51
|
Durmus N, Grunig G. Polymorphonuclear Leukocytes in Pulmonary Hypertension and Fibrosis: Not Always What They Appear to Be. Am J Respir Cell Mol Biol 2018; 58:135-137. [PMID: 29388835 DOI: 10.1165/rcmb.2017-0336ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nedim Durmus
- 1 Department of Medicine, Division of Pulmonary Medicine New York University School of Medicine New York, New York and
| | - Gabriele Grunig
- 1 Department of Medicine, Division of Pulmonary Medicine New York University School of Medicine New York, New York and.,2 Department of Environmental Medicine New York University School of Medicine Tuxedo, New York
| |
Collapse
|
52
|
Endothelial nitric oxide synthase overexpressing human early outgrowth cells inhibit coronary artery smooth muscle cell migration through paracrine functions. Sci Rep 2018; 8:877. [PMID: 29343714 PMCID: PMC5772515 DOI: 10.1038/s41598-017-18848-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Cells mobilized from the bone marrow can contribute to endothelial regeneration and repair. Nevertheless, cardiovascular diseases are associated with diminished numbers and function of these cells, attenuating their healing potential. Gene transfer of endothelial nitric oxide synthase (eNOS) can restore the activity of circulating cells. Furthermore, estrogen accelerates the reendothelialization capacity of early outgrowth cells (EOCs). We hypothesized that overexpressing eNOS alone or in combination with estrogen stimulation in EOCs would potentiate the beneficial effects of these cells in regulating smooth muscle cell (SMC) function. Native human EOCs did not have any effect on human coronary artery SMC (hCASMC) proliferation or migration. Transfecting EOCs with a human eNOS plasmid and/or stimulating with 17β-estradiol (E2) increased NO production 3-fold and enhanced EOC survival. Moreover, in co-culture studies, eNOS overexpressing or E2-stimulated EOCs reduced hCASMC migration (by 23% and 56% respectively), vs. control EOCs. These effects do not implicate ERK1/2 or focal adhesion kinases. Nevertheless, NOS-EOCs had no effect on hCASMC proliferation. These results suggest that overexpressing or activating eNOS in EOCs increases their survival and enhances their capacity to regulate SMC migration through paracrine effects. These data elucidate how eNOS overexpression or activation in EOCs can prevent vascular remodeling.
Collapse
|
53
|
Mels CMC, Schutte AE, Huisman HW, Smith W, Kruger R, van Rooyen JM, Schwedhelm E, Atzler D, Böger RH, Malan NT, Malan L. Asymmetric dimethylarginine and symmetric dimethylarginine prospectively relates to carotid wall thickening in black men: the SABPA study. Amino Acids 2017; 49:1843-1853. [PMID: 28831582 DOI: 10.1007/s00726-017-2483-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023]
Abstract
The relationship of both asymmetric (ADMA) and symmetric (SDMA) dimethylarginine with carotid wall thickness is inconclusive especially among black populations. We aimed to compare carotid intima media thickness (cIMT) and dimethylarginine levels in 75 black and 91 white men at baseline and after a 3-year follow-up, and to investigate associations of percentage change in cIMT with percentage change in dimethylarginine levels (ADMA and SDMA). Plasma levels of ADMA and SDMA were determined with a liquid chromatography mass spectrometry method and B-mode ultrasonography was used to determine the cIMT at baseline and follow-up. In black men, mean cIMT (p = 0.79) and ADMA levels (p = 0.67) remained the same, but SDMA levels were lower (p < 0.001) when comparing baseline and follow-up. In white men, cIMT increased (p < 0.001), but both mean ADMA and SDMA levels decreased (p < 0.001) over time. In black men, percentage change in cIMT was positively associated with percentage change in ADMA (R 2 = 0.49; β = 0.46; p < 0.001) and percentage change in SDMA (R 2 = 0.46; β = 0.41; p < 0.001). These associations were absent in the white men. Despite lower mean SDMA and similar ADMA and cIMT in black men, percentage change in cIMT was independently associated with percentage change in ADMA and percentage change in SDMA. These results suggest an important role for ADMA and SDMA lowering strategies to delay carotid wall thickening, especially in black populations prone to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa. .,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| | - A E Schutte
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - H W Huisman
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - W Smith
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - R Kruger
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - J M van Rooyen
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa.,MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - E Schwedhelm
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Atzler
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians-University of Munich, Munich, Germany
| | - R H Böger
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N T Malan
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa
| | - L Malan
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
54
|
Battig MR, Fishbein I, Levy RJ, Alferiev IS, Guerrero D, Chorny M. Optimizing endothelial cell functionalization for cell therapy of vascular proliferative disease using a direct contact co-culture system. Drug Deliv Transl Res 2017; 8:954-963. [PMID: 28755158 DOI: 10.1007/s13346-017-0412-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increased susceptibility to thrombosis, neoatherosclerosis, and restenosis due to incomplete regrowth of the protective endothelial layer remains a critical limitation of the interventional strategies currently used clinically to relieve atherosclerotic obstruction. Rapid recovery of endothelium holds promise for both preventing the thrombotic events and reducing post-angioplasty restenosis, providing the rationale for developing cell delivery strategies for accelerating arterial reendothelialization. The successful translation of experimental cell therapies into clinically viable treatment modalities for restoring vascular endothelium critically depends on identifying strategies for enhancing the functionality of endothelial cells (EC) derived from high cardiovascular risk patients, the target group for the majority of angioplasty procedures. Enhancing EC-associated nitric oxide (NO) synthesis by inducing overexpression of NO synthase (NOS) has shown promise as a way of increasing paracrine activity and restoring function of EC. In the present study, we developed a direct contact co-culture approach compatible with highly labile effectors, such as NO, and applied it for determining the effect of EC functionalization via NOS gene transfer on the growth of co-cultured arterial smooth muscle cells (A10 cell line) exhibiting the defining characteristics of neointimal cells. Bovine aortic endothelial cells magnetically transduced with inducible NOS-encoding adenovirus (Ad) formulated in zinc oleate-based magnetic nanoparticles (MNP[iNOSAd]) strongly suppressed growth of proliferating A10 and attenuated the stimulatory effect of a potent mitogen, platelet-derived growth factor (PDGF-BB), whereas EC functionalization with free iNOSAd or MNP formulated with a different isoform of the enzyme, endothelial NOS, was associated with lower levels of NO synthesis and less pronounced antiproliferative activity toward co-cultured A10 cells. These results show feasibility of applying magnetically facilitated gene transfer to potentiate therapeutically relevant effects of EC for targeted cell therapy of restenosis. The direct contact co-culture methodology provides a sensitive and reliable tool with potential utility for a variety of biomedical applications.
Collapse
Affiliation(s)
- Mark R Battig
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ilia Fishbein
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - David Guerrero
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Chorny
- Division of Cardiology, The Children's Hospital of Philadelphia, and Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
55
|
Ichihashi S, Wolf F, Schmitz-Rode T, Kichikawa K, Jockenhoevel S, Mela P. In Vitro Quantification of Luminal Denudation After Crimping and Balloon Dilatation of Endothelialized Covered Stents. Cardiovasc Intervent Radiol 2017; 40:1229-1236. [DOI: 10.1007/s00270-017-1661-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
56
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Clinical and pharmacogenetic impact of endothelial nitric oxide synthase polymorphisms on cardiovascular diseases. Nitric Oxide 2017; 63:39-51. [DOI: 10.1016/j.niox.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
|
57
|
Fuseler JW, Valarmathi MT. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration. Front Cell Dev Biol 2016; 4:133. [PMID: 27933292 PMCID: PMC5122209 DOI: 10.3389/fcell.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
Nitric oxide (NO) is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs). Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP), especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 μM) was applied to the MSCs. In the first experimental group (SN-1), SNAP was applied immediately following wound formation, and migration kinetics were determined for 24 h. In the second experimental group (SN-2), MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2) was best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D) of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina Columbia, SC, USA
| | - Mani T Valarmathi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
58
|
Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2220-2231. [DOI: 10.1016/j.ajpath.2016.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022]
|
59
|
Guruvayoorappan C, Kuttan G. Apoptotic Effect of Biophytum sensitivum on B16F-10 Cells and Its Regulatory Effects on Nitric Oxide and Cytokine Production on Tumor-Associated Macrophages. Integr Cancer Ther 2016; 6:373-80. [DOI: 10.1177/1534735407309484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study is part of a large-scale investigation of the antitumor effects of Biophytum sensitivum on B16F-10 melanoma cells. The investigation involved the regulatory effect of B sensitivum on nitric oxide and cytokine production in B16F-10 cells, tumor-associated macrophages, and peritoneal macrophages as well as on the apoptotic process in B16F-10 melanoma cells. B sensitivum at a concentration of 10 µg/mL could significantly ( P < .001) inhibit production of nitric oxide and proinflammatory cytokines such as interleukin-1β, interleukin-6, granulocyte monocyte-colony stimulating factor, and tumor necrosis factor-α in B16F-10 cells, tumor-associated macrophages, and peritoneal macrophages. Incubation of B16F-10 cells with B sensitivum showed the presence of apoptotic bodies and induced DNA fragmentation. Furthermore, B sensitivum showed an inhibitory effect on inducible nitric oxide synthase as well as bcl-2 expression, and up-regulated p53 and caspase-3 messenger RNA expression in B16F-10 melanoma cells. The observed results suggest that regulation of proinflammatory cytokine production by tumor cells, tumor-associated macrophages, and resident macrophages accompanied by altered inducible nitric oxide synthase, bcl-2, caspase-3, and p53 messenger RNA expression by B sensitivum methanol extract induces apoptosis in B16F-10 melanoma cells.
