51
|
Park SA, Miller DS, Boorman ED. Protocol for building a cognitive map of structural knowledge in humans by integrating abstract relationships from separate experiences. STAR Protoc 2021; 2:100423. [PMID: 33870228 PMCID: PMC8044720 DOI: 10.1016/j.xpro.2021.100423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Humans are adept at learning the latent structure of the relationship between abstract concepts and can build a cognitive map from limited experiences. However, examining internal representations of the cognitive map is challenging because they are unobservable and differ across individuals. Here, we introduce a behavioral training protocol designed for human participants to implicitly build a map of two-dimensional social hierarchies while making a series of binary choices and analytic tools for measuring the internal representation of this structural knowledge. For complete details on the use and execution of this protocol, please refer to Park et al. (2020a, 2020b).
Collapse
Affiliation(s)
- Seongmin A. Park
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Douglas S. Miller
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Erie D. Boorman
- Center for Mind and Brain, University of California, Davis, Davis, CA, USA
- Department of Psychology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
52
|
Abstract
This review will explore the role of memory consolidation in speech-motor learning. Existing frameworks of speech-motor control account for the protracted time course of building the speech-motor representation. These perspectives converge on the speech-motor representation as a multimodal unit that is comprised of auditory, motor, and linguistic information. Less is known regarding the memory mechanisms that support the emergence of a generalized speech-motor unit from instances of speech production. Here, we consider the broader learning and memory consolidation literature and how it may apply to speech-motor learning. We discuss findings from relevant domains on the stabilization, enhancement, and generalization of learned information. Based on this literature, we provide our predictions for the division of labor between conscious and unconscious memory systems in speech-motor learning, and the subsequent effects of time and sleep to memory consolidation. We identify both the methodological challenges, as well as the practical importance, of advancing this work empirically. This discussion provides a foundation for building a memory-based framework for speech-motor learning.
Collapse
|
53
|
Melnattur K, Kirszenblat L, Morgan E, Militchin V, Sakran B, English D, Patel R, Chan D, van Swinderen B, Shaw PJ. A conserved role for sleep in supporting Spatial Learning in Drosophila. Sleep 2021; 44:5909488. [PMID: 32959053 DOI: 10.1093/sleep/zsaa197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep loss and aging impair hippocampus-dependent Spatial Learning in mammalian systems. Here we use the fly Drosophila melanogaster to investigate the relationship between sleep and Spatial Learning in healthy and impaired flies. The Spatial Learning assay is modeled after the Morris Water Maze. The assay uses a "thermal maze" consisting of a 5 × 5 grid of Peltier plates maintained at 36-37°C and a visual panorama. The first trial begins when a single tile that is associated with a specific visual cue is cooled to 25°C. For subsequent trials, the cold tile is heated, the visual panorama is rotated and the flies must find the new cold tile by remembering its association with the visual cue. Significant learning was observed with two different wild-type strains-Cs and 2U, validating our design. Sleep deprivation prior to training impaired Spatial Learning. Learning was also impaired in the classic learning mutant rutabaga (rut); enhancing sleep restored learning to rut mutants. Further, we found that flies exhibited a dramatic age-dependent cognitive decline in Spatial Learning starting at 20-24 days of age. These impairments could be reversed by enhancing sleep. Finally, we find that Spatial Learning requires dopaminergic signaling and that enhancing dopaminergic signaling in aged flies restored learning. Our results are consistent with the impairments seen in rodents and humans. These results thus demonstrate a critical conserved role for sleep in supporting Spatial Learning, and suggest potential avenues for therapeutic intervention during aging.
Collapse
Affiliation(s)
- Krishna Melnattur
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Ellen Morgan
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Valentin Militchin
- Department of Otolaryngology, Washington University School of Medicine, St Louis, MO
| | - Blake Sakran
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Denis English
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Rushi Patel
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Dorothy Chan
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
54
|
Sleep reduces the semantic coherence of memory recall: An application of latent semantic analysis to investigate memory reconstruction. Psychon Bull Rev 2021; 28:1336-1343. [PMID: 33835404 DOI: 10.3758/s13423-021-01919-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 11/08/2022]
Abstract
Sleep is thought to help consolidate hippocampus-dependent memories by reactivating previously encoded neural representations, promoting both quantitative and qualitative changes in memory representations. However, the qualitative nature of changes to memory representations induced by sleep remains largely uncharacterized. In this study, we investigated how memories are reconstructed by hypothesizing that semantic coherence, defined as conceptual relatedness between statements of free-recall texts and quantified using latent semantic analysis (LSA), is affected by post-encoding sleep. Short naturalistic videos of events featuring six animals were presented to 115 participants who were randomly assigned to either 12- or 24-h delay groups featuring sleep or wakefulness. Participants' free-recall responses were analyzed to test for an effect of sleep on semantic coherence between adjacent statements, and overall. The presence of sleep reduced both forms of semantic coherence, compared to wakefulness. This change was robust and not due to shifts in conciseness or repetitiveness with sleep. These findings support the notion that sleep-dependent consolidation qualitatively changes the features of reconstructed memory representations by reducing semantic coherence.
