51
|
Leeds PR, Yu F, Wang Z, Chiu CT, Zhang Y, Leng Y, Linares GR, Chuang DM. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem Neurosci 2014; 5:422-33. [PMID: 24697257 DOI: 10.1021/cn500040g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death from trauma to central nervous system (CNS) tissues. For patients who survive the initial injury, TBI can lead to neurodegeneration as well as cognitive and motor deficits, and is even a risk factor for the future development of neurodegenerative disorders such as Alzheimer's disease. Preclinical studies of multiple neuropathological and neurodegenerative disorders have shown that lithium, which is primarily used to treat bipolar disorder, has considerable neuroprotective effects. Indeed, emerging evidence now suggests that lithium can also mitigate neurological deficits incurred from TBI. Lithium exerts neuroprotective effects and stimulates neurogenesis via multiple signaling pathways; it inhibits glycogen synthase kinase-3 (GSK-3), upregulates neurotrophins and growth factors (e.g., brain-derived neurotrophic factor (BDNF)), modulates inflammatory molecules, upregulates neuroprotective factors (e.g., B-cell lymphoma-2 (Bcl-2), heat shock protein 70 (HSP-70)), and concomitantly downregulates pro-apoptotic factors. In various experimental TBI paradigms, lithium has been shown to reduce neuronal death, microglial activation, cyclooxygenase-2 induction, amyloid-β (Aβ), and hyperphosphorylated tau levels, to preserve blood-brain barrier integrity, to mitigate neurological deficits and psychiatric disturbance, and to improve learning and memory outcome. Given that lithium exerts multiple therapeutic effects across an array of CNS disorders, including promising results in preclinical models of TBI, additional clinical research is clearly warranted to determine its therapeutic attributes for combating TBI. Here, we review lithium's exciting potential in ameliorating physiological as well as cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Peter R. Leeds
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Fengshan Yu
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Zhifei Wang
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Chi-Tso Chiu
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | | | - Yan Leng
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Gabriel R. Linares
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - De-Maw Chuang
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| |
Collapse
|
52
|
Lithium enhances axonal regeneration in peripheral nerve by inhibiting glycogen synthase kinase 3β activation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:658753. [PMID: 24967390 PMCID: PMC4055222 DOI: 10.1155/2014/658753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/02/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
Abstract
Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS.
Collapse
|
53
|
Sohn H, Kim K, Lee KS, Choi HG, Lee KI, Shin AR, Kim JS, Shin SJ, Song CH, Park JK, Kim HJ. Lithium inhibits growth of intracellular Mycobacterium kansasii through enhancement of macrophage apoptosis. J Microbiol 2014; 52:299-306. [PMID: 24535745 DOI: 10.1007/s12275-014-3469-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/14/2013] [Indexed: 01/10/2023]
Abstract
Mycobacterium kansasii (Mk) is an emerging pathogen that causes a pulmonary disease similar to tuberculosis. Macrophage apoptosis contributes to innate host defense against mycobacterial infection. Recent studies have suggested that lithium significantly enhances the cytotoxic activity of death stimuli in many cell types. We examined the effect of lithium on the viability of host cells and intracellular Mk in infected macrophages. Lithium treatment resulted in a substantial reduction in the viability of intracellular Mk in macrophages. Macrophage cell death was significantly enhanced after adding lithium to Mk-infected cells but not after adding to uninfected macrophages. Lithium-enhanced cell death was due to an apoptotic response, as evidenced by augmented DNA fragmentation and caspase activation. Reactive oxygen species were essential for lithium-induced apoptosis. Intracellular scavenging by N-acetylcysteine abrogated the lithium-mediated decrease in intracellular Mk growth as well as apoptosis. These data suggest that lithium is associated with control of intracellular Mk growth through modulation of the apoptotic response in infected macrophages.
Collapse
Affiliation(s)
- Hosung Sohn
- Department of Microbiology and Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kang K, Kim YJ, Kim YH, Roh JN, Nam JM, Kim PY, Ryu WS, Lee SH, Yoon BW. Lithium pretreatment reduces brain injury after intracerebral hemorrhage in rats. Neurol Res 2013; 34:447-54. [DOI: 10.1179/1743132812y.0000000015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- K Kang
- Department of NeurologyEulji General Hospital, Seoul, Korea
| | - Y-J Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Y-H Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - J N Roh
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - J-M Nam
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - P-Y Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - W-S Ryu
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - S-H Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - B-W Yoon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Neuroscience Research InstituteClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
55
|
Dachs E, Piedrafita L, Hereu M, Esquerda J, Calderó J. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Neuroscience 2013; 250:417-33. [DOI: 10.1016/j.neuroscience.2013.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
|
56
|
Rusai K, Herzog R, Kuster L, Kratochwill K, Aufricht C. GSK-3β inhibition protects mesothelial cells during experimental peritoneal dialysis through upregulation of the heat shock response. Cell Stress Chaperones 2013; 18:569-79. [PMID: 23494401 PMCID: PMC3745257 DOI: 10.1007/s12192-013-0410-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 02/04/2023] Open
Abstract
Non-physiological components of peritoneal dialysis fluids (PDF) lead to the injury of peritoneal mesothelial cells resulting in the failure of peritoneal dialysis (PD) potentially via inadequate induction of the protective heat shock response (HSR). Glycogen synthase kinase-3β (GSK-3β) is a negative regulator of cell survival partly by suppression of the HSR and is influenced by stress stimuli also present in conventional PDF. The effects of PDF on GSK-3β activation and the impact of GSK-3β inhibition with lithium (LiCl) were investigated on cell survival with special regard to HSR, in particular to heat shock transcription factor 1 (HSF-1) activation and Hsp72 production in an in vitro model of PD using MeT-5A and primary mesothelial cells. Incubation of cells with the PDF Dianeal® (glucose-based, low pH, high glucose degradation products (GDP)) and Extraneal® (icodextrin-based, low pH, low GDP) caused activation of GSK-3β compared to the other tested PDF, i.e. Balance®, Physioneal® (normal pH, glucose-based, low GDP) and Nutrineal® (moderately acidic, amino acid-based). Inhibition of GSK-3β with LiCl in Dianeal® and Extraneal®-treated cells dose-dependently decreased cell damage and death rate and was paralleled by higher HSF-1 activation and Hsp72 expression. GSK-3β is activated by low pH GDP containing PDF with and without glucose as osmotic agent, indicating that GSK-3β is involved in mesothelial cell signalling in response to experimental PD. Inhibition of GSK-3β with LiCl ameliorated cell injury and improved HSR upon PDF exposure. Thus, GSK-3β inhibitors likely have therapeutic potential as cytoprotective additive for decreasing PDF toxicity.
Collapse
Affiliation(s)
- K. Rusai
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - R. Herzog
- />Zytoprotec GmbH, 1010 Vienna, Austria
| | - L. Kuster
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - K. Kratochwill
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- />Zytoprotec GmbH, 1010 Vienna, Austria
| | - C. Aufricht
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
57
|
Uno M, Harada M, Takimoto O, Kitazato KT, Suzue A, Yoneda K, Morita N, Itabe H, Nagahiro S. Elevation of plasma oxidized LDL in acute stroke patients is associated with ischemic lesions depicted by DWI and predictive of infarct enlargement. Neurol Res 2013; 27:94-102. [PMID: 15829167 DOI: 10.1179/016164105x18395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Oxidized low-density lipoprotein (OxLDL) plays a major role in atherosclerosis. We undertook the present study to clarify the relationship between plasma OxLDL and the ischemic volume. We used ELISA to determine plasma OxLDL levels, and performed diffusion- and perfusion-weighted MRI (DWI, PWI) to measure the ischemic volume in 44 ischemic stroke patients. Based on the location of the ischemic lesion, they were divided into three groups: Group I (GI, n = 21) had cortical lesions, Group II (GII, n = 17) had lesions in the basal ganglia or brain stem, and Group III (GIII, n = 6) had massive lesions that involved one entire hemisphere. In GI, but not GII and GIII, plasma OxLDL was significantly higher than in 19 age-matched controls (p < 0.01) and was significantly correlated with the initial ischemic volume visualized on DWI (p = 0.01), PWI (p < 0.01), and the DWI-PWI mismatch (p < 0.05). A persistent increase in plasma OxLDL was associated with enlargement of the ischemic lesion in the early phase after the insult. These findings suggest that elevated plasma OxLDL levels are associated with moderate ischemic damage in patients with cortical lesions (GI), but not those with massive hemispheric lesions (GIII), which may be irreversible. In addition, elevated plasma OxLDL may represent a predictor of enlargement of the ischemic lesion.
