51
|
Abstract
Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.
Collapse
|
52
|
Nagashima K, Fukushima H, Shimizu K, Yamada A, Hidaka M, Hasumi H, Ikebe T, Fukumoto S, Okabe K, Inuzuka H. Nutrient-induced FNIP degradation by SCFβ-TRCP regulates FLCN complex localization and promotes renal cancer progression. Oncotarget 2018; 8:9947-9960. [PMID: 28039480 PMCID: PMC5354783 DOI: 10.18632/oncotarget.14221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/22/2016] [Indexed: 12/25/2022] Open
Abstract
Folliculin-interacting protein 1 and 2 (FNIP1 and FNIP2) play critical roles in preventing renal malignancy through their association with the tumor suppressor FLCN. Mutations in FLCN are associated with Birt-Hogg-Dubé (BHD) syndrome, a rare disorder with increased risk of renal cancer. Recent studies indicated that FNIP1/FNIP2 double knockout mice display enlarged polycystic kidneys and renal carcinoma, which phenocopies FLCN knockout mice, suggesting that these two proteins function together to suppress renal cancer. However, the molecular mechanism functionally linking FNIP1/FNIP2 and FLCN remains largely elusive. Here, we demonstrated that FNIP2 protein is unstable and subjected to proteasome-dependent degradation via β-TRCP and Casein Kinase 1 (CK1)-directed ubiquitination in a nutrition-dependent manner. Degradation of FNIP2 leads to lysosomal dissociation of FLCN and subsequent lysosomal association of mTOR, which in turn promotes the proliferation of renal cancer cells. These results indicate that SCFβ-TRCP negatively regulates the FLCN complex by promoting FNIP degradation and provide molecular insight into the pathogenesis of BHD-associated renal cancer.
Collapse
Affiliation(s)
- Katsuyuki Nagashima
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan.,Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hidefumi Fukushima
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Masumi Hidaka
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hisashi Hasumi
- Department of Urology and Molecular Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Tetsuro Ikebe
- Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Satoshi Fukumoto
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
53
|
Hasumi H, Yao M. Hereditary kidney cancer syndromes: Genetic disorders driven by alterations in metabolism and epigenome regulation. Cancer Sci 2018; 109:581-586. [PMID: 29325224 PMCID: PMC5834811 DOI: 10.1111/cas.13503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 01/21/2023] Open
Abstract
Although hereditary kidney cancer syndrome accounts for approximately five percent of all kidney cancers, the mechanistic insight into tumor development in these rare conditions has provided the foundation for the development of molecular targeting agents currently used for sporadic kidney cancer. In the late 1980s, the comprehensive study for hereditary kidney cancer syndrome was launched in the National Cancer Institute, USA and the first kidney cancer‐associated gene, VHL, was identified through kindred analysis of von Hippel‐Lindau (VHL) syndrome in 1993. Subsequent molecular studies on VHL function have elucidated that the VHL protein is a component of E3 ubiquitin ligase complex for hypoxia‐inducible factor (HIF), which provided the basis for the development of tyrosine kinase inhibitors targeting the HIF‐VEGF/PDGF pathway. Recent whole‐exome sequencing analysis of sporadic kidney cancer exhibited the recurrent mutations in chromatin remodeling genes and the later study has revealed that several chromatin remodeling genes are altered in kidney cancer kindred at the germline level. To date, more than 10 hereditary kidney cancer syndromes together with each responsible gene have been characterized and most of the causative genes for these genetic disorders are associated with either metabolism or epigenome regulation. In this review article, we describe the molecular mechanisms of how an alteration of each kidney cancer‐associated gene leads to renal tumorigenesis as well as denote therapeutic targets elicited by studies on hereditary kidney cancer.
Collapse
Affiliation(s)
- Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University, Yokohama, Japan
| |
Collapse
|
54
|
Birt-Hogg-Dubé Syndrome: A Review of Dermatological Manifestations and Other Symptoms. Am J Clin Dermatol 2018; 19:87-101. [PMID: 28695430 DOI: 10.1007/s40257-017-0307-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant genodermatosis with malignant potential characterized by cutaneous and extracutaneous stigmata. Aberrations in the folliculin (FLCN) gene, which is located on chromosome 17, have been discovered in individuals with this condition. Over 150 unique mutations have been identified in BHD. The skin lesions associated with this condition include fibrofolliculomas, trichodiscomas, perifollicular fibromas, and acrochordons. Extracutaneous features of the syndrome typically include the lung (spontaneous pneumothorax and cysts) and the kidney (neoplasms). The only malignancies associated with BHD are renal cancers; however, other tumors have been observed in individuals with BHD. In this article, the skin lesions associated with this condition are reviewed, lung and renal manifestations associated with this syndrome are presented, and malignancies occurring in these patients are summarized.
Collapse
|
55
|
Schmidt LS, Linehan WM. FLCN: The causative gene for Birt-Hogg-Dubé syndrome. Gene 2018; 640:28-42. [PMID: 28970150 PMCID: PMC5682220 DOI: 10.1016/j.gene.2017.09.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 01/30/2023]
Abstract
Germline mutations in the novel tumor suppressor gene FLCN are responsible for the autosomal dominant inherited disorder Birt-Hogg-Dubé (BHD) syndrome that predisposes to fibrofolliculomas, lung cysts and spontaneous pneumothorax, and an increased risk for developing kidney tumors. Although the encoded protein, folliculin (FLCN), has no sequence homology to known functional domains, x-ray crystallographic studies have shown that the C-terminus of FLCN has structural similarity to DENN (differentially expressed in normal cells and neoplasia) domain proteins that act as guanine nucleotide exchange factors (GEFs) for small Rab GTPases. FLCN forms a complex with folliculin interacting proteins 1 and 2 (FNIP1, FNIP2) and with 5' AMP-activated protein kinase (AMPK). This review summarizes FLCN functional studies which support a role for FLCN in diverse metabolic pathways and cellular processes that include modulation of the mTOR pathway, regulation of PGC1α and mitochondrial biogenesis, cell-cell adhesion and RhoA signaling, control of TFE3/TFEB transcriptional activity, amino acid-dependent activation of mTORC1 on lysosomes through Rag GTPases, and regulation of autophagy. Ongoing research efforts are focused on clarifying the primary FLCN-associated pathway(s) that drives the development of fibrofolliculomas, lung cysts and kidney tumors in BHD patients carrying germline FLCN mutations.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States; Basic Science Program, Leidos Biomedical Research, Inc., Frederick Laboratory for Cancer Research, Frederick, MD 21702, United States.
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| |
Collapse
|
56
|
Laser Microdissection Workflow for Isolating Nucleic Acids from Fixed and Frozen Tissue Samples. Methods Mol Biol 2018; 1723:33-93. [PMID: 29344854 DOI: 10.1007/978-1-4939-7558-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Laser Capture Microdissection has earned a permanent place among modern techniques connecting histology and molecular biology. Laser Capture Microdissection has become an invaluable tool in medical research as a means for collection of specific cell populations isolated from their environment. Such genomic sample enrichment dramatically increases the sensitivity and precision of downstream molecular assays used for biomarker discovery, monitoring disease onset and progression, and in the development of personalized medicine. The diversity of research targets (cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, frozen tissues, archival repository slides, etc.) and scientific objectives present a challenge in establishing standard protocols for Laser Capture Microdissection. In the present chapter, we share our experiences in design and successful execution of numerous diverse microdissection projects, and provide considerations to be taken into account in planning a microdissection study. Our workflow and protocols are standardized for a wide range of animal and human tissues and adapted to downstream analysis platforms.
