51
|
Abstract
Hematopoietic stem and progenitor mobilization has revolutionized the field of hematopoietic transplantation. Currently, hematopoietic grafts acquired from the peripheral blood of patients or donors treated with granulocyte-colony stimulating factor (G-CSF) are the preferred source for transplantation. G-CSF mobilization regimens, however, are associated with known morbidities and a significant number of normal donors and patient populations fail to mobilize sufficient numbers of hematopoietic stem and progenitor cells for transplantation, necessitating the need for non-G-CSF mobilization strategies. Mechanistic studies evaluating hematopoietic bone marrow niche interactions have uncovered novel agents with the capacity for hematopoietic mobilization. This chapter provides a comprehensive overview of mobilizing agents, other than G-CSF, and experimental procedures and technical aspects important to evaluate and define their hematopoietic mobilizing activities alone and in combination.
Collapse
|
52
|
Marquez-Curtis LA, Turner AR, Sridharan S, Ratajczak MZ, Janowska-Wieczorek A. The ins and outs of hematopoietic stem cells: studies to improve transplantation outcomes. Stem Cell Rev Rep 2011; 7:590-607. [PMID: 21140298 DOI: 10.1007/s12015-010-9212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deciphering the mechanisms of hematopoietic stem/progenitor cell (HSPC) mobilization and homing is important for the development of strategies to enhance the efficacy of HSPC transplantation and achieve the full potential of HSPC-based cellular therapy. Investigation of these mechanisms has revealed interdependence among the various molecules, pathways and cellular components involved, and underscored the complex nature of these two processes. This review summarizes recent progress in identifying the specific factors implicated in HSPC mobilization and homing, with emphasis on our own work. Particularly, we will discuss our studies on stromal cell-derived factor-1 and its interaction with its receptor CXCR4, proteases (matrix metalloproteinases and carboxypeptidase M), complement proteins (C1q, C3a, C5a, membrane attack complex), sphingosine-1-phosphate, and pharmacologic agents such as the histone deacetylase inhibitor valproic acid and hyaluronic acid.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Research & Development, Canadian Blood Services, CBS Edmonton Centre, 8249-114 St. NW, Edmonton, T6G 2R8, Alberta, Canada
| | | | | | | | | |
Collapse
|
53
|
Schroeder MA, DiPersio JF. Mobilization of hematopoietic stem and leukemia cells. J Leukoc Biol 2011; 91:47-57. [PMID: 22028335 DOI: 10.1189/jlb.0210085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HSC mobilization is an essential homeostatic process during inflammation and for the maintenance of hematopoietic progenitors. It has been exploited for the therapeutic application of HSC transplantation. Recent evidence suggests that leukemic cells share surface molecules in common with stem cells and may be mobilized under similar conditions. This effect could be used for therapeutic interventions. In this review, we will provide evidence showing that leukemia cells and stem cells traffic similarly and may share a common niche. Studies are discussed comparing and contrasting the mechanism of normal stem cells and leukemic cell mobilization through the CXCR4/CXCL12 axis and other key intermediaries.
Collapse
Affiliation(s)
- Mark A Schroeder
- Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
54
|
Yao KW, Zhang LD, Wang J. The mobilization of autologous bone marrow stem cells in the treatment of heart failure with Chinese medicine. Chin J Integr Med 2011; 17:873-80. [PMID: 21809128 DOI: 10.1007/s11655-011-0796-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Indexed: 11/26/2022]
Abstract
Heart failure (HF) is a severe heart disease. The use of autologous bone marrow stem cells (BMCs) mobilization in the treatment of HF has been a hot topic to research both in Western medicine and Chinese medicine (CM). There are many clinical trials and experiments on study of BMCs mobilization for HF therapy, including integrative medicine. The effect of BMCs mobilization is favorable for cardiac repair, while some advantages of CM support the advanced study of its application in BMCs mobilization to treat HF. In addition, with mechanisms of autologous BMCs mobilization for the treatment of HF that will be revealed in the future, especially stem cells niches, integrative medicine would play an important role in this clinical thought of therapy model gradually. Simultaneously, CM should adapt the new approaches of stem cells progresses on HF treatment as holding characteristics of itself.
Collapse
Affiliation(s)
- Kui-Wu Yao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | | | | |
Collapse
|
55
|
Hasenberg M, Köhler A, Bonifatius S, Borucki K, Riek-Burchardt M, Achilles J, Männ L, Baumgart K, Schraven B, Gunzer M. Rapid immunomagnetic negative enrichment of neutrophil granulocytes from murine bone marrow for functional studies in vitro and in vivo. PLoS One 2011; 6:e17314. [PMID: 21383835 PMCID: PMC3044161 DOI: 10.1371/journal.pone.0017314] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/28/2011] [Indexed: 12/26/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) mediate early immunity to infection but can also cause host damage if their effector functions are not controlled. Their lack or dysfunction is associated with severe health problems and thus the analysis of PMN physiology is a central issue. One prerequisite for PMN analysis is the availability of purified cells from primary organs. While human PMN are easily isolated from peripheral blood, this approach is less suitable for mice due to limited availability of blood. Instead, bone marrow (BM) is an easily available reservoir of murine PMN, but methods to obtain pure cells from BM are limited. We have developed a novel protocol allowing the isolation of highly pure untouched PMN from murine BM by negative immunomagnetic isolation using a complex antibody cocktail. The protocol is simple and fast (∼1 h), has a high yield (5–10*106 PMN per animal) and provides a purity of cells equivalent to positive selection (>80%). Most importantly, cells obtained by this method are non-activated and remain fully functional in vitro or after adoptive transfer into recipient animals. This method should thus greatly facilitate the study of primary murine PMN in vitro and in vivo.
Collapse
Affiliation(s)
- Mike Hasenberg
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Köhler
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Susanne Bonifatius
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Monika Riek-Burchardt
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Research Group Neuropharmacology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Julia Achilles
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Linda Männ
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Kathleen Baumgart
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Gunzer
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
56
|
Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. ACTA ACUST UNITED AC 2011; 208:251-60. [PMID: 21282380 PMCID: PMC3039862 DOI: 10.1084/jem.20101700] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing cytokine, induces hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow in a cell-nonautonomous fashion. This process is mediated, in part, through suppression of osteoblasts and disruption of CXCR4/CXCL12 signaling. The cellular targets of G-CSF that initiate the mobilization cascade have not been identified. We use mixed G-CSF receptor (G-CSFR)-deficient bone marrow chimeras to show that G-CSF-induced mobilization of HSPCs correlates poorly with the number of wild-type neutrophils. We generated transgenic mice in which expression of the G-CSFR is restricted to cells of the monocytic lineage. G-CSF-induced HSPC mobilization, osteoblast suppression, and inhibition of CXCL12 expression in the bone marrow of these transgenic mice are intact, demonstrating that G-CSFR signals in monocytic cells are sufficient to induce HSPC mobilization. Moreover, G-CSF treatment of wild-type mice is associated with marked loss of monocytic cells in the bone marrow. Finally, we show that bone marrow macrophages produce factors that support the growth and/or survival of osteoblasts in vitro. Together, these data suggest a model in which G-CSFR signals in bone marrow monocytic cells inhibit the production of trophic factors required for osteoblast lineage cell maintenance, ultimately leading to HSPC mobilization.
Collapse
Affiliation(s)
- Matthew J Christopher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
57
|
Abstract
Although most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the BM, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and postirradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function.
Collapse
Affiliation(s)
- Daniel A Zlotoff
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
58
|
Paganessi LA, Walker AL, Tan LL, Holmes I, Rich E, Fung HC, Christopherson KW. Effective mobilization of hematopoietic progenitor cells in G-CSF mobilization defective CD26-/- mice through AMD3100-induced disruption of the CXCL12-CXCR4 axis. Exp Hematol 2010; 39:384-90. [PMID: 21168468 DOI: 10.1016/j.exphem.2010.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We previously reported that inhibition or loss of CD26 (DPPIV/dipeptidylpeptidase IV) results in a defect in normal mobilization of hematopoietic stem and progenitor cells induced by granulocyte-colony stimulating factor (G-CSF). This suggests that CD26 is a necessary component of the mobilization pathway. Our goal in this study was to determine whether mobilization can be induced by the CXCR4 antagonist AMD3100 in mice lacking CD26 (CD26(-/-)). MATERIALS AND METHODS Ten week old CD26(-/-) and C57BL/6 mice received a subcutaneous injection of AMD3100. One hour post-injection the mice were euthanized and peripheral blood and bone marrow were collected and evaluated. RESULTS AMD3100 mobilizes hematopoietic progenitors into the peripheral blood of CD26(-/-) and mice. CONCLUSIONS Our finding that AMD3100 rapidly mobilizes hematopoietic progenitor cells from the bone marrow into the periphery in CD26-deficient transgenic mice that otherwise exhibit a mobilization defect in response to G-CSF suggests that: (1) CD26 is downstream of G-CSF but upstream of the CXCL12-CXCR4 axis and (2) AMD3100 can be used as a single agent to mobilize hematopoietic stem and progenitor cells in normal donors or patients that have an intrinsic defect in their response to G-CSF treatment. Stem cell transplants are often the only curative treatment in some cancer patients. The ability to perform the transplantation and its success is dependent on the ability to mobilize adequate numbers of hematopoietic progenitor cells. The use of AMD3100 as a single agent would give patients or donors an additional option for a successful stem cell transplant.