Collapse
Affiliation(s)
- Masaaki Uno
- Department of Neurosurgery, School of Medicine, University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Liu A, Fang H, Dahmen U, Dirsch O. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl 2013; 19:762-72. [PMID: 23696274 DOI: 10.1002/lt.23666] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/06/2013] [Indexed: 12/30/2022]
Abstract
Lithium has long been widely used in the treatment of bipolar mood disorders. Recent studies have demonstrated that lithium is able to decrease ischemia/reperfusion (I/R) injury in the brain, kidneys, and heart. Because lithium may act on a number of stress and survival pathways, it is of great interest to explore this compound also in the setting of liver I/R injury. In this study, we aimed to evaluate the effects of lithium in a model of liver I/R injury in rats. Chronic treatment with lithium (2 mmol/kg for 3 days before ischemia) decreased I/R injury, whereas acute treatment with a single dose of lithium (2 mmol/kg 1 hour before ischemia) did not confer any protection in a partial hepatic I/R model. Furthermore, rats subjected to chronic lithium treatment had a significantly better survival rate (60%) than saline-treated rats (27%) in a total hepatic I/R survival model. Chronic lithium treatment protected against liver I/R injury, as indicated by lower serum aminotransferase levels, fewer I/R-associated histopathological changes, lower hepatic inflammatory cytokine levels, less neutrophil infiltration, and lower hepatic high-mobility group box expression and serum levels. The mechanism of action of lithium appears to involve its ability to inhibit glycogen synthase kinase 3β activation, modulate mitogen-activated protein kinase activation, inhibit hepatic apoptosis, and induce autophagy. On the basis of these data, we conclude that lithium treatment may be a simple and applicable preconditioning intervention for protecting against liver I/R injury.
Collapse
Affiliation(s)
- Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | |
Collapse
|
59
|
Crespi F. In vivo oxymetric analysis of mild hypercapnia upon cerebral oxygen, temperature and blood flow: markers of mood as proposed by concomitant bupropion challenge and electrochemical analysis? Exp Brain Res 2013; 230:597-604. [PMID: 23503770 DOI: 10.1007/s00221-013-3443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Scientific interest has increased the influence of temperature in neurodegenerative and psychiatric disorders, and according to the monoamine hypothesis, depression is a neurochemical disorder arising from hypofunctioning of brain monoamine systems. Here, in vivo flow-oxymetry is applied to verify relationships between cerebral oxygen tension (pO2), blood flow (CBF), that are markers of brain metabolism, and temperature (T), while in vivo voltammetry is concomitantly applied in the medial prefrontal cortex of anaesthetized rats to monitor monoamine levels such as dopamine (DA) and serotonin. An induced mild hypercapnia via increasing exogenous carbon dioxide (CO2) concentration resulted in increased pO2, CBF and T in discrete brain areas. Concomitant in situ voltammetric analysis of extracellular levels of serotonin and DA has revealed significant changes in the latter, only. Parallel treatment with antidepressant bupropion has confirmed its described central thermogenic properties and its positive influence on dopaminergic activity. CBF was also enhanced by such antidepressant. Altogether these data support direct relationships between markers of brain metabolism such as pO2, CBF, T and brain monoamine[s], indicating the coupled in vivo methodology: oxymetry-voltammetry as a rapid in vivo tool for analyses of such indicators in psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Crespi
- Biology Department, Neurosciences CEDD GlaxoSmithKline, Medicines Research Centre, Via Fleming 4, 37135, Verona, Italy,
| |
Collapse
|
60
|
The Role of HSPA12B in Regulating Neuronal Apoptosis. Neurochem Res 2013; 38:311-20. [DOI: 10.1007/s11064-012-0922-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/26/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
61
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
62
|
Xia Y, Rao J, Yao A, Zhang F, Li G, Wang X, Lu L. Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3β/NF-κB-mediated protective signaling in mice. Eur J Pharmacol 2012; 697:117-25. [PMID: 23051669 DOI: 10.1016/j.ejphar.2012.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/05/2012] [Accepted: 09/17/2012] [Indexed: 11/16/2022]
Abstract
Lithium (an inhibitor of GSK-3β activity) has beneficial effects on ischemia/reperfusion (I/R) injury in the central nervous system, heart and kidney. However, the role of lithium in hepatic I/R injury is unknown. The aim of this study was to assess the effects of lithium on hepatic I/R injury in a mouse model of partial hepatic I/R. Previous studies showed that lithium chloride (LiCl) can phosphorylate residue Ser9, inhibit GSK-3β activity, and improve I/R injury in other organs. In the present study, mice were pretreated with either vehicle or LiCl, which had similar effects on GSK-3β activity. Surprisingly, treatment with LiCl significantly exacerbated hepatic I/R injury, which was determined by serological and histological analyses. Acute and chronic LiCl treatment caused serious damage in hepatic I/R injury, including increased apoptosis and oxidative stress. To gain insight into the mechanism involved in this damage, the activity of nuclear factor-κB (NF-κB) (GSK-3β can regulate the transcriptional complex of NF-κB) was analyzed, which revealed that LiCl treatment significantly down-regulated the activity of NF-κB. The NF-κB-mediated protective genes were then further evaluated, including anti-apoptotic genes (RAF2, cIAP 2, Bfl-1 and cFLIP) and the antioxidant gene MnSOD. The expression of these protective genes was obviously suppressed compared with the vehicle group. Taken together, these findings show that lithium exacerbates hepatic I/R injury by suppressing the expression of GSK-3β/NF-κB-mediated protective genes.
Collapse
Affiliation(s)
- Yongxiang Xia
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Hooper PL. Insulin Signaling, GSK-3, Heat Shock Proteins and the Natural History of Type 2 Diabetes Mellitus: A Hypothesis. Metab Syndr Relat Disord 2012; 5:220-30. [PMID: 18370776 DOI: 10.1089/met.2007.0005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome and type 2 diabetes are progressive, indolent, multi-organ diseases. Understanding the abnormalities of heat shock proteins (HSPs) in these diseases is paramount to understanding their pathogenesis. In insulin resistant states and diabetes, heat shock factor 1(HSF-1) is low in insulin sensitive tissues, resulting in low Hsp 60, 70, and 90 levels. We propose that low Hsps levels are the result of decreased insulin action leading to less phosphorylation of PI3K, PKB, and glycogen synthase kinase-3 (GSK-3). Importantly, less GSK-3 phosphorylation (and thus more GSK-3 activity) will lower HSF-1. Low Hsps make organs vulnerable to injury, impair the stress response, accelerate systemic inflammation, raise islet amyloid polypeptide, and increase insulin resistance. Feeding this cycle is excess saturated fat and calorie consumption, hypertension, inactivity, aging, and genetic predisposition- all of which are a associated with high GSK-3 activity and low Hsps. Support for the proposed "vicious" cycle is based on the observation that GSK-3 inhibition and Hsp stimulation result in increased insulin sensitivity, reduced accumulation of degenerative proteins with in the cell, improved wound healing, decreased organ damage and improved recovery from vascular ischemia. Recognizing GSK-3 and Hsps in the pathogenesis of insulin resistance, the central common feature of the metabolic syndrome, and type 2 diabetes will expand our understanding of the disease, offering new therapeutic options.
