51
|
Nanometer propagation of millisecond motions in V-type allostery. Structure 2011; 18:1596-607. [PMID: 21134639 DOI: 10.1016/j.str.2010.09.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 11/24/2022]
Abstract
Imidazole glycerol phosphate synthase (IGPS) is a V-type allosteric enzyme, which is catalytically inactive for glutamine hydrolysis until the allosteric effector, N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binds 30 Å away. In the apo state, NMR relaxation dispersion experiments indicate the absence of millisecond (ms) timescale motions. Binding of the PRFAR to form the active ternary complex is endothermic with a large positive entropy change. In addition, there is a protein wide enhancement of conformational motions in the ternary complex, which connect the two active sites. NMR chemical shift changes and acrylamide quenching experiments suggest that little in the way of structural changes accompany these motions. The data indicate that enzyme activation in the ternary complex is primarily due to an enhancement of ms motions that allows formation of a population of enzymatically active conformers.
Collapse
|
52
|
Li QA, Mavrodi DV, Thomashow LS, Roessle M, Blankenfeldt W. Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE. J Biol Chem 2011; 286:18213-21. [PMID: 21454481 DOI: 10.1074/jbc.m110.183418] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. The PhzE monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain connected by a 45-residue linker. We present here the crystal structure of PhzE from Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.9 and 2.1 Å resolution, respectively. PhzE arranges in an intertwined dimer such that the GATase1 domain of one chain provides NH(3) to the MST domain of the other. This quaternary structure was confirmed by small angle x-ray scattering. Binding of chorismic acid, which was found converted to benzoate and pyruvate in the MST active centers of the closed form, leads to structural rearrangements that establish an ammonia transport channel approximately 25 Å in length within each of the two MST/GATase1 functional units of the dimer. The assignment of PhzE as an ADIC synthase was confirmed by mass spectrometric analysis of the product, which was also visualized at 1.9 Å resolution by trapping in crystals of an inactive mutant of PhzD, an isochorismatase that catalyzes the subsequent step in phenazine biosynthesis. Unlike in some of the related anthranilate synthases, no allosteric inhibition was observed in PhzE. This can be attributed to a tryptophan residue of the protein blocking the potential regulatory site. Additional electron density in the GATase1 active center was identified as zinc, and it was demonstrated that Zn(2+), Mn(2+), and Ni(2+) reduce the activity of PhzE.
Collapse
Affiliation(s)
- Qi-Ang Li
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
53
|
Manos-Turvey A, Bulloch EMM, Rutledge PJ, Baker EN, Lott JS, Payne RJ. Inhibition studies of Mycobacterium tuberculosis salicylate synthase (MbtI). ChemMedChem 2010; 5:1067-79. [PMID: 20512795 DOI: 10.1002/cmdc.201000137] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate-utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate-based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI-catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3-dihydroxybenzoate scaffold, proved to be low-micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol-pyruvyl side chain found in chorismate and isochorismate.
Collapse
|
54
|
Ziebart KT, Dixon SM, Avila B, El-Badri MH, Guggenheim KG, Kurth MJ, Toney MD. Targeting multiple chorismate-utilizing enzymes with a single inhibitor: validation of a three-stage design. J Med Chem 2010; 53:3718-29. [PMID: 20359225 DOI: 10.1021/jm100158v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chorismate-utilizing enzymes are attractive antimicrobial drug targets due to their absence in humans and their central role in bacterial survival and virulence. The structural and mechanistic homology of a group of these inspired the goal of discovering inhibitors that target multiple enzymes. Previously, we discovered seven inhibitors of 4-amino-4-deoxychorismate synthase (ADCS) in an on-bead, fluorescent-based screen of a 2304-member one-bead-one-compound combinatorial library. The inhibitors comprise PAYLOAD and COMBI stages, which interact with active site and surface residues, respectively, and are linked by a SPACER stage. These seven compounds, and six derivatives thereof, also inhibit two other enzymes in this family, isochorismate synthase (IS) and anthranilate synthase (AS). The best binding compound inhibits ADCS, IS, and AS with K(i) values of 720, 56, and 80 microM, respectively. Inhibitors with varying SPACER lengths show the original choice of lysine to be optimal. Lastly, inhibition data confirm the PAYLOAD stage directs the inhibitors to the ADCS active site.
