51
|
Permann C, Herburger K, Niedermeier M, Felhofer M, Gierlinger N, Holzinger A. Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy. PROTOPLASMA 2021; 258:1261-1275. [PMID: 33974144 PMCID: PMC8523461 DOI: 10.1007/s00709-021-01659-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 05/22/2023]
Abstract
Mougeotia spp. collected from field samples were investigated for their conjugation morphology by light-, fluorescence-, scanning- and transmission electron microscopy. During a scalarifom conjugation, the extragametangial zygospores were initially surrounded by a thin cell wall that developed into a multi-layered zygospore wall. Maturing zygospores turned dark brown and were filled with storage compounds such as lipids and starch. While M. parvula had a smooth surface, M. disjuncta had a punctated surface structure and a prominent suture. The zygospore wall consisted of a polysaccharide rich endospore, followed by a thin layer with a lipid-like appaerance, a massive electron dense mesospore and a very thin exospore composed of polysaccharides. Glycan microarray analysis of zygospores of different developmental stages revealed the occurrence of pectins and hemicelluloses, mostly composed of homogalacturonan (HG), xyloglucans, xylans, arabino-galactan proteins and extensins. In situ localization by the probe OG7-13AF 488 labelled HG in young zygospore walls, vegetative filaments and most prominently in conjugation tubes and cross walls. Raman imaging showed the distribution of proteins, lipids, carbohydrates and aromatic components of the mature zygospore with a spatial resolution of ~ 250 nm. The carbohydrate nature of the endo- and exospore was confirmed and in-between an enrichment of lipids and aromatic components, probably algaenan or a sporopollenin-like material. Taken together, these results indicate that during zygospore formation, reorganizations of the cell walls occured, leading to a resistant and protective structure.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Section for Plant Glycobiology, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Martin Niedermeier
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Martin Felhofer
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
52
|
Kula-Maximenko M, Niewiadomska E, Maksymowicz A, Ostrowska A, Oklestkova J, Pěnčík A, Janeczko A. Insight into Details of the Photosynthetic Light Reactions and Selected Metabolic Changes in Tomato Seedlings Growing under Various Light Spectra. Int J Mol Sci 2021; 22:ijms222111517. [PMID: 34768948 PMCID: PMC8584210 DOI: 10.3390/ijms222111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 μmol m−2 s−1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and β-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.
Collapse
Affiliation(s)
- Monika Kula-Maximenko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Ewa Niewiadomska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Anna Maksymowicz
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (J.O.); (A.P.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (J.O.); (A.P.)
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
- Correspondence:
| |
Collapse
|
53
|
Montero O, Velasco M, Miñón J, Marks EAN, Sanz-Arranz A, Rad C. Differential Membrane Lipid Profiles and Vibrational Spectra of Three Edaphic Algae and One Cyanobacterium. Int J Mol Sci 2021; 22:11277. [PMID: 34681936 PMCID: PMC8538821 DOI: 10.3390/ijms222011277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
The membrane glycerolipids of four phototrophs that were isolated from an edaphic assemblage were determined by UPLC-MS after cultivation in a laboratory growth chamber. Identification was carried out by 18S and 16S rDNA sequencing. The algal species were Klebsormidium flaccidum (Charophyta), Oocystis sp. (Chlorophyta), and Haslea spicula (Bacillariophyta), and the cyanobacterium was Microcoleus vaginatus (Cyanobacteria). The glycerolipid profile of Oocystis sp. was dominated by monogalactosyldiacylglycerol (MGDG) species, with MGDG(18:3/16:4) accounting for 68.6%, whereas MGDG(18:3/16:3) was the most abundant glycerolipid in K. flaccidum (50.1%). A ratio of digalactosyldiacylglycerol (DGDG) species to MGDG species (DGDG/MGDG) was shown to be higher in K. flaccidum (0.26) than in Oocystis sp. (0.14). This ratio increased under high light (HL) as compared to low light (LL) in all the organisms, with its highest value being shown in cyanobacterium (0.38-0.58, LL-HL). High contents of eicosapentaenoic acid (EPA, C20:5) and hexadecenoic acid were observed in the glycerolipids of H. spicula. Similar Fourier transform infrared (FTIR) and Raman spectra were found for K. flaccidum and Oocystis sp. Specific bands at 1629.06 and 1582.78 cm-1 were shown by M. vaginatus in the Raman spectra. Conversely, specific bands in the FTIR spectrum were observed for H. spicula at 1143 and 1744 cm-1. The results of this study point out differences in the membrane lipid composition between species, which likely reflects their different morphology and evolutionary patterns.
Collapse
Affiliation(s)
- Olimpio Montero
- Institute of Biology and Molecular Genetics (IBGM), Spanish Council for Scientific Research (CSIC), Sanz y Forés Str. 3, 47003 Valladolid, Spain;
| | - Marta Velasco
- Institute of Biology and Molecular Genetics (IBGM), Spanish Council for Scientific Research (CSIC), Sanz y Forés Str. 3, 47003 Valladolid, Spain;
| | - Jorge Miñón
- Composting Research Group UBUCOMP, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain; (J.M.); (C.R.)
| | - Evan A. N. Marks
- BETA Technological Center, University of Vic-University of Central Catalonia, Edifici Can Baumann, Crta. de Roda 70, 08500 Vic, Spain;
| | - Aurelio Sanz-Arranz
- Department of Fisica de la Materia Condensada, University of Valladolid, 47002 Valladolid, Spain;
| | - Carlos Rad
- Composting Research Group UBUCOMP, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain; (J.M.); (C.R.)
| |
Collapse
|
54
|
Qi G, Xu C, Li H, Ma K, Tian Y, Jin Y. Wet-Chemical Electro-Plasmonic Modulation of Metasurfaced Cell-Electrode Interfaces for Effective and Selective Entropic Killing of Cancer Cells. Anal Chem 2021; 93:13624-13631. [PMID: 34591441 DOI: 10.1021/acs.analchem.1c02919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface plasmons (SPs) of metallic nanostructures excited by optical ways have been extensively utilized for versatile sensing, biomedical, catalysis, and energy conversion applications. Nevertheless, utilizing the electrically excited plasmonic field (effect) of metallic nanostructures (and electrodes) in wet-chemical conditions, for catalytic and energy conversion, especially for potential biological and biomedical applications, is still poorly studied. Herein, we report a conceptual and biocompatible wet-chemical platform and approach to utilize the electrically excited plasmonic field (effect) of metasurfaced plasmonic electrodes (without light irradiation) for cell fate regulation on electrode surfaces. By using self-assembled two-dimensional (2D) ordered-plasmonic AuNP- or Au@SiO2 NP-nanomembrane as a metasurfaced electrode, the cancer cells cultured on it can be selectively and effectively killed (due to the enhanced stimulus current and related entropic effects) via wet-chemical electro-plasmonic modulation (WC-EPM) of the cell-electrode interfaces. Biological conformational and configurational entropic change information from the cell membrane during the WC-EPM of the cell-electrode interface has also been revealed by label-free in situ surface-enhanced Raman spectroscopy. The developed approach and results can be guides for the WC-EPM regulation of biological interfaces to achieve cell fate regulation and disease treatment and is also constructive for the design of 2D plasmonic nanomaterials and devices for efficient electrochemical energy conservation and biomedical applications.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
55
|
Nikelshparg EI, Prikhozhdenko ES, Verkhovskii RA, Atkin VS, Khanadeev VA, Khlebtsov BN, Bratashov DN. Live Cell Poration by Au Nanostars to Probe Intracellular Molecular Composition with SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2588. [PMID: 34685030 PMCID: PMC8539561 DOI: 10.3390/nano11102588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
A new type of flat substrate has been used to visualize structures inside living cells by surface-enhanced Raman scattering (SERS) and to study biochemical processes within cells. The SERS substrate is formed by stabilized aggregates of gold nanostars on a glass microscope slide coated with a layer of poly (4-vinyl pyridine) polymer. This type of SERS substrate provides good cell adhesion and viability. Au nanostars' long tips can penetrate the cell membrane, allowing it to receive the SERS signal from biomolecules inside a living cell. The proposed nanostructured surfaces were tested to study, label-free, the distribution of various biomolecules in cell compartments.
Collapse
Affiliation(s)
- Evelina I. Nikelshparg
- Department of Biophysics, Biological Faculty, Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Roman A. Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Vsevolod S. Atkin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
| | - Vitaly A. Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
- Veterinary Medicine and Biotechnology Faculty, Saratov State Agrarian University, 1 Teatralnaya Square, 410012 Saratov, Russia
| | - Boris N. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya, 410012 Saratov, Russia; (E.S.P.); (R.A.V.); (V.S.A.); (B.N.K.)
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
| |
Collapse
|
56
|
Yue J, Shen Y, Liang C, Shi W, Xu W, Xu S. Investigating Lysosomal Autophagy via Surface-Enhanced Raman Scattering Spectroscopy. Anal Chem 2021; 93:13038-13044. [PMID: 34519497 DOI: 10.1021/acs.analchem.1c02939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Autophagy plays a critical role in many vitally important physiological and pathological processes, such as the removal of damaged and aged organelles and redundant proteins. Although autophagy is mainly a protective process for cells, it can also cause cell death. In this study, we employed in situ and ex situ surface-enhanced Raman scattering (SERS) spectroscopies to obtain chemical information of lysosomes of HepG2 cells. Results reveal that the SERS profiles of the isolated lysosomes are different from the in situ spectra, indicating that lysosomes lie in different microenvironments in these two cases. We further investigated the molecular changes of isolated lysosomes according to the autophagy induced by starvation via ex situ SERS. During autophagy, the conformation of proteins and the structures of lipids have been affected, and autophagy-related molecular evidence is given for the first time in the living lysosomes. We expect that this study will provide a reference for understanding the cell autophagy mechanism.