Collapse
|
55
|
Beijamini F, Valentin A, Jäger R, Born J, Diekelmann S. Sleep Facilitates Problem Solving With No Additional Gain Through Targeted Memory Reactivation. Front Behav Neurosci 2021; 15:645110. [PMID: 33746720 PMCID: PMC7965947 DOI: 10.3389/fnbeh.2021.645110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
According to the active systems consolidation theory, memories undergo reactivation during sleep that can give rise to qualitative changes of the representations. These changes may generate new knowledge such as gaining insight into solutions for problem solving. targeted memory reactivation (TMR) uses learning-associated cues, such as sounds or odors, which have been shown to improve memory consolidation when re-applied during sleep. Here we tested whether TMR during slow wave sleep (SWS) and/or rapid eye movement (REM) sleep increases problem solving. Young healthy volunteers participated in one of two experiments. Experiment 1 tested the effect of natural sleep on problem solving. Subjects were trained in a video game-based problem solving task until being presented with a non-solved challenge. Followed by a ~10-h incubation interval filled with nocturnal sleep or daytime wakefulness, subjects were tested on the problem solving challenge again. Experiment 2 tested the effect of TMR on problem solving, with subjects receiving auditory TMR either during SWS (SWSstim), REM sleep (REMstim), or wakefulness (Wakestim). In Experiment 1, sleep improved problem solving, with 62% of subjects from the Sleep group solving the problem compared to 24% of the Wake group. Subjects with higher amounts of SWS in the Sleep group had a higher chance to solve the problem. In Experiment 2, TMR did not change the sleep effect on problem solving: 56 and 58% of subjects from the SWSstim and REMstim groups solved the problem compared to 57% from the Wakestim group. These findings indicate that sleep, and particularly SWS, facilitates problem solving, whereas this effect is not further increased by TMR.
Collapse
Affiliation(s)
- Felipe Beijamini
- Federal University of Fronteira Sul, Realeza, Brazil.,Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Anthony Valentin
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Roland Jäger
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
56
|
Drews HJ. Connecting sleep, the neurocognitive memory system, and Bourdieu's habitus concept: Is sleep a generative force of the habitus? JOURNAL FOR THE THEORY OF SOCIAL BEHAVIOUR 2021. [DOI: 10.1111/jtsb.12268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Henning Johannes Drews
- Department of Mental Health Norwegian University of Science and Technology Trondheim Norway
- Department of Sociology Christian‐Albrechts‐University Kiel Germany
- Department of Psychiatry and Psychotherapy Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
57
|
Effects of retrieval practice on tested and untested information: Cortico-hippocampal interactions and error-driven learning. PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Tompary A, Zhou W, Davachi L. Schematic memories develop quickly, but are not expressed unless necessary. Sci Rep 2020; 10:16968. [PMID: 33046766 PMCID: PMC7550328 DOI: 10.1038/s41598-020-73952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Episodic memory retrieval is increasingly influenced by schematic information as memories mature, but it is unclear whether this is due to the slow formation of schemas over time, or the slow forgetting of the episodes. To address this, we separately probed memory for newly learned schemas as well as their influence on episodic memory decisions. In this experiment, participants encoded images from two categories, with the location of images in each category drawn from a different spatial distribution. They could thus learn schemas of category locations by encoding specific episodes. We found that images that were more consistent with these distributions were more precisely retrieved, and this schematic influence increased over time. However, memory for the schema distribution, measured using generalization to novel images, also became less precise over time. This incongruity suggests that schemas form rapidly, but their influence on episodic retrieval is dictated by the need to bolster fading memory representations.
Collapse
Affiliation(s)
- Alexa Tompary
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - WenXi Zhou
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, 10027, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| |
Collapse
|
59
|
Barron HC, Reeve HM, Koolschijn RS, Perestenko PV, Shpektor A, Nili H, Rothaermel R, Campo-Urriza N, O'Reilly JX, Bannerman DM, Behrens TEJ, Dupret D. Neuronal Computation Underlying Inferential Reasoning in Humans and Mice. Cell 2020; 183:228-243.e21. [PMID: 32946810 PMCID: PMC7116148 DOI: 10.1016/j.cell.2020.08.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/10/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.
Collapse
Affiliation(s)
- Helen C Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Hayley M Reeve
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Anna Shpektor
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Hamed Nili
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Natalia Campo-Urriza
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jill X O'Reilly
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Experimental Psychology, University of Oxford, 15 Parks Road, Oxford OX1 3AQ, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, 15 Parks Road, Oxford OX1 3AQ, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| |
Collapse
|
60
|
McElroy T, Dickinson DL, Levin IP. Thinking about decisions: An integrative approach of person and task factors. JOURNAL OF BEHAVIORAL DECISION MAKING 2020. [DOI: 10.1002/bdm.2175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Todd McElroy
- Department of Psychology Florida Gulf Coast University Fort Myers FL USA
| | - David L. Dickinson
- Economics Department, CERPA (Center for Economic Research and Policy Analysis) Appalachian State University Boone NC USA
- IZA (Institute for the Study of Labor) Bonn Germany
- ESI (Economic Science Institute) Chapman University Orange CA USA
| | - Irwin P. Levin
- Department of Psychology University of Iowa Iowa City IA USA
| |
Collapse
|
61
|
Overnight sleep benefits both neutral and negative direct associative and relational memory. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1391-1403. [PMID: 31468500 DOI: 10.3758/s13415-019-00746-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Strong evidence suggests that sleep plays a role in memory consolidation, which involves both stabilizing memory into long-term storage as well as integrating new information into existing stores. The current study investigated consolidation, across a day of wakefulness or night of sleep, of emotional and neutral directly learned visual paired associates (A-B/B-C pairs) as well as formation of memory for relational pairs formed via overlapping learned components (A-C pairs). Participants learned 40 negative and 40 neutral face-object pairs followed by a baseline test in session 1 either in the morning or evening. They then spent a 12-hour retention period during which participants either went about their normal day or spent the night in the sleep lab. During session 2, participants completed a surprise test to assess their memory for relational pairs (A-C) as well as memory for direct associates (A-B/B-C). As hypothesized, the results demonstrated that a 12-hour retention period predominantly spent asleep, compared to awake, benefited memory for both relational and direct associative memory. However, contrary to the hypothesis that emotional salience would promote preferential consolidation, sleep appeared to benefit both negative and neutral information similarly for direct associative and relational memories, suggesting that sleep may interact with other factors affecting encoding (e.g., depth of encoding) to benefit direct and relational associative memory. As one of the few studies examining the role of nocturnal sleep and emotion on both direct and relational associative memory, our findings suggest key insights into how overnight sleep consolidates these different forms of memory.