Collapse
Affiliation(s)
- Kristin T Ziebart
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Payne RJ, Bulloch EMM, Kerbarh O, Abell C. Inhibition of chorismate-utilising enzymes by 2-amino-4-carboxypyridine and 4-carboxypyridone and 5-carboxypyridone analogues. Org Biomol Chem 2010; 8:3534-42. [PMID: 20532401 DOI: 10.1039/c004062b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several 2-amino-4-carboxypyridine, 4- and 5-carboxypyridone-based compounds were prepared and tested against three members of the chorismate-utilising enzyme family, anthranilate synthase, isochorismate synthase and salicylate synthase. Most compounds exhibited low micromolar inhibition of these three enzymes. The most potent inhibitor was a 4-carboxypyridone analogue bearing a lactate side chain on the pyridyl nitrogen which exhibited inhibition constants of 5, 91 and 54 muM against anthranilate synthase, isochorismate synthase and salicylate synthase respectively.
Collapse
Affiliation(s)
- Richard J Payne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UKCB2 1EW.
| | | | | | | |
Collapse
|
56
|
Ziebart KT, Toney MD. Nucleophile Specificity in Anthranilate Synthase, Aminodeoxychorismate Synthase, Isochorismate Synthase, and Salicylate Synthase. Biochemistry 2010; 49:2851-9. [DOI: 10.1021/bi100021x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristin T. Ziebart
- Department of Chemistry, University of California, Davis, California 95616
| | - Michael D. Toney
- Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
57
|
Crystal Structure of Escherichia coli Enterobactin-specific Isochorismate Synthase (EntC) Bound to its Reaction Product Isochorismate: Implications for the Enzyme Mechanism and Differential Activity of Chorismate-utilizing Enzymes. J Mol Biol 2010; 397:290-300. [DOI: 10.1016/j.jmb.2010.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 11/17/2022]
|
58
|
Payne RJ, Bulloch EMM, Toscano MM, Jones MA, Kerbarh O, Abell C. Synthesis and evaluation of 2,5-dihydrochorismate analogues as inhibitors of the chorismate-utilising enzymes. Org Biomol Chem 2009; 7:2421-9. [DOI: 10.1039/b901694e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Lin X, Xu S, Yang Y, Wu J, Wang H, Shen H, Wang H. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2008; 64:8-15. [PMID: 18952181 DOI: 10.1016/j.pep.2008.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/26/2008] [Accepted: 09/27/2008] [Indexed: 10/21/2022]
Abstract
The emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis is the main reason why tuberculosis (TB) continues to be a major health problem worldwide. It is urgent to discover novel anti-mycobacterial agents based on new drug targets for the treatment of TB, especially MDR-TB. Tryptophan biosynthetic pathway, which is essential for the survival of M. tuberculosis and meanwhile absent in mammals, provides potential anti-TB drug targets. One of the promising drug targets in this pathway is anthranilate synthase component I (TrpE), whose role is to catalyze the conversion of chorismate to anthranilate using ammonia as amino source. In order to get a deep understanding of TrpE, a study on purification and characteristic identification of TrpE is required. In this work, the putative trpE gene of M. tuberculosis H37Rv was expressed as a fusion protein with a 6x His-tag on the N-terminal (His-TrpE) in Escherichia coli. The recombinant TrpE protein was successfully purified and then its enzymatic characteristics were analyzed. The native TrpE without His-tag was obtained by removal of the N-terminal fusion partner of His-TrpE using enterokinase. It was found that N-terminal fusion partner had little influence on TrpE catalytic activity. In addition, the key residues related to enzyme catalytic activity and that involved in l-tryptophan inhibition were predicted in the structure of M. tuberculosis H37Rv TrpE. These results would be beneficial to the designing of novel anti-TB drugs with high potency and selectivity.