Collapse
Affiliation(s)
- Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun 130021, P. R. China
| | - Wei Shi
- Key Lab for Molecular Enzymology & Engineering of Ministry of Education, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
57
|
Subedi NR, Yaraghi S, Jung PS, Kukal G, McDonald AG, Christodoulides DN, Vasdekis AE. Airy light-sheet Raman imaging. OPTICS EXPRESS 2021; 29:31941-31951. [PMID: 34615275 DOI: 10.1364/oe.435293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Light-sheet fluorescence microscopy has greatly improved the speed and overall photostability of optically sectioning cellular and multi-cellular specimens. Similar gains have also been conferred by light-sheet Raman imaging; these schemes, however, rely on diffraction limited Gaussian beams that hinder the uniformity and size of the imaging field-of-view, and, as such, the resulting throughput rates. Here, we demonstrate that a digitally scanned Airy beam increases the Raman imaging throughput rates by more than an order of magnitude than conventional diffraction-limited beams. Overall, this, spectrometer-less, approach enabled 3D imaging of microparticles with high contrast and 1 µm axial resolution at 300 msec integration times per plane and orders of magnitude lower irradiation density than coherent Raman imaging schemes. We detail the apparatus and its performance, as well as its compatibility with fluorescence light-sheet and quantitative-phase imaging towards rapid and low phototoxicity multimodal imaging.
Collapse
|
58
|
Intra-Ramanome Correlation Analysis Unveils Metabolite Conversion Network from an Isogenic Population of Cells. mBio 2021; 12:e0147021. [PMID: 34465024 PMCID: PMC8406334 DOI: 10.1128/mbio.01470-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To reveal the dynamic features of cellular systems, such as the correlation among phenotypes, a time or condition series set of samples is typically required. Here, we propose intra-ramanome correlation analysis (IRCA) to achieve this goal from just one snapshot of an isogenic population, via pairwise correlation among the cells of the thousands of Raman peaks in single-cell Raman spectra (SCRS), i.e., by taking advantage of the intrinsic metabolic heterogeneity among individual cells. For example, IRCA of Chlamydomonas reinhardtii under nitrogen depletion revealed metabolite conversions at each time point plus their temporal dynamics, such as protein-to-starch conversion followed by starch-to-triacylglycerol (TAG) conversion, and conversion of membrane lipids to TAG. Such among-cell correlations in SCRS vanished when the starch-biosynthesis pathway was knocked out yet were fully restored by genetic complementation. Extension of IRCA to 64 microalgal, fungal, and bacterial ramanomes suggests the IRCA-derived metabolite conversion network as an intrinsic metabolic signature of isogenic cellular population that is reliable, species-resolved, and state-sensitive. The high-throughput, low cost, excellent scalability, and general extendibility of IRCA suggest its broad applications.
Collapse
|
59
|
A polyyne toxin produced by an antagonistic bacterium blinds and lyses a Chlamydomonad alga. Proc Natl Acad Sci U S A 2021; 118:2107695118. [PMID: 34389682 PMCID: PMC8379975 DOI: 10.1073/pnas.2107695118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Algae live in association with microbes that interact by a variety of chemical mediators, resulting in mutualistic or antagonistic relationships. Although algae are key contributors to carbon fixation and are fundamental for food webs, we still know little about the underlying molecular mechanisms affecting their fitness. This study investigates the interaction between an antagonistic bacterium and a unicellular alga. It demonstrates multiple roles of a polyyne, protegencin, that is used by the bacteria to attack green algal cells. It is a highly effective toxin that alters a subcellular algal compartment used for vision, bleaches, and lyses the algal cells. These results expand our knowledge of the arsenal of chemical mediators in bacteria and their modes of action in algal communities. Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii. A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii. Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale. These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.
Collapse
|
60
|
N M, Lukose J, Mohan G, Shastry S, Chidangil S. Single cell spectroscopy of red blood cells in intravenous crystalloid fluids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119726. [PMID: 33848954 DOI: 10.1016/j.saa.2021.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Crystalloid fluids, a subset of intravenous (IV) fluid solutions are commonly used in clinical settings. The influence of these fluids on the functions of blood components are least explored. Raman spectroscopy combined with optical trapping has been widely used to evaluate the impact of external stress agents on red blood cells. The present study investigates the impact of commonly used crystalloid fluids on red blood cells in comparison with that of blood plasma using Raman Tweezers spectroscopy. The red blood cells suspended in crystalloid fluids undergo deoxygenation readily than that in blood plasma. In addition, cells in blood plasma were able to withstand laser induced deoxygenation comparatively better than that in crystalloid fluids at higher laser powers. Principle component analysis of the Raman spectral data has clearly demonstrated the discrimination of cells in plasma with that of crystalloid fluids demonstrating the effect of external induced stress on RBCs.
Collapse
Affiliation(s)
- Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
61
|
Jayan H, Pu H, Sun DW. Recent developments in Raman spectral analysis of microbial single cells: Techniques and applications. Crit Rev Food Sci Nutr 2021; 62:4294-4308. [PMID: 34251940 DOI: 10.1080/10408398.2021.1945534] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conventional microbial cell analyses are mostly population-averaged methods that conceal the characteristics of single-cell in the community. Single-cell analysis can provide information on the functional and structural variation of each cell, resulting in the elimination of long and tedious microbial cultivation techniques. Raman spectroscopy is a label-free, noninvasive, and in-vivo method ideal for single-cell measurement to obtain spatially resolved chemical information. In the current review, recent developments in Raman spectroscopic techniques for microbial characterization at the single-cell level are presented, focusing on Raman imaging of single cells to study the intracellular distribution of different components. The review also discusses the limitation and challenges of each technique and put forward some future outlook for improving Raman spectroscopy-based techniques for single-cell analysis. Raman spectroscopic methods at the single-cell level have potential in precision measurements, metabolic analysis, antibiotic susceptibility testing, resuscitation capability, and correlating phenotypic information to genomics for cells, the integration of Raman spectroscopy with other techniques such as microfluidics, stable isotope probing (SIP), and atomic force microscope can further improve the resolution and provide extensive information. Future focuses should be given to advance algorithms for data analysis, standardized reference libraries, and automated cell isolation techniques in future.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
62
|
Milewska A, Sigurjonsson OE, Leosson K. SERS Imaging of Mesenchymal Stromal Cell Differentiation. ACS APPLIED BIO MATERIALS 2021; 4:4999-5007. [PMID: 35007048 DOI: 10.1021/acsabm.1c00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding the process of mesenchymal stromal cell (MSC) osteogenic differentiation is essential for a wide range of medical applications. However, these primary cells vary significantly from donor to donor, making it difficult to fully exploit their therapeutic potential. Although osteogenic differentiation has been studied extensively, there is still a shortage of standardized methods for the evaluation of the degree of differentiation. Here, we employ noninvasive surface-enhanced Raman scattering (SERS) for studying such cells, offering a better understanding of cellular processes in situ. We present the long-term differentiation of MSCs on biocompatible gold nanoisland SERS substrates, combining imaging of cells with spectroscopic detection of molecular species and chemical events occurring on the cellular membrane adjacent to the surface of the SERS substrate. We detect multiple signs of bone tissue formation, from an early stage to mature osteoblasts, without labeling. We show that the results correlate very well with classical differentiation-detecting assays, indicating that the SERS imaging technique alone is sufficient to study the progress of osteogenic differentiation of such cells, paving a way toward continuous label-free screening of live cells.
Collapse
Affiliation(s)
- Adrianna Milewska
- Innovation Center Iceland, Árleynir 2-8, 112 Reykjavík, Iceland.,The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavík, Iceland.,University of Iceland, School of Engineering and Natural Sciences, Sæmundargötu 2, 101 Reykjavík, Iceland
| | - Olafur E Sigurjonsson
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavík, Iceland.,Reykjavik University, School of Science and Engineering, Menntavegur 1, 101 Reykjavík, Iceland
| | | |
Collapse
|
63
|
One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). mSystems 2021; 6:e0018121. [PMID: 34042466 PMCID: PMC8269212 DOI: 10.1128/msystems.00181-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soil harbors arguably the most metabolically and genetically heterogeneous microbiomes on Earth, yet establishing the link between metabolic functions and genome at the precisely one-cell level has been difficult. Here, for mock microbial communities and then for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts, and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy water) and physiological (carotenoid-containing) functions. We showed that (i) metabolically active cells from numerically rare soil taxa, such as Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be readily identified and sorted based on D2O uptake, and their one-cell genome coverage can reach ∼93% to allow high-quality genome-wide metabolic reconstruction; (ii) similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were generated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells can be either metabolically active or inert, suggesting culture-based approaches can miss many such cells. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems. IMPORTANCE Soil is home to an enormous and complex microbiome that features arguably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their in situ metabolic activities drive many natural processes of pivotal ecological significance or underlie industrial production of numerous valuable bioactivities. However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cultured species, has remained a major challenge. Here, for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) method, which identifies, sorts, and sequences at the resolution of precisely one microbial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems.