Collapse
Affiliation(s)
- C. Guruvayoorappan
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India
| | - Girija Kuttan
- Department of Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala, India,
| |
Collapse
|
60
|
Abstract
Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
Collapse
Affiliation(s)
- Michael A Gimbrone
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Guillermo García-Cardeña
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
61
|
Zulli A, Buxton BF, Black MJ, Ming Z, Cameron A, Hare DL. The Immunoquantification of Caveolin-1 and eNOS in Human and Rabbit Diseased Blood Vessels. J Histochem Cytochem 2016; 54:151-9. [PMID: 16009963 DOI: 10.1369/jhc.5a6677.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, caveolin-1 (cav-1), an inhibitor of endothelial nitric oxide synthase (eNOS), was semi-quantified in diseased human and rabbit blood vessels. New Zealand White rabbits were fed, for 12 weeks, a high methionine diet (to induce intimal hyperplasia), 0.5% cholesterol diet, a normal diet, or the combination of both experimental diets. Excess segments of human internal mammary arteries (IMA) and radial arteries (RA) were obtained from patients undergoing coronary artery bypass surgery. eNOS and cav-1 were localized throughout both human and rabbit vessels. In rabbit arteries, eNOS was significantly increased in the endothelium overlying intimal thickening and atherosclerotic plaques compared with the adjacent endothelium overlying normal media. Interestingly, the endothelial cav-1:eNOS ratio increased 5-fold only in endothelium overlying plaques but decreased in endothelium overlying vessels with neo-intimal thickening. In human tissue, there was no difference between RA and IMA eNOS immunoreactivity in endothelium, intima, or media; however, RA endothelial, intimal, and medial cav-1 immunoreactivity increased 4-fold ( p,<0.02), 8-fold ( p<0.001), and 4-fold ( p<0.004), respectively, compared with IMA. Furthermore, the cav-1:eNOS immunostaining ratio in the media correlated with intimal thickening (r2 = 0.5). Our results suggest a close relationship between increased cav-1 and diseased blood vessels.
Collapse
Affiliation(s)
- Anthony Zulli
- Division of Cardiovascular Research, Department of Cardiology, Austin Health, Heidelberg 3084, Australia.
| | | | | | | | | | | |
Collapse
|
62
|
Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids 2016; 48:2401-10. [DOI: 10.1007/s00726-016-2256-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/06/2016] [Indexed: 01/26/2023]
|
63
|
Krause BJ, Del Rio R, Moya EA, Marquez-Gutierrez M, Casanello P, Iturriaga R. Arginase-endothelial nitric oxide synthase imbalance contributes to endothelial dysfunction during chronic intermittent hypoxia. J Hypertens 2016; 33:515-24; discussion 524. [PMID: 25629363 DOI: 10.1097/hjh.0000000000000453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnoea, is associated with impaired vascular function despite unaltered response to nitric oxide donors. This study addressed whether arginase contributes to the endothelial dysfunction in CIH rats. METHODS Adult male Sprague-Dawley rats were exposed for 21 days to CIH (5% oxygen, 12 times/h, 8 h/day). The internal carotid arteries were isolated to study endothelial nitric oxide synthase (eNOS) and arginase-1 levels by western blot and immunohistochemistry, and their vasoactive responses using wire myography. Relaxation to sodium nitroprusside (SNP; nitric oxide donor) in the presence or absence of soluble guanylyl cyclase inhibitor, and acetylcholine with and without a NOS inhibitor [N(G)-nitro-L-arginine (L-NA)] and the arginase inhibitor BEC were determined. RESULTS Arteries from the CIH rats presented higher active contraction induced by KCl (3.5 ± 0.4 vs. 2.3 ± 0.2 N/m2), augmented media-to-lumen ratio (∼40%), decreased relaxation to acetylcholine (12.8 ± 1.5 vs. 30.5 ± 4.6%) and increased sensitivity to SNP (pD2 7.3 ± 0.1 vs. 6.7 ± 0.1). Arginase inhibition reversed the impaired acetylcholine-induced relaxation in CIH arteries (49.5 ± 7.4%), an effect completely blocked by L-NA. In the carotid arteries, arginase-1 protein level was increased, whereas eNOS levels decreased in the CIH arteries. CONCLUSION The current results suggest that endothelial dysfunction in CIH-induced hypertension may result from imbalanced arginase-1 to eNOS expression, vascular remodelling and increased contractile capacity, rather than decreased vascular response to nitric oxide.
Collapse
Affiliation(s)
- Bernardo J Krause
- aDivision of Obstetrics and Gynaecology bDivision of Paediatrics, Faculty of Medicine, School of Medicine cLaboratory of Neurobiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile dLaboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
64
|
Kobayashi Y, Yamamoto Y, Kageyama S, Hirayama H, Kimura K, Okuda K. Regulation of bovine oviductal NO synthesis by follicular steroids and prostaglandins. Reproduction 2016; 151:577-87. [PMID: 26940101 DOI: 10.1530/rep-15-0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) is a regulator of sperm motility, oocyte/embryo survival, and waves of contraction/relaxation in mammalian oviducts. As follicles control oviductal functions by two routes at least, (1) a systemic way via blood vessels before ovulation, (2) a direct way by entering of follicular fluid through fimbria at ovulation, we hypothesized that NO synthesis in the bovine oviduct is regulated by follicular steroids and prostaglandins (PGs). Quantification of mRNA expressions in the ampullary tissues showed that inducible NO synthase (NOS2) mRNA expression was highest on the day of ovulation (day 0). By contrast, NOS2 mRNA expression in the isthmus was highest on days 5-6 and lowest on days 19-21. Endothelial NOS (NOS3) mRNA expressions in either the ampulla or the isthmus did not change during the estrous cycle. PGE2 and PGF2α increased NOS2 mRNA expressions in cultured ampullary oviductal epithelial cells after 1-h incubation. These increases were suppressed by an antagonist of E-prostanoid receptor type 2, one of the PGE2 receptor. Estradiol-17β decreased the expression of NOS2 mRNA expression in cultured isthmic epithelial cells 24h after treatment. This effect was suppressed by an antagonist of estrogen receptorα(ESR1). Expression of ESR1 was highest on days 19-21 in the isthmic tissues. The overall findings indicate region-specific difference of NO synthesis in the oviduct. PGs flowed from ruptured follicle may up-regulate NO synthesis in the oviductal epithelium, whereas circulating E2 seems to inhibit NO synthesis via ESR1 in the isthmus at the follicular stage.
Collapse
Affiliation(s)
- Yoshihiko Kobayashi
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Soichi Kageyama
- Animal Biotechnology GroupAnimal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Hiroki Hirayama
- Animal Biotechnology GroupAnimal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Koji Kimura
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive PhysiologyGraduate School of Environmental and Life Science, Okayama University, Okayama, Japan Obihiro University of Agriculture and Veterinary MedicineHokkaido, Japan
| |
Collapse
|
65
|
Bahnson ESM, Vavra AK, Flynn ME, Vercammen JM, Jiang Q, Schwartz AR, Kibbe MR. Long-term effect of PROLI/NO on cellular proliferation and phenotype after arterial injury. Free Radic Biol Med 2016; 90:272-86. [PMID: 26627935 PMCID: PMC4698201 DOI: 10.1016/j.freeradbiomed.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Vascular interventions are associated with high failure rates from restenosis secondary to negative remodeling and neointimal hyperplasia. Periadventitial delivery of nitric oxide (NO) inhibits neointimal hyperplasia, preserving lumen patency. With the development of new localized delivery vehicles, NO-based therapies remain a promising therapeutic avenue for the prevention of restenosis. While the time course of events during neointimal development has been well established, a full characterization of the impact of NO donors on the cells that comprise the arterial wall has not been performed. Thus, the aim of our study was to perform a detailed assessment of proliferation, cellularity, inflammation, and phenotypic cellular modulation in injured arteries treated with the short-lived NO donor, PROLI/NO. PROLI/NO provided durable inhibition of neointimal hyperplasia for 6 months after arterial injury. PROLI/NO inhibited proliferation and cellularity in the media and intima at all of the time points studied. However, PROLI/NO caused an increase in adventitial proliferation at 2 weeks, resulting in increased cellularity at 2 and 8 weeks compared to injury alone. PROLI/NO promoted local protein S-nitrosation and increased local tyrosine nitration, without measurable systemic effects. PROLI/NO predominantly inhibited contractile smooth muscle cells in the intima and media, and had little to no effect on vascular smooth muscle cells or myofibroblasts in the adventitia. Finally, PROLI/NO caused a delayed and decreased leukocyte infiltration response after injury. Our results show that a short-lived NO donor exerts durable effects on proliferation, phenotype modulation, and inflammation that result in long-term inhibition of neointimal hyperplasia.