Collapse
|
57
|
Rupp NJ, Montironi R, Mischo A, Moch H. Clinical Trials for Specific Renal Cancer Subtypes—The Time Will Come! ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.eursup.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
58
|
Daccord C, Nicod L, Lazor R. Cystic Lung Disease in Genetic Syndromes with Deficient Tumor Suppressor Gene Function. Respiration 2017; 94:467-485. [DOI: 10.1159/000485106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
|
59
|
Zheng J, Duan B, Sun S, Cui J, Du J, Zhang Y. Folliculin Interacts with Rab35 to Regulate EGF-Induced EGFR Degradation. Front Pharmacol 2017; 8:688. [PMID: 29018350 PMCID: PMC5622982 DOI: 10.3389/fphar.2017.00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
Aims and Hypothesis: This study aims to investigate the mechanism involved in intracellular regulation of EGFR degradation induced by EGF. Methods: Phosphorylation of proteins related to EGFR signaling was examined by western blot analysis. Activation, connection between Rab35 and folliculin (FLCN) were assessed by pulldown, coimmunoprecipitation assays separately. The relationship between FLCN and cell growth was detected using gene overexpression and knock-down techniques. Results: Here, we demonstrate that interfering with FLCN, a tumor suppressor, reduces the rate of EGF-induced EGFR degradation, resulting in prolonged activation of downstream signaling. Rab35 is also involved in these processes. Moreover, C-terminal of FLCN binds to and activates Rab35. Of special interest is the observation that erlotinib, a selective EGFR inhibitor, not only obstructs the EGFR-mediated cellular signaling, but also abolishes EGF-stimulated EGFR degradation. Further results reveal that EGF facilitates the activation of Rab35, and FLCN modulates EGF-dependent Rab35 activation and cell growth. Conclusions: Taken together, our study proposes a negative-feedback regulation model in which FLCN mediates EGF-induced Rab35 activation, thereby increasing EGFR degradation and attenuating EGFR signaling.
Collapse
Affiliation(s)
- Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
60
|
Slade L, Pulinilkunnil T. The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation. Mol Cancer Res 2017; 15:1637-1643. [PMID: 28851811 DOI: 10.1158/1541-7786.mcr-17-0320] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/08/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
The microphthalmia family (MITF, TFEB, TFE3, and TFEC) of transcription factors is emerging as global regulators of cancer cell survival and energy metabolism, both through the promotion of lysosomal genes as well as newly characterized targets, such as oxidative metabolism and the oxidative stress response. In addition, MiT/TFE factors can regulate lysosomal signaling, which includes the mTORC1 and Wnt/β-catenin pathways, which are both substantial contributors to oncogenic signaling. This review describes recent discoveries in MiT/TFE research and how they impact multiple cancer subtypes. Furthermore, the literature relating to TFE-fusion proteins in cancers and the potential mechanisms through which these genomic rearrangements promote tumorigenesis is reviewed. Likewise, the emerging function of the Folliculin (FLCN) tumor suppressor in negatively regulating the MiT/TFE family and how loss of this pathway promotes cancer is examined. Recent reports are also presented that relate to the role of MiT/TFE-driven lysosomal biogenesis in sustaining cancer cell metabolism and signaling in nutrient-limiting conditions. Finally, a discussion is provided on the future directions and unanswered questions in the field. In summary, the research surrounding the MiT/TFE family indicates that these transcription factors are promising therapeutic targets and biomarkers for cancers that thrive in stressful niches. Mol Cancer Res; 15(12); 1637-43. ©2017 AACR.
Collapse
Affiliation(s)
- Logan Slade
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, New Brunswick, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Dalhousie Medicine New Brunswick, New Brunswick, Canada.
| |
Collapse
|
61
|
Takegahara K, Yoshino N, Usuda J. A Case of Recurrent Pneumothorax Associated with Birt-Hogg-Dubé Syndrome Treated with Bilateral Simultaneous Surgery and Total Pleural Covering. Ann Thorac Cardiovasc Surg 2017; 23:309-312. [PMID: 28690286 DOI: 10.5761/atcs.cr.16-00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Birt-Hogg-Dubé syndrome is an autosomal dominant genetic disorder characterized by a triad of skin tumors, renal tumors, and multiple pulmonary cysts. Our patient was a 40-year-old man with a history of recurrent bilateral pneumothorax and a family history of pneumothorax. The patient visited our department with chest pain and was diagnosed with left pneumothorax based on a chest X-ray. Thoracic computed tomography (CT) showed multiple cysts in both lungs. We performed thoracoscopic bilateral bullectomy with curative intent. Intraoperative observation showed numerous cysts in the lung apex, interlobular region, and mediastinum. We resected the cysts that we suspected to be responsible for the symptoms and ligated the lesions, and then performed total pleural covering. After surgery, genetic testing was performed. The result enabled us to diagnose Birt-Hogg-Dubé syndrome in this patient. Although the patient has developed neither recurrent pneumothorax nor any renal tumors, to date, long-term monitoring is necessary.
Collapse
Affiliation(s)
- Kyoshiro Takegahara
- Department of Thoracic Surgery, Nippon Medical School Tama Nagayama Hospital, Tama, Tokyo, Japan.,Department of Thoracic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoyuki Yoshino
- Department of Thoracic Surgery, Nippon Medical School Tama Nagayama Hospital, Tama, Tokyo, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
62
|
Yao Y, Jones E, Inoki K. Lysosomal Regulation of mTORC1 by Amino Acids in Mammalian Cells. Biomolecules 2017; 7:biom7030051. [PMID: 28686218 PMCID: PMC5618232 DOI: 10.3390/biom7030051] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth in eukaryotic cells. The active mTORC1 promotes cellular anabolic processes including protein, pyrimidine, and lipid biosynthesis, and inhibits catabolic processes such as autophagy. Consistent with its growth-promoting functions, hyper-activation of mTORC1 signaling is one of the important pathomechanisms underlying major human health problems including diabetes, neurodegenerative disorders, and cancer. The mTORC1 receives multiple upstream signals such as an abundance of amino acids and growth factors, thus it regulates a wide range of downstream events relevant to cell growth and proliferation control. The regulation of mTORC1 by amino acids is a fast-evolving field with its detailed mechanisms currently being revealed as the precise picture emerges. In this review, we summarize recent progress with respect to biochemical and biological findings in the regulation of mTORC1 signaling on the lysosomal membrane by amino acids.
Collapse
Affiliation(s)
- Yao Yao
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| | - Edith Jones
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1137 East Catherine Street, Ann Arbor, MI 48109, USA.
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical enter Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
63
|
Laviolette LA, Mermoud J, Calvo IA, Olson N, Boukhali M, Steinlein OK, Roider E, Sattler EC, Huang D, Teh BT, Motamedi M, Haas W, Iliopoulos O. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein. Nat Commun 2017; 8:15866. [PMID: 28656962 PMCID: PMC5493755 DOI: 10.1038/ncomms15866] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/09/2017] [Indexed: 02/01/2023] Open
Abstract
Germline mutations in the Folliculin (FLCN) tumour suppressor gene result in fibrofolliculomas, lung cysts and renal cancers, but the precise mechanisms of tumour suppression by FLCN remain elusive. Here we identify Rab7A, a small GTPase important for endocytic trafficking, as a novel FLCN interacting protein and demonstrate that FLCN acts as a Rab7A GTPase-activating protein. FLCN−/− cells display slower trafficking of epidermal growth factor receptors (EGFR) from early to late endosomes and enhanced activation of EGFR signalling upon ligand stimulation. Reintroduction of wild-type FLCN, but not tumour-associated FLCN mutants, suppresses EGFR signalling in a Rab7A-dependent manner. EGFR signalling is elevated in FLCN−/− tumours and the EGFR inhibitor afatinib suppresses the growth of human FLCN−/− cells as tumour xenografts. The functional interaction between FLCN and Rab7A appears conserved across species. Our work highlights a mechanism explaining, at least in part, the tumour suppressor function of FLCN. Folliculin is a known tumour suppressor but the molecular mechanisms behind this function are unclear. Here the authors show that Folliculin regulates EGFR signalling by modulating its Rab7a-dependent trafficking.