Collapse
|
62
|
Wamsley EJ, Summer T. Spontaneous Entry into an “Offline” State during Wakefulness: A Mechanism of Memory Consolidation? J Cogn Neurosci 2020; 32:1714-1734. [DOI: 10.1162/jocn_a_01587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Moments of inattention to our surroundings may be essential to optimal cognitive functioning. Here, we investigated the hypothesis that humans spontaneously switch between two opposing attentional states during wakefulness—one in which we attend to the external environment (an “online” state) and one in which we disengage from the sensory environment to focus our attention internally (an “offline” state). We created a data-driven model of this proposed alternation between “online” and “offline” attentional states in humans, on a seconds-level timescale. Participants (n = 34) completed a sustained attention to response task while undergoing simultaneous high-density EEG and pupillometry recording and intermittently reporting on their subjective experience. “Online” and “offline” attentional states were initially defined using a cluster analysis applied to multimodal measures of (1) EEG spectral power, (2) pupil diameter, (3) RT, and (4) self-reported subjective experience. We then developed a classifier that labeled trials as belonging to the online or offline cluster with >95% accuracy, without requiring subjective experience data. This allowed us to classify all 5-sec trials in this manner, despite the fact that subjective experience was probed on only a small minority of trials. We report evidence of statistically discriminable “online” and “offline” states matching the hypothesized characteristics. Furthermore, the offline state strongly predicted memory retention for one of two verbal learning tasks encoded immediately prior. Together, these observations suggest that seconds-timescale alternation between online and offline states is a fundamental feature of wakefulness and that this may serve a memory processing function.
Collapse
|
63
|
Coutanche MN, Koch GE, Paulus JP. Influences on memory for naturalistic visual episodes: sleep, familiarity, and traits differentially affect forms of recall. Learn Mem 2020; 27:284-291. [PMID: 32540918 PMCID: PMC7301751 DOI: 10.1101/lm.051300.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
The memories we form are composed of information that we extract from multifaceted episodes. Static stimuli and paired associations have proven invaluable stimuli for understanding memory, but real-life events feature spatial and temporal dimensions that help form new retrieval paths. We ask how the ability to recall semantic, temporal, and spatial aspects (the "what, when, and where") of naturalistic episodes is affected by three influences-prior familiarity, postencoding sleep, and individual differences-by testing their influence on three forms of recall: cued recall, free recall, and the extent that recalled details are recombined for a novel prompt. Naturalistic videos of events with rare animals were presented to 115 participants, randomly assigned to receive a 12- or 24-h delay with sleep and/or wakefulness. Participants' immediate and delayed recall was tested and coded by its spatial, temporal, and semantic content. We find that prior familiarity with items featured in events improved cued recall, but not free recall, particularly for temporal and spatial details. In contrast, postencoding sleep, relative to wakefulness, improved free recall, but not cued recall, of all forms of content. Finally, individuals with higher trait scores in the Survey of Autobiographical Memory spontaneously incorporated more spatial details during free recall, and more event details (at a trend level) in a novel recombination recall task. These findings show that prior familiarity, postencoding sleep, and memory traits can each enhance a different form of recall. More broadly, this work highlights that recall is heterogeneous in response to different influences on memory.
Collapse
Affiliation(s)
- Marc N Coutanche
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Griffin E Koch
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - John P Paulus
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
64
|
Examining sleep’s role in memory generalization and specificity through the lens of targeted memory reactivation. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
65
|
|
66
|
The Degree of Nesting between Spindles and Slow Oscillations Modulates Neural Synchrony. J Neurosci 2020; 40:4673-4684. [PMID: 32371605 DOI: 10.1523/jneurosci.2682-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022] Open
Abstract
Spindles and slow oscillations (SOs) both appear to play an important role in memory consolidation. Spindle and SO "nesting," or the temporal overlap between the two events, is believed to modulate consolidation. However, the neurophysiological processes modified by nesting remain poorly understood. We thus recorded activity from the primary motor cortex of 4 male sleeping rats to investigate how SO and spindles interact to modulate the correlation structure of neural firing. During spindles, primary motor cortex neurons fired at a preferred phase, with neural pairs demonstrating greater neural synchrony, or correlated firing, during spindle peaks. We found a direct relationship between the temporal proximity between SO and spindles, and changes to the distribution of neural correlations; nesting was associated with narrowing of the distribution, with a reduction in low- and high-correlation pairs. Such narrowing may be consistent with greater exploration of neural states. Interestingly, after animals practiced a novel motor task, pairwise correlations increased during nested spindles, consistent with targeted strengthening of functional interactions. These findings may be key mechanisms through which spindle nesting supports memory consolidation.SIGNIFICANCE STATEMENT Our analysis revealed changes in cortical spiking structure that followed the waxing and waning of spindles; firing rates increased, spikes were more phase-locked to spindle-band local field potential, and synchrony across units peaked during spindles. Moreover, we showed that the degree of nesting between spindles and slow oscillations modified the correlation structure across units by narrowing the distribution of pairwise correlations. Finally, we demonstrated that engaging in a novel motor task increased pairwise correlations during nested spindles. These phenomena suggest key mechanisms through which the interaction of spindles and slow oscillations may support sensorimotor learning. More broadly, this work helps link large-scale measures of population activity to changes in spiking structure, a critical step in understanding neuroplasticity across multiple scales.