Collapse
Affiliation(s)
- Philip L Hooper
- Department of Endocrinology, University of Colorado Health Sciences Center, Glen Haven, CO
| |
Collapse
|
64
|
Rom S, Fan S, Reichenbach N, Dykstra H, Ramirez SH, Persidsky Y. Glycogen synthase kinase 3β inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1414-25. [PMID: 22863953 PMCID: PMC3463628 DOI: 10.1016/j.ajpath.2012.06.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 06/20/2012] [Indexed: 01/13/2023]
Abstract
Glycogen synthase kinase (GSK) 3β has been identified as a regulator of immune responses. We demonstrated previously that GSK3β inhibition in human brain microvascular endothelial cells (BMVECs) reduced monocyte adhesion/migration across BMVEC monolayers. Herein, we tested the idea that GSK3β inhibition in monocytes can diminish their ability to engage the brain endothelium and migrate across the blood-brain barrier. Pretreatment of primary monocytes with GSK3β inhibitors resulted in a decrease in adhesion (60%) and migration (85%), with similar results in U937 monocytic cells. Monocyte-BMVEC interactions resulted in diminished barrier integrity that was reversed by GSK3β suppression in monocytic cells. Because integrins mediate monocyte rolling/adhesion, we detected the active conformational form of very late antigen 4 after stimulation with a peptide mimicking monocyte engagement by vascular cell adhesion molecule-1. Peptide stimulation resulted in a 14- to 20-fold up-regulation of the active form of integrin in monocytes that was suppressed by GSK3β inhibitors (40% to 60%). Because small GTPases, such as Rac1, control leukocyte movement, we measured active Rac1 after monocyte activation with relevant stimuli. Stimulation enhanced the level of active Rac1 that was diminished by GSK3β inhibitors. Monocytes treated with GSK3β inhibitors showed increased levels of inhibitory sites of the actin-binding protein, cofilin, and vasodilator-stimulated phosphoprotein-regulating conformational changes of integrins. These results indicate that GSK3β inhibition in monocytes affects active integrin expression, cytoskeleton rearrangement, and adhesion via suppression of Rac1-diminishing inflammatory leukocyte responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
65
|
Chiu CT, Chuang DM. Neuroprotective action of lithium in disorders of the central nervous system. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2012; 36:461-76. [PMID: 21743136 DOI: 10.3969/j.issn.1672-7347.2011.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative conditions. Lithium's main mechanisms of action appear to stem from its ability to inhibit glycogen synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic factor. This in turn alters a wide variety of downstream effectors, with the ultimate effect of enhancing pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-dependent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol phosphatases, it decreases levels of inositol 1,4,5-trisphosphate, a process recently identified as a novel mechanism for inducing autophagy. These mechanisms allow therapeutic doses of lithium to protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium, moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Huntington's, Alzheimer's, and Parkinson's diseases. Since lithium is already FDA-approved for the treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be expanded to include the treatment of several neurological and neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
66
|
Huo K, Sun Y, Li H, Du X, Wang X, Karlsson N, Zhu C, Blomgren K. Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci 2012; 51:32-42. [DOI: 10.1016/j.mcn.2012.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/14/2012] [Accepted: 07/06/2012] [Indexed: 02/08/2023] Open
|
67
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
68
|
Takahashi T, Steinberg GK, Zhao H. Lithium treatment reduces brain injury induced by focal ischemia with partial reperfusion and the protective mechanisms dispute the importance of akt activity. Aging Dis 2012; 3:226-233. [PMID: 22724081 PMCID: PMC3375079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 06/01/2023] Open
Abstract
Lithium is a mood stabilizer shown to have neuroprotective effects against several chronic and acute neuronal injuries, including stroke. However, it is unknown whether lithium treatment protects against brain injury post-stroke in a rat model of permanent distal middle cerebral artery occlusion (MCAo) combined with transient bilateral common carotid artery occlusion (CCAo), a model that mimics human stroke with partial reperfusion. In addition, whether lithium treatment alters Akt activity as measured by the kinase activity assay has not been reported, although it is known to inhibit GSK3β activity. After stroke, Akt activity contributes to neuronal survival while GSK3β activity causes neuronal death. We report that a bolus of lithium injection at stroke onset robustly reduced infarct size measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48 h post-stroke and inhibited cell death in the ischemic penumbra, but not in the ischemic core, as shown by TUNEL staining performed 24 h post-stroke. However, lithium treatment did not alter the reduction in Akt activity as measured by Akt kinase assay. We further showed that lithium did not alter phosphorylated GSK3β protein levels, or the degradation of β-catenin, a substrate of GSK3β, which is consistent with previous findings that long-term treatment is required for lithium to alter GSK3β phosphorylation. In summary, we show innovative data that lithium protects against stroke in a focal ischemia model with partial reperfusion, however, our results dispute the importance of Akt activity in the protective effects of lithium.
Collapse
Affiliation(s)
| | | | - Heng Zhao
- Correspondence should be addressed to: Heng Zhao, PhD, Department of Neurosurgery, Stanford University School of Medicine, MSLS Bldg, P306,1201 Welch Rd, Rm. P306, Stanford, CA 94305, USA.
| |
Collapse
|
69
|
Sudduth TL, Wilson JG, Everhart A, Colton CA, Wilcock DM. Lithium treatment of APPSwDI/NOS2-/- mice leads to reduced hyperphosphorylated tau, increased amyloid deposition and altered inflammatory phenotype. PLoS One 2012; 7:e31993. [PMID: 22347510 PMCID: PMC3276493 DOI: 10.1371/journal.pone.0031993] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 01/21/2023] Open
Abstract
Lithium is an anti-psychotic that has been shown to prevent the hyperphosphorylation of tau protein through the inhibition of glycogen-synthase kinase 3-beta (GSK3β). We recently developed a mouse model that progresses from amyloid pathology to tau pathology and neurodegeneration due to the genetic deletion of NOS2 in an APP transgenic mouse; the APPSwDI/NOS2−/− mouse. Because this mouse develops tau pathology, amyloid pathology and neuronal loss we were interested in the effect anti-tau therapy would have on amyloid pathology, learning and memory. We administered lithium in the diets of APPSwDI/NOS2−/− mice for a period of eight months, followed by water maze testing at 12 months of age, immediately prior to sacrifice. We found that lithium significantly lowered hyperphosphorylated tau levels as measured by Western blot and immunocytochemistry. However, we found no apparent neuroprotection, no effect on spatial memory deficits and an increase in histological amyloid deposition. Aβ levels measured biochemically were unaltered. We also found that lithium significantly altered the neuroinflammatory phenotype of the brain, resulting in enhanced alternative inflammatory response while concurrently lowering the classical inflammatory response. Our data suggest that lithium may be beneficial for the treatment of tauopathies but may not be beneficial for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tiffany L. Sudduth
- University of Kentucky Sanders-Brown Center on Aging, Department of Physiology, Lexington, Kentucky, United States of America
| | - Joan G. Wilson
- Duke University Medical Center, Department of Medicine, Division of Neurology, Durham, North Carolina, United States of America
| | - Angela Everhart
- Duke University Medical Center, Department of Medicine, Division of Neurology, Durham, North Carolina, United States of America
| | - Carol A. Colton
- Duke University Medical Center, Department of Medicine, Division of Neurology, Durham, North Carolina, United States of America
| | - Donna M. Wilcock
- University of Kentucky Sanders-Brown Center on Aging, Department of Physiology, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
70
|
Wang Z, Shen J, Wang J, Lu T, Li C, Zhang X, Liu L, Ding Z. Lithium attenuates bupivacaine-induced neurotoxicity in vitro through phosphatidylinositol-3-kinase/threonine-serine protein kinase B- and extracellular signal-regulated kinase-dependent mechanisms. Neuroscience 2012; 206:190-200. [PMID: 22233781 DOI: 10.1016/j.neuroscience.2011.12.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/28/2011] [Accepted: 12/19/2011] [Indexed: 11/27/2022]
Abstract
Local anesthetics (LAs) are necessary for the regional anesthesia, spinal anesthesia, and pain management. However, the application of LAs may cause neurotoxicity and result in postoperative neurological complications. Lithium is a mood stabilizer for the treatment of bipolar disorder and may exert neuroprotective effects. In this study, we evaluated the effects of lithium on bupivacaine (a frequently used LAs)-induced injury in mouse neuroblastoma neuro 2a (N2a) cells. N2a cells were treated with bupivacaine in the presence or absence of lithium. After treatment, the cell injury was evaluated by examination of viability, morphology changes, and nuclear condensation. The levels of mitochondrial transmembrane potential (ΔΨm) and activation of phosphatidylinositol-3-kinase (PI3K)/ threonine-serine protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) were also examined. In a separate experiment, we investigated the effect of Akt and ERK inhibition on cell injury after bupivacaine and lithium treatment. Pretreatment of N2a cells with lithium significantly attenuated bupivacaine-induced cell injury. Lithium pretreatment completely reversed the suppression of PI3K/Akt and ERK signalings and significantly prevented the decline of ΔΨm in N2a cells after bupivacaine treatment. More importantly, pharmacological inhibition of Akt and ERK diminished the protective effect of lithium against bupivacaine-induced neuronal death. Our data suggest that lithium pretreatment provides a protective effect on bupivacaine-induced neuronal cell injury. This action of lithium is mediated through, at least in part, the activating of PI3K/Akt- and ERK-dependent mechanisms. Because lithium is a clinically proved safety drug for neurons, it is worthwhile to identify whether coadministration of LAs with lithium will decrease the risks of LAs-induced postoperative neurological complications in clinic practice.