Collapse
Affiliation(s)
- Laura A Laviolette
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Julien Mermoud
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Isabel A Calvo
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Nicholas Olson
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Myriam Boukhali
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Ortrud K Steinlein
- Institute of Human Genetics, University Hospital Munich, University of Munich, Munich 80336, Germany
| | - Elisabeth Roider
- Department of Dermatology and Allergology, University Hospital, Ludwig Maximilian University Munich, Munich D-80337, Germany
| | - Elke C Sattler
- Department of Dermatology and Allergology, University Hospital, Ludwig Maximilian University Munich, Munich D-80337, Germany
| | - Dachuan Huang
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169610, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169610, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169610, Singapore
| | - Mo Motamedi
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA
| | - Othon Iliopoulos
- Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts 02139, USA.,Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
64
|
Bailey ST, Smith AM, Kardos J, Wobker SE, Wilson HL, Krishnan B, Saito R, Lee HJ, Zhang J, Eaton SC, Williams LA, Manocha U, Peters DJ, Pan X, Carroll TJ, Felsher DW, Walter V, Zhang Q, Parker JS, Yeh JJ, Moffitt RA, Leung JY, Kim WY. MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nat Commun 2017; 8:15770. [PMID: 28593993 PMCID: PMC5472759 DOI: 10.1038/ncomms15770] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/26/2017] [Indexed: 11/17/2022] Open
Abstract
Renal carcinoma is a common and aggressive malignancy whose histopathogenesis is incompletely understood and that is largely resistant to cytotoxic chemotherapy. We present two mouse models of kidney cancer that recapitulate the genomic alterations found in human papillary (pRCC) and clear cell RCC (ccRCC), the most common RCC subtypes. MYC activation results in highly penetrant pRCC tumours (MYC), while MYC activation, when combined with Vhl and Cdkn2a (Ink4a/Arf) deletion (VIM), produce kidney tumours that approximate human ccRCC. RNAseq of the mouse tumours demonstrate that MYC tumours resemble Type 2 pRCC, which are known to harbour MYC activation. Furthermore, VIM tumours more closely simulate human ccRCC. Based on their high penetrance, short latency, and histologic fidelity, these models of papillary and clear cell RCC should be significant contributions to the field of kidney cancer research. Renal cell carcinoma (RCC) is a common and aggressive malignancy. Here, the authors generate two mouse models of the most common RCC subtypes: the human papillary RCC through MYC activation and clear cell RCC through MYC activation combined with Vhl and Cdkn2a deletion.
Collapse
Affiliation(s)
- Sean T Bailey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aleisha M Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jordan Kardos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Harper L Wilson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bhavani Krishnan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ryoichi Saito
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Jing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Samuel C Eaton
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lindsay A Williams
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dorien J Peters
- Department of Pathology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Xinchao Pan
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas J Carroll
- Departments of Internal Medicine and Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dean W Felsher
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94305-5151, USA
| | - Vonn Walter
- Department of Biochemistry and Molecular Biology, Penn State Milton S. Hershey College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard A Moffitt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Janet Y Leung
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
65
|
Control of B lymphocyte development and functions by the mTOR signaling pathways. Cytokine Growth Factor Rev 2017; 35:47-62. [PMID: 28583723 DOI: 10.1016/j.cytogfr.2017.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.
Collapse
|
66
|
Jensen DK, Villumsen A, Skytte AB, Madsen MG, Sommerlund M, Bendstrup E. Birt-Hogg-Dubé syndrome: a case report and a review of the literature. Eur Clin Respir J 2017; 4:1292378. [PMID: 28326182 PMCID: PMC5345590 DOI: 10.1080/20018525.2017.1292378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant inherited syndrome caused by mutations in the folliculin coding gene (FLCN). The clinical manifestations of the syndrome involve the skin, lungs, and kidneys. Because of the rarity of the syndrome, guidelines for diagnosis and management of the patients with BHDS are lacking. Objective: To present a case story and a review of the literature on BHDS in order to give an update on genetics, clinical manifestations, diagnosis, treatment, prognosis and follow-up strategies. Design: Literature review and case story. Results: A PubMed and Embase search identified 330 papers. BHDS is characterized by small benign tumors in the skin, spontaneous pneumothoraces caused by cysts in the lungs and a seven-fold increased risk of renal cancer. A case story of a young female patient presenting with pneumothorax and a family history of recurrent pneumothoraces in many relatives illustrates how the history and the diagnostic work up resulted in a diagnosis of BHDS. Conclusion: BHDS is a rare inherited disorder. In patients with spontaneous pneumothorax or cystic lung disease without any obvious explanation, BHDS should be considered. Concomitant skin manifestations, a family history of familiar pneumothorax, renal cancers and skin manifestations supports the suspicion of BHDS. Early diagnosis is important in order to subject patients to systematic screening for renal cancers. A radiological surveillance strategy for renal cancer is proposed.
Collapse
Affiliation(s)
- Dea Kejlberg Jensen
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital , Aarhus , Denmark
| | - Anders Villumsen
- Institute of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Anne-Bine Skytte
- Department of Clinical Genetics, Aarhus University Hospital , Aarhus , Denmark
| | | | - Mette Sommerlund
- Department of Dermatology, Aarhus University Hospital , Aarhus , Denmark
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
67
|
Hasumi H, Hasumi Y, Baba M, Nishi H, Furuya M, Vocke CD, Lang M, Irie N, Esumi C, Merino MJ, Kawahara T, Isono Y, Makiyama K, Warner AC, Haines DC, Wei MH, Zbar B, Hagenau H, Feigenbaum L, Kondo K, Nakaigawa N, Yao M, Metwalli AR, Marston Linehan W, Schmidt LS. H255Y and K508R missense mutations in tumour suppressor folliculin (FLCN) promote kidney cell proliferation. Hum Mol Genet 2017; 26:354-366. [PMID: 28007907 PMCID: PMC6075457 DOI: 10.1093/hmg/ddw392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023] Open
Abstract
Germline H255Y and K508R missense mutations in the folliculin (FLCN) gene have been identified in patients with bilateral multifocal (BMF) kidney tumours and clinical manifestations of Birt-Hogg-Dubé (BHD) syndrome, or with BMF kidney tumours as the only manifestation; however, their impact on FLCN function remains to be determined. In order to determine if FLCN H255Y and K508R missense mutations promote aberrant kidney cell proliferation leading to pathogenicity, we generated mouse models expressing these mutants using BAC recombineering technology and investigated their ability to rescue the multi-cystic phenotype of Flcn-deficient mouse kidneys. Flcn H255Y mutant transgene expression in kidney-targeted Flcn knockout mice did not rescue the multi-cystic kidney phenotype. However, expression of the Flcn K508R mutant transgene partially, but not completely, abrogated the phenotype. Notably, expression of the Flcn K508R mutant transgene in heterozygous Flcn knockout mice resulted in development of multi-cystic kidneys and cardiac hypertrophy in some mice. These results demonstrate that both FLCN H255Y and K508R missense mutations promote aberrant kidney cell proliferation, but to different degrees. Based on the phenotypes of our preclinical models, the FLCN H255Y mutant protein has lost it tumour suppressive function leading to the clinical manifestations of BHD, whereas the FLCN K508R mutant protein may have a dominant negative effect on the function of wild-type FLCN in regulating kidney cell proliferation and, therefore, act as an oncoprotein. These findings may provide mechanistic insight into the role of FLCN in regulating kidney cell proliferation and facilitate the development of novel therapeutics for FLCN-deficient kidney cancer.
Collapse
Affiliation(s)
- Hisashi Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Urology and Molecular Genetics, Yokohama City University, Yokohama, Japan
| | - Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hafumi Nishi
- Department of Applied Information Science, Tohoku University, Sendai, Japan
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama City University, Yokohama, Japan
| | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nobuko Irie
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chiharu Esumi
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Maria J. Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Kawahara
- Department of Urology and Molecular Genetics, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Isono
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, Yokohama, Japan
| | - Kazuhide Makiyama
- Department of Urology and Molecular Genetics, Yokohama City University, Yokohama, Japan
| | | | | | - Ming-Hui Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Berton Zbar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Keiichi Kondo
- Department of Urology and Molecular Genetics, Yokohama City University, Yokohama, Japan
| | - Noboru Nakaigawa
- Department of Urology and Molecular Genetics, Yokohama City University, Yokohama, Japan
| | - Masahiro Yao
- Department of Urology and Molecular Genetics, Yokohama City University, Yokohama, Japan
| | - Adam R. Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
68
|
Zhu JF, Shen XQ, Zhu F, Tian L. Novel folliculin (FLCN) mutation and familial spontaneous pneumothorax. QJM 2017; 110:23-26. [PMID: 27486260 DOI: 10.1093/qjmed/hcw109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/21/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Familial spontaneous pneumothorax is one of the characteristics of Birt-Hogg-Dubé syndrome (BHDS), which is an autosomal dominant disease caused by the mutation of folliculin (FLCN). AIM To investigate the mutation of FLCN gene in a familial spontaneous pneumothorax. DESIGN Prospective case study. METHODS Clinical and genetic data of a Chinese family with four patients who presented spontaneous pneumothorax in the absence of skin lesions or renal tumors were collected. CT scan of patient's lung was applied for observation of pneumothorax. DNA sequencing of the coding exons (4-14 exons) of FLCN was performed for all 11 members of the family and 100 unrelated healthy controls. RESULTS CT scan of patient's lung showed spontaneous pneumothorax. A mutation (c. 510C > G) that leads to a premature stop codon (p. Y170X) was found in the proband using DNA sequencing of coding exons (4-14 exons) of FLCN. This mutation was also observed in the other affected members of the family. CONCLUSIONS A nonsense mutation of FLCN was found in a spontaneous pneumothorax family. Our results expand the mutational spectrum of FLCN in patients with BHDS.