Collapse
Affiliation(s)
- Laura A Paganessi
- Sections of Hematology and Stem Cell Transplantation, Division of Hematology/Oncology, Rush University Medical Center, 1725 W. Harrison Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Under normal conditions, the great majority of hematopoietic stem/progenitors cells (HSPCs) reside in the bone marrow. The number of HSPCs in the circulation can be markedly increased in response to a number of stimuli, including hematopoietic growth factors, myeloablative agents and environmental stresses such as infection. The ability to 'mobilize' HSPCs from the bone marrow to the blood has been exploited clinically to obtain HSPCs for stem cell transplantation and, more recently, to stimulate therapeutic angiogenesis at sites of tissue ischemia. Moreover, there is recent interest in the use of mobilizing agents to sensitize leukemia and other hematopoietic malignancies to cytotoxic agents. Key to optimizing clinical mobilizing regimens is an understanding of the fundamental mechanisms of HSPC mobilization. In this review, we discuss recent advances in our understanding of the mechanisms by which granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing agent, induces HSPC mobilization.
Collapse
|
60
|
Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J. Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24:1667-75. [PMID: 20703253 DOI: 10.1038/leu.2010.162] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs), as well as other types of stem cells, circulate under steady-state conditions at detectable levels in peripheral blood (PB), with their numbers increasing in response to stress, inflammation and tissue/organ injury. This mobilization process may be envisioned as a danger-sensing response mechanism triggered by hypoxia or mechanical or infection-induced tissue damage that recruits into PB different types of stem cells that have a role in immune surveillance and organ/tissue regeneration. Mobilization is also significantly enhanced by the administration of pharmacological agents, which has been exploited in hematological transplantology as a means to obtain HSPCs for hematopoietic reconstitution. In this review we will present mounting evidence that innate immunity orchestrates this evolutionarily conserved mechanism of HSPC mobilization.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24:976-85. [PMID: 20357827 PMCID: PMC2946378 DOI: 10.1038/leu.2010.53] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement cascade (CC) becomes activated and its cleavage fragments play a crucial role in the mobilization of hematopoietic stem/progenitor cells (HSPCs). Here, we sought to determine which major chemottractant present in peripheral blood (PB) is responsible for the egress of HSPCs from the BM. We noticed that normal and mobilized plasma strongly chemoattracts HSPCs in a stromal derived factor-1 (SDF-1)-independent manner because i) plasma SDF-1 level does not correlate with mobilization efficiency, ii) the chemotactic plasma gradient is not affected in the presence of AMD3100, and iii) it is resistant to denaturation by heat. Surprisingly, the observed loss of plasma chemotactic activity after charcoal stripping suggested involvement of bioactive lipids and we focused on sphingosine-1 phosphate (S1P), a known chemoattracant of HSPCs. We found that S1P i) creates in plasma a continuously present gradient for BM-residing HSPCs, ii) is at physiologically relevant concentrations a chemoattractant several magnitudes stronger than SDF-1, and iii) its plasma level increases during mobilization due to CC activation and the interaction of membrane attack complex (MAC) with erythrocytes that are a major reservoir of S1P. We conclude and propose a new paradigm that S1P is a crucial chemoattractant for BM-residing HSPCs and that CC via MAC induces release of S1P from erythrocytes for optimal egress/mobilization of HSPCs.
Collapse
|
62
|
Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24:573-82. [PMID: 20033053 PMCID: PMC2838235 DOI: 10.1038/leu.2009.271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPCs) induced by granulocyte-colony stimulating factor (G-CSF) and C5 cleavage plays an important role in optimal egress of HSPCs. In the current work, we explored whether CC is involved in mobilization of HSPCs induced by the CXCR4 antagonist, AMD3100. To address this question, we performed mobilization studies in mice that display a defect in the activation of the proximal steps of CC (Rag−/−, SCID, C2.Cfb−/−) as well as in mice that do not activate the distal steps of CC (C5−/−). We noticed that proximal CC activation-deficient mice (above C5 level), in contrast to distal step CC activation-deficient C5−/− ones mobilize normally in response to AMD3100 administration. We hypothesized that this discrepancy in mobilization could be explained by AMD3100 activating C5 in Rag−/−, SCID, C2.Cfb−/− animals in a non-canonical mechanism involving activated granulocytes. To support this granulocytes i) as first egress from BM and ii) secrete several proteases that cleave/activate C5 in response to AMD3100. We conclude that AMD3100-directed mobilization of HSPCs, similarly to G-CSF-induced mobilization, depends on activation of CC; however, in contrast to G-CSF, AMD3100 activates the distal steps of CC directly at the C5 level. Overall, these data support that C5 cleavage fragments and distal steps of CC activation are required for optimal mobilization of HSPCs.
Collapse
|
63
|
Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 2010; 38:321-32. [PMID: 20153802 DOI: 10.1016/j.exphem.2010.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/15/2010] [Accepted: 02/05/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Having previously demonstrated that the complement system modulates mobilization of hematopoietic stem/progenitor cells (HSPC) in mice, we investigated the involvement of C5 cleavage fragments (C5a/(desArg)C5a) in human HSPC mobilization. MATERIALS AND METHODS C5 cleavage fragments in the plasma were evaluated by enzyme-linked immunosorbent assay using human anti-(desArg)C5a antibody, and expression of the C5a/(desArg)C5a receptor (CD88) in hematopoietic cells by flow cytometry. We also examined the chemotactic responses of hematopoietic cells to C5 cleavage fragments and expression of stromal cell-derived factor-1 (SDF-1)-degrading proteases that perturb retention of HSPC in bone marrow, namely matrix metalloproteinase (MMP)-9, membrane type (MT) 1-MMP, and carboxypeptidase M. RESULTS We found that plasma levels of (desArg)C5a are significantly higher in patients who are good mobilizers and correlate with CD34(+) cell and white blood cell counts in mobilized peripheral blood. C5 cleavage fragments did not chemoattract myeloid progenitors (colony-forming unit granulocyte-macrophage), but (desArg)C5a did strongly chemoattract mature nucleated cells. Consistently, CD88 was not detected on CD34(+) cells, but appeared on more mature myeloid precursors, monocytes, and granulocytes. Moreover, granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells and polymorphonuclear cells had a significantly higher percentage of cells expressing CD88 than nonmobilized peripheral blood. Furthermore, C5a stimulation of granulocytes and monocytes decreased CXCR4 expression and chemotaxis toward an SDF-1 gradient and increased secretion of MMP-9 and expression of MT1-MMP and carboxypeptidase M. CONCLUSION C5 cleavage fragments not only induce a highly proteolytic microenvironment in human bone marrow, which perturbs retention through the CXCR4/SDF-1 axis, but also strongly chemoattracts granulocytes, promoting their egress into mobilized peripheral blood, which is crucial for subsequent mobilization of HSPC.
Collapse
|
64
|
de Kruijf EJFM, Hagoort H, Velders GA, Fibbe WE, van Pel M. Hematopoietic stem and progenitor cells are differentially mobilized depending on the duration of Flt3-ligand administration. Haematologica 2010; 95:1061-7. [PMID: 20081057 DOI: 10.3324/haematol.2009.016691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Flt3-ligand is a cytokine that induces relatively slow mobilization of hematopoietic cells in animals and humans in vivo. This provides a time-frame to study hematopoietic stem and progenitor cell migration kinetics in detail. DESIGN AND METHODS Mice were injected with Flt3-ligand (10 microg/day, intraperitoneally) for 3, 5, 7 and 10 days. Mobilization of hematopoietic stem and progenitor cells was studied using colony-forming-unit granulocyte/monocyte and cobblestone-area-forming-cell assays. The radioprotective capacity of mobilized peripheral blood mononuclear cells was studied by transplantation of 1.5 x 10(6) Flt3-ligand-mobilized peripheral blood mononuclear cells into lethally irradiated (9.5 Gy) recipients. RESULTS Hematopoietic progenitor cell mobilization was detected from day 3 onwards and prolonged administration of Flt3-ligand produced a steady increase in mobilized progenitor cells. Compared to Flt3-ligand administration for 5 days, the administration of Flt3-ligand for 10 days led to a 5.5-fold increase in cobblestone-area-forming cells at week 4 and a 5.0-fold increase at week 5. Furthermore, transplantation of peripheral blood mononuclear cells mobilized by 5 days of Flt3-ligand administration did not radioprotect lethally irradiated recipients, whereas peripheral blood mononuclear cells mobilized by 10 days of Flt3-Ligand administration did provide 100% radioprotection of the recipients with significant multilineage donor chimerism. Compared to the administration of Flt3-ligand or interleukin-8 alone, co-administration of interleukin-8 and Flt3-ligand led to synergistic enhancement of hematopoietic stem and progenitor cell mobilization on days 3 and 5. CONCLUSIONS These results indicate that hematopoietic stem and progenitor cells show different mobilization kinetics in response to Flt3-ligand, resulting in preferential mobilization of hematopoietic progenitor cells at day 5, followed by hematopoietic stem cell mobilization at day 10.