Collapse
Affiliation(s)
- Edward S M Bahnson
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Ashley K Vavra
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Megan E Flynn
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Janet M Vercammen
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Amanda R Schwartz
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States
| | - Melina R Kibbe
- Division of Vascular Surgery, Northwestern University, Chicago, IL, United States; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States.
| |
Collapse
|
66
|
Rodríguez-Gómez I, Moliz JN, Quesada A, Montoro-Molina S, Vargas-Tendero P, Osuna A, Wangensteen R, Vargas F. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats. Exp Biol Med (Maywood) 2015; 241:550-6. [PMID: 26674221 DOI: 10.1177/1535370215619042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders.
Collapse
Affiliation(s)
- Isabel Rodríguez-Gómez
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Juan N Moliz
- Departamento de Fisiología, Facultad de Medicina, Grenada 18012, Spain
| | - Andrés Quesada
- Centro de Instrumentación Científica de la Universidad de Granada, Granada 18003, Spain
| | | | - Pablo Vargas-Tendero
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Antonio Osuna
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| | - Rosemary Wangensteen
- Centro de Instrumentación Científica de la Universidad de Granada, Granada 18003, Spain
| | - Félix Vargas
- Instituto de Investigación Biosanitaria ibs. Granada 18012, Spain. Hospitales Universitarios de Granada. Universidad de Granada, Granada 18012, Spain
| |
Collapse
|
67
|
Rodríguez-Gómez I, Manuel Moreno J, Jimenez R, Quesada A, Montoro-Molina S, Vargas-Tendero P, Wangensteen R, Vargas F. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats. Am J Hypertens 2015; 28:1464-72. [PMID: 25907224 DOI: 10.1093/ajh/hpv049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. METHODS Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. RESULTS The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. CONCLUSION Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism.
Collapse
Affiliation(s)
- Isabel Rodríguez-Gómez
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain
| | - Juan Manuel Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Murcia, Spain
| | - Rosario Jimenez
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Farmacología, Facultad de Farmacia, Granada, Spain
| | - Andrés Quesada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Sebastian Montoro-Molina
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Pablo Vargas-Tendero
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain
| | - Rosemary Wangensteen
- Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain; Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada. Universidad de Granada, Granada, Spain;
| |
Collapse
|
68
|
Modulation of Tamoxifen Cytotoxicity by Caffeic Acid Phenethyl Ester in MCF-7 Breast Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3017108. [PMID: 26697130 PMCID: PMC4677239 DOI: 10.1155/2016/3017108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022]
Abstract
Although Tamoxifen (TAM) is one of the most widely used drugs in managing breast cancer, many women still relapse after long-term therapy. Caffeic acid phenethyl ester (CAPE) is a polyphenolic compound present in many medicinal plants and in propolis. The present study examined the effect of CAPE on TAM cytotoxicity in MCF-7 cells. MCF-7 cells were treated with different concentrations of TAM and/or CAPE for 48 h. This novel combination exerted synergistic cytotoxic effects against MCF-7 cells via induction of apoptotic machinery with activation of caspases and DNA fragmentation, along with downregulation of Bcl-2 and Beclin 1 expression levels. However, the mammalian microtubule-associated protein light chain LC 3-II level was unchanged. Vascular endothelial growth factor level was also decreased, whereas levels of glutathione and nitric oxide were increased. In conclusion, CAPE augmented TAM cytotoxicity via multiple mechanisms, providing a novel therapeutic approach for breast cancer treatment that can overcome resistance and lower toxicity. This effect provides a rationale for further investigation of this combination.
Collapse
|
69
|
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2015; 575:584-99. [PMID: 26428312 DOI: 10.1016/j.gene.2015.09.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/10/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
70
|
Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015; 114:449-58. [PMID: 26293514 DOI: 10.1160/th14-12-1067] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 08/07/2015] [Indexed: 12/18/2022]
Abstract
There is growing recognition of the critical role of platelets in inflammation and immune responses. Recent studies have indicated that antiplatelet medications may reduce mortality from infections and sepsis, which suggests possible clinical relevance of modifying platelet responses to inflammation. Platelets release numerous inflammatory mediators that have no known role in haemostasis. Many of these mediators modify leukocyte and endothelial responses to a range of different inflammatory stimuli. Additionally, platelets form aggregates with leukocytes and form bridges between leukocytes and endothelium, largely mediated by platelet P-selectin. Through their interactions with monocytes, neutrophils, lymphocytes and the endothelium, platelets are therefore important coordinators of inflammation and both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Mark R Thomas
- Dr. Mark R. Thomas, BMedSci BMBS MRCP, Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Tel.: +44 114 3052019, Fax: +44 114 2266159, E-mail
| | | |
Collapse
|
71
|
Hwang HM, Lee JH, Min BS, Jeon BH, Hoe KL, Kim YM, Ryoo S. A Novel Arginase Inhibitor Derived from Scutellavia indica Restored Endothelial Function in ApoE-Null Mice Fed a High-Cholesterol Diet. J Pharmacol Exp Ther 2015; 355:57-65. [PMID: 26265320 DOI: 10.1124/jpet.115.224592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/07/2015] [Indexed: 11/22/2022] Open
Abstract
Elevated endothelial arginase activity decreases nitric oxide (NO) production by competing with the substrate l-arginine, previously reported, and reciprocally regulating endothelial nitric oxide synthase (eNOS) activity. Thus, arginase inhibitors may help treat vascular diseases associated with endothelial dysfunction. A screening of metabolites from medicinal plants revealed that (2S)-5,2',5'-trihydroxy-7,8-dimethoxy flavanone (TDF) was a noncompetitive inhibitor of arginase. We investigated whether TDF reciprocally regulated endothelial NO production and its possible mechanism. TDF noncompetitively inhibited arginase I and II activity in a dose-dependent manner. TDF incubation decreased arginase activity and increased NO production in human umbilical vein endothelial cells and isolated mouse aortic vessels and reduced reactive oxygen species (ROS) generation in the endothelium of the latter. These TDF-mediated effects were associated with increased eNOS phosphorylation and dimerization but not with changes in protein content. Endothelium-dependent vasorelaxant responses to acetylcholine (Ach) were significantly increased in TDF-incubated aortic rings and attenuated by incubation with soluble guanylyl cyclase inhibitor. Phenylephrine-induced vasoconstrictor responses were markedly attenuated in TDF-treated vessels from wild-type mice. In atherogenic-prone ApoE(-/-) mice, TDF attenuated the high-cholesterol diet (HCD)-induced increase in arginase activity, which was accompanied by restoration of NO production and reduction of ROS generation. TDF incubation induced eNOS dimerization and phosphorylation at Ser1177. In addition, TDF improved Ach-dependent vasorelaxation responses and attenuated U46619-dependent contractile responses but did not change sodium nitroprusside-induced vasorelaxation or N-NAME-induced vasoconstriction. The findings suggest that TDF may help treat cardiovascular diseases by reducing pathophysiology derived from HCD-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Hye Mi Hwang
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Jeong Hyung Lee
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Byung Sun Min
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Byeong Hwa Jeon
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Kwang Lae Hoe
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Young Myeong Kim
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| | - Sungwoo Ryoo
- Departments of Biological Sciences (H.M.H., S.R.) and Biochemistry (J.H.L.), College of Natural Sciences, and Departments of Molecular and Cellular Biochemistry (Y.M.K.), School of Medicine, Kangwon National University, Chuncheon, Gangwon-do; College of Pharmacy, Catholic University, Daegu (B.S.M.); Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, (B.H.J.) and Department of New Drug Discovery and Development (K.L.H.), Chungnam National University, Daejeon, South Korea
| |
Collapse
|
72
|
McDonald AI, Iruela-Arispe ML. Healing arterial ulcers: Endothelial lining regeneration upon vascular denudation injury. Vascul Pharmacol 2015; 72:9-15. [PMID: 26093336 DOI: 10.1016/j.vph.2015.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
Thrombosis and restenosis are the most prevalent late complications of coronary artery stenting. Current standards of clinical care focus on prevention of smooth muscle cell proliferation by the use of drug-eluting stents able to release anti-proliferative drugs. Unfortunately, these drugs also block endothelial cell proliferation and, in this manner, prevent recovery of endothelial cell coverage. Continued lack of endothelial repair leaves the root cause of thrombosis and restenosis unchanged, creating a vicious cycle where drug-mediated prevention of restenosis simultaneously implies promotion of thrombosis. In this issue of Vascular Pharmacology, Hussner and colleagues provide in vitro evidence and a mechanistic basis for the use of atorvastatin in stents as a way to bypass this roadblock. Here we review the pathological mechanisms and therapeutic approaches to restore flow in occluded arteries. We argue that rational design of drug eluting stents should focus on specific inhibition of smooth muscle cell proliferation with concurrent stimulation of endothelial regeneration. We comment on the current poor understanding of the cellular and molecular regulation of endothelial cell proliferation in the context of a functional artery, and on the pitfalls of extrapolating from the well-studied process of neovascularization by sprouting vessel formation.