Collapse
Affiliation(s)
- J-F Zhu
- From the Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - X-Q Shen
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | | | - L Tian
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| |
Collapse
|
69
|
Betschinger J. Charting Developmental Dissolution of Pluripotency. J Mol Biol 2016; 429:1441-1458. [PMID: 28013029 DOI: 10.1016/j.jmb.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
The formation of tissues and organs during metazoan development begs fundamental questions of cellular plasticity: How can the very same genome program have diverse cell types? How do cell identity programs unfold during development in space and time? How can defects in these mechanisms cause disease and also provide opportunities for therapeutic intervention? And ultimately, can developmental programs be exploited for bioengineering tissues and organs? Understanding principle designs of cellular identity and developmental progression is crucial for providing answers. Here, I will discuss how the capture of embryonic pluripotency in murine embryonic stem cells (ESCs) in vitro has allowed fundamental insights into the molecular underpinnings of a developmental cell state and how its ordered disassembly during differentiation prepares for lineage specification.
Collapse
Affiliation(s)
- Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
70
|
Genetic screening of the FLCN gene identify six novel variants and a Danish founder mutation. J Hum Genet 2016; 62:151-157. [PMID: 27734835 DOI: 10.1038/jhg.2016.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022]
Abstract
Pathogenic germline mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, a rare disease characterized by the development of cutaneous hamartomas (fibrofolliculomas), multiple lung cysts, spontaneous pneumothoraces and renal cell cancer. In this study, we report the identification of 13 variants and three polymorphisms in the FLCN gene in 143 Danish patients or families with suspected BHD syndrome. Functional mini-gene splicing analysis revealed that two intronic variants (c.1062+2T>G and c.1177-5_1177-3del) introduced splicing aberrations. Eleven families exhibited the c.1062+2T>G mutation. Combined single nucleotide polymorphism array-haplotype analysis showed that these families share a 3-Mb genomic fragment containing the FLCN gene, revealing that the c.1062+2T>G mutation is a Danish founder mutation. On the basis of in silico prediction and functional splicing assays, we classify the 16 identified variants in the FLCN gene as follows: nine as pathogenic, one as likely pathogenic, three as likely benign and three as polymorphisms. In conclusion, the study describes the FLCN mutation spectrum in Danish BHD patients, and contributes to a better understanding of BHD syndrome and management of BHD patients.
Collapse
|
71
|
Brady OA, Diab HI, Puertollano R. Rags to riches: Amino acid sensing by the Rag GTPases in health and disease. Small GTPases 2016; 7:197-206. [PMID: 27580159 PMCID: PMC5129890 DOI: 10.1080/21541248.2016.1218990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023] Open
Abstract
The Rags represent a unique family of evolutionarily conserved, heterodimeric, lysosome-localized small GTPases that play an indispensible role in regulating cellular metabolism in response to various amino acid signaling mechanisms. Rapid progress in the field has begun to unveil a picture in which Rags act as central players in translating information regarding cellular amino acid levels by modulating their nucleotide binding status through an ensemble of support proteins localized in and around the lysosomes. By cooperating with other signaling pathways that converge on the lysosomes, Rags promote anabolic processes through positively affecting mTORC1 signaling in the presence of abundant amino acids. Conversely, Rag inactivation plays an indispensible role in switching cellular metabolism into a catabolic paradigm by promoting the activity of the master lysosomal/autophagic transcription factors TFEB and TFE3. Precise control of Rag signaling is necessary for cells to adapt to constantly changing cellular demands and emerging evidence has highlighted their importance in a wide variety of developmental and pathological conditions.
Collapse
Affiliation(s)
- Owen A. Brady
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heba I. Diab
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
72
|
Abstract
Kidney cancer is not a single disease but is made up of a number of different types of cancer classified by histology that are disparate in presentation, clinical course, and genetic basis. Studies of families with inherited renal cell carcinoma (RCC) have provided the basis for our understanding of the causative genes and altered metabolic pathways in renal cancer with different histologies. Von Hippel-Lindau disease was the first renal cancer disorder with a defined genetic basis. Over the next two decades, the genes responsible for a number of other inherited renal cancer syndromes including hereditary papillary renal carcinoma, Birt-Hogg-Dube´syndrome, hereditary leiomyomatosis and renal cell carcinoma, and succinate dehydrogenase-associated renal cancer were identified. Recently, renal cell carcinoma has been confirmed as part of the clinical phenotype in individuals from families with BAP1-associated tumor predisposition syndrome and MiTF-associated cancer syndrome. Here we summarize the clinical characteristics of and causative genes for these and other inherited RCC syndromes, the pathways that are dysregulated when the inherited genes are mutated, and recommended clinical management of patients with these inherited renal cancer syndromes.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Basic Science Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
73
|
|
74
|
Wu M, Si S, Li Y, Schoen S, Xiao GQ, Li X, Teh BT, Wu G, Chen J. Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Oncotarget 2016; 6:32761-73. [PMID: 26418749 PMCID: PMC4741728 DOI: 10.18632/oncotarget.5018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Deficiency of tumor suppressor FLCN leads to the activation of the mTOR signaling pathway in human BHD-associated renal cell carcinomas (RCC). We have previously developed a renal distal tubule-collecting duct-Henle's loop-specific Flcn knockout (KO) mouse model (Flcnflox/flox/Ksp-Cre). This mouse model can only survive for three weeks after birth due to the development of polycystic kidney and uremia. Whether these cystic solid hyperplasia changes seen in those KO mice are tumorigenic or malignant is unknown. In this study, we demonstrated that genetic disruption of Flcn in mouse kidney distal tubule cells could lead to tumorigenic transformation of these cells to develop allograft tumors with an aggressive histologic phenotype. Consistent with previous reports, we showed that the mTOR pathway plays an important role in the growth of these Flcn-deficient allograft and human UOK 257-1 xenograft tumors. We further demonstrated that the mTOR inhibitor, sirolimus, suppresses the tumor's growth, suggesting that mTOR inhibitors might be effective in control of FLCN-deficient RCC, especially in BHD renal tumorigenesis.
Collapse
Affiliation(s)
- Mingsong Wu
- Department of Cell Biology and Genetics, Zunyi Medical University, Zunyi 563099, China
| | - Shuhui Si
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Nature Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Susan Schoen
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xueying Li
- Department of Cell Biology and Genetics, Zunyi Medical University, Zunyi 563099, China
| | - Bin Tean Teh
- NCCS-VARI Translational Cancer Research Laboratory, National Cancer Centre, 169610, Singapore
| | - Guan Wu
- Department of Cell Biology and Genetics, Zunyi Medical University, Zunyi 563099, China.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jindong Chen
- Department of Cell Biology and Genetics, Zunyi Medical University, Zunyi 563099, China.,Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
75
|
Padhi P, Rali P, Hattab Y, Adjapong O, Malik KJ, Mao S. WITHDRAWN: A Unique Case of Perivascular Epithelioid Cell Tumor Associated With Birt-Hogg-Dube Syndrome. Clin Genitourin Cancer 2016:S1558-7673(16)30203-8. [PMID: 29079164 DOI: 10.1016/j.clgc.2016.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/13/2016] [Indexed: 11/15/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Parikshit Padhi
- Department of Hematology and Oncology, Allegheny Health Network, Pittsburgh, PA
| | - Parth Rali
- Department of Pulmonary and Critical Care Medicine, Allegheny Health Network, Pittsburgh, PA
| | - Yousef Hattab
- Department of Pulmonary and Critical Care Medicine, Allegheny Health Network, Pittsburgh, PA
| | - Opoku Adjapong
- Department of Pathology, Allegheny Health Network, Pittsburgh, PA
| | - Khalid J Malik
- Department of Pulmonary and Critical Care Medicine, Allegheny Health Network, Pittsburgh, PA
| | - Shifeng Mao
- Department of Hematology and Oncology, Allegheny Health Network, Pittsburgh, PA
| |
Collapse
|
76
|
Kenyon EJ, Luijten MNH, Gill H, Li N, Rawlings M, Bull JC, Hadzhiev Y, van Steensel MAM, Maher E, Mueller F. Expression and knockdown of zebrafish folliculin suggests requirement for embryonic brain morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:23. [PMID: 27391801 PMCID: PMC4939010 DOI: 10.1186/s12861-016-0119-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 05/15/2016] [Indexed: 12/27/2022]
Abstract
Background Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. Results flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. Conclusions In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic brain development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0119-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma J Kenyon
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| | - Monique N H Luijten
- Department of Dermatology and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Harmeet Gill
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nan Li
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew Rawlings
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James C Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Yavor Hadzhiev
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maurice A M van Steensel
- School of Medicine and School of Life Sciences, University of Dundee, Dow Street, Dundee, UK.,Institute of Medical Biology, Immunos, 8A Biomedical Grove, Singapore, Singapore
| | - Eamonn Maher
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ferenc Mueller
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
77
|
Dodding MP. Folliculin - A tumor suppressor at the intersection of metabolic signaling and membrane traffic. Small GTPases 2016; 8:100-105. [PMID: 27355777 DOI: 10.1080/21541248.2016.1204808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Birt-Hoge-Dubé syndrome tumor suppressor Folliculin is a regulator of metabolism and has as a wide range of cellular and organismal phenotypes associated with its disruption. However, the molecular mechanisms which underlie its functions are poorly understood. Folliculin has been described to associate with lysosomes in response to nutrient depletion and form a key part of the signaling network that controls the activity of mTORC1. We recently reported that Folliculin can control the nutrient dependent cytoplasmic distribution of lysosomes by promoting the formation of a complex with the Golgi-associated small GTPase Rab34 and its effector RILP. We thus define a mechanistic connection between the lysosomal nutrient signaling network and the transport machinery that controls the distribution and dynamics of this organelle. Here we summarise the main conclusions from that study, attempt to integrate our findings with other recent studies on lysosome distribution/dynamics, and discuss the potential consequences of the dysregulation of this processes caused by Folliculin loss for Birt-Hoge-Dubé syndrome and normal cell function.