Collapse
Affiliation(s)
- Z Wang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Xing G, Ren M, O'Neill JT, Verma A, Watson WD. Controlled cortical impact injury and craniotomy result in divergent alterations of pyruvate metabolizing enzymes in rat brain. Exp Neurol 2011; 234:31-8. [PMID: 22193111 DOI: 10.1016/j.expneurol.2011.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/04/2011] [Indexed: 01/04/2023]
Abstract
Dysregulated glucose metabolism and energy deficit is a characteristic of severe traumatic brain injury (TBI) but its mechanism remains to be fully elucidated. Phosphorylation of pyruvate dehydrogenase (PDH) is the rate-limiting mitochondria enzyme reaction coupling glycolysis to the tricarboxylic acid cycle. Phosphorylation of PDH E1α1 subunit catalyzed by PDH kinase (PDK) inhibits PDH activity, effectively decoupling aerobic glycolysis whereas dephosphorylation of phosphorylated PDHE1α1 by PDH phosphatase (PDP) restores PDH activity. We recently reported altered expression and phosphorylation of pyruvate dehydrogenase (PDH) following TBI. However, little is known about PDK and PDP involvement. We determined PDK (PDK1-4) and PDP isoenzyme (PDP1-2) mRNA and protein expression in rat brain using immunohistochemistry and in situ hybridization techniques. We also quantified PDK and PDP mRNA and protein levels in rat brain following TBI using quantitative real-time PCR and Western blot, respectively. Controlled cortical impact-induced TBI (CCI-TBI) and craniotomy significantly enhanced PDK1-2 isoenzyme mRNA expression level but significantly suppressed PDP1 and PDK4 mRNA expression after the injury (4h to 7days). CCI-TBI and craniotomy also significantly increased PDK1-4 isoenzyme protein expression but suppressed PDP1-2 protein expression in rat brain. In summary, the divergent changes between PDK and PDP expression indicate imbalance between PDK and PDP activities that would favor increased PDHE1α1 phosphorylation and enzyme inhibition contributing to impaired oxidative glucose metabolism in TBI as well as craniotomy.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | | | | | |
Collapse
|
72
|
Wang ZF, Fessler EB, Chuang DM. Beneficial effects of mood stabilizers lithium, valproate and lamotrigine in experimental stroke models. Acta Pharmacol Sin 2011; 32:1433-45. [PMID: 22056617 PMCID: PMC4010202 DOI: 10.1038/aps.2011.140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/22/2011] [Indexed: 12/12/2022] Open
Abstract
The mood stabilizers lithium, valproate and lamotrigine are traditionally used to treat bipolar disorder. However, accumulating evidence suggests that these drugs have broad neuroprotective properties and may therefore be promising therapeutic agents for the treatment of neurodegenerative diseases, including stroke. Lithium, valproate and lamotrigine exert protective effects in diverse experimental stroke models by acting on their respective primary targets, ie, glycogen synthase kinase-3, histone deacetylases and voltage-gated sodium channels, respectively. This article reviews the most recent findings regarding the underlying mechanisms of these phenomena, which will pave the way for clinical investigations that use mood stabilizers to treat stroke. We also propose several future research avenues that may extend our understanding of the benefits of lithium, valproate and lamotrigine in improving stroke outcomes.
Collapse
Affiliation(s)
- Zhi-fei Wang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | - Emily Bame Fessler
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1363, USA
| |
Collapse
|
73
|
Fernández-Martos CM, González-Fernández C, González P, Maqueda A, Arenas E, Rodríguez FJ. Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS One 2011; 6:e27000. [PMID: 22073235 PMCID: PMC3206916 DOI: 10.1371/journal.pone.0027000] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. FINDINGS Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. CONCLUSIONS Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.
Collapse
Affiliation(s)
| | | | - Pau González
- Laboratorio de Neurología Molecular, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Alfredo Maqueda
- Laboratorio de Neurología Molecular, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | - Ernest Arenas
- Molecular Neurobiology Unit, MBB, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
74
|
Nezami BG, Rahimpour S, Sadeghi M, Sianati S, Anaraki DK, Ebrahimi F, Ghasemi M, Dehpour AR. Chronic Lithium Impairs Skin Tolerance to Ischemia in Random-Pattern Skin Flap of Rats. J Surg Res 2011; 171:374-8. [DOI: 10.1016/j.jss.2010.03.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/07/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
|
75
|
Yu F, Wang Z, Tchantchou F, Chiu CT, Zhang Y, Chuang DM. Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma 2011; 29:362-74. [PMID: 21895523 DOI: 10.1089/neu.2011.1942] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although traumatic brain injury (TBI) is recognized as one of the leading causes of death from trauma to the central nervous system (CNS), no known treatment effectively mitigates its effects. Lithium, a primary drug for the treatment of bipolar disorder, has been known to have neuroprotective effects in various neurodegenerative conditions such as stroke. Until this study, however, it has not been investigated as a post-insult treatment for TBI. To evaluate whether lithium could have beneficial effects following TBI, lithium at a dose of 1.5 mEq/kg was administered after injury. Assessed at 3 days and 3 weeks post-injury using hematoxylin and eosin staining, lithium treatment was found to reduce lesion volume. Lithium at doses of 2.0 and 3.0 mEq/kg also significantly reduced lesion volume at 3 days after injury, and the therapeutic window was at least 3 h post-injury. TBI-induced neuronal death, microglial activation, and cyclooxygenase-2 induction were all attenuated by lithium at 3 days after injury. In addition, lithium treatment reduced TBI-induced matrix metalloproteinase-9 expression and preserved the integrity of the blood-brain barrier. As for behavioral outcomes, lithium treatment reduced anxiety-like behavior in an open-field test, and improved short- and long-term motor coordination in rotarod and beam-walk tests. Lithium robustly increased serine phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that the underlying mechanisms responsible for lithium's protective effects are triggered by increasing phosphorylation of this kinase and thereby inhibiting its activity. Our results support the notion that lithium has heretofore unrecognized capacity to mitigate the neurodegenerative effects and improve functional outcomes in TBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
76
|
Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington's disease. Neuropsychopharmacology 2011; 36:2406-21. [PMID: 21796107 PMCID: PMC3194069 DOI: 10.1038/npp.2011.128] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that the mood stabilizers lithium and valproate (VPA) have broad neuroprotective and neurotrophic properties, and that these occur via inhibition of glycogen synthase kinase 3 (GSK-3) and histone deacetylases (HDACs), respectively. Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by impaired movement, cognitive and psychiatric disturbances, and premature death. We treated N171-82Q and YAC128 mice, two mouse models of HD varying in genetic backgrounds and pathological progressions, with a diet containing therapeutic doses of lithium, VPA, or both. Untreated, these transgenic mice displayed a decrease in levels of GSK-3β serine 9 phosphorylation and histone H3 acetylation in the striatum and cerebral cortex around the onset of behavioral deficits, indicating a hyperactivity of GSK-3β and HDACs. Using multiple well-validated behavioral tests, we found that co-treatment with lithium and VPA more effectively alleviated spontaneous locomotor deficits and depressive-like behaviors in both models of HD mice. Furthermore, compared with monotherapy with either drug alone, co-treatment more successfully improved motor skill learning and coordination in N171-82Q mice, and suppressed anxiety-like behaviors in YAC128 mice. This combined treatment consistently inhibited GSK-3β and HDACs, and caused a sustained elevation in striatal as well as cortical brain-derived neurotrophic factor and heat shock protein 70. Importantly, co-treatment markedly prolonged median survival of N171-82Q mice from 31.6 to 41.6 weeks. Given that there is presently no proven treatment for HD, our results suggest that combined treatment with lithium and VPA, two mood stabilizers with a long history of safe use in humans, may have important therapeutic potential for HD patients.