Collapse
|
64
|
Kniggendorf AK, Nogueira R, Lorey C, Roth B. Calcium carbonate deposits and microbial assemblages on microplastics in oligotrophic freshwaters. CHEMOSPHERE 2021; 266:128942. [PMID: 33220990 DOI: 10.1016/j.chemosphere.2020.128942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are solid polymer particles with a wide variety of surface properties, found in most waterbodies, and known as carriers of distinct microbial communities affecting the fate of the particles in the environment. Little is known about the formation of mineral deposits on microplastics and how these deposits connect to microbial assemblages and affect the physicochemical properties of the particles. In addition, most of the available research on this topic is based on large microplastics with sizes between 100 μm and up to 5 mm, rather than the small microplastics often found in drinking water sources. To narrow this gap in our understanding of environmental effects on small microplastics, two types of small microplastics made of two distinct polymers, poly(methyl methacrylate) (PMMA) and poly(tetrafluoroethylene) (PTFE) with sizes ranging from 15 to 150 μm, were incubated for six months in unprocessed and processed drinking water with increasing ionic concentration to allow for the formation of mineral deposits and microbial assemblages. Spatially resolved analysis with fluorescent in situ hybridization and confocal Raman microscopic imaging revealed deposits of calcium carbonates and scattered microbial assemblages on all microplastics, with structure, extend, and microbial association with the carbonates depending on the respective microplastic. Notably, PTFE floatation was overcome after three months in unprocessed drinking water but remained unchanged in processed drinking water, whereas PMMA appeared unaffected, indicating that the fate of microplastics in the environment may depend on polymer type and the encountered aquatic conditions forming mineral and microbial attachments to the particle surface.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Hannover Centre for Optical Technologies, Gottfried Wilhelm Leibniz Universität Hannover, Nienburger Str. 17, 30167, Hannover, Germany.
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Corinna Lorey
- Institute for Sanitary Engineering and Waste Management, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Gottfried Wilhelm Leibniz Universität Hannover, Nienburger Str. 17, 30167, Hannover, Germany; Cluster of Excellence PhoenixD, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany.
| |
Collapse
|
65
|
Sugiyama T, Hobro AJ, Pavillon N, Umakoshi T, Verma P, Smith N. Label-free Raman mapping of saturated and unsaturated fatty acid uptake, storage, and return toward baseline levels in macrophages. Analyst 2021; 146:1268-1280. [PMID: 33346264 DOI: 10.1039/d0an02077j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macrophage uptake and metabolism of fatty acids is involved in a large number of important biological pathways including immune activation and regulation of macrophages, as well as pathological conditions including obesity, atherosclerosis, and others lifestyle diseases. There are few methods available to directly probe both the uptake and later redistribution/metabolism of fatty acids within living cells as well as the potential changes induced within the cells themselves. We use Raman imaging and analysis to evaluate the effects of different fatty acids following their uptake in macrophages. The label-free nature of the methods means that we can evaluate the fatty acid dynamics without modifying endogenous cellular behavior and metabolism.
Collapse
Affiliation(s)
- Takeshi Sugiyama
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Moore C, Harvey A, Coleman JN, Byrne HJ, McIntyre J. Label-free screening of biochemical changes in macrophage-like cells following MoS 2 exposure using Raman micro-spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118916. [PMID: 33032120 DOI: 10.1016/j.saa.2020.118916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The emergence of large scale production techniques for 2D particulate materials has dramatically increased their applications potential. Understanding the interactions of biological cells with such particulate material is therefore of paramount importance, both for toxicological assessment and potential biomedical applications. Conventional in-vitro cytological assays commonly record only a single colorimetric end-point, and do not provide an in-depth analysis of how such materials are uptaken and processed within cells. To demonstrate its potential as an alternative, label free approach, confocal Raman micro-spectroscopy has been used to profile the cellular response of macrophage-like immune cells as a result of exposure to a sub-lethal dose of particulate MoS2, as an example novel 2D material. Particles were seen to be uptaken and trafficked in sub-cellular vesicles, and this sensitive technique allows differences in the biochemical composition of the vesicles to be assessed and monitored as a function of time. Untreated macrophage-like cells contain lipidic vesicles which are found to be relatively rich in the membrane lipid sphingomyelin, key to the process of cell membrane regeneration. After exposure to MoS2, the particulate material is seen to be invaginated in similar vesicles, the most prominent of which now, however, have spectroscopic signatures which are dominated by those of phosphatidyl family lipids, consistent with the phagocytotic pathway. The lipidic content of cells is seen to increase at all time-points (4, 24 and 72 h). although vesicles composed of sphingomyelin become more prominent again following a prolonged incubation of 72 h to a sub-lethal dose of MoS2, as the immune cell has processed the particulate material and initiates recovery to a normal/untreated state. This study reveals Raman micro-spectroscopy is an effective method for monitoring cellular responses and evolution of organelle compositions in response to MoS2 exposure. The additional benefit of using this technique is that cells can be monitored as a function of time, while it can also be used for screening other micro/nano materials for toxicology and/or establishing cell responses.
Collapse
Affiliation(s)
- Caroline Moore
- FOCAS Research Institute, Technological University Dublin, City Centre Campus, Dublin 8, Ireland.
| | - Andrew Harvey
- Centre for Research on Adaptive Nanostructures & Nanodevices (CRANN) and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Jonathan N Coleman
- Centre for Research on Adaptive Nanostructures & Nanodevices (CRANN) and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Centre Campus, Dublin 8, Ireland
| | | |
Collapse
|
67
|
Probing fibrin's molecular response to shear and tensile deformation with coherent Raman microscopy. Acta Biomater 2021; 121:383-392. [PMID: 33321217 DOI: 10.1016/j.actbio.2020.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Blood clots are essential biomaterials that prevent blood loss and provide a temporary scaffold for tissue repair. In their function, these materials must be capable of resisting mechanical forces from hemodynamic shear and contractile tension without rupture. Fibrin networks, the primary load-bearing element in blood clots, have unique nonlinear mechanical properties resulting from fibrin's hierarchical structure. This structure provides multiscale load bearing from fiber deformation to protein unfolding. Here, we study the fiber and molecular scale response of fibrin under shear and tensile loads in situ using a combination of fluorescence and vibrational (molecular) microscopy. Imaging protein fiber orientation and molecular vibrations, we find that fiber alignment and molecular unfolding in fibrin appear at much larger strains under shear compared to uniaxial tension. Alignment levels reached at 150% shear strain were reached already at 60% tensile strain, and molecular unfolding of fibrin was only detected at shear strains above 300%, whereas fibrin unfolding began already at 20% tensile strain. Moreover, shear deformation caused progressive changes in vibrational modes consistent with increased protofibril and fiber packing that were already present even at very low tensile deformation. Together with a bioinformatic analysis of the primary fibrinogen structure, we propose a scheme for the molecular response of fibrin from low to high deformation, which may relate to the teleological origin of fibrin's resistance to shear and tensile forces.
Collapse
|
68
|
Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315-1331. [PMID: 33481066 DOI: 10.1007/s00253-020-11081-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Understanding the metabolic interactions between bacteria in natural habitat at the single-cell level and the contribution of individual cell to their functions is essential for exploring the dark matter of uncultured bacteria. The combination of Raman-activated cell sorting (RACS) and single-cell Raman spectra (SCRS) with unique fingerprint characteristics makes it possible for research in the field of microbiology to enter the single cell era. This review presents an overview of current knowledge about the research progress of recognition and assessment of single bacterium cell based on RACS and further research perspectives. We first systematically summarize the label-free and non-destructive RACS strategies based on microfluidics, microdroplets, optical tweezers, and specially made substrates. The importance of RACS platforms in linking target cell genotype and phenotype is highlighted and the approaches mentioned in this paper for distinguishing single-cell phenotype include surface-enhanced Raman scattering (SERS), biomarkers, stable isotope probing (SIP), and machine learning. Finally, the prospects and challenges of RACS in exploring the world of unknown microorganisms are discussed. KEY POINTS: • Analysis of single bacteria is essential for further understanding of the microbiological world. • Raman-activated cell sorting (RACS) systems are significant protocol for characterizing phenotypes and genotypes of individual bacteria.
Collapse
|
69
|
Igonina TN, Okotrub KA, Brusentsev EY, Chuyko EA, Ragaeva DS, Ranneva SV, Amstislavsky SY. Alteration of the lipid phase transition during mouse embryos freezing after in vitro culture with linoleic acid. Cryobiology 2021; 99:55-63. [PMID: 33485897 DOI: 10.1016/j.cryobiol.2021.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 01/03/2023]
Abstract
Lipids significantly affect embryo cryopreservation in some mammalian species depending on the cell lipidome quantity and composition. One of the ways to study the relationship between lipid content and cryotolerance of cells is to study the effect of lipidome modification on laboratory mice. The objective of this research was to study how in vitro culture of mouse embryos with linoleic acid (LA) will affect lipid phase transition (LPT) during cooling and subsequent embryo development after cryopreservation. Embryos obtained in vivo at the 2-cell stage were cultured with 200 μM LA for 46 h up to the morula/blastocyst stage. Thereafter, one portion of embryos was slowly frozen to reveal the effect of LA on survival after cryopreservation, another portion was used to characterize the lipid composition and to determine the temperature of the LPT onset. Confocal fluorescence microscopy of Nile Red stained embryos showed a significant increase in lipid content of the LA treated group compared to the controls. Raman measurements showed that the onset of LPT in LA treated embryos is lower than in untreated ones: -5 °C vs +2 °C. However, these changes in the LPT onset did not affect the survival rates of embryos after cryopreservation. In summary, in vitro culture with LA changes the biophysical characteristics of embryos' lipidome and is realized in lower LPT onset, but this does not affect embryo survival after cryopreservation.