Collapse
Affiliation(s)
- Mark P Dodding
- a Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| |
Collapse
|
78
|
Mutation of Fnip1 is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proc Natl Acad Sci U S A 2016; 113:E3706-15. [PMID: 27303042 DOI: 10.1073/pnas.1607592113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Folliculin (FLCN) is a tumor-suppressor protein mutated in the Birt-Hogg-Dubé (BHD) syndrome, which associates with two paralogous proteins, folliculin-interacting protein (FNIP)1 and FNIP2, forming a complex that interacts with the AMP-activated protein kinase (AMPK). Although it is clear that this complex influences AMPK and other metabolic regulators, reports of its effects have been inconsistent. To address this issue, we created a recessive loss-of-function variant of Fnip1 Homozygous FNIP1 deficiency resulted in profound B-cell deficiency, partially restored by overexpression of the antiapoptotic protein BCL2, whereas heterozygous deficiency caused a loss of marginal zone B cells. FNIP1-deficient mice developed cardiomyopathy characterized by left ventricular hypertrophy and glycogen accumulation, with close parallels to mice and humans bearing gain-of-function mutations in the γ2 subunit of AMPK. Concordantly, γ2-specific AMPK activity was elevated in neonatal FNIP1-deficient myocardium, whereas AMPK-dependent unc-51-like autophagy activating kinase 1 (ULK1) phosphorylation and autophagy were increased in FNIP1-deficient B-cell progenitors. These data support a role for FNIP1 as a negative regulator of AMPK.
Collapse
|
79
|
Ying ZX, Jin M, Peterson LF, Bernard D, Saiya-Cork K, Yildiz M, Wang S, Kaminski MS, Chang AE, Klionsky DJ, Malek SN. Recurrent Mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clin Cancer Res 2016; 22:5383-5393. [PMID: 27267853 DOI: 10.1158/1078-0432.ccr-16-0609] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE This study was performed to further our understanding of the biological and genetic basis of follicular lymphoma and to identify potential novel therapy targets. EXPERIMENTAL DESIGN We analyzed previously generated whole exome sequencing data of 23 follicular lymphoma cases and one transformed follicular lymphoma case and expanded findings to a combined total of 125 follicular lymphoma/3 transformed follicular lymphoma. We modeled the three-dimensional location of RRAGC-associated hotspot mutations. We performed functional studies on novel RRAGC mutants in stable retrovirally transduced HEK293T cells, stable lentivirally transduced lymphoma cell lines, and in Saccharomyces cerevisiae RESULTS: We report recurrent mutations, including multiple amino acid hotspots, in the small G-protein RRAGC, which is part of a protein complex that signals intracellular amino acid concentrations to MTOR, in 9.4% of follicular lymphoma cases. Mutations in RRAGC distinctly clustered on one protein surface area surrounding the GTP/GDP-binding sites. Mutated RRAGC proteins demonstrated increased binding to RPTOR (raptor) and substantially decreased interactions with the product of the tumor suppressor gene FLCN (folliculin). In stable retrovirally transfected 293T cells, cultured in the presence or absence of leucine, multiple RRAGC mutations demonstrated elevated MTOR activation as evidenced by increased RPS6KB/S6-kinase phosphorylation. Similar activation phenotypes were uncovered in yeast engineered to express mutations in the RRAGC homolog Gtr2 and in multiple lymphoma cell lines expressing HA-tagged RRAGC-mutant proteins. CONCLUSIONS Our discovery of activating mutations in RRAGC in approximately 10% of follicular lymphoma provides the mechanistic rationale to study mutational MTOR activation and MTOR inhibition as a potential novel actionable therapeutic target in follicular lymphoma. Clin Cancer Res; 22(21); 5383-93. ©2016 AACR.
Collapse
Affiliation(s)
- Zhang Xiao Ying
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Meiyan Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Luke F Peterson
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Denzil Bernard
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kamlai Saiya-Cork
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mehmet Yildiz
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shaomeng Wang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mark S Kaminski
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Alfred E Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Sami N Malek
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
80
|
Molecular Genetics of the PI3K-AKT-mTOR Pathway in Genodermatoses: Diagnostic Implications and Treatment Opportunities. J Invest Dermatol 2016; 136:15-23. [PMID: 26763419 DOI: 10.1038/jid.2015.331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 01/19/2023]
Abstract
A number of critical signaling pathways are required for homeostatic regulation of cell survival, differentiation, and proliferation during organogenesis. One of them is the PI3K-AKT-mTOR pathway consisting of a cascade of inhibitor/activator molecules. Recently, a number of heritable diseases with skin involvement, manifesting particularly with tissue overgrowth, have been shown to result from mutations in the genes in the PI3K-AKT-mTOR and interacting intracellular pathways. Many of these conditions represent an overlapping spectrum of phenotypic manifestations forming a basis for novel, unifying classifications. Identification of the mutant genes and specific mutations in these patients has implications for diagnostics and genetic counseling and provides a rational basis for the development of novel treatment modalities for this currently intractable group of disorders.
Collapse
|
81
|
Starling GP, Yip YY, Sanger A, Morton PE, Eden ER, Dodding MP. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep 2016; 17:823-41. [PMID: 27113757 PMCID: PMC4893818 DOI: 10.15252/embr.201541382] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/14/2016] [Indexed: 11/09/2022] Open
Abstract
The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt-Hoge-Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri-nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi-associated small GTPase Rab34. Rab34-positive peri-nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34-induced peri-nuclear lysosome clustering. FLCN interacts directly via its C-terminal DENN domain with the Rab34 effector RILP Using purified recombinant proteins, we show that the FLCN-DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP We propose a model whereby starvation-induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34-positive peri-nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell.
Collapse
Affiliation(s)
- Georgina P Starling
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Yan Y Yip
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Anneri Sanger
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Penny E Morton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Emily R Eden
- Institute of Ophthalmology, University College London, London, UK
| | - Mark P Dodding
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
82
|
Zhong M, Zhao X, Li J, Yuan W, Yan G, Tong M, Guo S, Zhu Y, Jiang Y, Liu Y, Jiang Y. Tumor Suppressor Folliculin Regulates mTORC1 through Primary Cilia. J Biol Chem 2016; 291:11689-97. [PMID: 27072130 DOI: 10.1074/jbc.m116.719997] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Folliculin (FLCN) is the tumor suppressor associated with Birt-Hogg-Dubé (BHD) syndrome that predisposes patients to incident of hamartomas and cysts in multiple organs. Its inactivation causes deregulation in the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. However, the underlying mechanism is poorly defined. In this study, we show that FLCN is a ciliary protein that functions through primary cilia to regulate mTORC1. In response to flow stress, FLCN associates with LKB1 and recruits the kinase to primary cilia for activation of AMPK resided at basal bodies, which causes mTORC1 down-regulation. In cells depleted of FLCN, LKB1 fails to accumulate in primary cilia and AMPK at the basal bodies remains inactive, thus nullifying the inhibitory effect of flow stress on mTORC1 activity. Our results demonstrate that FLCN is part of a flow sensory mechanism that regulates mTORC1 through primary cilia.