Collapse
|
77
|
Li H, Li Q, Du X, Sun Y, Wang X, Kroemer G, Blomgren K, Zhu C. Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells. J Cereb Blood Flow Metab 2011; 31:2106-15. [PMID: 21587270 PMCID: PMC3208156 DOI: 10.1038/jcbfm.2011.75] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the long-term effects of lithium treatment on neonatal hypoxic-ischemic brain injury, inflammation, and neural stem/progenitor cell (NSPC) proliferation and survival. Nine-day-old male rats were subjected to unilateral hypoxia-ischemia (HI) and 2 mmol/kg lithium chloride was injected intraperitoneally immediately after the insult. Additional lithium injections, 1 mmol/kg, were administered at 24-hour intervals for 7 days. Animals were killed 6, 24, 72 hours, or 7 weeks after HI. Lithium reduced total tissue loss by 69%, from 89.4±14.6 mm(3) in controls (n=15) to 27.6±6.2 mm(3) in lithium-treated animals (n=14) 7 weeks after HI (P<0.001). Microglia activation was inhibited by lithium treatment, as judged by Iba-1 and galectin-3 immunostaining, and reduced interleukin-1β and CCL2 levels. Lithium increased progenitor, rather than stem cell, proliferation in both nonischemic and ischemic brains, as judged by 5-bromo-2-deoxyuridine labeling 24 and 72 hours as well as by phospho-histone H3 and brain lipid-binding protein labeling 7 weeks after HI. Lithium treatment also promoted survival of newborn NSPCs, without altering the relative levels of neuronal and astroglial differentiation. In summary, lithium conferred impressive, morphological long-term protection against neonatal HI, at least partly by inhibiting inflammation and promoting NSPC proliferation and survival.
Collapse
Affiliation(s)
- Hongfu Li
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Wix-Ramos R, Eblen-Zajjur A. Time course of acute neuroprotective effects of lithium carbonate evaluated by brain impedanciometry in the global ischemia model. Can J Physiol Pharmacol 2011; 89:753-8. [PMID: 21919827 DOI: 10.1139/y11-073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that chronic treatment with lithium gives cytoprotection from ischemia and neurodegeneration. Despite the clinical relevance, the potential effects of acute lithium treatment just before and during early stages of ischemia are not well known. Brain impedance was measured in an experimental global ischemia model, to determine these potential effects and their time course,as measured in minutes. Thiobarbital anesthetized (60 mg·kg(-1), intraperitoneal injection) male Sprague-Dawley rats were infused intravenously (i.v.) with isovolumetric amounts of ringer (n = 10 rats) or lithium (Li(2)CO(3); 10; 30; 100 mg·kg(-1); n = 6 rats per dose tested). Cortico-subcortical impedance was recorded before (20 min) and after (20 min) the infusion, and during global cerebral ischemia (20 min) induced by cardiopulmonary arrest due to the administration of D-tubocurarine. Lithium did not change tissue impedance in normoxid animals. In the ringer-infused group, global cerebral ischemia first (9 min) shows a fast voltage decay rate (-7.08%·min(-1)), followed by a slow one (-0.94%·min(-1)) for the last 11 min of the recording. Lithium, at any dose tested, induced a strong reduction in voltage decay for both fast (-3.7%·min(-1)) and slow (-5.2%·min(-1)) phases, although the reduction was more intense in the first phase (>58%, Mann-Whitney Z = 2.02; P < 0.043). The reduction was more effective at 10 mg (Li₂CO₃)·kg(-1) than at 30 or 100 mg·kg(-1). The time course of brain edema was defined by curve fitting for ringer- (time constant λ = 512.9 s) or lithium-infused animals (λ = 302.0 s). These results suggest that acute lithium infusion 20 min prior to global ischemia, strongly reduces cerebral impedance by reducing the decay rate and the duration of the fast decay phase, and increasing time constant decay during ischemia.
Collapse
Affiliation(s)
- R Wix-Ramos
- Laboratorio de Neurofisiología, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, P.O. Box 3798, El Trigal, Valencia, Venezuela
| | | |
Collapse
|
79
|
Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 2011; 6:e24648. [PMID: 21935433 PMCID: PMC3174188 DOI: 10.1371/journal.pone.0024648] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) sets in motion cascades of biochemical changes that result in delayed cell death and altered neuronal architecture. Studies have demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) effectively reduces apoptosis following a number of stimuli. The Wnt family of proteins, and growth factors are two major factors that regulate GSK-3 activity. In the absence of stimuli, GSK-3 is constitutively active and is complexed with Axin, adenomatous polyposis coli (APC), and casein kinase Iα (CK1α) and phosphorylates ß-Catenin leading to its degradation. Binding of Wnt to Frizzled receptors causes the translocation of GSK-3 to the plasma membrane, where it phosphorylates and inactivates the Frizzled co-receptor lipoprotein-related protein 6 (LRP6). Furthermore, the translocation of GSK-3 reduces ß-Catenin phosphorylation and degradation, leading to ß-Catenin accumulation and gene expression. Growth factors activate Akt, which in turn inhibits GSK-3 activity by direct phosphorylation, leading to a reduction in apoptosis. METHODOLOGY/PRINCIPAL FINDINGS Using a rodent model, we found that TBI caused a rapid, but transient, increase in LRP6 phosphorylation that is followed by a modest decrease in ß-Catenin phosphorylation. Phospho-GSK-3β immunoreactivity was found to increase three days post injury, a time point at which increased Akt activity following TBI has been observed. Lithium influences several neurochemical cascades, including inhibiting GSK-3. When the efficacy of daily lithium was assessed, reduced hippocampal neuronal cell loss and learning and memory improvements were observed. These influences were partially mimicked by administration of the GSK-3-selective inhibitor SB-216763, as this drug resulted in improved motor function, but only a modest improvement in memory retention and no overt neuroprotection. CONCLUSION/SIGNIFICANCE Taken together, our findings suggest that selective inhibition of GSK-3 may offer partial cognitive improvement. As a broad spectrum inhibitor of GSK-3, lithium offers neuroprotection and robust cognitive improvement, supporting its clinical testing as a treatment for TBI.
Collapse
|
80
|
Tsai LK, Wang Z, Munasinghe J, Leng Y, Leeds P, Chuang DM. Mesenchymal stem cells primed with valproate and lithium robustly migrate to infarcted regions and facilitate recovery in a stroke model. Stroke 2011; 42:2932-9. [PMID: 21836090 DOI: 10.1161/strokeaha.110.612788] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE The migratory efficiency of mesenchymal stem cells (MSC) toward cerebral infarct after transplantation is limited. Valproate (VPA) and lithium enhance in vitro migration of MSC by upregulating CXC chemokine receptor 4 and matrix metalloproteinase-9, respectively. Ability of VPA and lithium to promote MSC homing and to improve functional recovery was assessed in a rat model of cerebral ischemia. METHODS MSC primed with VPA (2.5 mmol/L, 3 hours) and/or lithium chloride (2.5 mmol/L, 24 hours) were transplanted into rats 24 hours after transient middle cerebral artery occlusion (MCAO). Neurological function was assessed via rotarod test, Neurological Severity Score, and body asymmetry test for 2 weeks. Infarct volume was analyzed by MRI. The number of homing MSC and microvessel density in the infarcted regions were measured 15 days after MCAO using immunohistochemistry. RESULTS Priming with VPA or lithium increased the number of MSC homing to the cerebral infarcted regions, and copriming with VPA and lithium further enhanced this effect. MCAO rats receiving VPA-primed and/or lithium-primed MSC showed improved functional recovery, reduced infarct volume, and enhanced angiogenesis in the infarcted penumbra regions. These beneficial effects of VPA or lithium priming were reversed by AMD3100, a CXC chemokine receptor 4 antagonist, and GM6001, a matrix metalloproteinase inhibitor, respectively. CONCLUSIONS Priming with VPA and/or lithium promoted the homing and migration ability of MSC, improved functional recovery, reduced brain infarct volume, and enhanced angiogenesis in a rat MCAO model. These effects were likely mediated by VPA-induced CXC chemokine receptor 4 overexpression and lithium-induced matrix metalloproteinase-9 upregulation.