Collapse
Affiliation(s)
- Xiaohua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
61
|
Morar M, Hoskins AA, Stubbe J, Ealick SE. Formylglycinamide ribonucleotide amidotransferase from Thermotoga maritima: structural insights into complex formation. Biochemistry 2008; 47:7816-30. [PMID: 18597481 PMCID: PMC2646663 DOI: 10.1021/bi800329p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P i, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.
Collapse
Affiliation(s)
- Mariya Morar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
62
|
Hart EJ, Powers-Lee SG. Mutation analysis of carbamoyl phosphate synthetase: does the structurally conserved glutamine amidotransferase triad act as a functional dyad? Protein Sci 2008; 17:1120-8. [PMID: 18458150 DOI: 10.1110/ps.073428008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evolutionarily conserved triad glutamine amidotransferase (GAT) domains catalyze the cleavage of glutamine to yield ammonia and sequester the ammonia in a tunnel until delivery to a variety of acceptor substrates in synthetase domains of variable structure. Whereas a conserved hydrolytic triad (Cys/His/Glu) is observed in the solved GAT structures, the specificity pocket for glutamine is not apparent, presumably because its formation is dependent on the conformational change that couples acceptor availability to a greatly increased rate of glutamine cleavage. In Escherichia coli carbamoyl phosphate synthetase (eCPS), one of the best characterized triad GAT members, the Cys269 and His353 triad residues are essential for glutamine hydrolysis, whereas Glu355 is not critical for eCPS activity. To further define the glutamine-binding pocket and possibly identify an alternative member of the catalytic triad that is situated for this role in the coupled conformation, we have analyzed mutations at Gln310, Asn311, Asp334, and Gln351, four conserved, but not yet analyzed residues that might potentially function as the third triad member. Alanine substitution of Gln351, Asn311, and Gln310 yielded respective K(m) increases of 145, 27, and 15, suggesting that Gln351 plays a key role in glutamine binding in the coupled conformation, and that Asn311 and Gln310 make less significant contributions. None of the mutant k (cat) values varied significantly from those for wild-type eCPS. Combined with previously reported data on other conserved eCPS residues, these results strongly suggest that Cys269 and His353 function as a catalytic dyad in the GAT site of eCPS.
Collapse
Affiliation(s)
- Emily J Hart
- Department of Biology, Northeastern University, Boston, Massachusetts 02115-5000, USA
| | | |
Collapse
|
63
|
Mouilleron S, Badet-Denisot MA, Golinelli-Pimpaneau B. Ordering of C-terminal Loop and Glutaminase Domains of Glucosamine-6-Phosphate Synthase Promotes Sugar Ring Opening and Formation of the Ammonia Channel. J Mol Biol 2008; 377:1174-85. [DOI: 10.1016/j.jmb.2008.01.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
64
|
Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proc Natl Acad Sci U S A 2008; 105:494-9. [PMID: 18182490 DOI: 10.1073/pnas.0708750105] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
C-1027 is an enediyne antitumor antibiotic composed of four distinct moieties: an enediyne core, a deoxy aminosugar, a beta-amino acid, and a benzoxazolinate moiety. We now show that the benzoxazolinate moiety is derived from chorismate by the sequential action of two enzymes-SgcD, a 2-amino-2-deoxyisochorismate (ADIC) synthase and SgcG, an iron-sulfur, FMN-dependent ADIC dehydrogenase-to generate 3-enolpyruvoylanthranilate (OPA), a new intermediate in chorismate metabolism. The functional elucidation and catalytic properties of each enzyme are described, including spectroscopic characterization of the products and the development of a fluorescence-based assay for kinetic analysis. SgcD joins isochorismate (IC) synthase and 4-amino-4-deoxychorismate (ADC) synthase as anthranilate synthase component I (ASI) homologues that are devoid of pyruvate lyase activity inherent in ASI; yet, in contrast to IC and ADC synthase, SgcD has retained the ability to aminate chorismate identically to that observed for ASI. The net conversion of chorismate to OPA by the tandem action of SgcD and SgcG unambiguously establishes a new branching point in chorismate metabolism.