Collapse
Affiliation(s)
- Austin I McDonald
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - M Luisa Iruela-Arispe
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA..
| |
Collapse
|
73
|
Teixeira TG, Tibana RA, Nascimento DDC, de Sousa NMF, de Souza VC, Vieira DCL, Nóbrega ODT, de Almeida JA, Navalta J, Prestes J. Endothelial nitric oxide synthase Glu298Asp gene polymorphism influences body composition and biochemical parameters but not the nitric oxide response to eccentric resistance exercise in elderly obese women. Clin Physiol Funct Imaging 2015; 36:482-489. [PMID: 26046684 DOI: 10.1111/cpf.12255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/24/2015] [Indexed: 12/24/2022]
Abstract
Both endothelial nitric oxide synthase (eNOS) gene polymorphism and nitric oxide (NO) are involved in important cardiovascular, muscular and inflammatory physiological mechanisms during ageing and response to exercise. The aim of this study was to investigate the NO kinetic response following an acute eccentric resistance exercise (ERE) session and the possible effect of the Glu298Asp eNOS gene polymorphism in elderly obese women. Eighty-seven women (age 69·4 ± 6·1 years, body weight 74·9 ± 12·7 kg, height 151·9 ± 6·0 cm and BMI 32·5 ± 5·7 kg m-2 ) completed seven sets of ten eccentric repetitions at 110% of the ten repetitions maximum (10RM). NO concentrations remained elevated up to 48 h following the acute ERE session as compared with baseline, for GG and GT/TT groups (P<0·05), with no differences between genotypes. The GG genotype group had higher body weight, prevalence of obesity (BMI classification - 81% versus 56%), BMI and higher relative muscle strength, while they had significantly lower triglycerides, VLDL and urea concentrations as compared with TT/TG group. In conclusion, NO remains elevated for up to 48 h after an acute ERE session, without genotype interaction. The TT/TG genotype had a negative impact on triglycerides, VLDL and urea concentrations. Thus, T carriers should increase their attention to cardiovascular risk factor and metabolic disorders.
Collapse
Affiliation(s)
- Tatiane Gomes Teixeira
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil
| | - Ramires Alsamir Tibana
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil
| | | | | | - Vinicius Carolino de Souza
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil.,University of Brasilia, Brasilia, Brazil
| | | | | | | | - James Navalta
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Jonato Prestes
- Catholic University of Brasilia, Graduation Program on Physical Education, Brasilia, Brazil.
| |
Collapse
|
74
|
Chen B, Strauch K, Jin Y, Cui H, Nelin LD, Chicoine LG. Asymmetric dimethylarginine does not inhibit arginase activity and is pro-proliferative in pulmonary endothelial cells. Clin Exp Pharmacol Physiol 2015; 41:469-74. [PMID: 24799070 DOI: 10.1111/1440-1681.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenously produced nitric oxide synthase (NOS) inhibitor. L-Arginine can be metabolised by NOS and arginase, and arginase is the first step in polyamine production necessary for cellular proliferation. We tested the hypothesis that ADMA would inhibit NOS but not arginase activity and that this pattern of inhibition would result in greater L-arginine bioavailability to arginase, thereby increasing viable cell number. Bovine arginase was used in in vitro activity assays with various concentrations of substrate (L-arginine, ADMA, N(G) -monomethyl-L-arginine (L-NMMA) and N(G) -nitro-L-arginine methyl ester (L-NAME)). Only L-arginine resulted in measurable urea production (Km = 6.9 ± 0.8 mmol/L; Vmax = 6.6 ± 0.3 μmol/mg protein per min). We then incubated bovine arginase with increasing concentrations of ADMA, L-NMMA and L-NAME in the presence of 1 mmol/L l-arginine and found no effect of any of the tested compounds on arginase activity. Using bovine pulmonary arterial endothelial cells (bPAEC) we determined the effects of ADMA on nitric oxide (NO) and urea production and found significantly lower NO production and greater urea production (P < 0.003) with ADMA, without changes in arginase protein levels. In addition, ADMA treatment resulted in an approximately 30% greater number of viable cells after 48 h than in control bPAEC. These results demonstrate that ADMA is neither a substrate nor an inhibitor of arginase activity and that in bPAEC ADMA inhibits NO production and enhances urea production, leading to more viable cells. These results may have pathophysiological implications in disorders associated with higher ADMA levels, such as pulmonary hypertension.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
75
|
Henno P, Maurey C, Le Pimpec-Barthes F, Devillier P, Delclaux C, Israël-Biet D. Is arginase a potential drug target in tobacco-induced pulmonary endothelial dysfunction? Respir Res 2015; 16:46. [PMID: 25889611 PMCID: PMC4391310 DOI: 10.1186/s12931-015-0196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/25/2015] [Indexed: 11/29/2022] Open
Abstract
Background Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The bioavailability of the potent vasodilator nitric oxide (NO) depends on competition between NO synthase-3 (NOS3) and arginases for their common substrate (L-arginine). We tested the hypothesis whereby tobacco smoking impairs pulmonary endothelial function via upregulation of the arginase pathway. Methods Endothelium-dependent vasodilation in response to acetylcholine (Ach) was compared ex vivo for pulmonary vascular rings from 29 smokers and 10 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of L-arginine supplementation, arginase inhibition (by N(omega)-hydroxy-nor-l-arginine, NorNOHA) and NOS3 induction (by genistein) on vasodilation. Protein levels of NOS3 and arginases I and II in the pulmonary arteries were quantified by Western blotting. Results Overall, vasodilation was impaired in smokers (relative to controls; p < 0.01). Eleven of the 29 smokers (the ED+ subgroup) displayed endothelial dysfunction (defined as the absence of a relaxant response to Ach), whereas 18 (the ED− subgroup) had normal vasodilation. The mean responses to 10−4 M Ach were −23 ± 10% and 31 ± 4% in the ED+ and ED− subgroups, respectively (p < 0.01). Supplementation with L- arginine improved endothelial function in the ED+ subgroup (−4 ± 10% vs. -32 ± 10% in the presence and absence of L- arginine, respectively; p = 0.006), as did arginase inhibition (18 ± 9% vs. -1 ± 9%, respectively; p = 0.0002). Arginase I protein was overexpressed in ED+ samples, whereas ED+ and ED− samples did not differ significantly in terms of NOS3 expression. Treatment with genistein did not significantly improve endothelial function in ED+ samples. Conclusion Overexpression and elevated activity of arginase I are involved in tobacco-induced pulmonary endothelial dysfunction.
Collapse
Affiliation(s)
- Priscilla Henno
- Sorbonne Universités, UPMC Université Paris 06, Paris, France. .,Département Physiologie-Algologie-Somnologie, Unité Fonctionnelle de Somnologie et Fonction Respiratoire, AP-HP, Hôpital Saint Antoine, 75012, Paris, France. .,Laboratoire de Pharmacologie Respiratoire UPRES EA 220, Hôpital Foch, 92150, Suresnes, France.
| | - Christelle Maurey
- Ecole Nationale Vétérinaire d'Alfort, Unité de Médecine, Université Paris-Est, 94700, Maisons-Alfort, France.
| | - Françoise Le Pimpec-Barthes
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,Service de Chirurgie Thoracique, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| | - Philippe Devillier
- Laboratoire de Pharmacologie Respiratoire UPRES EA 220, Hôpital Foch, 92150, Suresnes, France. .,Université Versailles Saint-Quentin en Yvelines, UFR Sciences de la Santé Simone Veil, Montigny le Bretonneux, France.
| | - Christophe Delclaux
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,Service de Physiologie, Explorations Fonctionnelles Respiratoires et du Sommeil, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| | - Dominique Israël-Biet
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,Service de Pneumologie, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France.
| |
Collapse
|
76
|
Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari M, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2015; 34:166-183. [PMID: 24889964 DOI: 10.1002/mas.21429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
77
|
Morita M, Hayashi T, Ochiai M, Maeda M, Yamaguchi T, Ina K, Kuzuya M. Oral supplementation with a combination of L-citrulline and L-arginine rapidly increases plasma L-arginine concentration and enhances NO bioavailability. Biochem Biophys Res Commun 2014; 454:53-7. [PMID: 25445598 DOI: 10.1016/j.bbrc.2014.10.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic supplementation with L-citrulline plus L-arginine has been shown to exhibit anti-atherosclerotic effects. However, the short-term action of this combination on the nitric oxide (NO)-cGMP pathway remains to be elucidated. The objective of the present study was to investigate the acute effects of a combination of oral L-citrulline and L-arginine on plasma L-arginine and NO levels, as well as on blood circulation. METHODS Rats or New Zealand white rabbits were treated orally with L-citrulline, or L-arginine, or a combination of each at half dosage. Following supplementation, plasma levels of L-arginine, NOx, cGMP and changes in blood circulation were determined sequentially. RESULTS L-Citrulline plus L-arginine supplementation caused a more rapid increase in plasma L-arginine levels and marked enhancement of NO bioavailability, including plasma cGMP concentrations, than with dosage with the single amino acids. Blood flow in the central ear artery in rabbits was also significantly increased by L-citrulline plus L-arginine administration as compared with the control. CONCLUSION Our data show for the first time that a combination of oral L-citrulline and L-arginine effectively and rapidly augments NO-dependent responses at the acute stage. This approach may have clinical utility for the regulation of cardiovascular function in humans.