Collapse
|
67
|
Schaadt G, Paul M, Muralikrishnan R, Männel C, Friederici AD. Seven-year-olds recall non-adjacent dependencies after overnight retention. Neurobiol Learn Mem 2020; 171:107225. [DOI: 10.1016/j.nlm.2020.107225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 11/25/2022]
|
68
|
Conte F, Cerasuolo M, Giganti F, Ficca G. Sleep enhances strategic thinking at the expense of basic procedural skills consolidation. J Sleep Res 2020; 29:e13034. [DOI: 10.1111/jsr.13034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Conte
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| | | | | | - Gianluca Ficca
- Department of Psychology University of Campania “L. Vanvitelli” Caserta Italy
| |
Collapse
|
69
|
Active transitive inference: When learner control facilitates integrative encoding. Cognition 2020; 200:104188. [PMID: 32240821 DOI: 10.1016/j.cognition.2020.104188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022]
Abstract
A growing body of research indicates that active control of learning improves episodic memory for material experienced during study. It is less clear how active learning impacts the integration of those experiences into flexible, generalizable knowledge. This study uses a novel active transitive inference task to investigate how people learn a relational hierarchy through active selection of premise pairs. Active control improved memory for studied premises as well as transitive inferences involving items that were never experienced together during study. Active learners also exhibited a systematic search preference, generating sequences of overlapping premises that may facilitate relational integration. Critically, however, advantages from active control were not universal: Only participants with higher working memory capacity benefited from the opportunity to select premise pairs during learning. These findings suggest that active control enhances integrative encoding of studied material, but only among individuals with sufficient cognitive resources.
Collapse
|
70
|
Picklesimer ME, Buchin ZL, Mulligan NW. The Effect of Retrieval Practice on Transitive Inference. Exp Psychol 2019; 66:377-392. [DOI: 10.1027/1618-3169/a000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Compared to restudying, retrieval practice has often been found to enhance memory (the testing effect). However, it has been proposed that materials with high element interactivity may not benefit from retrieval practice. Transitive inference (TI) requires just such interactivity, in which information must be combined across multiple learning elements or premises. The current study employed a 7-element TI paradigm in which participants initially learned a set of premises (e.g., A > B, B > C, C > D, etc.), then engaged in either restudy or retrieval practice with the premises, and then were given a final test that assessed memory for the original premises and one’s ability to make transitive inferences about them (e.g., to infer that B > D). Three experiments examined TI on final tests with retention intervals of a few minutes (Experiment 1), 2 days (Experiment 2), or up to a week (Experiment 3). Retrieval practice consistently failed to enhance transitive inference. Furthermore, retrieval practice significantly reduced TI in Experiment 1. Across experiments, TI was numerically worse in the retrieval-practice than restudy condition in 4 of 5 comparisons, and a small-scale meta-analysis revealed a significant negative effect of retrieval practice on TI.
Collapse
Affiliation(s)
| | - Zachary L. Buchin
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Neil W. Mulligan
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
71
|
Sanders KEG, Osburn S, Paller KA, Beeman M. Targeted Memory Reactivation During Sleep Improves Next-Day Problem Solving. Psychol Sci 2019; 30:1616-1624. [PMID: 31603738 PMCID: PMC6843748 DOI: 10.1177/0956797619873344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 01/20/2023] Open
Abstract
Many people have claimed that sleep has helped them solve a difficult problem, but empirical support for this assertion remains tentative. The current experiment tested whether manipulating information processing during sleep impacts problem incubation and solving. In memory studies, delivering learning-associated sound cues during sleep can reactivate memories. We therefore predicted that reactivating previously unsolved problems could help people solve them. In the evening, we presented 57 participants with puzzles, each arbitrarily associated with a different sound. While participants slept overnight, half of the sounds associated with the puzzles they had not solved were surreptitiously presented. The next morning, participants solved 31.7% of cued puzzles, compared with 20.5% of uncued puzzles (a 55% improvement). Moreover, cued-puzzle solving correlated with cued-puzzle memory. Overall, these results demonstrate that cuing puzzle information during sleep can facilitate solving, thus supporting sleep's role in problem incubation and establishing a new technique to advance understanding of problem solving and sleep cognition.
Collapse
Affiliation(s)
| | | | | | - Mark Beeman
- Department of Psychology, Northwestern University
| |
Collapse
|
72
|
Mildner JN, Tamir DI. Spontaneous Thought as an Unconstrained Memory Process. Trends Neurosci 2019; 42:763-777. [PMID: 31627848 DOI: 10.1016/j.tins.2019.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
The stream of thought can flow freely, without much guidance from attention or cognitive control. What determines what we think about from one moment to the next? Spontaneous thought shares many commonalities with memory processes. We use insights from computational models of memory to explain how the stream of thought flows through the landscape of memory. In this framework of spontaneous thought, semantic memory scaffolds episodic memory to form the content of thought, and drifting context modulated by one's current state - both internal and external - constrains the area of memory to explore. This conceptualization of spontaneous thought can help to answer outstanding questions such as: what is the function of spontaneous thought, and how does the mind select what to think about?
Collapse
Affiliation(s)
- Judith N Mildner
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA.
| | - Diana I Tamir
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
73
|
Brodt S, Pöhlchen D, Täumer E, Gais S, Schönauer M. Incubation, not sleep, aids problem-solving. Sleep 2019; 41:5065174. [PMID: 30113673 DOI: 10.1093/sleep/zsy155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
Solving a novel problem and finding innovative solutions requires a flexible and creative recombination of prior knowledge. It is thought that setting a problem aside before giving it another try aids problem-solving. The underlying mechanisms of such an incubation period could include unconscious processing that fosters spreading activation along associated networks and the restructuring of problem representations. Recently, it has been suggested that sleep may also support problem-solving by supporting the transformation and restructuring of memory elements. Since the effect of sleep on problem-solving has been mainly tested using the Remote Associates Test, we chose three different tasks-classical riddles, visual change detection, and anagrams-to examine various aspects of problem-solving and to pinpoint task-specific prerequisites for effects of sleep or incubation to emerge. Sixty-two participants were given two attempts to solve the problems. Both attempts either occurred consecutively or were spaced apart by a 3-hour incubation interval that was spent awake or asleep. We found that a period of incubation positively affected solutions rates in classical riddles, but not in visual change detection or anagram solving. Contrary to our hypothesis, spending the incubation period asleep, did not yield any additional benefit. Our study thus supports the notion that a period of letting a problem rest is beneficial for its solution and confines the role of sleep to memory transformations that do not directly impact on problem-solving ability.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Esther Täumer
- Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
74
|
Daikoku T. Computational models and neural bases of statistical learning in music and language: Comment on "Creativity, information, and consciousness: The information dynamics of thinking" by Wiggins. Phys Life Rev 2019; 34-35:48-51. [PMID: 31495681 DOI: 10.1016/j.plrev.2019.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsuya Daikoku
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
| |
Collapse
|
75
|
Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci 2019; 22:1598-1610. [PMID: 31451802 DOI: 10.1038/s41593-019-0467-3] [Citation(s) in RCA: 530] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Long-term memory formation is a major function of sleep. Based on evidence from neurophysiological and behavioral studies mainly in humans and rodents, we consider the formation of long-term memory during sleep as an active systems consolidation process that is embedded in a process of global synaptic downscaling. Repeated neuronal replay of representations originating from the hippocampus during slow-wave sleep leads to a gradual transformation and integration of representations in neocortical networks. We highlight three features of this process: (i) hippocampal replay that, by capturing episodic memory aspects, drives consolidation of both hippocampus-dependent and non-hippocampus-dependent memory; (ii) brain oscillations hallmarking slow-wave and rapid-eye movement sleep that provide mechanisms for regulating both information flow across distant brain networks and local synaptic plasticity; and (iii) qualitative transformations of memories during systems consolidation resulting in abstracted, gist-like representations.