Collapse
|
65
|
Ashenafi M, Carrington R, Collins AC, Byrnes WM. The fused TrpEG from Streptomyces venezuelae is an anthranilate synthase, not a 2-amino-2-deoxyisochorismate [corrected] (ADIC) synthase. Ethn Dis 2008; 18:S2-13. [PMID: 18646313 PMCID: PMC3371231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The chloramphenicol producer Streptomyces venezuelae contains an enzyme, SvTrpEG, that has a high degree of amino acid sequence similarity to the phenazine biosynthetic enzyme PhzE of certain species of Pseudomonas. PhzE has the sequence signature of an anthranilate synthase, but recent evidence indicates that it catalyzes the production of 2-amino-2-deoxyisochorismate [corrected] (ADIC), an intermediate in the two-step anthranilate synthase reaction, not anthranilate. In order to determine if SvTrpEG is likewise an ADIC synthase, we have cloned the gene for SvTrpEG, expressed the recombinant enzyme in Escherichia coli, and purified the enzyme. Analysis of the SvTrpEG-catalyzed reaction mixture using UV-visible spectrophotometry, fluorescence spectrometry, and high-performance liquid chromatography shows that the product of the reaction is anthranilate, not ADIC. Our results therefore reveal that, despite its sequence similarity to PhzE, SvTrpEG is an anthranilate synthase, not an ADIC synthase.
Collapse
Affiliation(s)
- Meseret Ashenafi
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
66
|
Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 2007; 190:2822-30. [PMID: 17993537 DOI: 10.1128/jb.01379-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The unknown genetic basis for improved phenol production by a recombinant Pseudomonas putida S12 derivative bearing the tpl (tyrosine-phenol lyase) gene was investigated via comparative transcriptomics, nucleotide sequence analysis, and targeted gene disruption. We show upregulation of tyrosine biosynthetic genes and possibly decreased biosynthesis of tryptophan caused by a mutation in the trpE gene as the genetic basis for the enhanced phenol production. In addition, several genes in degradation routes connected to the tyrosine biosynthetic pathway were upregulated. This either may be a side effect that negatively affects phenol production or may point to intracellular accumulation of tyrosine or its intermediates. A number of genes identified by the transcriptome analysis were selected for targeted disruption in P. putida S12TPL3. Physiological and biochemical examination of P. putida S12TPL3 and these mutants led to the conclusion that the metabolic flux toward tyrosine in P. putida S12TPL3 was improved to such an extent that the heterologous tyrosine-phenol lyase enzyme had become the rate-limiting step in phenol biosynthesis.
Collapse
|
67
|
Mouilleron S, Golinelli-Pimpaneau B. Conformational changes in ammonia-channeling glutamine amidotransferases. Curr Opin Struct Biol 2007; 17:653-64. [PMID: 17951049 DOI: 10.1016/j.sbi.2007.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases (GATs), which catalyze the synthesis of different aminated products, channel ammonia over 10-40 A from a glutamine substrate at the glutaminase site to an acceptor substrate at the synthase site. Ammonia production usually uses a cysteine-histidine-glutamate triad or a N-terminal cysteine residue. Crystal structures of several amidotransferase ligand complexes, mimicking intermediates along the catalytic cycle, have now been determined. In most cases, acceptor binding triggers glutaminase activation through domain-hinged movements and other conformational changes. Structural information shows how flexible loops of the synthase and glutaminase domains move to shield the two catalytic sites and anchor the substrates, and how the ammonia channel forms and opens or closes.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie structurales, CNRS Bâtiment 34, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
68
|
Kerbarh O, Ciulli A, Chirgadze DY, Blundell TL, Abell C. Nucleophile Selectivity of Chorismate-Utilizing Enzymes. Chembiochem 2007; 8:622-4. [PMID: 17335098 DOI: 10.1002/cbic.200700019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Kerbarh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
69
|
Scott DE, Ciulli A, Abell C. Coenzyme biosynthesis: enzyme mechanism, structure and inhibition. Nat Prod Rep 2007; 24:1009-26. [PMID: 17898895 DOI: 10.1039/b703108b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights five key reactions in vitamin biosynthesis and in particular focuses on their mechanisms and inhibition and insights from structural studies. Each of the enzymes has the potential to be a target for novel antimicrobial agents.