Collapse
Affiliation(s)
- Masahiko Morita
- Function Research Group, Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD., 2, Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Toshio Hayashi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Masayuki Ochiai
- Function Research Group, Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD., 2, Miyukigaoka, Tsukuba, Ibaraki 305-0841, Japan
| | - Morihiko Maeda
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoe Yamaguchi
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Koichiro Ina
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
78
|
Sadowska-Bartosz I, Ott C, Grune T, Bartosz G. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Free Radic Res 2014; 48:1267-84. [PMID: 25119970 DOI: 10.3109/10715762.2014.953494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are subject to various posttranslational modifications, some of them being undesired from the point of view of metabolic efficiency. Prevention of such modifications is expected to provide new means of therapy of diseases and decelerate the process of aging. In this review, modifications of proteins by reactive nitrogen species and reactive halogen species, is briefly presented and means of prevention of these modifications and their sequelae are discussed, including the denitrase activity and inhibitors of myeloperoxidase.
Collapse
Affiliation(s)
- I Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów , Rzeszów , Poland
| | | | | | | |
Collapse
|
79
|
Pandey D, Bhunia A, Oh YJ, Chang F, Bergman Y, Kim JH, Serbo J, Boronina TN, Cole RN, Van Eyk J, Remaley AT, Berkowitz DE, Romer LH. OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase. Circ Res 2014; 115:450-9. [PMID: 24903103 PMCID: PMC8760889 DOI: 10.1161/circresaha.115.304262] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Increased arginase activity contributes to endothelial dysfunction by competition for l-arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. OBJECTIVE To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. METHODS AND RESULTS OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2(-/-) mice bred on an ApoE(-/-) background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE(-/-) controls. CONCLUSIONS These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Deepesh Pandey
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Anil Bhunia
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Young Jun Oh
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Fumin Chang
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Yehudit Bergman
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Jae Hyung Kim
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Janna Serbo
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Tatiana N Boronina
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Robert N Cole
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Jennifer Van Eyk
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Alan T Remaley
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Dan E Berkowitz
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.)
| | - Lewis H Romer
- From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.T.R.).
| |
Collapse
|
80
|
Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. Amino Acids 2014; 46:1557-64. [DOI: 10.1007/s00726-014-1717-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 12/14/2022]
|
81
|
Maslov LN, Oeltgen PR, Lishmanov YB, Brown SA, Barzakh EI, Krylatov AV, Pei JM. Activation of peripheral delta opioid receptors increases cardiac tolerance to arrhythmogenic effect of ischemia/reperfusion. Acad Emerg Med 2014; 21:31-9. [PMID: 24552522 DOI: 10.1111/acem.12286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 07/23/2013] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the role of peripheral μ, δ1, δ2, and nociceptin opioid receptors agonists in the regulation of cardiac tolerance to the arrhythmogenic effect of ischemia/reperfusion in rats. METHODS Anesthetized open-chest male Wistar rats were subjected to either 45 minutes of left coronary artery occlusion (phase 1a 10 minutes and phase 2b 35 minutes) and 2 hours of reperfusion in Experiment 1 or 10 minutes of ischemia and 10 minutes of reperfusion in Experiment 2. In Experiment 1, saline or vehicle controls and the mu-specific opioids dermorphin-H (Derm-H) and ([d-Ala2, N-Me-Phe4, Gly-ol5] enkephalin (DAMAGO); the delta-1-specific opioid d-Pen2,5enkephalin (DPDPE); nociceptin; and the delta-2-specific opioids deltorphin-II (Delt-II), Delt-Dvariant (Delt-Dvar), and deltorphin-E (Delt-E) were infused 15 minutes prior to ischemia. In Experiment 2, DPDPE, Delt-D, Delt-Dvar, and Delt-E were infused at 15 minutes prior to ischemia. The universal opioid receptor antagonist naltrexone, the peripherally acting antagonist naloxone methiodide, the selective δ1 antagonist 7-benzylidene naltrexone maleate, and the specific δ2 antagonist naltriben mesylate were infused 25 minutes prior to ischemia. RESULTS In Experiment 1, pretreatment with the μ opioids Derm-H and DAMGO, DPDPE, and nociceptin at all doses tested did not reduce the incidence of ischemia-induced arrhythmias compared to controls during 45 minutes of ischemia. The δ2 opioids Delt-II (0.12 mg/kg), Delt-Dvar (0.3 mg/kg), and Delt-E (0.18 mg/kg) all demonstrated significant antiarrhythmic effects at the 150 nmol/kg dose compared to saline or vehicle controls. Nine of 19 animals treated with Delt-II were tolerant without ventricular arrhythmias to the arrhythmogenic effect of ischemia during the first 10 minutes of ischemia (phase 1a) and 11 of 19 were without ventricular arrhythmias during the following 35 minutes of ischemia (phase 1b). Delt-II also decreased the incidence of premature ventricular contractions and ventricular tachycardia by almost half during phase 1a. Delt-II did not affect the incidence of ventricular fibrillation (VF). Pretreatment with Delt-Dvar and Delt-E completely blocked the incidence of VF in phase 1b. Delt-E also decreased premature ventricular contractions by 50%, and the incidence of ventricular tachycardia decreased over twofold in phase 1b of ischemia. There was no enhanced tolerance by any of the delta-2 opioids to the arrhythmogenic effect of reperfusion after long-term ischemia. In Experiment 2, after 10 minutes of ischemia and 10 minutes of reperfusion, Delt-II (0.12 mg/kg) reduced the incidence of premature ventricular contractions and ventricular tachycardia compared to controls, and completely blocked the incidence of VF following 10 minutes of reperfusion. Delt-Dvar and Delt-E were without effect, as was DPDPE following 10 minutes of reperfusion. The antiarrhythmic effect of Delt-II during 10 minutes of ischemia and 10 minutes of reperfusion was completely blocked by the peripherally acting opioid receptor inhibitor naloxone methiodide and the selective delta-2 opioid receptor inhibitor naltriben mesylate, but not by the selective delta-1 inhibitor 7-benzylidene naltrexone maleate. The antagonists alone had no effect on arrhythmogenesis. CONCLUSIONS Peripheral delta-2 opioid receptor activation by Delt-II, Delt-Dvar, and Delt-E enhanced cardiac tolerance to the arrhythmogenic effects of ischemia.
Collapse
Affiliation(s)
- Leonid N Maslov
- The Laboratory of Experimental Cardiology, Research Institute of Cardiology, Siberian Branch, Russian Academy of Medical Sciences, Tomsk, Russia
| | | | | | | | | | | | | |
Collapse
|
82
|
Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 2013; 4:347. [PMID: 24379783 PMCID: PMC3861784 DOI: 10.3389/fphys.2013.00347] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023] Open
Abstract
Nitric oxide (NO) is a short-lived gaseous signaling molecule. In blood vessels, it is synthesized in a dynamic fashion by endothelial nitric oxide synthase (eNOS) and influences vascular function via two distinct mechanisms, the activation of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)-dependent signaling and the S-nitrosylation of proteins with reactive thiols (S-nitrosylation). The regulation of eNOS activity and NO bioavailability is critical to maintain blood vessel function. The activity of eNOS and ability to generate NO is regulated at the transcriptional, posttranscriptional, and posttranslational levels. Post-translational modifications acutely impact eNOS activity and dysregulation of these mechanisms compromise eNOS activity and foster the development of cardiovascular diseases (CVDs). This review will intergrate past and current literature on the post-translational modifications of eNOS in both health and disease.
Collapse
Affiliation(s)
- Jin Qian
- Pulmonary and Critical Care, School of Medicine, Stanford University/VA Palo Alto Health Care System Palo Alto, CA, USA
| | - David Fulton
- Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
83
|
Taysi S, Umudum Z, Sari RA, Kuskay S, Bakan N. Nitric oxide level and superoxide dismutase activity in serum of patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2013. [DOI: 10.1163/156856903770196818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
84
|
Dong Z, Ran J, Zhou H, Chen J, Lei T, Wang W, Sun Y, Lin G, Bankir L, Yang B. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium. PLoS One 2013; 8:e76952. [PMID: 24204711 PMCID: PMC3804579 DOI: 10.1371/journal.pone.0076952] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/28/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. METHODOLOGY/PRINCIPAL FINDINGS Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. CONCLUSIONS/SIGNIFICANCE UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.