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
76
|
Strachan JWA, Guttesen AÁV, Smith AK, Gaskell MG, Tipper SP, Cairney SA. Investigating the formation and consolidation of incidentally learned trust. J Exp Psychol Learn Mem Cogn 2019; 46:684-698. [PMID: 31355651 PMCID: PMC7115124 DOI: 10.1037/xlm0000752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
People make inferences about the trustworthiness of others based on their observed gaze behavior. Faces that consistently look toward a target location are rated as more trustworthy than those that look away from the target. Representations of trust are important for future interactions; yet little is known about how they are consolidated in long-term memory. Sleep facilitates memory consolidation for incidentally learned information and may therefore support the retention of trust representations. We investigated the consolidation of trust inferences across periods of sleep or wakefulness. In addition, we employed a memory cueing procedure (targeted memory reactivation [TMR]) in a bid to strengthen certain trust memories over others. We observed no difference in the retention of trust inferences following delays of sleep or wakefulness, and there was no effect of TMR in either condition. Interestingly, trust inferences remained stable 1 week after learning, irrespective of the initial postlearning delay. A second experiment showed that this implicit learning occurs despite participants’ being unable to explicitly recall the gaze behavior of specific faces immediately after encoding. Together, these results suggest that gist-like, social inferences are formed at the time of learning without retaining the original episodic memory and thus do not benefit from offline consolidation through replay. We discuss our findings in the context of a novel framework whereby trust judgments reflect an efficient, powerful, and adaptable storage device for social information.
Collapse
|
77
|
Joensen BH, Gaskell MG, Horner AJ. United we fall: All-or-none forgetting of complex episodic events. J Exp Psychol Gen 2019; 149:230-248. [PMID: 31305093 PMCID: PMC6951107 DOI: 10.1037/xge0000648] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Do complex event representations fragment over time, or are they instead forgotten in an all-or-none manner? For example, if we met a friend in a café and they gave us a present, do we forget the constituent elements of this event (location, person, and object) independently, or would the whole event be forgotten? Research suggests that item-based memories are forgotten in a fragmented manner. However, we do not know how more complex episodic, event-based memories are forgotten. We assessed both retrieval accuracy and dependency—the statistical association between the retrieval successes of different elements from the same event—for complex events. Across 4 experiments, we show that retrieval dependency is found both immediately after learning and following a 12-hr and 1-week delay. Further, the amount of retrieval dependency after a delay is greater than that predicted by a model of independent forgetting. This dependency was only seen for coherent “closed-loops,” where all pairwise associations between locations, people, and objects were encoded. When “open-loops” were learned, where only 2 out of the 3 possible associations were encoded, no dependency was seen immediately after learning or after a delay. Finally, we also provide evidence for higher retention rates for closed-loops than for open-loops. Therefore, closed-loops do not fragment as a function of forgetting and are retained for longer than are open-loops. Our findings suggest that coherent episodic events are not only retrieved, but also forgotten, in an all-or-none manner.
Collapse
|
78
|
Guilty by association: Time-dependent memory consolidation facilitates the generalization of negative – but not positive – person memories to group and self-judgments. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2019. [DOI: 10.1016/j.jesp.2019.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
Lerner I, Gluck MA. Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Med Rev 2019; 47:39-50. [PMID: 31252335 DOI: 10.1016/j.smrv.2019.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/01/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
As part of its role in memory consolidation, sleep has been repeatedly identified as critical for the extraction of regularities from wake experiences. However, many null results have been published as well, with no clear consensus emerging regarding the conditions that yield this sleep effect. Here, we systematically review the role of sleep in the extraction of hidden regularities, specifically those involving associative relations embedded in newly learned information. We found that the specific behavioral task used in a study had far more impact on whether a sleep effect was discovered than either the category of the cognitive processes targeted, or the particular experimental design employed. One emerging pattern, however, was that the explicit detection of hidden rules is more likely to happen when the rules are of a temporal nature (i.e., event A at time t predicts a later event B) than when they are non-temporal. We discuss this temporal rule sensitivity in reference to the compressed memory replay occurring in the hippocampus during slow-wave-sleep, and compare this effect to what happens when the extraction of regularities depends on prior knowledge and relies on structures other than the hippocampus.
Collapse
Affiliation(s)
- Itamar Lerner
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| |
Collapse
|
80
|
Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 2019; 20:364-375. [PMID: 30872808 PMCID: PMC7233541 DOI: 10.1038/s41583-019-0150-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Episodic memory reflects the ability to recollect the temporal and spatial context of past experiences. Episodic memories depend on the hippocampus but have been proposed to undergo rapid forgetting unless consolidated during offline periods such as sleep to neocortical areas for long-term storage. Here, we propose an alternative to this standard systems consolidation theory (SSCT) - a contextual binding account - in which the hippocampus binds item-related and context-related information. We compare these accounts in light of behavioural, lesion, neuroimaging and sleep studies of episodic memory and contend that forgetting is largely due to contextual interference, episodic memory remains dependent on the hippocampus across time, contextual drift produces post-encoding activity and sleep benefits memory by reducing contextual interference.