Collapse
Affiliation(s)
- Li-Kai Tsai
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Dr, MSC 1363, Bethesda, MD 20892-1363, USA
| | | | | | | | | | | |
Collapse
|
81
|
Chuang DM, Wang Z, Chiu CT. GSK-3 as a Target for Lithium-Induced Neuroprotection Against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Front Mol Neurosci 2011; 4:15. [PMID: 21886605 PMCID: PMC3152742 DOI: 10.3389/fnmol.2011.00015] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/24/2011] [Indexed: 01/08/2023] Open
Abstract
The mood stabilizer lithium inhibits glycogen synthase kinase-3 (GSK-3) directly or indirectly by enhancing serine phosphorylation of both α and β isoforms. Lithium robustly protected primary brain neurons from glutamate-induced excitotoxicity; these actions were mimicked by other GSK-3 inhibitors or silencing/inhibiting GSK-3α and/or β isoforms. Lithium rapidly activated Akt to enhance GSK-3 serine phosphorylation and to block glutamate-induced Akt inactivation. Lithium also up-regulated Bcl-2 and suppressed glutamate-induced p53 and Bax. Induction of brain-derived neurotrophic factor (BDNF) was required for lithium’s neuroprotection to occur. BDNF promoter IV was activated by GSK-3 inhibition using lithium or other drugs, or through gene silencing/inactivation of either isoform. Further, lithium’s neuroprotective effects were associated with inhibition of NMDA receptor-mediated calcium influx and down-stream signaling. In rodent ischemic models, post-insult treatment with lithium decreased infarct volume, ameliorated neurological deficits, and improved functional recovery. Up-regulation of heat-shock protein 70 and Bcl-2 as well as down-regulation of p53 likely contributed to lithium’s protective effects. Delayed treatment with lithium improved functional MRI responses, which was accompanied by enhanced angiogenesis. Two GSK-3-regulated pro-angiogenic factors, matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor were induced by lithium. Finally, lithium promoted migration of mesenchymal stem cells (MSCs) by up-regulation of MMP-9 through GSK-3β inhibition. Notably, transplantation of lithium-primed MSCs into ischemic rats enhanced MSC migration to the injured brain regions and improved the neurological performance. Several other GSK-3 inhibitors have also been reported to be beneficial in rodent ischemic models. Together, GSK-3 inhibition is a rational strategy to combat ischemic stroke and other excitotoxicity-related brain disorders.
Collapse
Affiliation(s)
- De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
| | | | | |
Collapse
|
82
|
Wang YZ, Yamagami T, Gan Q, Wang Y, Zhao T, Hamad S, Lott P, Schnittke N, Schwob JE, Zhou CJ. Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J Cell Sci 2011; 124:1553-63. [PMID: 21486944 DOI: 10.1242/jcs.080580] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mammalian olfactory epithelium (OE) has a unique stem cell or progenitor niche, which is responsible for the constant peripheral neurogenesis throughout the lifespan of the animal. However, neither the signals that regulate the behavior of these cells nor the lineage properties of the OE stem cells are well understood. Multiple Wnt signaling components exhibit dynamic expression patterns in the developing OE. We generated Wnt signaling reporter TOPeGFP transgenic mice and found TOPeGFP activation predominantly in proliferating Sox2(+) OE basal cells during early postnatal development. FACS-isolated TOPeGFP(+) OE basal cells are required, but are not sufficient, for formation of spheres. Wnt3a significantly promotes the proliferation of the Sox2(+) OE sphere cells. Wnt-stimulated OE sphere cells maintain their multipotency and can differentiate into most types of neuronal and non-neuronal epithelial cells. Also, Wnt activators shift the production of differentiated cells toward olfactory sensory neurons. Moreover, TOPeGFP(+) cells are robustly increased in the adult OE after injury. In vivo administration of Wnt modulators significantly alters the regeneration potential. This study demonstrates the role of the canonical Wnt signaling pathway in the regulation of OE stem cells or progenitors during development and regeneration.
Collapse
Affiliation(s)
- Ya-Zhou Wang
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Neuroprotective effects of the beta-catenin stabilization in an oxygen- and glucose-deprived human neural progenitor cell culture system. Int J Dev Neurosci 2011; 29:543-7. [PMID: 21497193 DOI: 10.1016/j.ijdevneu.2011.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 01/25/2023] Open
Abstract
β-Catenin stabilization achieved either via GSK-3β specific inhibition or involving canonical Wnt signalling pathway, contributes to neuroprotection in an oxygen-glucose deprivation (4h OGD) in vitro hypoxia model performed on human cortical neural progenitor cells previously differentiated into neurons and glia. Neuroprotection mechanisms include both acquiring tolerance to injury throughout preconditioning (72 h prior to OGD) or being pro-survival during 24h reoxygenation after the insult. Four hours of OGD induced apoptotic cell death elevation to 73 ± 1% vs. 12% measured in control and the LDH level, indicative of necrotic cell injury, elevation by 67 ± 7% (set to 100%). A significant reduction in apoptosis occurred at 24h reoxygenation with indirubin supplement which was 49 ± 6% at 2.5 μM BIO while LDH level was only 47 ± 5% of OGD. Kenpaullone was efficient in reducing both cell deaths at 5 μM (apoptosis 38 ± 1% and necrosis 33 ± 3% less than in OGD). Wnt agonist reduced apoptosis to 45 ± 3% at 0.01 μM, while LDH value was decreased to a level of 53 ± 5% of control. Our findings suggest that GSK-3beta inhibitors/β-catenin stabilizers may ultimately be useful drugs in neuroprotection and neuroregeneration therapies in vivo.
Collapse
|
84
|
Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain. Biometals 2011; 24:747-57. [PMID: 21373826 DOI: 10.1007/s10534-011-9433-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
Abstract
Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn't induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn't implicate GSK3 inactivation.
Collapse
|
85
|
Sheng R, Zhang LS, Han R, Gao B, Liu XQ, Qin ZH. Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia. Acta Pharmacol Sin 2011; 32:303-10. [PMID: 21258357 DOI: 10.1038/aps.2010.211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To examine the effects of a mixed formulation composed of prostaglandin E1 and lithium (PGE1+Li mixture) on brain damage after cerebral ischemia. The effects of the mixture on protein expression of heat shock proteins (HSPs), p53, and Bcl-2 were also determined. METHODS Brain ischemia was induced with a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were treated with a single intravenous administration of PGE1, lithium or a PGE1+Li mixture immediately after the ischemic insult. The infarct volume and motor behavior deficits were analyzed 24 h after the ischemic insult. The protein levels of HSP70, glucose-regulated protein 78 (GRP78), HSP60, Bcl-2, and p53 in the striatum of the ipsilateral hemisphere were examined using immunoblotting. RESULTS The mixture (PGE1 22.6 nmol/kg+Li 0.5 mmol/kg) reduced infarct volume and neurological deficits induced by focal cerebral ischemia. Moreover, the mixture had a greater neuroprotective effect against cerebral ischemia compared with PGE1 or lithium alone. The mixture was effective even if it was administered 3 h after ischemia. PGE1+Li also significantly upregulated cytoprotective HSP70, GRP78, HSP60, and Bcl-2 protein levels, while decreasing p53 expression. CONCLUSION These results demonstrated a PGE1+Li mixture with a therapeutic window of up to 3 h for clinical treatment of cerebral ischemia. The PGE1+Li mixture potentially exerts a protective effect after stroke through the induction of HSPs and Bcl-2 proteins.