Collapse
Affiliation(s)
- Zixun Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy, Neuroscience Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jihui Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianluo Lei
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guiting Lin
- Department of Urology, University of California San Francisco, San Francisco, California, United States of America
| | - Lise Bankir
- INSERM Unit 872, Centre de Recherche des Cordeliers, Paris, France
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
85
|
Sikka G, Pandey D, Bhuniya AK, Steppan J, Armstrong D, Santhanam L, Nyhan D, Berkowitz DE. Contribution of arginase activation to vascular dysfunction in cigarette smoking. Atherosclerosis 2013; 231:91-4. [PMID: 24125417 DOI: 10.1016/j.atherosclerosis.2013.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/08/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cigarette smoke increases the risk of several cardiovascular diseases and has synergistic detrimental effects when present with other risks that contribute to its pathogenesis. Oxidative injury to the endothelium via reactive oxygen species (ROS) and nitric oxide (NO) dysregulation is a common denominator of smoking-induced alterations in vascular function. However, the mechanisms underlying ROS and NO dysregulation due to smoking remain unclear. We tested if arginase (Arg) activation/upregulation contributes to this phenomenon by constraining nitric oxide synthase (NOS) activity. METHODS Arg2 knockout (Arg2(-/-)) and control C57BL/6J mice were either exposed to cigarette smoke, 6 h/day/2 weeks (Second Hand Smoking; SHS) or housed in normal environment (Non Smoking; NS). Arg activity, NO and ROS levels were determined by measuring urea production, fluorescent dye (DAF), and dihydroethedium (DHE) respectively in isolated mouse aorta. RESULTS Arg activity and ROS levels were higher NO lower in SHS compared to NS mice. SHS failed to lower NO levels in Arg2(-/-) mice. Endothelial dependent vasodilation (EDV) was attenuated in SHS mice as compared to controls (78.80% ± 8 vs 46.58% ± 5). This impaired EDV was abolished in Arg2(-/-) mice (67.48% ± 7 in SHS vs. 78.80% ± 8 in NS). Vascular stiffness was increased in SHS mice as compared to NS controls but remained unchanged in Arg2(-/-) mice. CONCLUSION Endothelial NOS is uncoupled by smoking exposure, leading to endothelial dysfunction and vascular stiffness, a process that is prevented by Arg2 deletion. Hence, we identify Arg2 upregulation as a critical pathogenic factor and target for therapy in oxidative injury following smoking exposure through reciprocal regulation of endothelial NOS.
Collapse
Affiliation(s)
- Gautam Sikka
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Murphy SV, Shiyun SC, Tan JL, Chan S, Jenkin G, Wallace EM, Lim R. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transplant 2013; 21:1477-92. [PMID: 22507554 DOI: 10.3727/096368911x601028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Since current treatments for both acute and chronic lung diseases are less than ideal, there has been recent interest in the use of cell-based therapies for inflammatory lung disease. Specifically, human amnion epithelial cells (hAECs) have been shown to reduce bleomycin-induced lung injury and prevent subsequent loss of respiratory function, primarily through modulation of the host immune response. The precise mechanisms of this effect remain unclear. We aimed to investigate the potential of hAECs to mitigate bleomycin-induced lung injury in surfactant protein C deficient (Sftpc(−/−)) mice, which are highly susceptible to pulmonary injury as a result of impairment of macrophage function. Primary hAECs were administered to wild-type (Sftpc(+/+)) and Sftpc(−/−) mice 24 h after exposure to bleomycin. Compared to Sftpc(+/+) mice receiving bleomycin alone, Sftpc(+/+) mice administered hAECs 24 h after bleomycin exposure had decreased expression of proinflammatory genes, decreased macrophage and neutrophil infiltration, fibrosis, collagen content, and α-smooth muscle actin as well as a significant improvement in lung function. Compared to Sftpc(−/−) mice given bleomycin alone, Sftpc(−/−) mice administered hAECs 24 h after bleomycin did not have a decrease in inflammatory gene expression or a reduction in macrophage pulmonary infiltration. Subsequently, Sftpc(−/−) mice did not show any decrease in pulmonary fibrosis or improvement of lung function after hAEC administration. The ability of hAECs to mitigate bleomycin-induced lung injury is abolished in Sftpc(−/−) mice, suggesting that hAECs require normal host macrophage function to exert their reparative effects.
Collapse
Affiliation(s)
- Sean V Murphy
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
87
|
Forte A, Grossi M, Turczynska KM, Svedberg K, Rinaldi B, Donniacuo M, Holm A, Baldetorp B, Vicchio M, De Feo M, Santè P, Galderisi U, Berrino L, Rossi F, Hellstrand P, Nilsson BO, Cipollaro M. Local inhibition of ornithine decarboxylase reduces vascular stenosis in a murine model of carotid injury. Int J Cardiol 2013; 168:3370-80. [PMID: 23680596 DOI: 10.1016/j.ijcard.2013.04.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Polyamines are organic polycations playing an essential role in cell proliferation and differentiation, as well as in cell contractility, migration and apoptosis. These processes are known to contribute to restenosis, a pathophysiological process often occurring in patients submitted to revascularization procedures. We aimed to test the effect of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, on vascular cell pathophysiology in vitro and in a rat model of carotid arteriotomy-induced (re)stenosis. METHODS The effect of DFMO on primary rat smooth muscle cells (SMCs) and mouse microvascular bEnd.3 endothelial cells (ECs) was evaluated through the analysis of DNA synthesis, polyamine concentration, cell viability, cell cycle phase distribution and by RT-PCR targeting cyclins and genes belonging to the polyamine pathway. The effect of DFMO was then evaluated in arteriotomy-injured rat carotids through the analysis of cell proliferation and apoptosis, RT-PCR and immunohistochemical analysis of differential gene expression. RESULTS DFMO showed a differential effect on SMCs and on ECs, with a marked, sustained anti-proliferative effect of DFMO at 3 and 8 days of treatment on SMCs and a less pronounced, late effect on bEnd.3 ECs at 8 days of DFMO treatment. DFMO applied perivascularly in pluronic gel at arteriotomy site reduced subsequent cell proliferation and preserved smooth muscle differentiation without affecting the endothelial coverage. Lumen area in DFMO-treated carotids was 49% greater than in control arteries 4 weeks after injury. CONCLUSIONS Our data support the key role of polyamines in restenosis and suggest a novel therapeutic approach for this pathophysiological process.
Collapse
Affiliation(s)
- Amalia Forte
- Dept. of Experimental Medicine, Second University of Naples, Italy; Excellence Research Centre for Cardiovascular Diseases, Second University of Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Anti-inflammatory effects of a Chinese herbal medicine in atherosclerosis via estrogen receptor β mediating nitric oxide production and NF-κB suppression in endothelial cells. Cell Death Dis 2013; 4:e551. [PMID: 23519120 PMCID: PMC3615733 DOI: 10.1038/cddis.2013.66] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bu-Shen-Ning-Xin Decoction (BSNXD) administration has alleviated the early pathologic damage of atherosclerosis by inhibiting the adhesion molecule expression and upregulating the estrogen receptor (ER) β expression in endothelial cells, and increasing the serum nitric oxide (NO) level without any effect on serum lipid status, endometrium and fat deposition in liver in ovariectomized rabbits. The BSNXD-derived serum increases ER β expression in the human umbilical vein endothelial cells (HUVECs), and decreases malondialdehyde (MDA) production, and upregulates eNOS expression then increases NO synthesis through ERβ-dependent pathway. NO not only suppresses the LPS-induced NF-κB transcription in HUVECs, but also decreases apoptosis of endothelial cells. The BSNXD-derived serum decreases monocyte chemoattractant protein-1 production, and suppresses cell adhesion molecules (ICAM-1, VCAM-1 and E-selectin) expression in HUVECs injured by oxidized low-density lipoproteins (ox-LDL), and these effects can be abolished by ERβ antagonist (R,RTHC) and NO synthase inhibitor (L-NAME). The BSNXD-derived serum-treated HUVECs supernatant reduces CCR2, LFA-1 and VLA-4 expression in monocytes cell line U937 cells, which in turn inhibits adherence of U937 to injured endothelial cells. NO synthesis increases, and MDA production decreases through ERβ-mediated pathway that suppresses apoptosis and NF-κB activity in endothelial cells that downregulates adhesion molecules expression on endothelial cells via ERβ/NO/NF-κB pathway, and in turn leukocyte adhesion, which suggests BSNXD potential value in prophylaxis atherosclerosis.
