGFR) and by various enzymes and scaffolds. Recent studies document IQGAP1 as a scaffold for the MAPK cascade, binding directly to B-Raf, MEK, and ERK and regulating their activation in response to EGF. We previously showed that EGF is unable to activate B-Raf in cells lacking IQGAP1. However, the mechanism by which IQGAP1 links B-Raf to EGFR was unknown. Here we report that endogenous EGFR and IQGAP1 co-localize and co-immunoprecipitate in cells. EGF has no effect on the association, but Ca(2+) attenuates binding. In vitro analysis demonstrated a direct association mediated through the IQ and kinase domains of IQGAP1 and EGFR, respectively. Calmodulin disrupts this interaction. Using a mass spectrometry-based assay, we show that EGF induces phosphorylation of IQGAP1 Ser(1443), a residue known to be phosphorylated by PKC. This phosphorylation is eliminated by pharmacological inhibition of either EGFR or PKC and transfection with small interfering RNA directed against the PKCα isoform. In IQGAP1-null cells, EGF-stimulated tyrosine phosphorylation of EGFR is severely attenuated. Normal levels of autophosphorylation are restored by reconstituting wild type IQGAP1 and enhanced by an IQGAP1 S1443D mutant. Collectively, these data demonstrate a functional interaction between IQGAP1 and EGFR and suggest that IQGAP1 modulates EGFR activation.
Collapse
Affiliation(s)
- Dean E McNulty
- Proteomic and Biological Mass Spectrometry Laboratory, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | |
Collapse
|
100
|
Kim H, White CD, Sacks DB. IQGAP1 in microbial pathogenesis: Targeting the actin cytoskeleton. FEBS Lett 2011; 585:723-9. [PMID: 21295032 DOI: 10.1016/j.febslet.2011.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/18/2022]
Abstract
Microbial pathogens cause widespread morbidity and mortality. Central to the pathogens' virulence is manipulation of the host cell's cytoskeleton, which facilitates microbial invasion, multiplication, and avoidance of the innate immune response. IQGAP1 is a ubiquitously expressed scaffold protein that integrates diverse signaling cascades. Research has shown that IQGAP1 binds to and modulates the activity of multiple proteins that participate in bacterial invasion. Here, we review data that support a role for IQGAP1 in infectious disease via its ability to regulate the actin cytoskeleton. In addition, we explore other mechanisms by which IQGAP1 may be exploited by microbial pathogens.
Collapse
Affiliation(s)
- Hugh Kim
- Department of Translational Medicine, Brigham and Women's Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|