Collapse
Affiliation(s)
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Brian J Wiltgen
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
81
|
Lewis PA, Knoblich G, Poe G. How Memory Replay in Sleep Boosts Creative Problem-Solving. Trends Cogn Sci 2019; 22:491-503. [PMID: 29776467 DOI: 10.1016/j.tics.2018.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022]
Abstract
Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. We address this issue by proposing that rapid eye movement sleep, or 'REM', and non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. We propose that the iterative interleaving of REM and non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured, thus facilitating creative thought. We outline a hypothetical computational model which will allow explicit testing of these hypotheses.
Collapse
Affiliation(s)
| | - Günther Knoblich
- Department of Cognitive Science, Central European University, Budapest, Hungary
| | - Gina Poe
- Department of Integrative Biology and Physiology, UCLA, LA, USA
| |
Collapse
|
82
|
Dymond S, Llewellyn S. Time, Sleep, and Stimulus Equivalence-Based Relational Memory. PSYCHOLOGICAL RECORD 2019. [DOI: 10.1007/s40732-019-00343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
83
|
Transcranial Current Stimulation During Sleep Facilitates Insight into Temporal Rules, but does not Consolidate Memories of Individual Sequential Experiences. Sci Rep 2019; 9:1516. [PMID: 30728363 PMCID: PMC6365565 DOI: 10.1038/s41598-018-36107-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
Slow-wave sleep (SWS) is known to contribute to memory consolidation, likely through the reactivation of previously encoded waking experiences. Contemporary studies demonstrate that when auditory or olfactory stimulation is administered during memory encoding and then reapplied during SWS, memory consolidation can be enhanced, an effect that is believed to rely on targeted memory reactivation (TMR) induced by the sensory stimulation. Here, we show that transcranial current stimulations (tCS) during sleep can also be used to induce TMR, resulting in the facilitation of high-level cognitive processes. Participants were exposed to repeating sequences in a realistic 3D immersive environment while being stimulated with particular tCS patterns. A subset of these tCS patterns was then reapplied during sleep stages N2 and SWS coupled to slow oscillations in a closed-loop manner. We found that in contrast to our initial hypothesis, performance for the sequences corresponding to the reapplied tCS patterns was no better than for other sequences that received stimulations only during wake or not at all. In contrast, we found that the more stimulations participants received overnight, the more likely they were to detect temporal regularities governing the learned sequences the following morning, with tCS-induced beta power modulations during sleep mediating this effect.
Collapse
|
84
|
Barner C, Altgassen M, Born J, Diekelmann S. Effects of sleep on the realization of complex plans. J Sleep Res 2019; 28:e12655. [DOI: 10.1111/jsr.12655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Christine Barner
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
| | - Mareike Altgassen
- Donders Institute for Brain Cognition and Behaviour Radboud University Nijmegen the Netherlands
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
- Center for Integrative Neuroscience (CIN) University of Tübingen Tübingen Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
| |
Collapse
|
85
|
Sleep Impact on Perception, Memory, and Emotion in Adults and the Effects of Early-Life Experience. HANDBOOK OF SLEEP RESEARCH 2019. [DOI: 10.1016/b978-0-12-813743-7.00039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
86
|
Bazil CW. Seizure modulation by sleep and sleep state. Brain Res 2019; 1703:13-17. [DOI: 10.1016/j.brainres.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
|
87
|
Vargas IM, Schechtman E, Paller KA. Targeted memory reactivation during sleep to strengthen memory for arbitrary pairings. Neuropsychologia 2018; 124:144-150. [PMID: 30582944 DOI: 10.1016/j.neuropsychologia.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023]
Abstract
A powerful way to investigate memory consolidation during sleep utilizes acoustic stimulation to reactivate memories. In multiple studies, Targeted Memory Reactivation (TMR) using sounds associated with prior learning improved later memory, as in recalling locations where objects previously appeared. In the present experiment, we examined whether a variant of the same technique could strengthen memory for the locations of pairs of objects. Each sound was naturally connected to one object from each pair, but we hypothesized that both memories could be improved with TMR. We first asked participants to memorize each of 50 pairs of objects by associating the two objects with each other and with the sound of one of the objects (e.g., cat-meow). Next, objects were presented in unique locations on a grid. Participants learned these locations in an adaptive procedure. During an afternoon nap, 25 of the sounds were quietly presented. In memory tests given twice before and twice after the nap, participants heard the sound for each object pair and were asked to recall the name of the second object and the locations of both objects. Forgetting scores were calculated using the mean difference between pre-nap and post-nap spatial recall errors. We found less forgetting after the nap for cued compared to non-cued objects. Additionally, the extent of forgetting tended to be similar for the two members of each pair, but only for cued pairs. Results thus substantiate the potential for sounds to reactivate spatial memories during sleep and thereby improve subsequent recall performance, even for multiple objects associated with a single sound and when participants must learn a novel sound-object association.