Collapse
|
89
|
Curtis B, Payne TJ, Ash DE, Mohanty DK. Secondary amines containing one aromatic nitro group: preparation, nitrosation, sustained nitric oxide release, and the synergistic effects of released nitric oxide and an arginase inhibitor on vascular smooth muscle cell proliferation. Bioorg Med Chem 2013; 21:1123-35. [PMID: 23375096 PMCID: PMC3574223 DOI: 10.1016/j.bmc.2012.12.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/16/2012] [Accepted: 12/28/2012] [Indexed: 01/05/2023]
Abstract
Atherosclerosis, a leading cause of death worldwide, is associated with the excessive proliferation of vascular smooth muscle cells. Nitrogen monoxide, more commonly known as nitric oxide, inhibits this uncontrolled proliferation. Herein we report the preparation of two families of nitric oxide donors; beginning with the syntheses of secondary amine precursors, obtained through the reaction between 2 equiv of various monoamines with 2,4 or 2,6-difluoronitrobenzene. The purified secondary amines were nitrosated then subjected to a Griess reagent test to examine the slow and sustained nitric oxide release rate for each compound in both the absence and presence of reduced glutathione. The release rate profiles of these two isomeric families of NO-donors were strongly dependent on the number of side chain methylene units and the relative orientations of the nitro groups with respect to the N-nitroso moieties. The nitrosated compounds were then added to human aortic smooth muscle cell cultures, individually and in tandem with S-2-amino-6-boronic acid (ABH), a potent arginase inhibitor. Cell viability studies indicated a lack of toxicity of the amine precursors, in addition to anti-proliferative effects exhibited by the nitrosated compounds, which were enhanced in the presence of ABH.
Collapse
Affiliation(s)
- Brandon Curtis
- Department of Chemistry, Central Michigan University, Mt. Pleasant, MI-48858, USA
| | | | - David E. Ash
- Department of Chemistry, Central Michigan University, Mt. Pleasant, MI-48858, USA
| | - Dillip K. Mohanty
- Department of Chemistry, Central Michigan University, Mt. Pleasant, MI-48858, USA
| |
Collapse
|
90
|
Özen A, Ergün E, Öztaş E, Ergün L, Özcan Z, Alabay B, Bayraktaroğlu AG, Kürüm A, Erdoğan E. Immunohistochemical Expression of Nitric Oxide Synthase Enzymes (iNOS, eNOS, nNOS) in the Estrual and Luteal Phases of the Sexual Cycle in the Cow Oviduct. Anat Histol Embryol 2013; 42:384-93. [DOI: 10.1111/ahe.12027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/01/2012] [Indexed: 11/30/2022]
Affiliation(s)
- A. Özen
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Ankara; Ankara; Turkey
| | - E. Ergün
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Kirikkale; Yahsihan; Kirikkale; Turkey
| | - E. Öztaş
- Department of Medical Histology and Embryology; GATA; Etlik; Ankara; Turkey
| | - L. Ergün
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Ankara; Ankara; Turkey
| | - Z. Özcan
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Ankara; Ankara; Turkey
| | - B. Alabay
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Ankara; Ankara; Turkey
| | - A. G. Bayraktaroğlu
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Ankara; Ankara; Turkey
| | - A. Kürüm
- Department of Histology and Embryology; Faculty of Veterinary Medicine; University of Kirikkale; Yahsihan; Kirikkale; Turkey
| | - E. Erdoğan
- Department of Medical Histology and Embryology; GATA; Etlik; Ankara; Turkey
| |
Collapse
|
91
|
Anti-inflammatory and vasoprotective activity of a retroviral-derived peptide, homologous to human endogenous retroviruses: endothelial cell effects. PLoS One 2012; 7:e52693. [PMID: 23285152 PMCID: PMC3527569 DOI: 10.1371/journal.pone.0052693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/21/2012] [Indexed: 01/13/2023] Open
Abstract
Malignant and inflammatory tissues sometimes express endogenous retroviruses or their proteins. A highly-conserved sequence from retroviral transmembrane (TM) proteins, termed the “immunosuppressive domain (ID)”, is associated with inhibition of immune and inflammatory functions. An octadecapeptide (MN10021) from the ID of retroviral TM protein p15E inhibits in vitro release of pro-inflammatory cytokines and increases synthesis of anti-inflammatory IL-10. We sought to determine if MN10021 has significant in vivo effects. MN10021, prepared by solid-phase synthesis, was dimerized through a naturally-occurring, carboxy-terminal cysteine. In vivo anti-inflammatory activity was determined using a murine model of sodium periodate (NaIO4)-induced peritonitis. In vivo vasoprotective effects were determined using: (1) a carrageenan-induced model of disseminated intravascular coagulation (DIC) in mice; (2) a reverse passive Arthus model in guinea pigs; and (3) vasoregulatory effects in spontaneously hypertensive rats (SHR). In vitro studies included: (1) binding/uptake of MN10021 using human monocytes, cultured fibroblasts, and vascular endothelial cells (VEC); (2) gene expression by RT-PCR of MN10021-treated VEC; and (3) apoptosis of MN10021-treated VEC exposed to staurosporine or TNF-α. One-tenth nmol MN10021 inhibits 50 percent of the inflammatory response in the mouse peritonitis model. Furthermore, 73 nmol MN10021 completely protects mice in a lethal model of carrageenan-induced DIC and inhibits vascular leak in both the mouse DIC model and a guinea pig reverse passive Arthus reaction. MN10021 binds to and is taken up in a specific manner by both human monocytes and VEC but not by cultured human fibroblasts. Surprisingly, orally-administered MN10021 lowers blood pressure in SHR rats by 10–15% within 1 h suggesting a direct or indirect effect on the vascular endothelium. MN10021 and derived octapeptides induce iNOS (inducible nitric oxide synthase) mRNA in VEC and nitrate in VEC cell culture supernatants and protect VEC from induced apoptosis or necrosis. However, pretreatment of VEC with nitro-L-arginine methyl ester (L-NAME), while inhibiting the release of nitrate, does not block the anti-apoptotic effect of MN10021 and derived octapeptides suggesting that their potent vasoprotective and anti-inflammatory activity is not nitric oxide dependent.
Collapse
|
92
|
Cho WK, Lee CM, Kang MJ, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG. IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 304:L112-24. [PMID: 23125252 DOI: 10.1152/ajplung.00101.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although previous literature suggests that interleukin (IL)-13, a T-helper type 2 cell effector cytokine, might be involved in the pathogenesis of pulmonary hypertension (PH), direct proof is lacking. Furthermore, a potential mechanism underlying IL-13-induced PH has never been explored. This study's goal was to investigate the role and mechanism of IL-13 in the pathogenesis of PH. Lung-specific IL-13-overexpressing transgenic (Tg) mice were examined for hemodynamic changes and pulmonary vascular remodeling. IL-13 Tg mice spontaneously developed PH phenotype by the age of 2 mo with increased expression and activity of arginase 2 (Arg2). The role of Arg2 in the development of IL-13-stimulated PH was further investigated using Arg2 and IL-13 receptor α2 (Rα2) null mutant mice and the small-interfering RNA (siRNA)-silencing approach in vivo and in vitro, respectively. IL-13-stimulated medial thickening of pulmonary arteries and right ventricle systolic pressure were significantly decreased in the IL-13 Tg mice with Arg2 null mutation. On the other hand, the production of nitric oxide was further increased in the lungs of these mice. In our in vitro evaluations, the recombinant IL-13 treatment significantly enhanced the proliferation of human pulmonary artery smooth muscle cells in an Arg2-dependent manner. The IL-13-stimulated cellular proliferation and the expression of Arg2 in hpaSMC were markedly decreased with IL-13Rα2 siRNA silencing. Our studies demonstrate that IL-13 contributes to the development of PH via an IL-13Rα2-Arg2-dependent pathway. The intervention of this pathway could be a potential therapeutic target in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Yale University School of Medicine, Dept. of Internal Medicine, New Haven, CT 06520-8057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kedia GT, Sonnenberg JE, Kuczyk MA, Ückert S. Arginase enzymes in the human prostate: expression of arginase isoenzymes and effects of arginase inhibitors on isolated human prostate tissue. BJU Int 2012; 110:E1196-201. [DOI: 10.1111/j.1464-410x.2012.11529.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
94
|
Guo Z, Shao L, Zheng L, Du Q, Li P, John B, Geller DA. miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes. Proc Natl Acad Sci U S A 2012; 109:5826-31. [PMID: 22451906 PMCID: PMC3326458 DOI: 10.1073/pnas.1118118109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human inducible nitric oxide synthase (hiNOS) gene expression is regulated by transcriptional and posttranscriptional mechanisms. The purpose of this study was to determine whether specific microRNA (miRNA) directly regulate hiNOS gene expression. Sequence analysis of the 496-bp hiNOS 3'-untranslated region (3'-UTR) revealed five putative miR-939 binding sites. The hiNOS 3'-UTR conferred significant posttranscriptional blockade of luciferase activity in human A549, HCT8, and HeLa cells. The hiNOS 3'-UTR also exerted basal and cytokine-stimulated posttranscriptional repression in an orientation-dependent manner. Functional studies demonstrated that transfection of miR-939 into primary human hepatocytes (HCs) significantly inhibited cytokine-induced NO synthesis in a dose-dependent manner that was abrogated by a specific miR-939 inhibitor. MiR-939 (but not other miRNAs) abolished cytokine-stimulated hiNOS protein in human HC, but had no effect on hiNOS mRNA levels. Site-directed mutagenesis of miR-939 bindings sites at +99 or +112 bp in the hiNOS 3'-UTR increased reporter gene expression. Furthermore, intact miR-939 binding sites at +99 or +112 positions were required for posttranscriptional suppression by miR-939. Cytokine stimulation directly increased miR-939 levels in human HC. Transfection of miR-939 inhibitor (antisense miR-939) enhanced cytokine-induced hiNOS protein and increased NO synthesis in vitro in human HC. Finally, cytokine or LPS injection in vivo in mice increased hepatic miR-939 levels. Taken together, these data identify that miR-939 directly regulates hiNOS gene expression by binding in the 3'-UTR to produce a translational blockade. These findings suggest dual regulation of iNOS gene expression where cytokines induce iNOS transcription and also increase miR-939, leading to translational inhibition in a check-and-balance system.