Collapse
Affiliation(s)
- T N Igonina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent'eva 10, Novosibirsk, 630090, Russia
| | - K A Okotrub
- Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Prosp. Koptyuga 1, Novosibirsk, 630090, Russia
| | - E Yu Brusentsev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent'eva 10, Novosibirsk, 630090, Russia
| | - E A Chuyko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent'eva 10, Novosibirsk, 630090, Russia
| | - D S Ragaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent'eva 10, Novosibirsk, 630090, Russia
| | - S V Ranneva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent'eva 10, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| | - S Ya Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrent'eva 10, Novosibirsk, 630090, Russia.
| |
Collapse
|
70
|
Chaichi A, Hasan SMA, Mehta N, Donnarumma F, Ebenezer P, Murray KK, Francis J, Gartia MR. Label-free lipidome study of paraventricular thalamic nucleus (PVT) of rat brain with post-traumatic stress injury by Raman imaging. Analyst 2021; 146:170-183. [PMID: 33135036 DOI: 10.1039/d0an01615b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a widespread psychiatric injury that develops serious life-threatening symptoms like substance abuse, severe depression, cognitive impairments, and persistent anxiety. However, the mechanisms of post-traumatic stress injury in brain are poorly understood due to the lack of practical methods to reveal biochemical alterations in various brain regions affected by this type of injury. Here, we introduce a novel method that provides quantitative results from Raman maps in the paraventricular nucleus of the thalamus (PVT) region. By means of this approach, we have shown a lipidome comparison in PVT regions of control and PTSD rat brains. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was also employed for validation of the Raman results. Lipid alterations can reveal invaluable information regarding the PTSD mechanisms in affected regions of brain. We have showed that the concentration of cholesterol, cholesteryl palmitate, phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, ganglioside, glyceryl tripalmitate and sulfatide changes in the PVT region of PTSD compared to control rats. A higher concentration of cholesterol suggests a higher level of corticosterone in the brain. Moreover, concentration changes of phospholipids and sphingolipids suggest the alteration of phospholipase A2 (PLA2) which is associated with inflammatory processes in the brain. Our results have broadened the understanding of biomolecular mechanisms for PTSD in the PVT region of the brain. This is the first report regarding the application of Raman spectroscopy for PTSD studies. This method has a wide spectrum of applications and can be applied to various other brain related disorders or other regions of the brain.
Collapse
Affiliation(s)
- Ardalan Chaichi
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Moudříková Š, Ivanov IN, Vítová M, Nedbal L, Zachleder V, Mojzeš P, Bišová K. Comparing Biochemical and Raman Microscopy Analyses of Starch, Lipids, Polyphosphate, and Guanine Pools during the Cell Cycle of Desmodesmus quadricauda. Cells 2021; 10:cells10010062. [PMID: 33401566 PMCID: PMC7824393 DOI: 10.3390/cells10010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022] Open
Abstract
Photosynthetic energy conversion and the resulting photoautotrophic growth of green algae can only occur in daylight, but DNA replication, nuclear and cellular divisions occur often during the night. With such a light/dark regime, an algal culture becomes synchronized. In this study, using synchronized cultures of the green alga Desmodesmus quadricauda, the dynamics of starch, lipid, polyphosphate, and guanine pools were investigated during the cell cycle by two independent methodologies; conventional biochemical analyzes of cell suspensions and confocal Raman microscopy of single algal cells. Raman microscopy reports not only on mean concentrations, but also on the distribution of pools within cells. This is more sensitive in detecting lipids than biochemical analysis, but both methods—as well as conventional fluorescence microscopy—were comparable in detecting polyphosphates. Discrepancies in the detection of starch by Raman microscopy are discussed. The power of Raman microscopy was proven to be particularly valuable in the detection of guanine, which was traceable by its unique vibrational signature. Guanine microcrystals occurred specifically at around the time of DNA replication and prior to nuclear division. Interestingly, guanine crystals co-localized with polyphosphates in the vicinity of nuclei around the time of nuclear division.
Collapse
Affiliation(s)
- Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic; (Š.M.); (P.M.)
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany;
| | - Ivan Nedyalkov Ivanov
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany;
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic; (Š.M.); (P.M.)
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany;
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, CZ-37981 Třeboň, Czech Republic; (I.N.I.); (M.V.); (V.Z.)
- Correspondence: ; Tel.: +420-384-340-485
| |
Collapse
|
72
|
Wieland K, Masri M, von Poschinger J, Brück T, Haisch C. Non-invasive Raman spectroscopy for time-resolved in-line lipidomics. RSC Adv 2021; 11:28565-28572. [PMID: 35478569 PMCID: PMC9038134 DOI: 10.1039/d1ra04254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Oil-producing yeast cells are a valuable alternative source for palm oil production and, hence, may be one important piece of the puzzle for a more sustainable future.
Collapse
Affiliation(s)
- Karin Wieland
- Chair of Analytical Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Germany
- Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Mahmoud Masri
- Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Jeremy von Poschinger
- TUM Pilot Plant for Industrial Biotechnology, Ernst-Otto-Fischerstrasse 3, 85748 Garching, Germany
| | - Thomas Brück
- TUM Pilot Plant for Industrial Biotechnology, Ernst-Otto-Fischerstrasse 3, 85748 Garching, Germany
| | - Christoph Haisch
- Chair of Analytical Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Germany
| |
Collapse
|
73
|
Russo M, Tirinato L, Scionti F, Coluccio ML, Perozziello G, Riillo C, Mollace V, Gratteri S, Malara N, Di Martino MT, Viglietto G, Tagliaferri P, Tassone P, Rossi M, Candeloro P. Raman Spectroscopic Stratification of Multiple Myeloma Patients Based on Exosome Profiling. ACS OMEGA 2020; 5:30436-30443. [PMID: 33283091 PMCID: PMC7711702 DOI: 10.1021/acsomega.0c03813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by abnormal plasma cell proliferation within the bone marrow which leads to progressive bone marrow failure, skeletal osteolytic lesions, and renal insufficiency, thus severely affecting the quality of life. MM is always preceded by monoclonal gammopathy of uncertain significance (MGUS), which progresses to asymptomatic-MM (aMM) or symptomatic-MM (sMM) at a rate of 1% per year. Despite impressive progress in the therapy of the disease, MM remains incurable. Based on these premises, the identification of biomarkers of MGUS progression to MM is a crucial issue in disease management. In this regard, exosomes (EXs) and their precious biomolecular cargo could play a pivotal role in MM detection, stratification, and follow-up. Raman spectroscopy, a label- and manipulation-free technique, and its enhanced version, surface-enhanced Raman spectroscopy (SERS), have been used for characterizing MGUS, aMM, and sMM patient-derived EXs. Here, we have demonstrated the capability of Raman spectroscopy for discriminating EXs along the progression from MGUS to aMM and sMM, thus providing useful clinical indications for patient care. The used SERS devices, based on random nanostructures, have shown good potential in terms of sensitivity, but further developments are needed for achieving reproducible and quantitative SERS results.
Collapse
Affiliation(s)
- Mario Russo
- BioNEM
(Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di
Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Luca Tirinato
- BioNEM
(Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di
Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Maria Laura Coluccio
- BioNEM
(Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di
Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Gerardo Perozziello
- BioNEM
(Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di
Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Caterina Riillo
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute
of Research of Food Safety & Health (IRC-FSH), Dipartimento di
Scienza Della Salute, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Santo Gratteri
- Institute
of Research of Food Safety & Health (IRC-FSH), Dipartimento di
Scienza Della Salute, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Natalia Malara
- BioNEM
(Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di
Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Maria Teresa Di Martino
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Marco Rossi
- Dipartimento
di Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| | - Patrizio Candeloro
- BioNEM
(Bio and Nano Engineering for Medicine) Laboratory, Dipartimento di
Medicina Sperimentale e Clinica, Università
Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
74
|
Perez-Guaita D, Chrabaszcz K, Malek K, Byrne HJ. Multimodal vibrational studies of drug uptake in vitro: Is the whole greater than the sum of their parts? JOURNAL OF BIOPHOTONICS 2020; 13:e202000264. [PMID: 32888394 DOI: 10.1002/jbio.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Herein, we investigated the use of multimodal Raman and infrared (IR) spectroscopic microscopy for the elucidation of drug uptake and subsequent cellular responses. Firstly, we compared different methods for the analysis of the combined data. Secondly, we evaluated whether the combined analysis provided enough benefits to justify the fusion of the data. A459 cells inoculated with doxorubicin (DOX) at different times were fixed and analysed using each technique. Raman spectroscopy provided high sensitivity to DOX and enabled an accurate estimation of the drug uptake at each time point, whereas IR provided a better insight into the resultant changes in the biochemical composition of the cell. In terms of benefits of data fusion, 2D correlation analysis allowed the study of the relationship between IR and Raman variables, whereas the joint analysis of IR and Raman enabled the correlation of the different variables to be monitored over time. In summary, the complementary nature of IR and Raman makes the combination of these vibrational techniques an appealing tool to follow drug kinetics and cellular response.