Collapse
Affiliation(s)
- Duncan E Scott
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
70
|
Harrison AJ, Yu M, Gårdenborg T, Middleditch M, Ramsay RJ, Baker EN, Lott JS. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol 2006; 188:6081-91. [PMID: 16923875 PMCID: PMC1595383 DOI: 10.1128/jb.00338-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/21/2006] [Indexed: 11/20/2022] Open
Abstract
The ability to acquire iron from the extracellular environment is a key determinant of pathogenicity in mycobacteria. Mycobacterium tuberculosis acquires iron exclusively via the siderophore mycobactin T, the biosynthesis of which depends on the production of salicylate from chorismate. Salicylate production in other bacteria is either a two-step process involving an isochorismate synthase (chorismate isomerase) and a pyruvate lyase, as observed for Pseudomonas aeruginosa, or a single-step conversion catalyzed by a salicylate synthase, as with Yersinia enterocolitica. Here we present the structure of the enzyme MbtI (Rv2386c) from M. tuberculosis, solved by multiwavelength anomalous diffraction at a resolution of 1.8 A, and biochemical evidence that it is the salicylate synthase necessary for mycobactin biosynthesis. The enzyme is critically dependent on Mg2+ for activity and produces salicylate via an isochorismate intermediate. MbtI is structurally similar to salicylate synthase (Irp9) from Y. enterocolitica and the large subunit of anthranilate synthase (TrpE) and shares the overall architecture of other chorismate-utilizing enzymes, such as the related aminodeoxychorismate synthase PabB. Like Irp9, but unlike TrpE or PabB, MbtI is neither regulated by nor structurally stabilized by bound tryptophan. The structure of MbtI is the starting point for the design of inhibitors of siderophore biosynthesis, which may make useful lead compounds for the production of new antituberculosis drugs, given the strong dependence of pathogenesis on iron acquisition in M. tuberculosis.
Collapse
Affiliation(s)
- Anthony J Harrison
- Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
71
|
Zaitseva J, Lu J, Olechoski KL, Lamb AL. Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa. J Biol Chem 2006; 281:33441-9. [PMID: 16914555 DOI: 10.1074/jbc.m605470200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
72
|
Parsons JF, Shi K, Calabrese K, Ladner JE. Crystallization and X-ray diffraction analysis of salicylate synthase, a chorismate-utilizing enyme involved in siderophore biosynthesis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:271-4. [PMID: 16511320 PMCID: PMC2197189 DOI: 10.1107/s1744309106005677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 02/15/2006] [Indexed: 11/11/2022]
Abstract
Bacteria have evolved elaborate schemes that help them thrive in environments where free iron is severely limited. Siderophores such as yersiniabactin are small iron-scavenging molecules that are deployed by bacteria during iron starvation. Several studies have linked siderophore production and virulence. Yersiniabactin, produced by several Enterobacteriaceae, is derived from the key metabolic intermediate chorismic acid via its conversion to salicylate by salicylate synthase. Crystals of salicylate synthase from the uropathogen Escherichia coli CFT073 have been grown by vapour diffusion using polyethylene glycol as the precipitant. The monoclinic (P2(1)) crystals diffract to 2.5 A. The unit-cell parameters are a = 57.27, b = 164.07, c = 59.04 A, beta = 108.8 degrees. The solvent content of the crystals is 54% and there are two molecules of the 434-amino-acid protein in the asymmetric unit. It is anticipated that the structure will reveal key details about the reaction mechanism and the evolution of salicylate synthase.