Collapse
Affiliation(s)
| | | | - Liang Zheng
- Computational Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | | | | | - Bino John
- Computational Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
95
|
Eryilmaz OG, Aksakal FN, Cicek N, Eyi EG, Avci A. L-arginine pathway in neonates with meconium-stained amniotic fluid. Eur J Obstet Gynecol Reprod Biol 2012; 161:26-9. [PMID: 22239939 DOI: 10.1016/j.ejogrb.2011.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 11/13/2011] [Accepted: 12/18/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To study the arginase, nitric oxide synthase and nitric oxide pathways associated with passage of meconium. STUDY DESIGN Cord blood samples were collected from 20 newborns with meconium-stained amniotic fluid (MSAF) and from 23 newborns with clear amniotic fluid. Cord blood pH, arginase, nitric oxide synthase and nitric oxide levels were compared between the groups. RESULT The differences between the arginase and nitric oxide measurements of the newborns with MSAF and those with clear amniotic fluid were significant. In the MSAF group arginase levels were significantly lower (p=0.007) and nitric oxide levels were significantly higher (p=0.032) than the clear amniotic fluid group. CONCLUSION Hypoxia may be involved in the pathogenesis of meconium passage due to decreased arginase and increased nitric oxide levels.
Collapse
Affiliation(s)
- Ozlem Gun Eryilmaz
- Zekai Tahir Burak Women Education and Research Hospital, Obstetrics and Gynecology, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
96
|
Liu L, Mo H, Wei S, Raftery D. Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 2011; 137:595-600. [PMID: 22179722 DOI: 10.1039/c2an15780b] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A convenient and fast method for quantifying urea in biofluids is demonstrated using NMR analysis and the solvent water signal as a concentration reference. The urea concentration can be accurately determined with errors less than 3% between 1 mM and 50 mM, and less than 2% above 50 mM in urine and serum. The method is promising for various applications with advantages of simplicity, high accuracy, and fast non-destructive detection. With an ability to measure other metabolites simultaneously, this NMR method is also likely to find applications in metabolic profiling and system biology.
Collapse
Affiliation(s)
- Lingyan Liu
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
97
|
Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem J 2011; 440:175-83. [DOI: 10.1042/bj20111333] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acquired drug resistance was found to be suppressed in the doxorubicin-resistant breast cancer cell line MCF7/Dx after pre-treatment with GSNO (nitrosoglutathione). The effect was accompanied by enhanced protein glutathionylation and accumulation of doxorubicin in the nucleus. Among the glutathionylated proteins, we identified three members of the histone family; this is, to our knowledge, the first time that histone glutathionylation has been reported. Formation of the potential NO donor dinitrosyl–diglutathionyl–iron complex, bound to GSTP1-1 (glutathione transferase P1-1), was observed in both MCF7/Dx cells and drug-sensitive MCF7 cells to a similar extent. In contrast, histone glutathionylation was found to be markedly increased in the resistant MCF7/Dx cells, which also showed a 14-fold higher amount of GSTP1-1 and increased glutathione concentration compared with MCF7 cells. These results suggest that the increased cytotoxic effect of combined doxorubicin and GSNO treatment involves the glutathionylation of histones through a mechanism that requires high glutathione levels and increased expression of GSTP1-1. Owing to the critical role of histones in the regulation of gene expression, the implication of this finding may go beyond the phenomenon of doxorubicin resistance.
Collapse
|
98
|
Fuseler JW, Valarmathi MT. Modulation of the migration and differentiation potential of adult bone marrow stromal stem cells by nitric oxide. Biomaterials 2011; 33:1032-43. [PMID: 22071099 DOI: 10.1016/j.biomaterials.2011.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/11/2011] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a diffusible free radical, which serves as a pluripotent intracellular messenger in numerous cell systems. NO has been demonstrated to regulate actin dependent cellular functions and functions as a putative inductive agent in directing stem cells differentiation. In this study, we investigated the effect of exogenous NO on the kinetics of movement and morphological changes in adult bone marrow stromal cells (BMSCs) in a wound healing model of cellular migration. Cellular migration and morphological changes were determined by measurement of changes in the area and fractal dimension of BMSCs monolayer as a function of time in the presence of an NO donor (S-Nitroso-N-Acetyl-D,L-Penicillamine, SNAP) compared to untreated BMSCs. Response of the BMSCs' actin cytoskeleton and desmin to NO was assessed by determining changes in their integrated optical density (IOD) and fractal dimension at 24 h and 7 days. NO suppressed BMSCs' migration accompanied by a reduction in cell size, with maintenance of their stellate to polygonal morphology. In response to NO, the actin cytoskeleton expressed an increase in randomness but maintained a constant amount of F-actin relative to the cell size. The presence of NO also induced an increase in randomly organized cytoplasmic desmin. These data suggest that NO has an apparent inductive effect on adult BMSCs and is capable of initiating phenotypic change at the gross cellular, cytoskeletal and molecular levels. It is apparent, however, that additional factors or conditions are required to further drive the differentiation of adult BMSCs into specific phenotypes, such as cardiomyocytes.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | |
Collapse
|
99
|
Yu H, Payne TJ, Mohanty DK. Effects of slow, sustained, and rate-tunable nitric oxide donors on human aortic smooth muscle cells proliferation. Chem Biol Drug Des 2011; 78:527-34. [PMID: 21740530 DOI: 10.1111/j.1747-0285.2011.01174.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Smooth muscle cell (SMC) proliferation has been accepted as a common event in the pathophysiology of vascular diseases, including atherogenesis and intimal hyperplasia. Delivery of the nitric oxide synthase (NOS) substrate l-arginine, pharmacological nitric oxide (NO) donors, NO gas or overexpression of NOS proteins can inhibit SMC proliferation and reduce the injury responses within the blood vessel wall. Although commercial development of NO donors that attempt to provide exogenous delivery of NO has accelerated over the last few years, none of the currently available products can provide controlled, sustained, time-tunable release of NO. Nitrosamine-based NO donors, prepared in our laboratory, present a unique and innovative alternative for possible treatments for long-term NO deficiency-related diseases, including atherosclerosis, asthma, erectile dysfunction, cancer, and neurodegenerative diseases. A family of secondary amines prepared via nucleophilic aromatic displacement reactions could be readily N-nitrosated to produce NO donors. NO release takes place in three distinct phases. During the initial phase, the release rate is extremely fast. In the second phase, the release is slower and the rate remains essentially the same during the final stage. These compounds inhibited up to 35% human aortic smooth muscle cell proliferation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Hao Yu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL-35205, USA
| | | | | |
Collapse
|
100
|
Ryoo S, Berkowitz DE, Lim HK. Endothelial arginase II and atherosclerosis. Korean J Anesthesiol 2011; 61:3-11. [PMID: 21860744 PMCID: PMC3155133 DOI: 10.4097/kjae.2011.61.1.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 01/11/2023] Open
Abstract
Atherosclerotic vascular disease is the leading cause of morbidity and mortality in developed countries. While it is a complex condition resulting from numerous genetic and environmental factors, it is well recognized that oxidized low-density lipoprotein produces pro-atherogenic effects in endothelial cells (ECs) by inducing the expression of adhesion molecules, stimulating EC apoptosis, inducing superoxide anion formation and impairing protective endothelial nitric oxide (NO) formation. Emerging evidence suggests that the enzyme arginase reciprocally regulates NO synthase and NO production by competing for the common substrate L-arginine. As oxidized LDL (OxLDL) results in arginase activation/upregulation, it appears to be an important contributor to endothelial dysfunction by a mechanism that involves substrate limitation for endothelial NO synthase (eNOS) and NO synthesis. Additionally, arginase enhances production of reactive oxygen species by eNOS. Arginase inhibition in hypercholesterolemic (ApoE-/-) mice or arginase II deletion (ArgII-/-) mice restores endothelial vasorelaxant function, reduces vascular stiffness and markedly reduces atherosclerotic plaque burden. Furthermore, arginase activation contributes to vascular changes including polyamine-dependent vascular smooth muscle cell proliferation and collagen synthesis. Collectively, arginase may play a key role in the prevention and treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Sungwoo Ryoo
- Division of Biology, Kangwon National University, Chuncheon, Korea
| | | | | |
Collapse
|