Collapse
Affiliation(s)
- Evert-Jan F M de Kruijf
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center PO Box 9600, 2300 RC Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
65
|
Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M, Ratajczak J, Ratajczak MZ. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 2009; 23:2052-62. [PMID: 19657368 PMCID: PMC2777742 DOI: 10.1038/leu.2009.158] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We reported that complement cascade (CC) becomes activated in bone marrow (BM) during granulocyte colony-stimulating factor (G-CSF) mobilization of hematopoietic stem/progenitor cells (HSPCs) and showed that, although third CC component (C3)-deficient mice are easy mobilizers, fifth CC component (C5)-deficient mice mobilize very poorly. To explain this, we postulated that activation/cleavage of CC releases C3a and C5a anaphylatoxins that differently regulate mobilization. Accordingly, C3a, by enhancing responsiveness of HSPCs to decreasing concentrations of stromal-derived growth factor-1 (SDF-1) in BM, prevents mobilization and promotes their BM retention. Therefore, in this study, we focused on the mobilization-enhancing role of C5a. We found that C5a receptor (C5aR) is not expressed on the surface of HSPCs, and that C5a-mediated promobilization effects are mediated by stimulation of granulocytes. Overall, our data support the following model. First C5aR(+) granulocytes are chemoattracted by plasma C5 cleavage fragments, being the first wave of cells leaving BM. This facilitates a subsequent egress of HSPCs. In the next step, after leaving BM, granulocytes undergo degranulation in response to plasma C5a and secrete some cationic peptides (cathelicidin, beta-defensin) that, as shown here for the first time, highly enhance the responsiveness of HSPCs to plasma SDF-1 gradient. In conclusion, our data reveal the underappreciated central role of innate immunity in mobilization, in which C5 cleavage fragments through granulocytes orchestrate this process.
Collapse
Affiliation(s)
- H M Lee
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Innate immunity: a key player in the mobilization of hematopoietic stem/progenitor cells. Arch Immunol Ther Exp (Warsz) 2009; 57:269-78. [PMID: 19578812 DOI: 10.1007/s00005-009-0037-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/30/2009] [Indexed: 01/21/2023]
Abstract
The mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow into peripheral blood (PB) is still not fully understood. Different chemokines, cytokines, growth factors, and neurotransmitters have been described that facilitate this process. However, mounting evidence suggests that mobilization of HSPCs is a part of the immune response and is mediated by innate immunity. We discuss evidence showing that complement system cleavage fragments play a crucial role in both the retention and mobilization of HSPCs by modulating their responsiveness to stromal-derived growth factor-1 (SDF-1) gradient (by C3-derived anaphylatoxins) and by modulating the release of granulocytes into PB that subsequently facilitate the egress of HSPCs (by C5-derived anaphylatoxins).
Collapse
|
67
|
Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009; 114:1331-9. [PMID: 19141863 DOI: 10.1182/blood-2008-10-184754] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Current evidence suggests that hematopoietic stem/progenitor cell (HSPC) mobilization by granulocyte colony-stimulating factor (G-CSF) is mediated by induction of bone marrow proteases, attenuation of adhesion molecule function, and disruption of CXCL12/CXCR4 signaling in the bone marrow. The relative importance and extent to which these pathways overlap or function independently are uncertain. Despite evidence of protease activation in the bone marrow, HSPC mobilization by G-CSF or the chemokine Grobeta was abrogated in CXCR4(-/-) bone marrow chimeras. In contrast, HSPC mobilization by a VLA-4 antagonist was intact. To determine whether other mobilizing cytokines disrupt CXCR4 signaling, we characterized CXCR4 and CXCL12 expression after HSPC mobilization with Flt3 ligand (Flt3L) and stem cell factor (SCF). Indeed, treatment with Flt3L or SCF resulted in a marked decrease in CXCL12 expression in the bone marrow and a loss of surface expression of CXCR4 on HSPCs. RNA in situ and sorting experiments suggested that the decreased CXCL12 expression is secondary to a loss of osteoblast lineage cells. Collectively, these data suggest that disruption of CXCR4 signaling and attenuation of VLA-4 function are independent mechanisms of mobilization by G-CSF. Loss of CXCL12 expression by osteoblast appears to be a common and key step in cytokine-induced mobilization.
Collapse
|
68
|
Bensinger W, DiPersio JF, McCarty JM. Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 2009; 43:181-95. [DOI: 10.1038/bmt.2008.410] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) normally reside in the bone marrow but can be forced into the blood, a process termed mobilization used clinically to harvest large numbers of HSCs for transplantation. Currently the mobilizing agent of choice is granulocyte colony-stimulating factor; however, not all patients mobilize well. This article reviews recent advances in understanding the molecular mechanisms responsible for the retention of HSCs in the bone marrow, which are perturbed during HSC mobilization, and the clinical application of these findings. RECENT FINDINGS The interaction between the chemokine SDF-1/CXCL12 and its receptor CXCR4 is critical to retain HSCs within the bone marrow, leading to the discovery that small synthetic CXCR4 antagonists are potent mobilizing agents that synergize with granulocyte colony-stimulating factor. Separate research has shown that HSC numbers in the bone marrow can be boosted by increasing the number of osteoblasts that support HSCs. SUMMARY HSC mobilization induced by granulocyte colony-stimulating factor may be enhanced by directly targeting the chemotactic interaction between HSCs and bone marrow stroma with CXCR4 antagonists. When the primary problem is reduced, however, HSC numbers in the bone marrow, due to repeated chemotherapy/radiotherapy treatments, an alternative is to enhance HSC content by enhancing bone formation prior to mobilization.
Collapse
|
70
|
Su X, Johansen M, Looney MR, Brown EJ, Matthay MA. CD47 deficiency protects mice from lipopolysaccharide-induced acute lung injury and Escherichia coli pneumonia. THE JOURNAL OF IMMUNOLOGY 2008; 180:6947-53. [PMID: 18453616 DOI: 10.4049/jimmunol.180.10.6947] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CD47 modulates neutrophil transmigration toward the sites of infection or injury. Mice lacking CD47 are susceptible to Escherichia coli (E. coli) peritonitis. However, less is known concerning the role of CD47 in the development of acute lung inflammation and injury. In this study, we show that mice lacking CD47 are protected from LPS-induced acute lung injury and E. coli pneumonia with a significant reduction in pulmonary edema, lung vascular permeability, and bacteremia. Reconstitution of CD47(+/-) mice with CD47(-/-) neutrophils significantly reduced lung edema and neutrophil infiltration, thus demonstrating that CD47(+) neutrophils are required for the development of lung injury from E. coli pneumonia. Importantly, CD47-deficient mice with E. coli pneumonia had an improved survival rate. Taken together, deficiency of CD47 protects mice from LPS-induced acute lung injury and E. coli pneumonia. Targeting CD47 may be a novel pathway for treatment of acute lung injury.
Collapse
Affiliation(s)
- Xiao Su
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|
71
|
Unlu Y, Karapolat S. Effects of implantation of bone marrow cells on cytokine levels in the ischemic heart tissue. An experimental study. J Cardiothorac Surg 2008; 3:30. [PMID: 18492279 PMCID: PMC2414821 DOI: 10.1186/1749-8090-3-30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/20/2008] [Indexed: 12/26/2022] Open
Abstract
Background In order to achieve a safe and persistent angiogenic effect, we investigated the potential of bone marrow cells implantation to enhance angiogenesis of ischemic hearts in a rat model, and also we have investigated growth factors accompanying and intermediating the angiogenesis, and the changes occurring in the levels of cytokines and their relations with angiogenesis. Methods 30 adult male Wistar albino rats from the same colony were used. After anterior myocardial infarction induced by occlusion of the left anterior descending artery, they were divided into two groups (Group I and Group II). 2 × 107 bone marrow cells suspended in 0.1 ml phosphate-buffered saline solution and 0.1 ml phosphate-buffered saline solution were injected at six points in the infarcted area in Group I and Group II respectively. Changes in the vascular density and, vascular endothelial growth factor, vascular cell adhesion molecule and cytokine levels in the infarcted myocardium after bone marrow cells implantation were examined. Results The implantation assay showed that bone marrow cells induced angiogenesis. Light microscopic analysis of the vascular density in the ischemic area showed that, angiogenesis had been induced to higher in Group I than Group II. Levels of vascular endothelial growth factor, vascular cell adhesion molecule and the inflammatory cytokines such as interleukin-1 and tumor necrosis factor-α in Group I were significantly elevated compared with those in Group II. Conclusion Bone marrow cells implantation induced angiogenesis in a rat ischemic heart model as a result of increase of the levels of vascular endothelial growth factor, vascular cell adhesion molecule, interleukin-1, and tumor necrosis factor-α.