Collapse
Affiliation(s)
- Mingming Zhong
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Xuwen Zhao
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Jinmei Li
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Wenjie Yuan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Gonghong Yan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Mingming Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Shuguang Guo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yong Jiang
- From the Guangdong Provincial Key Laboratory of Proteomics; Key laboratory of Transcriptomics and Proteomics of Ministry of Education of China, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China,
| | - Yongjian Liu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
83
|
Baba M, Toyama H, Sun L, Takubo K, Suh HC, Hasumi H, Nakamura-Ishizu A, Hasumi Y, Klarmann KD, Nakagata N, Schmidt LS, Linehan WM, Suda T, Keller JR. Loss of Folliculin Disrupts Hematopoietic Stem Cell Quiescence and Homeostasis Resulting in Bone Marrow Failure. Stem Cells 2016; 34:1068-82. [PMID: 27095138 PMCID: PMC4843833 DOI: 10.1002/stem.2293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 12/21/2022]
Abstract
Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice.
Collapse
Affiliation(s)
- Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 〒 860-0811, Japan
| | - Hirofumi Toyama
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Lei Sun
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hyung-Chan Suh
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hisashi Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly D. Klarmann
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, 〒 860-0811, Japan
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 〒 860-0811, Japan
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program and Basic Science Program, Leidos Biomedical Research, Inc., Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
84
|
Powis K, De Virgilio C. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov 2016; 2:15049. [PMID: 27462445 PMCID: PMC4860963 DOI: 10.1038/celldisc.2015.49] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022] Open
Abstract
The highly conserved target of rapamycin complex 1 (TORC1) is the central component of a signaling network that couples a vast range of internal and external stimuli to cell growth, proliferation and metabolism. TORC1 deregulation is associated with a number of human pathologies, including many cancers and metabolic disorders, underscoring its importance in cellular and organismal growth control. The activity of TORC1 is modulated by multiple inputs; however, the presence of amino acids is a stimulus that is essential for its activation. Amino acid sufficiency is communicated to TORC1 via the highly conserved family of Rag GTPases, which assemble as heterodimeric complexes on lysosomal/vacuolar membranes and are regulated by their guanine nucleotide loading status. Studies in yeast, fly and mammalian model systems have revealed a multitude of conserved Rag GTPase modulators, which have greatly expanded our understanding of amino acid sensing by TORC1. Here we review the major known modulators of the Rag GTPases, focusing on recent mechanistic insights that highlight the evolutionary conservation and divergence of amino acid signaling to TORC1.
Collapse
Affiliation(s)
- Katie Powis
- Department of Biology, University of Fribourg , Fribourg, Switzerland
| | | |
Collapse
|
85
|
Mechanisms of pulmonary cyst pathogenesis in Birt-Hogg-Dube syndrome: The stretch hypothesis. Semin Cell Dev Biol 2016; 52:47-52. [PMID: 26877139 DOI: 10.1016/j.semcdb.2016.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
Loss-of-function mutations in the folliculin gene (FLCN) on chromosome 17p cause Birt-Hogg-Dube syndrome (BHD), which is associated with cystic lung disease. The risk of lung collapse (pneumothorax) in BHD patients is 50-fold higher than in the general population. The cystic lung disease in BHD is distinctive because the cysts tend to be basilar, subpleural and lentiform, differentiating BHD from most other cystic lung diseases. Recently, major advances in elucidating the primary functions of the folliculin protein have been made, including roles in mTOR and AMPK signaling via the interaction of FLCN with FNIP1/2, and cell-cell adhesion via the physical interaction of FLCN with plakophilin 4 (PKP4), an armadillo-repeat containing protein that interacts with E-cadherin and is a component of the adherens junctions. In addition, in just the last three years, the pulmonary impact of FLCN deficiency has been examined for the first time. In mouse models, evidence has emerged that AMPK signaling and cell-cell adhesion are involved in alveolar enlargement. In addition, the pathologic features of human BHD cysts have been recently comprehensively characterized. The "stretch hypothesis" proposes that cysts in BHD arise because of fundamental defects in cell-cell adhesion, leading to repeated respiration-induced physical stretch-induced stress and, over time, expansion of alveolar spaces particularly in regions of the lung with larger changes in alveolar volume and at weaker "anchor points" to the pleura. This hypothesis ties together many of the new data from cellular and mouse models of BHD and from the human pathologic studies. Critical questions remain. These include whether the consequences of stretch-induced cyst formation arise through a destructive/inflammatory program or a proliferative program (or both), whether cyst initiation involves a "second hit" genetic event inactivating the remaining wild-type copy of FLCN (as is known to occur in BHD-associated renal cell carcinomas), and whether cyst initiation involves exclusively the epithelial compartment versus an interaction between the epithelium and mesenchyme. Ultimately, understanding the mechanisms of cystic lung disease in BHD may help to elucidate the pathogenesis of primary spontaneous pneumothorax, with more than 20,000 cases reported annually in the United States alone.
Collapse
|
86
|
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) is a master regulator of cell growth and metabolism. In mammals, growth factors and cellular energy stimulate mTORC1 activity through inhibition of the TSC complex (TSC1-TSC2-TBC1D7), a negative regulator of mTORC1. Amino acids signal to mTORC1 independently of the TSC complex. Here, we review recently identified regulators that link amino acid sufficiency to mTORC1 activity and how mutations affecting these regulators cause human disease.
Collapse
|
87
|
Hasumi H, Baba M, Hasumi Y, Furuya M, Yao M. Birt-Hogg-Dubé syndrome: Clinical and molecular aspects of recently identified kidney cancer syndrome. Int J Urol 2015; 23:204-10. [PMID: 26608100 DOI: 10.1111/iju.13015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022]
Abstract
Birt-Hogg-Dubé syndrome is an autosomal dominantly inherited disease that predisposes patients to develop fibrofolliculoma, lung cysts and bilateral multifocal renal tumors, histologically hybrid oncocytic/chromophobe tumors, chromophobe renal cell carcinoma, oncocytoma, papillary renal cell carcinoma and clear cell renal cell carcinoma. The predominant forms of Birt-Hogg-Dubé syndrome-associated renal tumors, hybrid oncocytic/chromophobe tumors and chromophobe renal cell carcinoma are typically less aggressive, and a therapeutic principle for these tumors is a surgical removal with nephron-sparing. The timing of surgery is the most critical element for postoperative renal function, which is one of the important prognostic factors for Birt-Hogg-Dubé syndrome patients. The folliculin gene (FLCN) that is responsible for Birt-Hogg-Dubé syndrome was isolated as a novel tumor suppressor for kidney cancer. Recent studies using murine models for FLCN, a protein encoded by the FLCN gene, and its two binding partners, folliculin-interacting protein 1 (FNIP1) and folliculin-interacting protein 2 (FNIP2), have uncovered important roles for FLCN, FNIP1 and FNIP2 in cell metabolism, which include AMP-activated protein kinase-mediated energy sensing, Ppargc1a-driven mitochondrial oxidative phosphorylation and mTORC1-dependent cell proliferation. Birt-Hogg-Dubé syndrome is a hereditary hamartoma syndrome, which is triggered by metabolic alterations under a functional loss of FLCN/FNIP1/FNIP2 complex, a critical regulator of kidney cell proliferation rate; a mechanistic insight into the FLCN/FNIP1/FNIP2 pathway could provide us a basis for developing new therapeutics for kidney cancer.