Collapse
Affiliation(s)
- David Perez-Guaita
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland
| | | | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin 8, Ireland
| |
Collapse
|
75
|
Horii S, Ando M, Samuel AZ, Take A, Nakashima T, Matsumoto A, Takahashi YK, Takeyama H. Detection of Penicillin G Produced by Penicillium chrysogenum with Raman Microspectroscopy and Multivariate Curve Resolution-Alternating Least-Squares Methods. JOURNAL OF NATURAL PRODUCTS 2020; 83:3223-3229. [PMID: 33074672 DOI: 10.1021/acs.jnatprod.0c00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Raman microspectroscopy is a minimally invasive technique that can identify molecules without labeling. In this study, we demonstrate the detection of penicillin G inside Penicillium chrysogenum KF425 fungal cells. Raman spectra acquired from the fungal cells had highly overlapped spectroscopic signatures and hence were analyzed with multivariate curve resolution by alternating least-squares (MCR-ALS) to extract the spectra of individual molecular constituents. In addition to detecting spatial distribution of multiple constituents such as proteins and lipids inside the fungal body, we could also observe the subcellular localization of penicillin G. This methodology has the potential to be employed in screening the production of bioactive compounds by microorganisms.
Collapse
Affiliation(s)
- Shumpei Horii
- Department of Advanced Science Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahiro Ando
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ashok Zachariah Samuel
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Akira Take
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Atsuko Matsumoto
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yo Ko Takahashi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruko Takeyama
- Department of Advanced Science Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
76
|
Lyu Y, Yuan X, Glidle A, Fu Y, Furusho H, Yang T, Yin H. Automated Raman based cell sorting with 3D microfluidics. LAB ON A CHIP 2020; 20:4235-4245. [PMID: 33057530 DOI: 10.1039/d0lc00679c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Raman activated cell sorting has emerged as a label-free technology that can link phenotypic function with genotypic properties of cells. However, its broad implementation is limited by challenges associated with throughput and the complexity of biological systems. Here, we describe a three-dimensional hydrodynamic focusing microfluidic system for a fully automated, continuous Raman activated cell sorting (3D-RACS). The system consists of a 3D printed detection chamber (1 mm3) that is integrated with a PDMS based sorting unit, optical sensors and an in-line collection module. It has the ability to precisely position cells in the detection chamber for Raman measurements, effectively eliminating spectroscopic interference from the device materials. This enables the sorting of a range of cell sizes (from 1 μm bacteria to 10's μm mammalian cells) with stable operation over >8 hours and high throughput. As a proof-of-concept demonstration, Raman-activated sorting of mixtures of Chlorella vulgaris and E. coli has demonstrated a purity level of 92.0% at a throughput of 310 cells per min. The platform employed in this demonstration features a simple "Raman window" detection system, enabling it to be built on a standard, inverted microscope. Together with its facile and robust operation, it provides a versatile tool for function-based flow cytometry and sorting applications in the fields of microbiology, biotechnology, life science and diagnostics.
Collapse
Affiliation(s)
- Yingkai Lyu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK. and Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaofei Yuan
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK. and School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Andrew Glidle
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Yuchen Fu
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Hitoshi Furusho
- Nissan Chemical Ltd., 5-1, Nihonbashi 2-Chome, Chuo-ku, Tokyo 103-6119, Japan
| | - Tianxin Yang
- Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| |
Collapse
|
77
|
Lin YS, Tsang S, Bensalem S, Tsai CC, Chen SJ, Sun CL, Lopes F, Le Pioufle B, Wang HY. Electrorotation of single microalgae cells during lipid accumulation for assessing cellular dielectric properties and total lipid contents. Biosens Bioelectron 2020; 173:112772. [PMID: 33232922 DOI: 10.1016/j.bios.2020.112772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Photosynthetic microalgae not only perform fixation of carbon dioxide but also produce valuable byproducts such as lipids and pigments. However, due to the lack of effective tools for rapid and noninvasive analysis of microalgal cellular contents, the efficiency of strain screening and culture optimizing is usually quite low. This study applied single-cell electrorotation on Scenedesmus abundans to assess cellular dielectric properties during lipid accumulation and to promptly quantify total cellular contents. The experimental electrorotation spectra were fitted with the double-shell ellipsoidal model, which considered varying cell wall thickness, to obtain the dielectric properties of cellular compartments. When the amount of total lipids increased from 15.3 wt% to 33.8 wt%, the conductivity and relative permittivity of the inner core (composed of the cytoplasm, lipid droplets, and nucleus) decreased by 21.7% and 22.5%, respectively. These dielectric properties were further used to estimate the total cellular lipid contents by the general mixing formula, and the estimated values agreed with those obtained by weighing dry biomass and extracted lipids with an error as low as 0.22 wt%. Additionally, the conductivity and relative permittivity of cell wall increased during nitrogen-starvation conditions, indicating the thickening of cell wall, which was validated by the transmission electron microscopy.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan; ENS Paris-Saclay, CNRS, Institut d'Alembert, SATIE, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Sung Tsang
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Sakina Bensalem
- ENS Paris-Saclay, CNRS, Institut d'Alembert, SATIE, Université Paris-Saclay, Gif-sur-Yvette, 91190, France; CentraleSupélec, LGPM, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Ching-Chu Tsai
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shiang-Jiuun Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chen-Li Sun
- Department of Mechanical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Filipa Lopes
- CentraleSupélec, LGPM, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Bruno Le Pioufle
- ENS Paris-Saclay, CNRS, Institut d'Alembert, LUMIN, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
78
|
Abstract
Microbial cells that live in the same community can exist in different physiological and morphological states that change as a function of spatiotemporal variations in environmental conditions. This phenomenon is commonly known as phenotypic heterogeneity and/or diversity. Measuring this plethora of cellular expressions is needed to better understand and manage microbial processes. However, most tools to study phenotypic diversity only average the behavior of the sampled community. In this work, we present a way to quantify the phenotypic diversity of microbial samples by inferring the (bio)molecular profile of its constituent cells using Raman spectroscopy. We demonstrate how this tool can be used to quantify the phenotypic diversity that arises after the exposure of microbes to stress. Raman spectroscopy holds potential for the detection of stressed cells in bioproduction. Microbial cells experience physiological changes due to environmental change, such as pH and temperature, the release of bactericidal agents, or nutrient limitation. This has been shown to affect community assembly and physiological processes (e.g., stress tolerance, virulence, or cellular metabolic activity). Metabolic stress is typically quantified by measuring community phenotypic properties such as biomass growth, reactive oxygen species, or cell permeability. However, bulk community measurements do not take into account single-cell phenotypic diversity, which is important for a better understanding and the subsequent management of microbial populations. Raman spectroscopy is a nondestructive alternative that provides detailed information on the biochemical makeup of each individual cell. Here, we introduce a method for describing single-cell phenotypic diversity using the Hill diversity framework of Raman spectra. Using the biomolecular profile of individual cells, we obtained a metric to compare cellular states and used it to study stress-induced changes. First, in two Escherichia coli populations either treated with ethanol or nontreated and then in two Saccharomyces cerevisiae subpopulations with either high or low expression of a stress reporter. In both cases, we were able to quantify single-cell phenotypic diversity and to discriminate metabolically stressed cells using a clustering algorithm. We also described how the lipid, protein, and nucleic acid compositions changed after the exposure to the stressor using information from the Raman spectra. Our results show that Raman spectroscopy delivers the necessary resolution to quantify phenotypic diversity within individual cells and that this information can be used to study stress-driven metabolic diversity in microbial populations. IMPORTANCE Microbial cells that live in the same community can exist in different physiological and morphological states that change as a function of spatiotemporal variations in environmental conditions. This phenomenon is commonly known as phenotypic heterogeneity and/or diversity. Measuring this plethora of cellular expressions is needed to better understand and manage microbial processes. However, most tools to study phenotypic diversity only average the behavior of the sampled community. In this work, we present a way to quantify the phenotypic diversity of microbial samples by inferring the (bio)molecular profile of its constituent cells using Raman spectroscopy. We demonstrate how this tool can be used to quantify the phenotypic diversity that arises after the exposure of microbes to stress. Raman spectroscopy holds potential for the detection of stressed cells in bioproduction.