Collapse
|
88
|
Gilboa A, Sekeres M, Moscovitch M, Winocur G. The hippocampus is critical for value-based decisions guided by dissociative inference. Hippocampus 2018; 29:655-668. [PMID: 30417959 DOI: 10.1002/hipo.23050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 11/12/2022]
Abstract
The hippocampus supports flexible decision-making through memory integration: bridging across episodes and inferring associations between stimuli that were never presented together ('associative inference'). A pre-requisite for memory integration is flexible representations of the relationships between stimuli within episodes (AB) but also of the constituent units (A,B). Here we investigated whether the hippocampus is required for parsing experienced episodes into their constituents to infer their re-combined within-episode associations ('dissociative inference'). In three experiments male rats were trained on an appetitive conditioning task using compound auditory stimuli (AB+, BA+, CD-, DC-). At test either the compound or individual stimuli were presented as well as new stimuli. Rats with hippocampal lesions acquired and retained the compound discriminations as well as controls. Single constituent stimuli (A, B, C, D) were presented for the first time at test, so the only value with which they could be associated was the one from the compound to which they belonged. Controls inferred constituent tones' corresponding values while hippocampal rats did not, treating them as merely familiar stimuli with no associated value. This finding held whether compound training occurred before or after hippocampal lesions, suggesting that hippocampus-dependent inferential processes more likely occur at retrieval. The findings extend recent discoveries about the role of the hippocampus in intrinsic value representation, demonstrating hippocampal contributions to allocating value from primary rewards to individual stimuli. Importantly, we discovered that dissociative inferences serve to restructure or reparse patterns of directly acquired associations when animals are faced with environmental changes and need to extract relevant information from a multiplex memory. The hippocampus is critical for this fundamental flexible use of associations.
Collapse
Affiliation(s)
- Asaf Gilboa
- Rotman Research Institute at Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Melanie Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas
| | - Morris Moscovitch
- Rotman Research Institute at Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Winocur
- Rotman Research Institute at Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
89
|
Bemis RH, Leichtman MD. That was last time! The effect of a delay on children's episodic memories of learning new facts. INFANT AND CHILD DEVELOPMENT 2018. [DOI: 10.1002/icd.2113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
90
|
Zhang Q, Wang C, Zhao Q, Yang L, Buschkuehl M, Jaeggi SM. The malleability of executive function in early childhood: Effects of schooling and targeted training. Dev Sci 2018; 22:e12748. [PMID: 30171785 DOI: 10.1111/desc.12748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
Abstract
Executive function (EF), its importance for scholastic achievement and the question of whether or not EF is malleable, have become a topic of intense interest. Education or schooling is often seen as effective approaches to enhance EF due to the specific school-related requirements as compared to kindergarten or pre-school. However, no study to date has investigated whether targeted training focusing on those domains might be comparable with regular schooling in improving EF and fluid intelligence (Gf). The aim of the present study was to replicate and extend the previously demonstrated schooling effects on EF by using a school-cutoff design, and to further investigate whether a theoretically motivated intervention targeting specific EF, i.e., working memory (WM) or inhibitory control (IC), could achieve comparable effects with schooling in both, WM and IC, as well as Gf. 91 6-year-old kindergarteners and first-graders with similar chronological age participated the study. We compared the performance of a first-grade schooling group with that of two kindergarten training groups as well as a business-as-usual kindergarten control group. Participants were assessed in WM, IC and Gf at baseline, immediately after the intervention (posttest), as well as 3 months after training completion (follow-up). The results showed that the schooling group indeed outperformed the kindergarten groups at baseline in several cognitive tasks. Furthermore, both the WM and IC training showed pronounced gains in the trained tasks, as well as varying degrees of improvement in non-trained outcome measures. Most importantly, both training groups achieved comparable performance with the schooling group, which was especially apparent in Gf at follow-up. Our findings provide further evidence for the malleability of EF demonstrating that both, long-term and short-term interventions can facilitate the acquisition of those important skills, and as such, our work has important implications for educational practice.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Cuiping Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | | | - Ling Yang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | | | - Susanne M Jaeggi
- School of Education, University of California, Irvine, Irvine, California
| |
Collapse
|
91
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
92
|
Johnson JM, Durrant SJ. The effect of cathodal transcranial direct current stimulation during rapid eye-movement sleep on neutral and emotional memory. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172353. [PMID: 30109059 PMCID: PMC6083708 DOI: 10.1098/rsos.172353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Sleep-dependent memory consolidation has been extensively studied. Neutral declarative memories and serial reaction time task (SRTT) performance can benefit from slow-wave activity, characterized by less than 1 Hz frequency cortical slow oscillations (SO). Emotional memories can benefit from theta activity, characterized by 4-8 Hz frequency cortical oscillations. Applying transcranial direct current stimulation (tDCS) during sleep entrains specific frequencies to alter sleep architecture. When applying cathodal tDCS (CtDCS), neural inhibition or excitation may depend on the waveform at the applied frequency. A double dissociation was predicted, with CtDCS at SO frequency improving neutral declarative memory and SRTT performance, and theta frequency CtDCS inhibiting negative emotional memory. Participants completed three CtDCS conditions (Theta: 5 Hz, SO: 0.75 Hz and control: sham) and completed an SRTT and word recognition task pre- and post-sleep, comprising emotional and neutral words to assess memory. In line with predictions, CtDCS improved neutral declarative memory when applied at SO frequency. When applied at theta frequency, no negative emotional word memory impairment was found but a positive association was found between post-stimulation theta power and emotional word recognition. SRTT performance was also not altered by either CtDCS frequency. Future studies should investigate overnight theta CtDCS and examine the effects of CtDCS during and after stimulation.
Collapse
Affiliation(s)
| | - Simon J. Durrant
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
93
|
Roberts L, Richmond JL. Using learning flexibly and remembering after a delay: understanding cognitive dysfunction in adults with Down syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:521-531. [PMID: 29700883 DOI: 10.1111/jir.12492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/22/2017] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Episodic memory deficits are a characteristic of cognitive dysfunction in people with Down syndrome (DS). However, less is known about the processes (i.e. encoding, retention or using learned information flexibly) that underlie these deficits. METHOD We explored these abilities by administering a relational memory and inference task to participants with DS and mental age-matched controls and testing both immediately and after a 24-h delay. RESULTS Adults with DS learned paired associates more slowly than controls but showed good recognition at both the immediate and delayed tests. Despite memory for learned pairs, adults with DS were less able to use relational learning flexibly to make inferential judgements than controls. CONCLUSIONS These results deepen our understanding of the cognitive profile of adults with DS, demonstrating deficits in both encoding new information, and flexibly using such information. These results have important implications for workplace training and intervention programs for people with DS.