Collapse
Affiliation(s)
- James F Parsons
- Center for Advanced Research in Biotechnology, The University of Maryland Biotechnology Institute, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
73
|
Kerbarh O, Chirgadze DY, Blundell TL, Abell C. Crystal structures of Yersinia enterocolitica salicylate synthase and its complex with the reaction products salicylate and pyruvate. J Mol Biol 2006; 357:524-34. [PMID: 16434053 DOI: 10.1016/j.jmb.2005.12.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 11/25/2022]
Abstract
The salicylate synthase, Irp9, from Yersinia enterocolitica is involved in the biosynthesis of the siderophore yersiniabactin. It is a bifunctional enzyme that forms salicylate and pyruvate from chorismate and water via the intermediate isochorismate. Here we report the first crystal structure of Irp9 and also of its complex with the reaction products salicylate and pyruvate at 1.85 A and 2.1 A resolution, respectively. Like other members of the chorismate-utilizing enzyme family, e.g. the TrpE subunit of anthranilate synthase and the PabB subunit of 4-amino-4-deoxychorismate synthase, Irp9 has a complex alpha/beta fold. The crystal structure of Irp9 contains one molecule each of phosphate and acetate derived from the crystallization buffer. The Irp9-products complex structure was obtained by soaking chorismate into Irp9, demonstrating that the enzyme is still catalytically active in the crystal. Both structures contain Mg(2+) in the active site. There is no evidence of the allosteric tryptophan binding site found in TrpE and PabB. Mutagenesis of Glu240, His321 and Tyr372 provided some insight into the mechanism of the two transformations catalyzed by Irp9. Knowledge of the structure of Irp9 will guide the search for potent inhibitors of salicylate formation, and hence of bacterial iron uptake, which is directly related to the virulence of Yersinia.
Collapse
Affiliation(s)
- Olivier Kerbarh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
74
|
Bulloch EMM, Abell C. Detection of covalent intermediates formed in the reaction of 4-amino-4-deoxychorismate synthase. Chembiochem 2006; 6:832-4. [PMID: 15770625 DOI: 10.1002/cbic.200400385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Esther M M Bulloch
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
75
|
DeClue MS, Baldridge KK, Künzler DE, Kast P, Hilvert D. Isochorismate Pyruvate Lyase: A Pericyclic Reaction Mechanism? J Am Chem Soc 2005; 127:15002-3. [PMID: 16248620 DOI: 10.1021/ja055871t] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isochorismate pyruvate lyase (IPL) catalyzes the cleavage of isochorismate to give salicylate and pyruvate, a key step in bacterial siderophore biosynthesis. We investigated the enzyme from Pseudomonas aeruginosa using isochorismate selectively deuterated at C2 as a substrate. Monitoring the reaction by 2H NMR spectroscopy revealed that the label is quantitatively transferred from C2 to C9, producing stoichiometric amounts of [3-2H]pyruvate as product. Moreover, the deuterium kinetic isotope effect of 2.34 +/- 0.08 on kcat indicates that C-H cleavage is significantly rate limiting. Consistent with these data, hybrid density functional theory (HDFT) calculations at the Becke3LYP/DZ+(2d,p) level of theory predict a concerted but highly asynchronous pericyclic transition structure, in which carbon-oxygen bond cleavage is more advanced than hydrogen atom transfer from C2 to C9; the calculated 2H isotope effect of 2.22 at C2 is in excellent accord with the experimental value. Together, these findings indicate that IPL should be added to the small set of proteins that are known to catalyze pericyclic reactions. They also raise the possibility that enzymes, such as chorismate pyruvate lyase, salicylate synthase, 4-amino-4-deoxychorismate lyase, and anthranilate synthase, which accelerate formally similar reaction steps, may also exploit pericyclic mechanisms.