Collapse
|
79
|
Du J, Su Y, Qian C, Yuan D, Miao K, Lee D, Ng AHC, Wijker RS, Ribas A, Levine RD, Heath JR, Wei L. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. Nat Commun 2020; 11:4830. [PMID: 32973134 PMCID: PMC7518429 DOI: 10.1038/s41467-020-18376-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Non-invasively probing metabolites within single live cells is highly desired but challenging. Here we utilize Raman spectro-microscopy for spatial mapping of metabolites within single cells, with the specific goal of identifying druggable metabolic susceptibilities from a series of patient-derived melanoma cell lines. Each cell line represents a different characteristic level of cancer cell de-differentiation. First, with Raman spectroscopy, followed by stimulated Raman scattering (SRS) microscopy and transcriptomics analysis, we identify the fatty acid synthesis pathway as a druggable susceptibility for differentiated melanocytic cells. We then utilize hyperspectral-SRS imaging of intracellular lipid droplets to identify a previously unknown susceptibility of lipid mono-unsaturation within de-differentiated mesenchymal cells with innate resistance to BRAF inhibition. Drugging this target leads to cellular apoptosis accompanied by the formation of phase-separated intracellular membrane domains. The integration of subcellular Raman spectro-microscopy with lipidomics and transcriptomics suggests possible lipid regulatory mechanisms underlying this pharmacological treatment. Our method should provide a general approach in spatially-resolved single cell metabolomics studies. Single-cell metabolomics can offer deep insights into the metabolic reprogramming that accompanies disease states. Here, the authors use Raman spectro-microscopy for non-invasive metabolite analysis and identification of druggable metabolic susceptibilities in single live melanoma cells.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yapeng Su
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Institute for Systems Biology, Seattle, WA, USA
| | - Chenxi Qian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA, USA
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Reto S Wijker
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Antoni Ribas
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Raphael D Levine
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
80
|
Shao Y, Gu W, Qiu YA, Wang S, Peng Y, Zhu Y, Zhuang S. Lipids monitoring in Scenedesmus obliquus based on terahertz technology. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:161. [PMID: 32944077 PMCID: PMC7493189 DOI: 10.1186/s13068-020-01801-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Microalgae are considered as a source of low pollution and renewable fuel due to their ability to synthesize an abundance of lipids. Conventional methods for lipid quantification are time-consuming and chemically contaminated, while spectroscopic method combined with mathematical model is much more attractive due to its ability of qualitative and quantitative analysis of material composition, in this sense, terahertz technology provides not only timely and non-destructive testing without chemical pollution, but also provides information on the functional group vibration mode and structure of the measured components. Therefore, terahertz technology is utilized in our investigation and proposed for microalgae metabolism detection. RESULTS The aim of this study was to use terahertz spectroscopy to observe lipid content in Scenedesmus obliquus (S. obliquus). We collected the THz spectra of S. obliquus which were cultivated under nitrogen stress and terahertz spectroscopy was used to analyze changes in substance components (lipids, proteins, carbohydrates and β-carotene). The PLS algorithm was used to model the terahertz data to distinguish the different lipid content of S. obliquus under nitrogen stress. The correlation coefficient of the prediction results of the lipid characteristic band modeling was above 0.991, and the root mean square error was less than 0.132. It indicated that terahertz technology can be used to discriminate S. obliquus cells under different nitrogen stress effectively. The correlation between the terahertz characteristic peak (9.3 THz) and the total lipid content determined by gravimetry reaches 0.960. The final results were compared with the commonly used spectroscopic methods for lipid observation (Raman spectroscopy). CONCLUSIONS In this article, we demonstrated the effectiveness of terahertz spectroscopy to monitor changes in microalgae lipid content under nitrogen stress. Terahertz spectroscopy is more suitable for industrial production or ordinary laboratories which require intermediate result with low-frequency screening. When quantifying microalgae lipids, the constraint of terahertz spectroscopy is far less than that of Raman spectroscopy, and it is easier for operator to accurately quantify microalgae lipid. In addition, it is still in early stage for the study of microalgae using terahertz spectroscopy technology, there is still much potential for us to explore.
Collapse
Affiliation(s)
- Yongni Shao
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092 China
| | - Weimin Gu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Y ating Qiu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Shengfeng Wang
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Yan Peng
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092 China
| | - YiMing Zhu
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092 China
| | - Songlin Zhuang
- Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, 200093 China
| |
Collapse
|
81
|
Zhang P, Wang G, Huang S. Parallel micro-Raman spectroscopy of multiple cells in a single acquisition using hierarchical sparsity. Analyst 2020; 145:6032-6037. [PMID: 32743627 DOI: 10.1039/d0an01081b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parallel micro-Raman spectroscopy can significantly expand the analytical capacity of single biological cells. By positioning the Raman spectra of multiple trapped cells on a detector array along the grating dispersion direction, the throughput of single-cell analysis can be improved by orders of magnitude. However, accurate retrieval of the individual spectra from the superimposed spectrum in a single acquisition presents great challenges. In this work, we developed a hierarchical sparsity method under a compressive sensing framework. The method combined a group-selection strategy with in-group sparsity for spectral reconstruction. The performances of the developed method were demonstrated with both simulated and experimental data, and the Raman spectra of the individual trapped cells were retrieved with both high accuracy and low noises; especially, with a group-selection mechanism, the developed method successfully avoided wrong selection of the eigenspectra for spectral reconstruction. The technique is expected to find wide applications in simultaneous monitoring of long biological processes of multiple cells by Raman spectroscopy.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | |
Collapse
|
82
|
Leu JY, Yee J, Tu CS, Sayson S, Jou YS, Geraldino PJ. Microstructure and molecular vibration of mannosylerythritol lipids from Pseudozyma yeast strains. Chem Phys Lipids 2020; 232:104969. [PMID: 32888916 DOI: 10.1016/j.chemphyslip.2020.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
This work highlights microstructure and molecular vibration of mannosylerythritol lipids (MELs) from Pseudozyma aphidis B1 and Pseudozyma hubeiensis TS18 strains collected from brown algae and mangrove sediments. The scanning electron microscopy (SEM) shows the elongated structures with polar budding in the cells of B1 and TS18 yeast strains. The high-resolution transmission electron microscopy (HRTEM) identifies large lipid bodies that contain MELs confirmed by the anthrone test and thin layer chromatography. The HRTEM also reveals unknown electron dense inclusions. The surface-enhanced Raman scattering (SERS) was used to analysis molecular vibrations of cells, MEL mixtures, and purified MELs (A, B, and C) extracted from the B1 and TS18 cells. The peak analysis of Raman spectra suggests a higher level of saturation per fatty acid chain in MEL-B in both B1 and TS18 cells. This work demonstrates that the out-of-plane bending vibrations of the CH bonds in the range of 840-940 cm-1 can serve an efficient indicator for detecting MEL-A, -B, and -C.
Collapse
Affiliation(s)
- Jyh-Yih Leu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Jonie Yee
- Department of Biology, University of San Carlos, Cebu City, 6000, Philippines
| | - Chi-Shun Tu
- Department of Physics, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Stephanie Sayson
- Department of Life Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Yi-Shin Jou
- Department of Physics, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Paul John Geraldino
- Department of Biology, University of San Carlos, Cebu City, 6000, Philippines.
| |
Collapse
|
83
|
Wang X, Xin Y, Ren L, Sun Z, Zhu P, Ji Y, Li C, Xu J, Ma B. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo. SCIENCE ADVANCES 2020; 6:eabb3521. [PMID: 32821836 PMCID: PMC7413728 DOI: 10.1126/sciadv.abb3521] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/26/2020] [Indexed: 05/19/2023]
Abstract
The potential of Raman-activated cell sorting (RACS) is inherently limited by conflicting demands for signal quality and sorting throughput. Here, we present positive dielectrophoresis-based Raman-activated droplet sorting (pDEP-RADS), where a periodical pDEP force was exerted to trap fast-moving cells, followed by simultaneous microdroplet encapsulation and sorting. Screening of yeasts for triacylglycerol (TAG) content demonstrated near-theoretical-limit accuracy, ~120 cells min-1 throughput and full-vitality preservation, while sorting fatty acid degree of unsaturation (FA-DU) featured ~82% accuracy at ~40 cells min-1. From a yeast library expressing algal diacylglycerol acyltransferases (DGATs), a pDEP-RADS run revealed all reported TAG-synthetic variants and distinguished FA-DUs of enzyme products. Furthermore, two previously unknown DGATs producing low levels of monounsaturated fatty acid-rich TAG were discovered. This first demonstration of RACS for enzyme discovery represents hundred-fold saving in time consumables and labor versus culture-based approaches. The ability to automatically flow-sort resonance Raman-independent phenotypes greatly expands RACS' application.
Collapse
Affiliation(s)
- Xixian Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihui Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Single-cell Biotechnology Co., Ltd., Qingdao, Shandong, China
| | - Chunyu Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Corresponding author. (B.M.); (J.X.)
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Corresponding author. (B.M.); (J.X.)
| |
Collapse
|
84
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
85
|
Jacob SS, Bankapur A, Barkur S, Acharya M, Chidangil S, Rao P, Kamath A, Lakshmi RV, Baby PM, Rao RK. Micro-Raman Spectroscopy Analysis of Optically Trapped Erythrocytes in Jaundice. Front Physiol 2020; 11:821. [PMID: 32754052 PMCID: PMC7366392 DOI: 10.3389/fphys.2020.00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Derangements in bilirubin metabolism and/or dysfunctions in the hepato-biliary system lead to the unhealthy buildup of bilirubin in blood, resulting in jaundice. During the course of this disorder, circulating red cells are invariably subjected to toxic effects of serum bilirubin and an array of inflammatory compounds. This study aimed to investigate the vibrational spectroscopy of live red cells in jaundice using micro-Raman spectroscopy combined with optical-trap. Red cells from blood samples of healthy volunteers and patients with jaundice were optically immobilized and micro-Raman probed using a 785 nm diode laser. Raman signatures from red cells in jaundice exhibited significant variations from the normal and the spectral-markers were obtained from multivariate analytical methods. This research gives insightful views on how different pathologies can act as "stress-milieus" for red cells in circulation, possibly impeding their normal functions and also exasperating anemia. Raman spectroscopy, an emerging bio-analytical technique, is sensitive in detecting molecular-conformations in situ, at cellular-levels and in real-time. This study could pave way in understanding fundamental red cell behavior in different diseases by analyzing Raman markers.
Collapse
Affiliation(s)
- Sanu Susan Jacob
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Surekha Barkur
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Mahendra Acharya
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Asha Kamath
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - R. Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Prathap M. Baby
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Raghavendra K. Rao
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
86
|
Baron VO, Chen M, Hammarstrom B, Hammond RJH, Glynne-Jones P, Gillespie SH, Dholakia K. Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform. Commun Biol 2020; 3:236. [PMID: 32409770 PMCID: PMC7224385 DOI: 10.1038/s42003-020-0915-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB) remains a leading cause of death worldwide. Lipid rich, phenotypically antibiotic tolerant, bacteria are more resistant to antibiotics and may be responsible for relapse and the need for long-term TB treatment. We present a microfluidic system that acoustically traps live mycobacteria, M. smegmatis, a model organism for M. tuberculosis. We then perform optical analysis in the form of wavelength modulated Raman spectroscopy (WMRS) on the trapped M. smegmatis for up to eight hours, and also in the presence of isoniazid (INH). The Raman fingerprints of M. smegmatis exposed to INH change substantially in comparison to the unstressed condition. Our work provides a real-time assessment of the impact of INH on the increase of lipids in these mycobacteria, which could render the cells more tolerant to antibiotics. This microfluidic platform may be used to study any microorganism and to dynamically monitor its response to different conditions and stimuli.