Collapse
Affiliation(s)
- L Roberts
- Discipline of Clinical Psychology, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - J L Richmond
- School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
94
|
Is There a Role for Pattern Separation during Sleep? J Neurosci 2018; 38:4062-4064. [PMID: 29695440 DOI: 10.1523/jneurosci.0167-18.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
|
95
|
Kumaran D, Hassabis D, McClelland JL. What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. Trends Cogn Sci 2018; 20:512-534. [PMID: 27315762 DOI: 10.1016/j.tics.2016.05.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning.
Collapse
Affiliation(s)
- Dharshan Kumaran
- Google DeepMind, 5 New Street Square, London EC4A 3TW, UK; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AR, UK.
| | - Demis Hassabis
- Google DeepMind, 5 New Street Square, London EC4A 3TW, UK; Gatsby Computational Neuroscience Unit, 17 Queen Square, London WC1N 3AR, UK.
| | - James L McClelland
- Department of Psychology and Center for Mind, Brain, and Computation, Stanford University, 450 Serra Mall, CA 94305, USA.
| |
Collapse
|
96
|
Abstract
Our present frequently resembles our past. Patterns of actions and events repeat throughout our lives like a motif. Identifying and exploiting these patterns are fundamental to many behaviours, from creating grammar to the application of skill across diverse situations. Such generalization may be dependent upon memory instability. Following their formation, memories are unstable and able to interact with one another, allowing, at least in principle, common features to be extracted. Exploiting these common features creates generalized knowledge that can be applied across varied circumstances. Memory instability explains many of the biological and behavioural conditions necessary for generalization and offers predictions for how generalization is produced.
Collapse
Affiliation(s)
- Edwin M. Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
97
|
Schönauer M, Brodt S, Pöhlchen D, Breßmer A, Danek AH, Gais S. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks. Front Hum Neurosci 2018; 12:72. [PMID: 29535620 PMCID: PMC5834438 DOI: 10.3389/fnhum.2018.00072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving.
Collapse
Affiliation(s)
- Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Breßmer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amory H. Danek
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
98
|
Ashton JE, Jefferies E, Gaskell MG. A role for consolidation in cross-modal category learning. Neuropsychologia 2018; 108:50-60. [PMID: 29133108 PMCID: PMC5759996 DOI: 10.1016/j.neuropsychologia.2017.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/14/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
The ability to categorize objects and events is a fundamental human skill that depends upon the representation of multimodal conceptual knowledge. This study investigated the acquisition and consolidation of categorical information that required participants to integrate information across visual and auditory dimensions. The impact of wake- and sleep-dependent consolidation was investigated using a paradigm in which training and testing were separated by a delay spanning either an evening of sleep or daytime wakefulness, with a paired-associate episodic memory task used as a measure of classic sleep-dependent consolidation. Participants displayed good evidence of category learning, but did not show any wake- or sleep-dependent changes in memory for category information immediately following the delay. This is in contrast to paired-associate learning, where a sleep-dependent benefit was observed in memory recall. To replicate real-world concept learning, in which knowledge is acquired across multiple distinct episodes, participants were given a second opportunity for category learning following the consolidation delay. Here we found an interaction between consolidation and learning; with greater improvements in category knowledge as a result of the second learning session for those participants who had a sleep-filled delay. These results suggest a role for sleep in the consolidation of recently acquired categorical knowledge; however this benefit does not emerge as an immediate benefit in memory recall, but by enhancing the effectiveness of future learning. This study therefore provides insights into the processes responsible for the formation and development of conceptual representations.
Collapse
Affiliation(s)
- Jennifer E Ashton
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK.
| | | | - M Gareth Gaskell
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
99
|
Ahuja S, Chen RK, Kam K, Pettibone WD, Osorio RS, Varga AW. Role of normal sleep and sleep apnea in human memory processing. Nat Sci Sleep 2018; 10:255-269. [PMID: 30214331 PMCID: PMC6128282 DOI: 10.2147/nss.s125299] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A fundamental problem in the field of obstructive sleep apnea (OSA) and memory is that it has historically minimized the basic neurobiology of sleep's role in memory. Memory formation has been classically divided into phases of encoding, processing/consolidation, and retrieval. An abundance of evidence suggests that sleep plays a critical role specifically in the processing/consolidation phase, but may do so differentially for memories that were encoded using particular brain circuits. In this review, we discuss some of the more established evidence for sleep's function in the processing of declarative, spatial navigational, emotional, and motor/procedural memories and more emerging evidence highlighting sleep's importance in higher order functions such as probabilistic learning, transitive inference, and category/gist learning. Furthermore, we discuss sleep's capacity for memory augmentation through targeted/cued memory reactivation. OSA - by virtue of its associated sleep fragmentation, intermittent hypoxia, and potential brain structural effects - is well positioned to specifically impact the processing/consolidation phase, but testing this possibility requires experimental paradigms in which memory encoding and retrieval are separated by a period of sleep with and without the presence of OSA. We argue that such paradigms should focus on the specific types of memory tasks for which sleep has been shown to have a significant effect. We discuss the small number of studies in which this has been done, in which OSA nearly uniformly negatively impacts offline memory processing. When periods of offline processing are minimal or absent and do not contain sleep, as is the case in the broad literature on OSA and memory, the effects of OSA on memory are far less consistent.
Collapse
Affiliation(s)
- Shilpi Ahuja
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
| | - Rebecca K Chen
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
| | - Korey Kam
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
| | - Ward D Pettibone
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
| | - Ricardo S Osorio
- Center for Brain Health, Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,
| |
Collapse
|
100
|
Zinke K, Noack H, Born J. Sleep augments training-induced improvement in working memory in children and adults. Neurobiol Learn Mem 2018; 147:46-53. [DOI: 10.1016/j.nlm.2017.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 11/07/2017] [Accepted: 11/18/2017] [Indexed: 10/18/2022]
|