Collapse
Affiliation(s)
- Yahya Unlu
- Department of Cardiovascular Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | | |
Collapse
|
72
|
Graham SM, Vass JK, Holyoake TL, Graham GJ. Transcriptional Analysis of Quiescent and Proliferating CD34+ Human Hemopoietic Cells from Normal and Chronic Myeloid Leukemia Sources. Stem Cells 2007; 25:3111-20. [PMID: 17717066 DOI: 10.1634/stemcells.2007-0250] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quiescent and dividing hemopoietic stem cells (HSC) display marked differences in their ability to move between the peripheral circulation and the bone marrow. Specifically, long-term engraftment potential predominantly resides in the quiescent HSC subfraction, and G-CSF mobilization results in the preferential accumulation of quiescent HSC in the periphery. In contrast, stem cells from chronic myeloid leukemia (CML) patients display a constitutive presence in the circulation. To understand the molecular basis for this, we have used microarray technology to analyze the transcriptional differences between dividing and quiescent, normal, and CML-derived CD34+ cells. Our data show a remarkable transcriptional similarity between normal and CML dividing cells, suggesting that the effects of BCR-ABL on the CD34+ cell transcriptome are more limited than previously thought. In addition, we show that quiescent CML cells are more similar to their dividing counterparts than quiescent normal cells are to theirs. We also show these transcriptional differences to be reflected in the altered proliferative activity of normal and CML CD34+ cells. Of the most interest is that the major class of genes that is more abundant in the quiescent cells compared with the dividing cells encodes members of the chemokine family. We propose a role for chemokines expressed by quiescent HSC in the orchestration of CD34+ cell mobilization. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
MESH Headings
- Antigens, CD34/biosynthesis
- Antigens, CD34/genetics
- Cell Cycle/genetics
- Cell Division/genetics
- Cell Proliferation
- Cells, Cultured
- Female
- Gene Expression Profiling/methods
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Oligonucleotide Array Sequence Analysis/methods
- Resting Phase, Cell Cycle/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Susan M Graham
- Experimental Haematology, Division of Cancer Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
73
|
Kiss J, Kunstár A, Fajka-Boja R, Dudics V, Tóvári J, Légrádi A, Monostori E, Uher F. A novel anti-inflammatory function of human galectin-1: inhibition of hematopoietic progenitor cell mobilization. Exp Hematol 2007; 35:305-13. [PMID: 17258079 DOI: 10.1016/j.exphem.2006.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The immunosuppressive and anti-inflammatory activity of mammalian galectin-1 (Gal-1) has been well established in experimental in vivo animal models and in vitro studies. Since the proliferation and migration of leukocytes represent a necessary and important step in response to the inflammatory insult, we have investigated whether Gal-1 affects the mobilization of hematopoietic progenitor cells (HPC) induced by cyclophosphamide (CY) and granulocyte colony-stimulating factor (G-CSF). METHODS Bone marrow HPCs were mobilized with CY/G-CSF or CY/G-CSF plus human recombinant Gal-1 in BDF1 mice. Bone marrow (BM) and blood cells were taken at different time points and analyzed for their in vivo repopulating ability in lethally irradiated syngeneic animals. The number of myeloid progenitor cells in BM and blood samples was determined by colony-forming cell assay. Expression of surface markers (Sca-1, CD3epsilon, CD45R/B220, Ter-119, GR-1, and CD11b) on nucleated marrow cells was measured by flow cytometry. The lymphocytes, granulocytes, and monocytes in blood samples were counted after Giemsa staining. RESULTS Gal-1 dramatically inhibited CY/G-CSF-induced HPC migration to the periphery as well as decreased peripheral neutrophilia and monocytosis in a dose- and time-dependent manner. In contrast, Gal-1 itself stimulated HPC expansion and accumulation within the BM. The presence of the lectin for inhibition of HPC mobilization was essential during the second half of the treatment. Moreover, Gal-1 inhbited transendothelial migration of BM-derived HPCs in response to SDF-1 in vitro. CONCLUSION Gal-1 blocked BM progenitor cell migration induced by CY/G-CSF treatment, indicating a novel anti-inflammatory function of the lectin. We suggest that the inhibition of HPC mobilization occurs mainly via obstructing the transendothelial migration of BM-derived cells including primitive hematopoietic and committed myeloid progenitor cells and mature granulocytes and monocytes.
Collapse
Affiliation(s)
- Judit Kiss
- Stem Cell Biology, National Medical Center, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GRObeta can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.
Collapse
|
75
|
Kolaczkowska E, Arnold B, Opdenakker G. Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology 2007; 213:109-24. [PMID: 18241695 DOI: 10.1016/j.imbio.2007.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/26/2007] [Accepted: 07/17/2007] [Indexed: 01/22/2023]
Abstract
Neutrophil infiltration during zymosan peritonitis depends on matrix metalloproteinase-9 (MMP-9) activity as it is impaired both in MMP-9(-/-) and gelatinase inhibitor-treated animals. The producer cells of MMP-9 and their relative contribution are not known. The aim of this study was to identify and compare the cellular sources, timing and intensity of MMP-9 induction by zymosan in the murine peritoneal cavity. We detected MMP-9 mRNA in unstimulated peritoneal leukocytes and its levels increased after zymosan administration. To detect MMP-9 by flow cytometry, we selected and compared two specific monoclonal antibodies. We show that MMP-9 protein was absent in control peritoneal macrophages, whereas already at 30min of peritonitis almost all macrophages were producing the enzyme. Conversely, MMP-9 was constitutively present in unstimulated mast cells. Macrophages turned out to be prevalent MMP-9 producers in the early phase of peritonitis. During later stages macrophages kept the high expression of MMP-9 for at least 6h of inflammation. In contrast, the early phase expression of MMP-9 by neutrophils was limited albeit the highest percentage of MMP-9(+) neutrophils was observed at 2h but absolute numbers of the MMP-9 carrying neutrophils were low at that time. In contrast, during the late phase of peritonitis neutrophils became major producers of MMP-9 as they numerously infiltrated peritoneum. In conclusion, the study reports detection of MMP-9 at the single-cell level during peritonitis, demonstrates unexpectedly fast MMP-9 expression in macrophages and reveals quantitatively phase-specific contribution of mast cells, macrophages and neutrophils.
Collapse
Affiliation(s)
- Elzbieta Kolaczkowska
- Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, ul. Ingardena 6, PL-30-060 Krakow, Poland.
| | | | | |
Collapse
|
76
|
Luo H, Wang Y, Kong W, Pei X. Therapeutic applications of bone marrow-derived stem cells in liver transplantation for end-stage liver diseases. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
77
|
Borneo J, Munugalavadla V, Sims EC, Vemula S, Orschell CM, Yoder M, Kapur R. Src family kinase-mediated negative regulation of hematopoietic stem cell mobilization involves both intrinsic and microenvironmental factors. Exp Hematol 2007; 35:1026-37. [PMID: 17588471 PMCID: PMC2481405 DOI: 10.1016/j.exphem.2007.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/23/2007] [Accepted: 03/23/2007] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The intracellular signals that contribute to granulocyte colony-stimulating factor (G-CSF) receptor induced stem cell mobilization are poorly characterized. METHODS We show enhanced G-CSF induced mobilization of stem cells in mice deficient in expression of Src family kinases (SFK-/-), which is associated with hypersensitivity of SFK-/- bone marrow cells to G-CSF as well as sustained activation of signal transducer and activator of transcription-3. RESULTS A proteome map of the bone marrow fluid derived from wild-type and SFK-/- mice revealed a significant global reduction in the number of proteins in SFK-/- mice compared to controls, which was associated with elevated matrix metalloproteinase-9 levels, reduced stromal-derived factor-1 expression, and enhanced breakdown of vascular cell adhesion molecule-1. Transplantation of wild-type or SFK-/- stem cells into wild-type mice and treatment with G-CSF recapitulated the G-CSF-induced increase in stem cell mobilization noted in SFK-/- nontransplanted mice; however, the increase was significantly less. G-CSF treatment of SFK-/- mice engrafted with wild-type stem cells also demonstrated a modest increase in stem cell mobilization compared to controls, however, the observed increase was greatest in mice completely devoid of SFKs. CONCLUSIONS These data suggest an involvement of both hematopoietic intrinsic and microenvironmental factors in Src kinase-mediated mobilization of stem cells and identify Src kinases as potential targets for modulating stem cell mobilization.