Collapse
Affiliation(s)
- Vincent O Baron
- School of Medicine, University of St Andrews, KY16 9TF, St Andrews, UK
| | - Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, St Andrews, UK.
| | - Björn Hammarstrom
- School of Engineering, University of Southampton, SO17 1BJ, Southampton, UK
| | | | - Peter Glynne-Jones
- School of Engineering, University of Southampton, SO17 1BJ, Southampton, UK
| | | | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, St Andrews, UK
- Department of Physics, College of Science, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
87
|
Tanniche I, Collakova E, Denbow C, Senger RS. Characterizing metabolic stress-induced phenotypes of Synechocystis PCC6803 with Raman spectroscopy. PeerJ 2020; 8:e8535. [PMID: 32266110 PMCID: PMC7115747 DOI: 10.7717/peerj.8535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During their long evolution, Synechocystis sp. PCC6803 developed a remarkable capacity to acclimate to diverse environmental conditions. In this study, Raman spectroscopy and Raman chemometrics tools (RametrixTM) were employed to investigate the phenotypic changes in response to external stressors and correlate specific Raman bands with their corresponding biomolecules determined with widely used analytical methods. METHODS Synechocystis cells were grown in the presence of (i) acetate (7.5-30 mM), (ii) NaCl (50-150 mM) and (iii) limiting levels of MgSO4 (0-62.5 mM) in BG-11 media. Principal component analysis (PCA) and discriminant analysis of PCs (DAPC) were performed with the RametrixTM LITE Toolbox for MATLABⓇ. Next, validation of these models was realized via RametrixTM PRO Toolbox where prediction of accuracy, sensitivity, and specificity for an unknown Raman spectrum was calculated. These analyses were coupled with statistical tests (ANOVA and pairwise comparison) to determine statistically significant changes in the phenotypic responses. Finally, amino acid and fatty acid levels were measured with well-established analytical methods. The obtained data were correlated with previously established Raman bands assigned to these biomolecules. RESULTS Distinguishable clusters representative of phenotypic responses were observed based on the external stimuli (i.e., acetate, NaCl, MgSO4, and controls grown on BG-11 medium) or its concentration when analyzing separately. For all these cases, RametrixTM PRO was able to predict efficiently the corresponding concentration in the culture media for an unknown Raman spectra with accuracy, sensitivity and specificity exceeding random chance. Finally, correlations (R > 0.7) were observed for all amino acids and fatty acids between well-established analytical methods and Raman bands.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Eva Collakova
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Cynthia Denbow
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Ryan S. Senger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
88
|
Miyaoka R, Ando M, Harada R, Osaka H, Samuel AZ, Hosokawa M, Takeyama H. Rapid inspection method for investigating the heat processing conditions employed for chicken meat using Raman spectroscopy. J Biosci Bioeng 2020; 129:700-705. [PMID: 32089434 DOI: 10.1016/j.jbiosc.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
In Japan, the imports of meat products have been increasing every year. Heat processing of meat is the current standard method for ensuring domestic animal health, particularly in case of meat products from areas where infectious diseases are known to have occurred in domestic animals. The Animal Quarantine Service needs to establish a method that detects the temperature at which the meat has been heat-processed (endpoint temperature) to ensure that the standard protocol is followed at the production location. Here, we developed a Raman spectroscopy and multivariate statistics (viz. multivariate curve resolution (MCR))-based simple and rapid method for accurately estimating the end point temperature. We showed that the temperature-dependent secondary structure modification of proteins can serve as an accurate indicator of the temperature of heat processing. This methodology can be easily automated for effective utilization by someone who is not an expert in spectroscopy. We envisage a wider application of this method in food analysis, although the present research investigated the application of this method in chicken meat heat processing analysis.
Collapse
Affiliation(s)
- Rimi Miyaoka
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masahiro Ando
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Rieko Harada
- Pathological and Physiochemical Examination Division, Laboratory Department, Animal Quarantine Service, 11-1 Hara-machi, Isogo-ku, Yokohama-city, Kanagawa 235-0008, Japan
| | - Hiroyuki Osaka
- Pathological and Physiochemical Examination Division, Laboratory Department, Animal Quarantine Service, 11-1 Hara-machi, Isogo-ku, Yokohama-city, Kanagawa 235-0008, Japan
| | - Ashok Zachariah Samuel
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology and Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
89
|
Lukose J, Shastry S, Mithun N, Mohan G, Ahmed A, Chidangil S. Red blood cells under varying extracellular tonicity conditions: an optical tweezers combined with micro-Raman study. Biomed Phys Eng Express 2020; 6:015036. [PMID: 33438624 DOI: 10.1088/2057-1976/ab6e1a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Extracellular tonicity has a significant influence on human red blood cell deformation capability. Advancements in the area of laser physics and optical trapping have opened up a plethora of applications for understanding cell structure and dynamics. Here, Raman Tweezers technique was employed to investigate the impact of extracellular tonicity by exposing human red blood cells to both hypertonic and hypotonic intravenous fluids. Heme aggregation was observed in hypertonic saline solution, accompanied with damage in membrane protein. Loss of intracellular hemoglobin in hypotonic solution was evident from the decrease in porphyrin breathing mode present at 752 cm-1. Oxygen binding to the central iron in the red blood cell heme was also affected under both hyper/hypo tonicity conditions. Morphological deviation of discocytes to echinocytes/spherocytes were also evident from quantitative phase imaging. Principal component analysis have showed clear differentiation of samples in order to classify the control erythrocytes and the tonicity stressed erythrocytes. Present study has also demonstrated the application of Raman Tweezers spectroscopy as a potential tool for probing red blood cell under different stress conditions.
Collapse
Affiliation(s)
- Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka-576104., India
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
This is a review of relevant Raman spectroscopy (RS) techniques and their use in structural biology, biophysics, cells, and tissues imaging towards development of various medical diagnostic tools, drug design, and other medical applications. Classical and contemporary structural studies of different water-soluble and membrane proteins, DNA, RNA, and their interactions and behavior in different systems were analyzed in terms of applicability of RS techniques and their complementarity to other corresponding methods. We show that RS is a powerful method that links the fundamental structural biology and its medical applications in cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key roles of RS in modern technologies of structure-based drug design are the detection and imaging of membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), which would help to further the development of protein structural crystallography and would result in a number of novel high-resolution structures of membrane proteins—drug targets; and, structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the development of new optogenetic tools. Physical background and biomedical applications of spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these techniques have been extensively developed during recent several decades. A number of interesting applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also discussed.
Collapse
|
91
|
Vaidyanathan S. Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117382. [PMID: 31357053 DOI: 10.1016/j.saa.2019.117382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were employed to analyze the biomolecular transitions and lipid accumulation in three freshwater green microalgal species, Monoraphidium contortum (M. contortum), Pseudomuriella sp. and Chlamydomonas sp. during various phases of their growth. Biomolecular transitions and lipid [hydrocarbons, triacylglycerides (TAGs)] accumulation within the microalgal cells were identified using second derivatives of the FTIR absorption spectroscopy. Second derivative analysis normalized and resolved the original spectra and led to the identification of smaller, overlapping bands. Both relative and absolute content of lipids were determined using the integrated band area. M. contortum exhibited higher accumulation of lipids than the other two species. The integrated band area of the vibrations from saturated (SFA) and unsaturated lipids (UFA) enabled quantification of fatty acids. The percentage of SFA and UFA was determined using GC, FTIR and Raman spectroscopy. From the spectral data, the order of increasing concentration of SFA among the three microalgal species was M. contortum > Chlamydomonas sp. >Pseudomuriella sp. The spectral results on fatty acids were consistent with the separation of lipids by gas chromatography. The results emphasized the significance of FTIR and Raman spectroscopic methods in monitoring the biomolecular transitions and rapid quantification of lipids, without the need for extraction of lipids.