Collapse
Affiliation(s)
- Hisashi Hasumi
- Department of Urology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hasumi
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
88
|
Metabolic alterations in renal cell carcinoma. Cancer Treat Rev 2015; 41:767-76. [DOI: 10.1016/j.ctrv.2015.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023]
|
89
|
Abstract
Birt-Hogg-Dubé (BHD) syndrome is an inherited renal cancer syndrome in which affected individuals are at risk of developing benign cutaneous fibrofolliculomas, bilateral pulmonary cysts and spontaneous pneumothoraces, and kidney tumours. Bilateral multifocal renal tumours that develop in BHD syndrome are most frequently hybrid oncocytic tumours and chromophobe renal carcinoma, but can present with other histologies. Germline mutations in the FLCN gene on chromosome 17 are responsible for BHD syndrome--BHD-associated renal tumours display inactivation of the wild-type FLCN allele by somatic mutation or chromosomal loss, confirming that FLCN is a tumour suppressor gene that fits the classic two-hit model. FLCN interacts with two novel proteins, FNIP1 and FNIP2, and with AMPK, a negative regulator of mTOR. Studies with FLCN-deficient cell and animal models support a role for FLCN in modulating the AKT-mTOR pathway. Emerging evidence links FLCN with a number of other molecular pathways and cellular processes important for cell homeostasis that are frequently deregulated in cancer, including regulation of TFE3 and/or TFEB transcriptional activity, amino-acid-dependent mTOR activation through Rag GTPases, TGFβ signalling, PGC1α-driven mitochondrial biogenesis, and autophagy. Currently, surgical intervention is the only therapy available for BHD-associated renal tumours, but improved understanding of the FLCN pathway will hopefully lead to the development of effective forms of targeted systemic therapy for this disease.
Collapse
Affiliation(s)
- Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 10, CRC, Room 1-5940, Bethesda, MD 20892-1107 USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 10, CRC, Room 1-5940, Bethesda, MD 20892-1107 USA
| |
Collapse
|
90
|
Ding Y, Zou W, Zhu C, Min H, Ma D, Chen B, Ye M, Pan Y, Cao L, Wan Y, Zhu Q, Xia H, Zhang W, Feng Y, Gao Q, Yi L. Promoter methylation is not associated with FLCN irregulation in lung cyst lesions of primary spontaneous pneumothorax. Mol Med Rep 2015; 12:7770-6. [PMID: 26398834 DOI: 10.3892/mmr.2015.4341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 08/25/2015] [Indexed: 11/05/2022] Open
Abstract
Germline mutations in FLCN are responsible for ~10% of patients with primary spontaneous pneumothorax (PSP), characterized by multiple lung cysts in the middle/lower lobes and recurrent pneumothorax. These clinical features are also observed in a substantial portion of patients with sporadic PSP exhibiting no FLCN coding mutations. To assess the potential underlying mechanisms, 71 patients with PSP were selected, including 69 sporadic and 2 familial cases, who bared FLCN mutation‑like lung cysts, however, harbored no FLCN protein‑altering mutations. Notably, in a significant proportion of the patients, FLCN irregulation was observed at the transcript and protein levels. Genetic analyses of the cis‑regulatory region of FLCN were performed by sequencing and multiplex ligation‑dependent probe amplification assay. No inheritable DNA defect was detected, with the exception of a heterozygous deletion spanning the FLCN promoter, which was identified in a family with PSP. This mutation caused a reduction in the expression of FLCN in the lung cysts. Pedigree analysis demonstrated that haploinsufficiency of FLCN was pathogenic. To determine whether epigenetic mechanisms may be involved in the irregulation of FLCN, the promoter methylation status was measured in the remainder of the patients. No evidence of FLCN promoter methylation was demonstrated. The present study suggested that FLCN irregulation in lung cysts of PSP is not associated with promoter methylation.
Collapse
Affiliation(s)
- Yibing Ding
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Wei Zou
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu 210093, P.R. China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Haiyan Min
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Minhua Ye
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Yanqing Pan
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu 210093, P.R. China
| | - Lei Cao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu 210093, P.R. China
| | - Yueming Wan
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu 210093, P.R. China
| | - Qiuxiang Zhu
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Haizhen Xia
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Wenwen Zhang
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Ying Feng
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Qian Gao
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| | - Long Yi
- Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
91
|
Revealing a Pre-neoplastic Renal Tubular Lesion by p-S6 Protein Immunohistochemistry after Rat Exposure to Aristolochic Acid. J Kidney Cancer VHL 2015; 2:153-162. [PMID: 28326270 PMCID: PMC5345518 DOI: 10.15586/jkcvhl.2015.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/23/2015] [Indexed: 11/18/2022] Open
Abstract
Aristolochic acid (AA) has, in the last decade, become widely promoted as the cause of the Balkan endemic nephropathy and associated renal or urothelial tumours, although without substantial focal evidence of the quantitative dietary exposure via bread in specific households in hyperendemic villages. Occasional ethnobotanical use of Aristolochia clematitis might be a source of AA, and Pliocene lignite contamination of well-water is also a putative health risk factor. The aim of this study was two-fold: to verify if extracts of A. clematitis and Pliocene, or AA by itself, could induce the development of renal or urothelial tumours, and to test the utility of the ribosomal protein p-S6 to identify preneoplastic transformation. Rats were given extracts of A. clematitis in drinking water or AA I, by gavage. After seven months, renal morphology was studied using conventional haematoxylin and eosin and immunohistochemistry for ribosomal p-S6 protein. Plant extracts (cumulative AA approximately 1.8 g/kg b.w.) were tolerated and caused no gross pathology or renal histopathological change, with only faint diffuse p-S6 protein (except in the papilla) as in controls. Cumulative AA I (150 mg/kg b.w. given over 3 days) was also tolerated for seven months by all recipients, without gross pathology or kidney tumours. However, p-S6 protein over-expression was consistent particularly within the renal papilla. In one case given AA I, intense p-S6 protein staining of a proximal tubule fragment crucially matched the pre-neoplastic histology in an adjacent kidney section. We briefly discuss these findings, which compound uncertainty concerning the cause of the renal or upper urinary tract tumours of the Balkan endemic nephropathy.
Collapse
|
92
|
Tsun ZY, Possemato R. Amino acid management in cancer. Semin Cell Dev Biol 2015; 43:22-32. [PMID: 26277542 PMCID: PMC4800996 DOI: 10.1016/j.semcdb.2015.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/21/2015] [Accepted: 08/09/2015] [Indexed: 12/30/2022]
Abstract
Amino acids have a dual role in cellular metabolism, as they are both the building blocks for protein synthesis and intermediate metabolites which fuel other biosynthetic reactions. Recent work has demonstrated that deregulation of both arms of amino acid management are common alterations seen in cancer. Among the most highly consumed nutrients by cancer cells are the amino acids glutamine and serine, and the biosynthetic pathways that metabolize them are required in various cancer subtypes and the object of current efforts to target cancer metabolism. Also altered in cancer are components of the machinery which sense amino acid sufficiency, nucleated by the mechanistic target of rapamycin (mTOR), a key regulator of cell growth via modulation of key processes including protein synthesis and autophagy. The precise ways in which altered amino acid management supports cellular transformation remain mostly elusive, and a fuller mechanistic understanding of these processes will be important for efforts to exploit such alterations for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Yang Tsun
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Richard Possemato
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
93
|
Ciccarese C, Massari F, Santoni M, Heng DY, Sotte V, Brunelli M, Conti A, Cheng L, Lopez-Beltran A, Scarpelli M, Cascinu S, Tortora G, Montironi R. New molecular targets in non clear renal cell carcinoma: An overview of ongoing clinical trials. Cancer Treat Rev 2015; 41:614-22. [DOI: 10.1016/j.ctrv.2015.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
|
94
|
Chen J, Huang D, Rubera I, Futami K, Wang P, Zickert P, Khoo SK, Dykema K, Zhao P, Petillo D, Cao B, Zhang Z, Si S, Schoen SR, Yang XJ, Zhou M, Xiao GQ, Wu G, Nordenskjöld M, Tauc M, Williams BO, Furge KA, Teh BT. Disruption of tubular Flcn expression as a mouse model for renal tumor induction. Kidney Int 2015; 88:1057-69. [PMID: 26083655 DOI: 10.1038/ki.2015.177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/09/2015] [Accepted: 04/16/2015] [Indexed: 01/07/2023]
Abstract
The study of kidney cancer pathogenesis and its treatment has been limited by the scarcity of genetically defined animal models. The FLCN gene that codes for the protein folliculin, mutated in Birt-Hogg-Dubé syndrome, presents a new target for mouse modeling of kidney cancer. Here we developed a kidney-specific knockout model by disrupting the mouse Flcn in the proximal tubules, thus avoiding homozygous embryonic lethality or neonatal mortality, and eliminating the requirement of loss of heterozygosity for tumorigenesis. This knockout develops renal cysts and early onset (6 months) of multiple histological subtypes of renal neoplasms featuring high tumor penetrance. Although the majority of the tumors were chromophobe renal cell carcinomas in affected mice under 1 year of age, papillary renal cell carcinomas predominated in the kidneys of older knockout mice. This renal neoplasia from cystic hyperplasia at 4 months to high-grade renal tumors by 16 months represented the progression of tumorigenesis. The mTOR and TGF-β signalings were upregulated in Flcn-deficient tumors, and these two activated pathways may synergetically cause renal tumorigenesis. Treatment of knockout mice with the mTOR inhibitor rapamycin for 10 months led to the suppression of tumor growth. Thus, our model recapitulates human Birt-Hogg-Dubé kidney tumorigenesis, provides a valuable tool for further study of Flcn-deficient renal tumorigenesis, and tests new drugs/approaches to their treatment.