Collapse
Affiliation(s)
- Jovencio Borneo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Kim SY, Chen LY, Yiu WH, Weinstein DA, Chou JY. Neutrophilia and elevated serum cytokines are implicated in glycogen storage disease type Ia. FEBS Lett 2007; 581:3833-8. [PMID: 17659284 PMCID: PMC2553720 DOI: 10.1016/j.febslet.2007.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Glycogen storage disease type Ia (GSD-Ia) patients deficient in glucose-6-phosphatase-alpha manifest a disturbed glucose homeostasis. We hypothesized that disturbed glucose homeostasis might affect myeloid functions. Here, we show that GSD-Ia mice exhibit normal neutrophil activities but have elevated myeloid progenitor cells in the bone marrow and spleen. Interestingly, GSD-Ia mice exhibit a persistent increase in peripheral blood neutrophil counts along with elevated serum levels of granulocyte colony stimulating factor and cytokine-induced neutrophil chemoattractant. Taken together, our results suggest that a loss of glucose homeostasis can compromise the immune system, resulting in neutrophilia. This may explain some of the unexpected clinical manifestations seen in GSD-Ia.
Collapse
Affiliation(s)
- So Youn Kim
- Section on Cellular Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | | | | | | | | |
Collapse
|
79
|
Abstract
Hematopoietic stem cell transplantation (HSCT) has become the standard of care for the treatment of many hematologic malignancies, chemotherapy sensitive relapsed acute leukemias or lymphomas, multiple myeloma; and for some non-malignant diseases such as aplastic anemia and immunodeficient states. The hematopoietic stem cell (HSC) resides in the bone marrow (BM). A number of chemokines and cytokines have been shown in vivo and in clinical trials to enhance trafficking of HSC into the peripheral blood. This process, termed stem cell mobilization, results in the collection of HSC via apheresis for both autologous and allogeneic transplantation. Enhanced understanding of HSC biology, processes involved in HSC microenvironmental interactions and the critical ligands, receptors and cellular proteases involved in HSC homing and mobilization, with an emphasis on G-CSF induced HSC mobilization, form the basis of this review. We will describe the key features and dynamic processes involved in HSC mobilization and focus on the key ligand-receptor pairs including CXCR4/SDF1, VLA4/VCAM1, CD62L/PSGL, CD44/HA, and Kit/KL. In addition we will describe food and drug administration (FDA) approved and agents currently in clinical development for enhancing HSC mobilization and transplantation outcomes.
Collapse
Affiliation(s)
- Bruno Nervi
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
80
|
Lévesque JP, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V, Nowlan B, Nilsson SK. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells 2007; 25:1954-65. [PMID: 17478585 DOI: 10.1634/stemcells.2006-0688] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite the fact that many hypoxia-inducible genes are important in hematopoiesis, the spatial distribution of oxygen in the bone marrow (BM) has not previously been explored in vivo. Using the hypoxia bioprobe pimonidazole, we showed by confocal laser scanning microscopy that the endosteum at the bone-BM interface is hypoxic, with constitutive expression of hypoxia-inducible transcription factor-1alpha (HIF-1alpha) protein in steady-state mice. Interestingly, at the peak of hematopoietic stem and progenitor cell (HSPC) mobilization induced by either granulocyte colony-stimulating factor or cyclophosphamide, hypoxic areas expand through the central BM. Furthermore, we found that HSPC mobilization leads to increased levels of HIF-1alpha protein and increased expression of vascular endothelial growth factor A (VEGF-A) mRNA throughout the BM, with an accumulation of VEGF-A protein in BM endothelial sinuses. VEGF-A is a cytokine known to induce stem cell mobilization, vasodilatation, and vascular permeability in vivo. We therefore propose that the expansion in myeloid progenitors that occurs during mobilization depletes the BM hematopoietic microenvironment of O(2), leading to local hypoxia, stabilization of HIF-1alpha transcription factor in BM cells, increased transcription of VEGF-A, and accumulation of VEGF-A protein on BM sinuses that increases vascular permeability. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Medical Research Institute, Raymond Terrace, Aubigny Place, South Brisbane, QLD, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Cittera E, Leidi M, Buracchi C, Pasqualini F, Sozzani S, Vecchi A, Waterfield JD, Introna M, Golay J. The CCL3 Family of Chemokines and Innate Immunity Cooperate In Vivo in the Eradication of an Established Lymphoma Xenograft by Rituximab. THE JOURNAL OF IMMUNOLOGY 2007; 178:6616-23. [PMID: 17475893 DOI: 10.4049/jimmunol.178.10.6616] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The therapeutic mAb rituximab induced the expression of the CCL3 and CCL4 chemokines in the human lymphoma line BJAB following binding to the CD20 Ag. Induction of CCL3/4 in vitro was specific, was observed in several cell lines and freshly isolated lymphoma samples and also took place at the protein level in vitro and in vivo. To investigate the role of these beta-chemokines in the mechanism of action of rituximab, we synthesized a N-terminally truncated CCL3 molecule CCL3(11-70), which had antagonist activity on chemotaxis mediated by either CCL3 or BJAB supernatant. We also set up an established s.c. BJAB tumor model in athymic mice. Rituximab, given weekly after tumors had reached 250 mm2, led to complete disappearance of the lymphoma within 2-3 wk. Treatment of mice with cobra venom factor showed that complement was required for rituximab therapeutic activity. Treatment of BJAB tumor bearing mice every 2 days with the CCL3(11-70) antagonist, starting 1 wk before rituximab treatment, had no effect on tumor growth by itself, but completely inhibited the therapeutic activity of the Ab. To determine whether CCL3 acts through recruitment/activation of immune cells, we specifically depleted NK cells, polymorphonuclear cells, and macrophages using mAbs, clodronate treatment, or Rag2-/-cgamma-/- mice. The data demonstrated that these different cell populations are involved in BJAB tumor eradication. We propose that rituximab rapidly activates complement and induces beta-chemokines in vivo, which in turn activate the innate immunity network required for efficient eradication of the bulky BJAB tumor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/therapy
- Cell Line, Tumor
- Chemokine CCL3
- Chemokine CCL4
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/physiology
- Complement System Proteins/physiology
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunity, Innate/genetics
- Male
- Mice
- Mice, Nude
- Multigene Family/genetics
- Multigene Family/immunology
- RNA, Messenger/biosynthesis
- Rituximab
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- Elena Cittera
- Laboratory of Cellular and Gene Therapy G. Lanzani, Division of Haematology, Ospedali Riuniti di Bergamo, Bergamo, and Section of General Pathology, University of Brescia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Herbert KE, Walkley CR, Winkler IG, Hendy J, Olsen GH, Yuan YD, Chandraratna RAS, Prince HM, Lévesque JP, Purton LE. Granulocyte colony-stimulating factor and an RARalpha specific agonist, VTP195183, synergize to enhance the mobilization of hematopoietic progenitor cells. Transplantation 2007; 83:375-84. [PMID: 17318068 DOI: 10.1097/01.tp.0000251376.75347.b4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Failure to mobilize adequate numbers of hematopoietic stem and progenitor cells (HSPC) is an important clinical problem. Since bone marrow (BM) neutrophils play a central role in HSPC mobilization, we hypothesized that granulocyte colony-stimulating factor (G-CSF)-mediated mobilization would be enhanced by further expanding the size of the BM granulocyte pool. METHODS We tested the potential of the retinoic acid receptor alpha (RARalpha) specific agonist VTP195183, and the pan-RAR agonist all-trans retinoic acid (ATRA), to enhance G-CSF-mediated mobilization of HSPC, in two mouse strains. RESULTS Pretreatment of mice with VTP195183 significantly increased the number of leukocytes, colony-forming cells, and early engrafting hematopoietic stem cells (HSC) mobilized in the blood in response to G-CSF. In contrast, ATRA had only a marginal effect on G-CSF-induced mobilization. HSPC mobilization synergy between VTP195183 and G-CSF occurred only when mice were preconditioned with VTP195183 prior to G-CSF. This preconditioning was shown to increase the numbers of granulocyte/macrophage progenitors in the BM. Treatment with VTP195183 and G-CSF was accompanied by enhanced levels of active neutrophil proteases in the BM extracellular fluid compared to G-CSF treatment alone. CONCLUSIONS VTP195183 treatment increases the numbers of immature granulocyte progenitors in BM and subsequently synergizes to enhance G-CSF-mediated mobilization of HSPC. These data demonstrate a novel approach to improve G-CSF-induced mobilization by accelerating granulocyte maturation in the BM. These findings are currently being tested in a clinical trial of VTP195183 plus G-CSF for mobilization of HSPC in human patients.