Collapse
Affiliation(s)
- Seetharaman Vaidyanathan
- ChELSI Institute, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
92
|
N M, Lukose J, Shastry S, Mohan G, Chidangil S. Human red blood cell behaviour in hydroxyethyl starch: probed by single cell spectroscopy. RSC Adv 2020; 10:31453-31462. [PMID: 35520664 PMCID: PMC9056550 DOI: 10.1039/d0ra05842d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Hydroxyethyl starch (HES) is a commonly used intravenous fluid in hospital settings. The merits and demerits of its application is still a debatable topic. Investigating the interaction of external agents like intravenous fluids with blood cells is of great significance in clinical environments. Micro-Raman spectroscopy combined with an optical tweezers technique has been utilized for conducting systematic investigations of single live red blood cells (RBCs) under the influence of external stress agents. The present work deals with a detailed biophysical study on the response of human live red blood cells in hydroxyethyl starch using optical techniques. Morphological changes in red blood cells were monitored using quantitate phase imaging techniques. Micro-Raman studies suggest that there is a significant reduction in the oxy-haemoglobin level in red blood cells suspended in HES. The spectra recorded by using different probe laser powers has shown that the cells are more vulnerable in HES under the influence of externally induced stress than in blood plasma. In addition, the spectral results support the possibility of heme aggregation and membrane damage for red blood cells in HES under externally induced stress. Principle component analysis performed on the Raman spectra were able to effectively discriminate between red blood cells in HES and in blood plasma. The use of Raman tweezers can be highly beneficial in elucidating biochemical alterations happening in live, human red blood cell. Hydroxyethyl starch (HES) is a commonly used intravenous fluid in hospital settings.![]()
Collapse
Affiliation(s)
- Mithun N
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion
- Kasturba Medical College, Manipal
- Manipal Academy of Higher Education
- Manipal
- India
| | - Ganesh Mohan
- Department of Immunohematology and Blood Transfusion
- Kasturba Medical College, Manipal
- Manipal Academy of Higher Education
- Manipal
- India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics
- Department of Atomic and Molecular Physics
- Manipal Academy of Higher Education
- India
| |
Collapse
|
93
|
Abstract
Raman imaging is a microspectroscopic approach revealing the chemistry and structure of plant cell walls in situ on the micro- and nanoscale. The method is based on the Raman effect (inelastic scattering) that takes place when monochromatic laser light interacts with matter. The scattered light conveys a change in energy that is inherent of the involved molecule vibrations. The Raman spectra are thus characteristic for the chemical structure of the molecules and can be recorded spatially ordered with a lateral resolution of about 300 nm. Based on thousands of acquired Raman spectra, images can be assessed using univariate as well as multivariate data analysis approaches. One advantage compared to staining or labeling techniques is that not only one image is obtained as a result but different components and characteristics can be displayed in several images. Furthermore, as every pixel corresponds to a Raman spectrum, which is a kind of "molecular fingerprint," the imaging results should always be evaluated and further details revealed by analysis (e.g., band assignment) of extracted spectra. In this chapter, the basic theoretical background of the technique and instrumentation are described together with sample preparation requirements and tips for high-quality plant tissue sections and successful Raman measurements. Typical Raman spectra of the different plant cell wall components are shown as well as an exemplified analysis of Raman data acquired on the model plant Arabidopsis. Important preprocessing methods of the spectra are included as well as single component image generation (univariate) and spectral unmixing by means of multivariate approaches (e.g., vertex component analysis).
Collapse
Affiliation(s)
- Batirtze Prats Mateu
- Department of Nanobiotechnology, Institute of Biophysics, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology, Institute of Biophysics, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, Institute of Biophysics, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
94
|
Analysis of Lipids in Single Cells and Organelles Using Nanomanipulation-Coupled Mass Spectrometry. Methods Mol Biol 2020; 2064:19-30. [PMID: 31565764 DOI: 10.1007/978-1-4939-9831-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to discriminately analyze the chemical constituents of single cells and organelles is highly sought after and necessary to establish true biomarkers. Some major challenges of individual cell analysis include requirement and expenditure of a large sample of cells as well as extensive extraction and separation techniques. Here, we describe methods to perform individual cell and organelle extractions of both tissues and cells in vitro using nanomanipulation coupled to mass spectrometry. Lipid profiles display heterogeneity from extracted adipocytes and lipid droplets, demonstrating the necessity for single cell analysis. The application of these techniques can be applied to other cell and organelle types for selective and thorough monitoring of disease progression and biomarker discovery.
Collapse
|
95
|
Laviale M, Beaussart A, Allen J, Quilès F, El-Kirat-Chatel S. Probing the Adhesion of the Common Freshwater Diatom Nitzschia palea at Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48574-48582. [PMID: 31766843 DOI: 10.1021/acsami.9b17821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Freshwater biofilms play an essential ecological role, but they also adversely affect human activities through undesirable biofouling of artificial submerged structures. They form complex aggregates of microorganisms that colonize any type of substratum. In phototrophic biofilms, diatoms dominate in biomass and produce copious amount of extracellular polymeric substances (EPSs), making them efficient early colonizers. Therefore, a better understanding of diatoms adhesive properties is essential to develop new anti-biofouling strategies. In this context, we used atomic force microscopy (AFM) to decipher the topography and adhesive mechanisms of the common freshwater diatom Nitzschia palea. Images taken in physiological conditions revealed typical ultrastructural features with a few nanometers resolution. Using single-cell force spectroscopy, we showed that N. palea strongly adheres to hydrophobic surfaces as compared to hydrophilic ones. Chemical force spectroscopy with hydrophobic tips further confirmed that the adhesion is governed by surface-associated hydrophobic EPS distributed in clusters at the frustule surface, and mostly composed of (glyco)-lipids as revealed by Raman spectroscopy. Collectively, our results demonstrate that AFM-based nanoscopy, combined with Raman spectroscopy, is a powerful tool to provide new insights into the adhesion mechanisms of diatoms.
Collapse
Affiliation(s)
- Martin Laviale
- Université de Lorraine, CNRS, LIEC , F-57000 Metz , France
| | | | - Joey Allen
- Université de Lorraine, CNRS, LIEC , F-57000 Metz , France
| | - Fabienne Quilès
- Université de Lorraine, CNRS, LCPME , F-54000 Nancy , France
| | | |
Collapse
|
96
|
Kim J, Nam SH, Lim DK, Suh YD. SERS-based particle tracking and molecular imaging in live cells: toward the monitoring of intracellular dynamics. NANOSCALE 2019; 11:21724-21727. [PMID: 31495836 DOI: 10.1039/c9nr05159g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although diverse endogenous biomolecules involved in life processes are of major interest in cell biology, there is still a lack of suitable methods for studying biomolecules within live cells without labelling. Herein, we describe a near-infrared (NIR) surface-enhanced Raman scattering (SERS)-based particle tracking technique gathering chemical information inside live cells for monitoring their intracellular dynamics. The wide-field SERS imaging spectroscopy system facilitates high temporal resolution (200 ms) under high spatial resolution (512 × 512 pixels) for one live cell. With high spatiotemporal resolution and signal-to-background ratio, we show that the Raman signal from intracellular cargoes in live cells is sporadically observed and localized to a vesicular level.
Collapse
Affiliation(s)
- Jongwoo Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | | | | | | |
Collapse
|
97
|
Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 2019; 37:107388. [DOI: 10.1016/j.biotechadv.2019.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
98
|
Nikelshparg EI, Grivennikova VG, Baizhumanov AA, Semenova AA, Sosnovtseva V, Goodilin EA, Maksimov GV, Brazhe NA. Probing lipids in biological membranes using SERS. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
99
|
Russo V, Candeloro P, Malara N, Perozziello G, Iannone M, Scicchitano M, Mollace R, Musolino V, Gliozzi M, Carresi C, Morittu VM, Gratteri S, Palma E, Muscoli C, Di Fabrizio E, Mollace V. Key Role of Cytochrome C for Apoptosis Detection Using Raman Microimaging in an Animal Model of Brain Ischemia with Insulin Treatment. APPLIED SPECTROSCOPY 2019; 73:1208-1217. [PMID: 31219322 DOI: 10.1177/0003702819858671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brain ischemia represents a leading cause of death and disability in industrialized countries. To date, therapeutic intervention is largely unsatisfactory and novel strategies are required for getting better protection of neurons injured by cerebral blood flow restriction. Recent evidence suggests that brain insulin leads to protection of neuronal population undergoing apoptotic cell death via modulation of oxidative stress and mitochondrial cytochrome c (CytC), an effect to be better clarified. In this work, we investigate on the effect of insulin given intracerebroventricular (ICV) before inducing a transient global ischemia by bilateral occlusion of the common carotid arteries (BCCO) in Mongolian gerbils (MG). The transient (3 min) global ischemia in MG is observed to produce neurodegenerative effect mainly into CA3 hippocampal region, 72 h after cerebral blood restriction. Intracerebroventricular microinfusion of insulin significantly prevents the apoptosis of CA3 hippocampal neurons. Histological observation, after hematoxylin and eosin staining, puts in evidence the neuroprotective role of insulin, but Raman microimaging provides a clearer insight in the CytC mechanism underlying the apoptotic process. Above all, CytC has been revealed to be an outstanding, innate Raman marker for monitoring the cells status, thanks to its resonant scattering at 530 nm of incident wavelength and to its crucial role in the early stages of cells apoptosis. These data support the hypothesis of an insulin-dependent neuroprotection and antiapoptotic mechanism occurring in the brain of MG undergoing transient brain ischemia. The observed effects occurred without any peripheral change on serum glucose levels, suggesting an alternative mechanism of insulin-induced neuroprotection.
Collapse
Affiliation(s)
- Vanessa Russo
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Association: Exchanger-Share Your Science, Complesso "Nini Barbieri," Catanzaro, Italy
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Natalia Malara
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Gerardo Perozziello
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Neuroscience Institute, Pharmacology Section, Complesso "Nini Barbieri," Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Micaela Gliozzi
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Cristina Carresi
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Valeria M Morittu
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Santo Gratteri
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
| | - Carolina Muscoli
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
- Centro del farmaco (IRCCS), Rome, Italy
| | - Enzo Di Fabrizio
- BioNEM Laboratory, Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Italy
- KAUST (King Abdullah University of Science and Technology), PSE and BESE Divisions, Thuwal, Kingdom of Saudi Arabia
| | - Vincenzo Mollace
- IRC-FSH Interregional Center for Food Safety and Health, University "Magna Graecia" of Catanzaro, Italy
- Nutramed S.C.A.R.L., Complesso "Nini Barbieri", Roccelletta di Borgia, Catanzaro, Italy 88100
- Centro del farmaco (IRCCS), Rome, Italy
| |
Collapse
|
100
|
Fast non-invasive monitoring of microalgal physiological stage in photobioreactors through Raman spectroscopy. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|