Collapse
|
86
|
Chronic stress and lithium treatments alter hippocampal glutamate uptake and release in the rat and potentiate necrotic cellular death after oxygen and glucose deprivation. Neurochem Res 2011; 36:793-800. [PMID: 21253855 DOI: 10.1007/s11064-011-0404-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 01/02/2023]
Abstract
This study was undertaken to evaluate the effects of chronic variate stress and lithium treatment on glutamatergic activity and neuronal vulnerability of rat hippocampus. Male Wistar rats were simultaneously treated with lithium and submitted to a chronic variate stress protocol during 40 days, and afterwards the hippocampal glutamatergic uptake and release, measured in slices and synaptosomes, were evaluated. We observed an increased synaptosomal [(3)H]glutamate uptake and an increase in [(3)H]glutamate stimulated release in hippocampus of lithium-treated rats. Chronic stress increased basal [(3)H]glutamate release by synaptosomes, and decreased [(3)H]glutamate uptake in hippocampal slices. When evaluating cellular vulnerability, both stress and lithium increased cellular death after oxygen and glucose deprivation (OGD). We suggest that the manipulation of glutamatergic activity induced by stress may be in part responsible for the neuroendangerment observed after stress exposure, and that, in spite of the described neuroprotective effects of lithium, it increased the neuronal vulnerability after OGD.
Collapse
|
87
|
Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Toda H, Song N, Kitaichi Y, Inoue T, Koyama T. Effects of mood stabilizers on adult dentate gyrus-derived neural precursor cells. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:111-7. [PMID: 20888882 DOI: 10.1016/j.pnpbp.2010.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 09/26/2010] [Indexed: 01/20/2023]
Abstract
Neurogenesis in the adult dentate gyrus (DG) is considered to be partly involved in the action of mood stabilizers. However, it remains unclear how mood stabilizers affect neural precursor cells in adult DG. We have established a culture system of adult rat DG-derived neural precursor cells (ADP) and have shown that lithium, a mood stabilizer, and dexamethasone, an agonist of glucocorticoid receptor, reciprocally regulate ADP proliferation. Neurogenesis constitutes not only proliferation of neural precursor cells but also apoptosis and differentiation. To develop further understanding of mood stabilizer effects on neural precursor cells in adult DG, we investigated and compared the effects of four common mood stabilizers-lithium, valproate, carbamazepine, and lamotrigine-on ADP proliferation, apoptosis, and differentiation. ADP proliferation, decreased by dexamethasone, was examined using Alamar Blue assay. Using TUNEL assay, ADP apoptosis induced by staurosporine was examined. The differentiated ADP induced by retinoic acid was characterized by immunostaining with anti-GFAP or anti-Tuj1 antibody. Lithium and valproate, but not carbamazepine and lamotrigine, recovered ADP proliferation decreased by dexamethasone. All four mood stabilizers decreased ADP apoptosis. Retinoic acid differentiated ADP into both neurons and astrocytes. Lithium and carbamazepine increased the ratio of neurons and decreased that of astrocytes. However, valproate and lamotrigine increased the ratio of astrocytes and decreased that of neurons. Therefore, these four stabilizers exhibited both common and differential effects on ADP proliferation, apoptosis, and differentiation.
Collapse
Affiliation(s)
- Shuken Boku
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
89
|
Abstract
Little is known regarding the mechanisms underlying the complex etiology of mood disorders, represented mainly by major depressive disorder and bipolar disorder. The 1996 discovery that lithium inhibits glycogen synthase kinase-3 (GSK3) raised the possibility that impaired inhibition of GSK3 is associated with mood disorders. This is now supported by evidence from animal biochemical, pharmacological, molecular, and behavioral studies and from human post-mortem brain, peripheral tissue, and genetic studies that are reviewed here. Mood disorders may result in part from impairments in mechanisms controlling the activity of GSK3 or GSK3-regulated functions, and disruptions of these regulating systems at different signaling sites may contribute to the heterogeneity of mood disorders. This substantial evidence supports the conclusion that bolstering the inhibitory control of GSK3 is an important component of the therapeutic actions of drugs used to treat mood disorders and that GSK3 is a valid target for developing new therapeutic interventions.
Collapse
|
90
|
Zhu ZF, Wang QG, Han BJ, William CP. Neuroprotective effect and cognitive outcome of chronic lithium on traumatic brain injury in mice. Brain Res Bull 2010; 83:272-7. [PMID: 20638460 DOI: 10.1016/j.brainresbull.2010.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/06/2010] [Accepted: 07/11/2010] [Indexed: 10/19/2022]
Abstract
In vitro and in vivo studies have demonstrated that lithium treatment can protect neurons against excitotoxic and ischemic damage. Yet the possible beneficial effect of chronic low dose lithium on a model of traumatic brain injury (TBI) has not been intensively investigated. In this study, lithium (1 mmol/kg) was given daily, intraperitonealy, for 14 days before the onset of moderate controlled TBI and was continued until the mice were sacrificed. The results showed that in brain injured animals, chronic lithium treatment attenuated the loss of hemispheric tissue, cerebral edema and the expression of pro-inflammatory cytokine interleukin-1β. The neuronal degeneration in hippocampal CA3 and dentate gyrus sub-regions was also attenuated in the chronic lithium-treated mice as shown by Fluoro-Jade B staining. Moreover, chronic lithium treatment enhanced spatial learning and memory performance of injured mice in the Morris water maze. Our current study extended the protective role of lithium in the model of TBI and suggested that chronic lithium treatment might be a helpful therapeutic strategy for brain injury with multiple beneficial effects.
Collapse
Affiliation(s)
- Zu-Fu Zhu
- Department of Neurology, The Affiliated Jiangyin Hospital, Medical College of Southeast University, China.
| | | | | | | |
Collapse
|
91
|
Abstract
Lithium is used in the treatment of bipolar mood disorder. Reportedly, lithium can be neuroprotective in models of adult brain ischemia. The purpose of this study was to evaluate the effects of lithium in a model of neonatal hypoxic-ischemic brain injury. Nine-day-old male rats were subjected to unilateral hypoxia-ischemia (HI) and 2 mmol/kg lithium chloride was injected i.p. immediately after the insult. Additional lithium injections, 1 mmol/kg, were administered at 24-h intervals. Pups were killed 6, 24 or 72 h after HI. Lithium reduced the infarct volume from 24.7±2.9 to 13.8±3.3 mm(3) (44.1%) and total tissue loss (degeneration + lack of growth) from 67.4±4.4 to 38.4±5.9 mm(3) (43.1%) compared with vehicle at 72 h after HI. Injury was reduced in the cortex, hippocampus, thalamus and striatum. Lithium reduced the ischemia-induced dephosphorylation of glycogen synthase kinase-3β and extracellular signal-regulated kinase, the activation of calpain and caspase-3, the mitochondrial release of cytochrome c and apoptosis-inducing factor, as well as autophagy. We conclude that lithium could mitigate the brain injury after HI by inhibiting neuronal apoptosis. The lithium doses used were in the same range as those used in bipolar patients, suggesting that lithium might be safely used for the avoidance of neonatal brain injury.
Collapse
|
92
|
Russell P, Williams A, Abbott A, Chadwick J, Ehya F, Flores R, Hardamon C. Effect of lithium salts on lactate dehydrogenase, adenylate kinase, and 1-phosphofructokinase activities. J Enzyme Inhib Med Chem 2010; 25:551-6. [PMID: 20597606 DOI: 10.3109/14756360903357627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inhibitions of 30 nM rabbit muscle 1-phosphofructokinase (PFK-1) by lithium, potassium, and sodium salts showed inhibition or not depending upon the anion present. Generally, potassium salts were more potent inhibitors than sodium salts; the extent of inhibition by lithium salts also varied with the anion. Li(2)CO(3) was a relatively potent inhibitor of PFK-1 but LiCl and lithium acetate were not. Our results suggest that extents of inhibition by monovalent salts were due to both cations and anions, and the latter needs to be considered before inhibition can be credited to the cation. An explanation for monovalent salt inhibitions is proffered involving interactions of both cations and anions at negative and positive sites of PFK-1 that affect enzyme activity. Our studies suggest that lithium cations per se are not inhibitors: the inhibitors are the lithium salts, and we suggest that in vitro studies involving the effects of monovalent salts on enzymes should involve more than one anion.