Collapse
|
83
|
Jaillon S, Peri G, Delneste Y, Frémaux I, Doni A, Moalli F, Garlanda C, Romani L, Gascan H, Bellocchio S, Bozza S, Cassatella MA, Jeannin P, Mantovani A. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. ACTA ACUST UNITED AC 2007; 204:793-804. [PMID: 17389238 PMCID: PMC2118544 DOI: 10.1084/jem.20061301] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The long pentraxin (PTX) 3 is produced by macrophages and myeloid dendritic cells in response to Toll-like receptor agonists and represents a nonredundant component of humoral innate immunity against selected pathogens. We report that, unexpectedly, PTX3 is stored in specific granules and undergoes release in response to microbial recognition and inflammatory signals. Released PTX3 can partially localize in neutrophil extracellular traps formed by extruded DNA. Eosinophils and basophils do not contain preformed PTX3. PTX3-deficient neutrophils have defective microbial recognition and phagocytosis, and PTX3 is nonredundant for neutrophil-mediated resistance against Aspergillus fumigatus. Thus, neutrophils serve as a reservoir, ready for rapid release, of the long PTX3, a key component of humoral innate immunity with opsonic activity.
Collapse
Affiliation(s)
- Sébastien Jaillon
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Unité 564, University Hospital of Angers, University of Angers, Angers 49933, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Cashen AF, Lazarus HM, Devine SM. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant 2007; 39:577-88. [PMID: 17369869 DOI: 10.1038/sj.bmt.1705616] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.
Collapse
Affiliation(s)
- A F Cashen
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | |
Collapse
|
85
|
de Kruijf EJFM, van Pel M, Hagoort H, Kruysdijk D, Molineux G, Willemze R, Fibbe WE. Repeated hematopoietic stem and progenitor cell mobilization without depletion of the bone marrow stem and progenitor cell pool in mice after repeated administration of recombinant murine G-CSF. Hum Immunol 2007; 68:368-74. [PMID: 17462504 DOI: 10.1016/j.humimm.2007.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/19/2007] [Accepted: 01/23/2007] [Indexed: 01/13/2023]
Abstract
Administration of recombinant-human G-CSF (rhG-CSF) is highly efficient in mobilizing hematopoietic stem and progenitor cells (HSC/HPC) from the bone marrow (BM) toward the peripheral blood. This study was designed to investigate whether repeated G-CSF-induced HSC/HPC mobilization in mice could lead to a depletion of the bone marrow HSC/HPC pool with subsequent loss of mobilizing capacity. To test this hypothesis Balb/c mice were treated with a maximum of 12 repeated 5-day cycles of either 10 microg rhG-CSF/day or 0.25 microg rmG-CSF/day. Repeated administration of rhG-CSF lead to strong inhibition of HSC/HPC mobilization toward the peripheral blood and spleen after >4 cycles because of the induction of anti-rhG-CSF antibodies. In contrast, after repeated administration of rmG-CSF, HSC/HPC mobilizing capacity remained intact for up to 12 cycles. The number of CFU-GM per femur did not significantly change for up to 12 cycles. We conclude that repeated administration of G-CSF does not lead to depletion of the bone marrow HSC/HPC pool.
Collapse
Affiliation(s)
- Evert-Jan F M de Kruijf
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
86
|
Iwata M, Pillai M, Ramakrishnan A, Hackman RC, Deeg HJ, Opdenakker G, Torok-Storb B. Reduced expression of inducible gelatinase B/matrix metalloproteinase-9 in monocytes from patients with myelodysplastic syndrome: Correlation of inducible levels with the percentage of cytogenetically marked cells and with marrow cellularity. Blood 2007; 109:85-92. [PMID: 16954500 PMCID: PMC1785081 DOI: 10.1182/blood-2006-05-020289] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regulatory molecules produced by stromal cells are often membrane bound until cleaved by matrix metalloproteinases (MMPs); cleavage can either activate or inactivate regulatory functions. We report here that marrow stromal cells induce the expression of MMP-9 in monocytes. Induction was contact independent and could be reproduced with recombinant MCP-1/CCL2, whereas IL-6, M-CSF, G-CSF, GM-CSF, IL-8/CXCL8, SDF-1/CXCL12, and MGSA/CXCL1 did not have this effect. Stroma-induced levels of MMP-9 in the monocyte population from healthy donors were relatively consistent, whereas induced levels varied significantly (P < .001) in the CD14+ population from 27 patients with myelodysplastic syndrome (MDS). In patients with a clonal chromosomal marker, the level of inducible MMP-9 expression in the monocyte population was inversely correlated with the percentage of marker-positive cells (n = 11, P = .01), suggesting that the ability to induce MMP-9 may be compromised in clonally derived monocytes. The inducible levels of MMP-9 were also inversely correlated with marrow cellularity observed in biopsies from MDS patients (P < .001). We conclude that monocytes can express MMP-9 in response to stromal factors and that this response may be significantly decreased in MDS-derived monocytes.
Collapse
Affiliation(s)
- Mineo Iwata
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Manoj Pillai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Robert C. Hackman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA
| | - H. Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA; and
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Beverly Torok-Storb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Correspondence: Beverly Torok-Storb,
Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D1-100, PO Box 19024, Seattle, WA 98109; e-mail:
| |
Collapse
|
87
|
Zhang X, Dong H, Lin W, Voss S, Hinkley L, Westergren M, Tian G, Berry D, Lewellen D, Vile RG, Chen L, Farber DL, Strome SE. Human bone marrow: a reservoir for "enhanced effector memory" CD8+ T cells with potent recall function. THE JOURNAL OF IMMUNOLOGY 2007; 177:6730-7. [PMID: 17082586 DOI: 10.4049/jimmunol.177.10.6730] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of human bone marrow (BM) CD8+ T cells in the immune response to viral Ags is poorly defined. We report here the identification and characterization of a functionally enhanced effector memory CD8+ T cell population (TEM) in the BM of patients undergoing total joint replacement for osteoarthritis. These BM-derived TEM differ strikingly from correlate cells in peripheral blood (PB), expressing elevated levels of CD27, HLA-DR, CD38, CD69, and unique patterns of chemokine receptors. Interestingly, while BM TEM have low levels of resting perforin and granzyme B, these molecules evidence profound up-regulation in response to TCR stimulation resulting in enhanced cytotoxic potential. Moreover, compared with the TEM subset in PB, BM CD8+ TEM cells demonstrate a more vigorous recall response to pooled viral Ags. Our results reveal that human BM serves as a repository for viral Ag-specific TEM with great therapeutic potential in vaccine development.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201-1619, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Bone marrow (BM) is a source of various stem and progenitor cells in the adult, and it is able to regenerate a variety of tissues following transplantation. In the 1970s the first BM stem cells identified were hematopoietic stem cells (HSCs). HSCs have the potential to differentiate into all myeloid (including erythroid) and lymphoid cell lineages in vitro and reconstitute the entire hematopoietic and immune systems following transplantation in vivo. More recently, nonhematopoietic stem and progenitor cells have been identified that can differentiate into other cell types such as endothelial progenitor cells (EPCs), contributing to the neovascularization of tumors as well as ischemic tissues, and mesenchymal stem cells (MSCs), which are able to differentiate into many cells of ectodermal, endodermal, and mesodermal origins in vitro as well as in vivo. Following adequate stimulation, stem and progenitor cells can be forced out of the BM to circulate into the peripheral blood, a phenomenon called "mobilization." This chapter reviews the molecular mechanisms behind mobilization and how these have led to the various strategies employed to mobilize BM-derived stem and progenitor cells in experimental and clinical settings. Mobilization of HSCs will be reviewed first, as it has been best-explored--being used extensively in clinics to transplant large numbers of HSCs to rescue cancer patients requiring hematopoietic reconstitution--and provides a paradigm that can be generalized to the mobilization of other types of BM-derived stem and progenitor cells in order to repair other tissues.
Collapse
Affiliation(s)
- J-P Lévesque
- Biotherapy Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Raymond Terrace, 4101 South Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
89
|
Fernandez GC, Lopez MF, Gomez SA, Ramos MV, Bentancor LV, Fernandez-Brando RJ, Landoni VI, Dran GI, Meiss R, Isturiz MA, Palermo MS. Relevance of neutrophils in the murine model of haemolytic uraemic syndrome: mechanisms involved in Shiga toxin type 2-induced neutrophilia. Clin Exp Immunol 2006; 146:76-84. [PMID: 16968401 PMCID: PMC1809733 DOI: 10.1111/j.1365-2249.2006.03155.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that infections due to Shiga toxins (Stx) producing Escherichia coli are the main cause of the haemolytic uraemic syndrome (HUS). However, the contribution of the inflammatory response in the pathogenesis of the disease has also been well established. Neutrophils (PMN) represent a central component of inflammation during infections, and patients with high peripheral PMN counts at presentation have a poor prognosis. The mouse model of HUS, by intravenous injection of pure Stx type 2 (Stx2), reproduces human neutrophilia and allows the study of early events in the course of Stx2-induced pathophysiological mechanisms. The aim of this study was to address the contribution of PMN on Stx2 toxicity in a murine model of HUS, by evaluating the survival and renal damage in mice in which the granulocytic population was depleted. We found that the absence of PMN reduced Stx2-induced lethal effects and renal damage. We also investigated the mechanisms underlying Stx2-induced neutrophilia, studying the influence of Stx2 on myelopoyesis, on the emergence of cells from the bone marrow and on the in vivo migration into tissues. Stx2 administration led to an accelerated release of bone marrow cells, which egress at an earlier stage of maturation, together with an increase in the proliferation of myeloid progenitors. Moreover, Stx2-treated mice exhibited a lower migratory capacity to a local inflammatory site. In conclusion, PMN are essential in the pathogenesis of HUS and neutrophilia is not merely an epiphenomenon, but contributes to Stx2-damaging mechanism by potentiating Stx2 toxicity.