Collapse
Affiliation(s)
- Jindong Chen
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Cell Biology and Genetics, Zunyi Medical University, Zunyi, China
| | - Dachuan Huang
- NCCS-VARI Translational Cancer Research Laboratory, National Cancer Centre, Singapore, Singapore
| | | | - Kunihiko Futami
- Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Pengfei Wang
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter Zickert
- Department of Pathology, Karolinska Institutet, Danderyds Hospital, Stockholm, Sweden
| | - Sok-Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Cook-DeVos Center for Health Sciences, Grand Rapids, MI, USA
| | - Karl Dykema
- Laboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ping Zhao
- Spectrum Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - David Petillo
- Laboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI, USA.,Molecular Diagnostics Program, College of Health Professions, Ferris State University, Grand Rapids, MI, USA
| | - Brian Cao
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zhongfa Zhang
- Laboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Shuhui Si
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan R Schoen
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ximing J Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ming Zhou
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Guan Wu
- Kidney Cancer Research Laboratory, Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Magnus Nordenskjöld
- Clinical Genetics, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michel Tauc
- University of Nice-Sophia Antipolis, Nice, France
| | - Bart O Williams
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kyle A Furge
- Laboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bin Tean Teh
- NCCS-VARI Translational Cancer Research Laboratory, National Cancer Centre, Singapore, Singapore.,Laboratory of Interdisciplinary Renal Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
95
|
Ferguson SM. Beyond indigestion: emerging roles for lysosome-based signaling in human disease. Curr Opin Cell Biol 2015; 35:59-68. [PMID: 25950843 DOI: 10.1016/j.ceb.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
Abstract
Lysosomes are becoming increasingly recognized as a hub that integrates diverse signals in order to control multiple aspects of cell physiology. This is illustrated by the discovery of a growing number of lysosome-localized proteins that respond to changes in growth factor and nutrient availability to regulate mTORC1 signaling as well as the identification of MiT/TFE transcription factors (MITF, TFEB and TFE3) as proteins that shuttle between lysosomes and the nucleus to elicit a transcriptional response to ongoing changes in lysosome status. These findings have been paralleled by advances in human genetics that connect mutations in genes involved in lysosomal signaling to a broad range of human illnesses ranging from cancer to neurological disease. This review summarizes these new discoveries at the interface between lysosome cell biology and human disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
96
|
Hasumi H, Baba M, Hasumi Y, Lang M, Huang Y, Oh HF, Matsuo M, Merino MJ, Yao M, Ito Y, Furuya M, Iribe Y, Kodama T, Southon E, Tessarollo L, Nagashima K, Haines DC, Linehan WM, Schmidt LS. Folliculin-interacting proteins Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. Proc Natl Acad Sci U S A 2015; 112:E1624-31. [PMID: 25775561 PMCID: PMC4386336 DOI: 10.1073/pnas.1419502112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Folliculin (FLCN)-interacting proteins 1 and 2 (FNIP1, FNIP2) are homologous binding partners of FLCN, a tumor suppressor for kidney cancer. Recent studies have revealed potential functions for Flcn in kidney; however, kidney-specific functions for Fnip1 and Fnip2 are unknown. Here we demonstrate that Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. We observed no detectable phenotype in Fnip2 knockout mice, whereas Fnip1 deficiency produced phenotypes similar to those seen in Flcn-deficient mice in multiple organs, but not in kidneys. We found that absolute Fnip2 mRNA copy number was low relative to Fnip1 in organs that showed phenotypes under Fnip1 deficiency but was comparable to Fnip1 mRNA copy number in mouse kidney. Strikingly, kidney-targeted Fnip1/Fnip2 double inactivation produced enlarged polycystic kidneys, as was previously reported in Flcn-deficient kidneys. Kidney-specific Flcn inactivation did not further augment kidney size or cystic histology of Fnip1/Fnip2 double-deficient kidneys, suggesting pathways dysregulated in Flcn-deficient kidneys and Fnip1/Fnip2 double-deficient kidneys are convergent. Heterozygous Fnip1/homozygous Fnip2 double-knockout mice developed kidney cancer at 24 mo of age, analogous to the heterozygous Flcn knockout mouse model, further supporting the concept that Fnip1 and Fnip2 are essential for the tumor-suppressive function of Flcn and that kidney tumorigenesis in human Birt-Hogg-Dubé syndrome may be triggered by loss of interactions among Flcn, Fnip1, and Fnip2. Our findings uncover important roles for Fnip1 and Fnip2 in kidney tumor suppression and may provide molecular targets for the development of novel therapeutics for kidney cancer.
Collapse
Affiliation(s)
- Hisashi Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; Departments of Urology and Molecular Genetics and
| | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; International Research Center for Medical Sciences, Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ying Huang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - HyoungBin F Oh
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Masahiro Yao
- Departments of Urology and Molecular Genetics and
| | - Yusuke Ito
- Departments of Urology and Molecular Genetics and
| | - Mitsuko Furuya
- Molecular Pathology, Yokohama City University, Yokohama 236-0004, Japan
| | - Yasuhiro Iribe
- Molecular Pathology, Yokohama City University, Yokohama 236-0004, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702; and Laboratory of Animal Sciences Program
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702; and
| | | | - Diana C Haines
- Veterinary Pathology Section, Pathology/Histotechnology Laboratory, and
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
97
|
Furuya M, Hong SB, Tanaka R, Kuroda N, Nagashima Y, Nagahama K, Suyama T, Yao M, Nakatani Y. Distinctive expression patterns of glycoprotein non-metastatic B and folliculin in renal tumors in patients with Birt-Hogg-Dubé syndrome. Cancer Sci 2015; 106:315-23. [PMID: 25594584 PMCID: PMC4376441 DOI: 10.1111/cas.12601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/10/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022] Open
Abstract
Birt–Hogg–Dubé syndrome (BHD) is an inherited disorder associated with a germline mutation of the folliculin gene (FLCN). The affected families have a high risk for developing multiple renal cell carcinomas (RCC). Diagnostic markers that distinguish between FLCN-related RCC and sporadic RCC have not been investigated, and many patients with undiagnosed BHD fail to receive proper medical care. We investigated the histopathology of 27 RCCs obtained from 18 BHD patients who were diagnosed by genetic testing. Possible somatic mutations of RCC lesions were investigated by DNA sequencing. Western blotting and immunohistochemical staining were used to compare the expression levels of FLCN and glycoprotein non-metastatic B (GPNMB) between FLCN-related RCCs and sporadic renal tumors (n = 62). The expression of GPNMB was also evaluated by quantitative RT-PCR. Histopathological analysis revealed that the most frequent histological type was chromophobe RCC (n = 12), followed by hybrid oncocytic/chromophobe tumor (n = 6). Somatic mutation analysis revealed small intragenic mutations in six cases and loss of heterozygosity in two cases. Western blot and immunostaining analyses revealed that FLCN-related RCCs showed overexpression of GPNMB and underexpression of FLCN, whereas sporadic tumors showed inverted patterns. GPNMB mRNA in FLCN-related RCCs was 23-fold more abundant than in sporadic tumors. The distinctive expression patterns of GPNMB and FLCN might identify patients with RCCs who need further work-up for BHD.
Collapse
Affiliation(s)
- Mitsuko Furuya
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Geynisman DM, Stadler WM. Variant Renal Carcinoma Histologies: Therapeutic Considerations. KIDNEY CANCER 2015. [DOI: 10.1007/978-3-319-17903-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
99
|
|
100
|
Pan S, Shuch B. Hereditary Kidney Cancer Syndromes. KIDNEY CANCER 2015. [DOI: 10.1007/978-3-319-17903-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|