Collapse
Affiliation(s)
- Percy Russell
- Department of Biology, University of California-San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
93
|
Rasouli MR, Rahimian R, Fakhfouri G, Mehr SE, Tavangar SM, Dehpour AR. Lithium does not protect against spinal cord ischemia-reperfusion injury in rabbits. Ann Vasc Surg 2010; 24:299-300. [PMID: 20142005 DOI: 10.1016/j.avsg.2009.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/05/2009] [Accepted: 10/23/2009] [Indexed: 11/16/2022]
|
94
|
Liebner S, Plate KH. Differentiation of the brain vasculature: the answer came blowing by the Wnt. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:1. [PMID: 20150991 PMCID: PMC2820477 DOI: 10.1186/2040-2384-2-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/14/2010] [Indexed: 01/09/2023]
Abstract
Vascularization of the vertebrate brain takes place during embryonic development from a preformed perineural vascular plexus. As a consequence of the intimate contact with neuroectodermal cells the vessels, which are entering the brain exclusively via sprouting angiogenesis, acquire and maintain unique barrier properties known as the blood-brain barrier (BBB). The endothelial BBB depends upon the close association of endothelial cells with pericytes, astrocytes, neurons and microglia, which are summarized in the term neuro-vascular unit. Although it is known since decades that the CNS tissue provides the cues for BBB induction and differentiation in endothelial cells, the molecular mechanism remained obscure.Only recently, the canonical Wnt/beta-catenin pathway and the Wnt7a/7b growth factors have been implicated in brain angiogenesis on the one hand and in BBB induction on the other. This breakthrough in understanding the differentiation of the brain vasculature prompted us to review these findings embedded in the emerging concepts of Wnt signaling in the vasculature. In particular, interactions with other pathways that are crucial for vascular development such as VEGF, Notch, angiopoietins and Sonic hedgehog are discussed. Finally, we considered the potential role of the Wnt pathway in vascular brain pathologies in which BBB function is hampered, as for example in glioma, stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan Liebner
- Blood-Brain Barrier Signaling Group, Institute of Neurology (Edinger-Institute, Frankfurt University Medical School, Heinrich-Hofmann-Str. 7, 60528 Frankfurt/Main, Germany
| | | |
Collapse
|
95
|
Ramirez SH, Fan S, Zhang M, Papugani A, Reichenbach N, Dykstra H, Mercer AJ, Tuma RF, Persidsky Y. Inhibition of glycogen synthase kinase 3beta (GSK3beta) decreases inflammatory responses in brain endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:881-92. [PMID: 20056834 DOI: 10.2353/ajpath.2010.090671] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune mediators and leukocyte engagement of brain microvascular endothelial cells (BMVECs) contribute to blood-brain barrier impairment during neuroinflammation. Glycogen synthase kinase 3beta (GSK3beta) was recently identified as a potent regulator of immune responses in in vitro systems and animal models. However, the role of GSK3beta in regulation of immune endothelial functions remains undetermined. Here we evaluated the effect of GSK3beta inhibition on the regulation of inflammatory responses in BMVECs. A focused PCR gene array of 84 genes was performed to identify the cytokine and chemokine gene expression profile in tumor necrosis factor (TNF) alpha-stimulated BMVECs after GSK3beta inactivation by specific inhibitors. Fifteen of 39 genes induced by TNFalpha stimulation were down-regulated after GSK3beta inhibition. Genes known to contribute to neuroinflammation that were most negatively affected by GSK3beta inactivation included IP-10/CXCL10, MCP-1/CCL2, IL-8/CXCL8, RANTES/CCL5, and Groalpha/CXCL1. GSK3beta suppression resulted in diminished secretion of these proinflammatory mediators by inflamed BMVECs detected by ELISA. GSK3beta inhibition in BMVECs reduced adhesion molecule expression as well as monocyte adhesion to and migration across cytokine stimulated BMVEC monolayers. Interactions of monocytes with TNFalpha-activated BMVECs led to barrier disruption, and GSK3beta suppression in the endothelium restored barrier integrity. GSK3beta inhibition in vivo substantially decreased leukocyte adhesion to brain endothelium under inflammatory conditions. In summary, inhibition of GSK3beta emerges as an important target for stabilization of the blood-brain barrier in neuroinflammation.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Ferchmin PA, Pagán OR, Ulrich H, Szeto AC, Hann RM, Eterović VA. Actions of octocoral and tobacco cembranoids on nicotinic receptors. Toxicon 2009; 54:1174-82. [PMID: 19281835 PMCID: PMC2783377 DOI: 10.1016/j.toxicon.2009.02.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies.
Collapse
Affiliation(s)
- P A Ferchmin
- Department of Biochemistry, Universidad Central del Caribe, Bayamon, PR, USA
| | | | | | | | | | | |
Collapse
|
97
|
Hunsberger J, Austin DR, Henter ID, Chen G. The neurotrophic and neuroprotective effects of psychotropic agents. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877500 PMCID: PMC2804881 DOI: 10.31887/dcns.2009.11.3/jhunsberger] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, NIMH, NIH, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
98
|
Nciri R, Allagui M, Vincent C, Murat JC, Croute F, El Feki A. The effects of subchronic lithium administration in male Wistar mice on some biochemical parameters. Hum Exp Toxicol 2009; 28:641-6. [PMID: 19767329 DOI: 10.1177/0960327109106486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lithium salts are efficiently used for treatment of psychiatric disorders. However, prolonged treatment frequently involves adverse side effects. In this study, effects of lithium carbonate administration on some biochemical parameters were studied in male mice. Lithium carbonate (20, 40, or 80 mg/kg body weight corresponding to 3.77, 7.54, or 15.08 mg Li element/kg body weight, respectively) was injected daily for 14 or 28 days. The following parameters were recorded: drinking water consumption, body weight, lithium and testosterone serum concentrations, activities of catalase (CAT), superoxide-dismutase (SOD), and glutathione-peroxidase (GPX), and level of lipid peroxidation (expressed as TBARS) in liver was performed. Lithium treatment, especially at the highest dose for 28 days, was found to induce weight gain and polydipsia and a significant decrease of plasma testosterone level. Lipid peroxidation level and activities of SOD and GPX were increased in liver, which suggests a perturbation of the antioxidative status. Our results indicate that subchronic exposure to lithium, which induces weight gain and polydipsia under our experimental conditions, also damages the male reproductive system and triggers an oxidative stress in the liver.
Collapse
Affiliation(s)
- R Nciri
- Laboratoire d'écophysiologie animale, faculté des sciences de Sfax, Tunisie
| | | | | | | | | | | |
Collapse
|
99
|
Marinova Z, Ren M, Wendland JR, Leng Y, Liang MH, Yasuda S, Leeds P, Chuang DM. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 2009; 111:976-87. [PMID: 19765194 DOI: 10.1111/j.1471-4159.2009.06385.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat-shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. This study aimed to investigate underlying mechanisms and functional significance of HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly up-regulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors--sodium butyrate, trichostatin A, and Class I HDAC-specific inhibitors MS-275 and apicidin, --all mimicked the ability of VPA to induce HSP70. Pre-treatment with phosphatidylinositol 3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the phosphatidylinositol 3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.
Collapse
Affiliation(s)
- Zoya Marinova
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Nciri R, Allagui MS, Vincent C, Croute F, Elfeki A. The effects of subchronic lithium administration in male Wistar mice on some biochemical parameters. ACTA BIOLOGICA HUNGARICA 2009; 60:273-80. [PMID: 19700386 DOI: 10.1556/abiol.60.2009.3.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lithium salts are efficiently used for treatment of psychiatric disorders. However, prolonged treatment frequently involves adverse side-effects. In the present work, effects of lithium carbonate administration on some biochemical parameters were studied in male mice. Lithium carbonate (20, 40 or 80 mg/kg body weight, corresponding to 3.77, 7.54 or 15.08 mg Li element/kg body weight, respectively) was injected daily for 14 or 28 days. The following parameters were recorded: water consumption, body weight, lithium and testosterone serum concentrations, activities of catalase (CAT), superoxide-dismutase (SOD) and glutathione-peroxidase (GPX) and level of lipid peroxidation (expressed as TBARS) in liver was performed. Lithium treatment, especially at the highest dose for 28 days, was found to induce weight gain, polydipsia and a significant decrease of plasma testosterone level. Lipid peroxidation level and activities of SOD and GPX were increased in liver which suggests a perturbation of the antioxidative status. Our results indicate that subchronic exposure to lithium, which induces weight gain and polydipsia under our experimental conditions, also damages the male reproductive system and triggers an oxidative stress in the liver.
Collapse
Affiliation(s)
- R Nciri
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax, PB 802, 3018 Sfax, Tunis
| | | | | | | | | |
Collapse
|