Collapse
Affiliation(s)
- G C Fernandez
- Departamento de Inmunología, Instituto de Investigaciones Hematologicas, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Porat Y, Porozov S, Belkin D, Shimoni D, Fisher Y, Belleli A, Czeiger D, Silverman WF, Belkin M, Battler A, Fulga V, Savion N. Isolation of an adult blood-derived progenitor cell population capable of differentiation into angiogenic, myocardial and neural lineages. Br J Haematol 2006; 135:703-14. [PMID: 17052254 DOI: 10.1111/j.1365-2141.2006.06344.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Blood-derived adult stem cells were previously considered impractical for therapeutic use because of their small numbers. This report describes the isolation of a novel human cell population derived from the peripheral blood, termed synergetic cell population (SCP), and defined by the expression of CD31Bright, CD34+, CD45-/Dim and CD34Bright, but not lineage-specific features. The SCP was capable of differentiating into a variety of cell lineages upon exposure to defined culture conditions. The resulting cells exhibited morphological, immunocytochemical and functional characteristics of angiogenic, neural or myocardial lineages. Angiogenic cell precursors (ACPs) expressed CD34, CD133, KDR, Tie-2, CD144, von Willebrand factor, CD31Bright, concomitant binding of Ulex-Lectin and uptake of acetylated low density lipoprotein (Ac-LDL), secreted interleukin-8, vascular endothelial growth factor and angiogenin and formed tube-like structures in vitro. The majority of CD31Bright ACP cells demonstrated Ac-LDL uptake. Neural cell precursors (NCPs) expressed the neuronal markers Nestin, betaIII-Tubulin, and Neu-N, the glial markers GFAP and O4, and responded to neurotransmitter stimulation. Myocardial cell precursors (MCPs) expressed Desmin, cardiac Troponin and Connexin 43. In conclusion, the simple and rapid method of SCP generation and the resulting considerable quantities of lineage-specific precursor cells makes it a potential source of autologous treatment for a variety of diseases.
Collapse
|
91
|
Winkler IG, Lévesque JP. Mechanisms of hematopoietic stem cell mobilization: When innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34:996-1009. [PMID: 16863906 DOI: 10.1016/j.exphem.2006.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 01/13/2023]
Abstract
Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization.
Collapse
Affiliation(s)
- Ingrid G Winkler
- Haematopoietic Stem Cell Laboratory, Cancer Biotherapies Program, Mater Medical Research Institute, University of Queensland, South Brisbane, Queensland, Australia
| | | |
Collapse
|
92
|
Merck E, Gaillard C, Scuiller M, Scapini P, Cassatella MA, Trinchieri G, Bates EEM. Ligation of the FcR gamma chain-associated human osteoclast-associated receptor enhances the proinflammatory responses of human monocytes and neutrophils. THE JOURNAL OF IMMUNOLOGY 2006; 176:3149-56. [PMID: 16493074 DOI: 10.4049/jimmunol.176.5.3149] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously described the human osteoclast associated receptor (hOSCAR), expressed in all cells of the myeloid lineage, and its immune functions. This receptor, which associates with the FcRgamma chain to transduce an activating signal, induces calcium flux in monocytes and dendritic cells, and modulates specific responses of dendritic cells. In this study, we have examined the effects of hOSCAR ligation on various proinflammatory responses of monocytes and neutrophils. Monocytes stimulated via hOSCAR ligation released IL-8/CXCL8 and other chemokines such as epithelial neutrophil-activating peptide-78/CXCL5, macrophage-derived chemokine/CCL22, and MCP-1/CCL2 and up-regulated markers involved in cell adhesion and costimulatory functions. Monocytes stimulated via hOSCAR in the absence of survival factors had an increased life span. Although the life span of neutrophils was unaffected, these cells, when stimulated via hOSCAR, rapidly released reactive oxygen intermediates, degranulated lactoferrin, myeloperoxidase, and matrix metalloproteinase-9 and also secreted IL-8/CXCL8. Neutrophils also underwent changes in cell surface molecule expression with the cleavage of CD62L and increased expression of CD11b and CD66b after 2-h stimulations. Finally, we demonstrated synergy between hOSCAR and TLR ligands on both monocytes and neutrophils, with up to 8-fold increases in cytokine secretion when hOSCAR was cross-linked in the presence of LPS or R-848. Overall, our data demonstrate that hOSCAR is a functional receptor on monocytes and neutrophils, involved in the induction of the primary proinflammatory cascade and the initiation of downstream immune responses.
Collapse
Affiliation(s)
- Estelle Merck
- Laboratory for Immunological Research, Schering-Plough Research Institute, Dardilly, France.
| | | | | | | | | | | | | |
Collapse
|
93
|
Dalakas E, Newsome PN, Harrison DJ, Plevris JN. Hematopoietic stem cell trafficking in liver injury. FASEB J 2006; 19:1225-31. [PMID: 16051689 DOI: 10.1096/fj.04-2604rev] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone marrow (BM) hematopoietic stem cells (HSCs) have been shown to facilitate regeneration in multiple nonhematopoietic tissues by either generating epithelial cells or altering the inflammatory response. Depending on injury type, the predominant mechanism of epithelial lineage regeneration occurs by spontaneous cell fusion or transdifferentiation. Irrespective of the mechanism, mobilization from the BM is a prerequisite. Mechanisms by which HSCs mobilize into damaged organs are currently under scrutiny. Murine and human studies have shown that the chemokine SDF-1 and its receptor CXCR4 participate in the mobilization of HSCs from BM and in the migration of HSCs to injured liver. SDF-1 is a potent HSC chemoattractant and is produced by the liver. Production is increased during liver injury leading to increased HSC migration to the liver, a finding diminished by neutralizing anti-CXCR4 antibodies. Additional factors have been implicated in the control of hepatic migration of HSCs such as IL-8, hepatocyte growth factor, and MMP-9. Matriceal remodeling is an essential component in HSC engraftment, and MMP-9 expression is increased in liver injury. This review focuses on the complex interaction of chemokines, adhesion molecules, and extracellular matrix factors required for successful migration and engraftment of HSCs into the liver.
Collapse
Affiliation(s)
- Evangelos Dalakas
- Hepatology Unit, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
94
|
Royaee AR, Hammamieh R, Mendis C, Das R, Jett M, H Yang DC. Induction of immunomodulator transcriptional responses by cholera toxin. Mol Immunol 2006; 43:1020-8. [PMID: 16023726 DOI: 10.1016/j.molimm.2005.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Indexed: 10/25/2022]
Abstract
Cholera toxin (CT) is the causative agent of cholera, binds to GM1 glycosphingolipids, induces the production of cellular cAMP and is also a very powerful mucosal adjuvant. Although the mechanism of the CT induction of cAMP production is well understood, molecular mechanisms of the adjuvanticity of cholera toxin are yet to be delineated. Here, we examined the interaction of CT with human lymphocytes and monocytes by analyzing the host transcriptional profiles using cDNA arrays. The time courses of the transcriptional activations and repressions of affected genes in lymphocytes and monocytes in response to cholera toxin were determined. CT induced the expression of IL-8 and MIP-1 early in the CT exposure. VEGF, TIMP1, HIF-1alpha, MMP11, hek 8, MCP1, IL-6, GCP 2, urokinase plasminogen activator, and TNF-alpha receptor were upregulated after 4h CT treatment. These genes showed increased expression for 48 h. MRP-14, MRP-8A increased expression after 16 h CT treatment. RT-PCR and real-time PCR using cDNA specific primers confirmed the CT induction and repression of selected genes. The results suggest that immunomodulatory genes were among the genes that were affected the most by CT, and induction of these genes may contribute to the CT adjuvanticity.
Collapse
Affiliation(s)
- Atabak R Royaee
- Department of Chemistry, Georgetown University, 654 Reiss Science Bldg, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
95
|
van Pel M, van Os R, Velders GA, Hagoort H, Heegaard PMH, Lindley IJD, Willemze R, Fibbe WE. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci U S A 2006; 103:1469-74. [PMID: 16432201 PMCID: PMC1360568 DOI: 10.1073/pnas.0510192103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Indexed: 11/18/2022] Open
Abstract
Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases are regulatory mediators in cytokine-induced HSC/HPC mobilization, we considered a possible role for protease inhibitors in the induction of HSC/HPC mobilization. Bone marrow (BM) extracellular extracts that were obtained from murine femurs after 0.5 Gy of TBI contained an inhibitor of elastase. Also, after low-dose TBI, both Serpina1 mRNA and protein concentrations were increased in BM extracts, compared with extracts that were obtained from controls. The inhibitory activity in BM extracts of irradiated mice was reversed by addition of an Ab directed against Serpina1. To further study a possible in vivo role of Serpina1 in HSC/HPC mobilization, we administered Serpina1 before IL-8 injection. This administration resulted in an almost complete inhibition of HSC/HPC mobilization, whereas heat-inactivated Serpina1 had no effect. These results indicate that low-dose TBI inhibits cytokine-induced HSC/HPC mobilization and induces Serpina1 in the BM. Because exogenous administration of Serpina1 inhibits mobilization, we propose that radiation-induced Serpina1 is responsible for the inhibition of HSC/HPC mobilization. Also, we hypothesize that cytokine-induced HSC/HPC mobilization is determined by a critical balance between serine proteases and serine protease inhibitors.
Collapse
Affiliation(s)
- Melissa van Pel
- Laboratory of Experimental Hematology, Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Smith P, Fallon RE, Mangan NE, Walsh CM, Saraiva M, Sayers JR, McKenzie ANJ, Alcami A, Fallon PG. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. ACTA ACUST UNITED AC 2006; 202:1319-25. [PMID: 16301741 PMCID: PMC2212990 DOI: 10.1084/jem.20050955] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The coevolution of humans and infectious agents has exerted selective pressure on the immune system to control potentially lethal infections. Correspondingly, pathogens have evolved with various strategies to modulate and circumvent the host's innate and adaptive immune response. Schistosoma species are helminth parasites with genes that have been selected to modulate the host to tolerate chronic worm infections, often for decades, without overt morbidity. The modulation of immunity by schistosomes has been shown to prevent a range of immune-mediated diseases, including allergies and autoimmunity. Individual immune-modulating schistosome molecules have, therefore, therapeutic potential as selective manipulators of the immune system to prevent unrelated diseases. Here we show that S. mansoni eggs secrete a protein into host tissues that binds certain chemokines and inhibits their interaction with host chemokine receptors and their biological activity. The purified recombinant S. mansoni chemokine binding protein (smCKBP) suppressed inflammation in several disease models. smCKBP is unrelated to host proteins and is the first described chemokine binding protein encoded by a pathogenic human parasite and may have potential as an antiinflammatory agent.
Collapse
Affiliation(s)
- Philip Smith
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Velders GA, Fibbe WE. Involvement of Proteases in Cytokine-Induced Hematopoietic Stem Cell Mobilization. Ann N Y Acad Sci 2006; 1044:60-9. [PMID: 15958698 DOI: 10.1196/annals.1349.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of circulating stem cells and progenitor cells can be increased by physiological stress, such as exercise, stress, and infections. The process of shifting the stem cells from the bone marrow into the peripheral blood is referred to as "mobilization" or "egress." Cytokine-mobilized hematopoietic progenitor cells (HPCs) are currently used for autologous or allogeneic stem cell transplantation in a variety of malignant and nonmalignant diseases. In spite of the wide-spread use of mobilized peripheral blood stem cells for transplantation, the mechanisms underlying mobilization are still incompletely understood. Here we discuss the role of neutrophils and proteases as mediators of stem cell mobilization.
Collapse
Affiliation(s)
- Gerjo A Velders
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
98
|
Nardini E, Morelli D, Aiello P, Besusso D, Calcaterra C, Mariani L, Palazzo M, Vecchi A, Paltrinieri S, Menard S, Balsari A. CpG-oligodeoxynucleotides induce mobilization of hematopoietic progenitor cells into peripheral blood in association with mouse KC (IL-8) production. J Cell Physiol 2005; 204:889-95. [PMID: 15828023 DOI: 10.1002/jcp.20360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immune system of vertebrates detects bacterial DNA as a "danger signal" based on the presence of unmethylated CpG motifs. We examined whether oligodeoxynucleotides (ODNs) with CpG motifs (CpG-ODNs) also induce mobilization of hematopoietic progenitor cells (HPCs). Mice challenged with CpG-ODNs showed an increase in peripheral blood colony-forming units (CFU) with a peak at day 4 after treatment, associated with an increase, starting 30 min after CpG treatment, in serum levels of mouse keratinocyte-derived chemokine (mKC), a functional homolog of human interleukin (IL) 8; production of granulocyte-colony-stimulating factor (CSF) was also detected. Mobilization and mKC induction were sequence-specific and dose-dependent occurring even with low doses of CpG-ODNs. Interestingly, intestinal cells were involved in mKC production. HPC mobilization by CpG-ODNs was dependent on peripheral blood mononuclear cells since mobilization was reduced in neutrophil-depleted mice. Moreover, CpG-ODN treatment significantly increased G-CSF mobilizing capacity. Finally, pretreatment with an anti-mKC neutralizing antibody significantly reduced CpG-induced mobilization, further supporting a role for mKC. Thus, bacterial DNA is a "danger signal" not only for immune cells but also for hematopoietic cells, communicating the need for increased hematopoiesis during infections and for the renewal of the immune system. The HPC mobilization activity of CpG-ODNs will need to be considered in the design of treatment regimens for cancer clinical trials using CpG-ODNs in association with chemotherapy.
Collapse
Affiliation(s)
- Elena Nardini
- Department of Experimental Oncology and Laboratories, Molecular Targeting Unit, Medicine Laboratory Unit and Unit of Medical Statistics and Biometry, National Cancer Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
De Cesare M, Perego P, Righetti SC, Pratesi G, Carenini N, Rivoltini L, Zupi G, Del Bufalo D, Balsari A, Zunino F. Enhanced antitumour efficacy of gimatecan in combination with Bcl-2 antisense oligonucleotide in human melanoma xenografts. Eur J Cancer 2005; 41:1213-22. [PMID: 15911246 DOI: 10.1016/j.ejca.2005.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 01/22/2023]
Abstract
The anti-apoptotic protein Bcl-2 has been implicated in the intrinsic resistance of melanoma to chemotherapy. The aim of this study was to investigate the effects of anti-Bcl-2 oligonucleotide oblimersen on the antitumour activity of gimatecan, a novel lipophilic camptothecin currently undergoing clinical phase II studies. Results showed a reduced sensitivity of melanoma cells to gimatecan following Bcl-2 transfection and inversely, increased cell sensitivity to gimatecan in combination with oblimersen. In in vivo studies performed in two melanoma xenografts expressing different Bcl-2 levels, the antitumour activity of oblimersen itself was modest, but the combination with gimatecan produced a significant therapeutic advantage. The combination therapy inhibited tumour growth and delayed regrowth of the two tumours tested. The enhancement of antitumour activity was observed at doses that were tolerated well. The effects of oblimersen on antitumour activity and toxicity of gimatecan were dose-dependent. The capability of oblimersen to improve the efficacy of gimatecan supports the therapeutic potential of the drug combination in the treatment of human melanoma.
Collapse
|
100
|
Reutershan J, Basit A, Galkina EV, Ley K. Sequential recruitment of neutrophils into lung and bronchoalveolar lavage fluid in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2005; 289:L807-15. [PMID: 15951336 DOI: 10.1152/ajplung.00477.2004] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infiltration of activated neutrophils [polymorphonuclear leukocytes (PMN)] into the lung is an important component of the inflammatory response in acute lung injury. The signals required to direct PMN into the different compartments of the lung have not been fully elucidated. In a murine model of LPS-induced lung injury, we investigated the sequential recruitment of PMN into the pulmonary vasculature, lung interstitium, and alveolar space. Mice were exposed to aerosolized LPS and bronchoalveolar lavage fluid (BAL), and lungs were harvested at different time points. We developed a flow cytometry-based technique to assess in vivo trafficking of PMN in the intravascular and extravascular lung compartments. Aerosolized LPS induced consistent PMN migration into all lung compartments. We found that sequestration in the pulmonary vasculature occurred within the first hour. Transendothelial migration into the interstitial space started 1 h after LPS exposure and increased continuously until a plateau was reached between 12 and 24 h. Transepithelial migration into the alveolar air space was delayed, as the first PMN did not appear until 2 h after LPS, reaching a peak at 24 h. Transendothelial migration and transepithelial migration were inhibited by pertussis toxin, indicating involvement of Galphai-coupled receptors. These findings confirm LPS-induced migration of PMN into the lung. For the first time, distinct transmigration steps into the different lung compartments are characterized in vivo.
Collapse
Affiliation(s)
- Jörg Reutershan
- Robert M. Berne Cardiovascular Research Center, Department of Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|