Collapse
Affiliation(s)
- Michael S DeClue
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
76
|
Kerbarh O, Bulloch EMM, Payne RJ, Sahr T, Rébeillé F, Abell C. Mechanistic and inhibition studies of chorismate-utilizing enzymes. Biochem Soc Trans 2005; 33:763-6. [PMID: 16042594 DOI: 10.1042/bst0330763] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The shikimate biosynthetic pathway is utilized in algae, higher plants, bacteria, fungi and apicomplexan parasites; it involves seven enzymatic steps in which phosphoenolpyruvate and erythrose 4-phosphate are converted into chorismate. In Escherichia coli, five chorismate-utilizing enzymes catalyse the synthesis of aromatic compounds such as L-phenylalanine, L-tyrosine, L-tryptophan, folate, ubiquinone and siderophores such as yersiniabactin and enterobactin. As mammals do not possess such a biosynthetic system, the enzymes involved in the pathway have aroused considerable interest as potential targets for the development of antimicrobial drugs and herbicides. As an initiative to investigate the mechanism of some of these enzymes, we showed that the antimicrobial effect of (6S)-6-fluoroshikimate is the result of irreversible inhibition of 4-amino-4-deoxychorismate synthase by 2-fluorochorismate. Based on this study, a catalytic mechanism for this enzyme was proposed, in which the residue Lys-274 is involved in the formation of a covalent intermediate. In another study, Yersinia enterocolitica Irp9, which is involved in the biosynthesis of the siderophore yersiniabactin, was for the first time biochemically characterized and shown to catalyse the formation of salicylate from chorismate via isochorismate as a reaction intermediate. A three-dimensional model for this enzyme was constructed that will guide the search for potent inhibitors of salicylate formation, and hence of bacterial iron uptake.
Collapse
Affiliation(s)
- O Kerbarh
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|
77
|
Kanno T, Komatsu A, Kasai K, Dubouzet JG, Sakurai M, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. Structure-based in vitro engineering of the anthranilate synthase, a metabolic key enzyme in the plant tryptophan pathway. PLANT PHYSIOLOGY 2005; 138:2260-8. [PMID: 16040654 PMCID: PMC1183412 DOI: 10.1104/pp.105.062885] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rice (Oryza sativa) anthranilate synthase alpha-subunit, OASA2, was modified by in vitro mutagenesis based on structural information from bacterial homologs. Twenty-four amino acid residues, predicted as putative tryptophan binding sites or their proximal regions in the OASA2 sequence, were selected and 36 mutant OASA2 genes were constructed by PCR-based site-directed mutagenesis. Corresponding mutant proteins were synthesized in a combination of two in vitro systems, transcription with a bacteriophage SP6 RNA polymerase and translation with a wheat-embryo cell-free system. Enzymatic functions of the mutant proteins were simultaneously examined, and we found six mutants with elevated catalytic activity and five mutants with enhanced tolerance to feedback inhibition by tryptophan. Moreover, we observed that some sets of specific combinations of the novel mutations additively conferred both characteristics to the mutant enzymes. The functions of the mutant enzymes were confirmed in vivo. The free tryptophan content of mutant rice calli expressing OASA2 enzyme with a double mutation was 30-fold of that of untransformed calli. Thus, our in vitro approach utilizing structural information of bacterial homologs is a potent technique to generate designer enzymes with predefined functions.
Collapse
Affiliation(s)
- Takuya Kanno
- Cell-Free Science and Technology Research Center, and Venture Business Laboratory, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Künzler DE, Sasso S, Gamper M, Hilvert D, Kast P. Mechanistic insights into the isochorismate pyruvate lyase activity of the catalytically promiscuous PchB from combinatorial mutagenesis and selection. J Biol Chem 2005; 280:32827-34. [PMID: 16036918 DOI: 10.1074/jbc.m506883200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PchB from Pseudomonas aeruginosa possesses isochorismate pyruvate lyase (IPL) and weak chorismate mutase (CM) activity. Homology modeling based on a structurally characterized CM, coupled with randomization of presumed key active site residues (Arg54, Glu90, Gln91) and in vivo selection for CM activity, was used to derive mechanistic insights into the IPL activity of PchB. Mutation of Arg54 was incompatible with viability, and the CM and IPL activities of an engineered R54K variant were reduced 1,000-fold each. The observation that position 90 was tolerant to substitution but position 91 was essentially confined to Gln or Glu in functional variants rules out involvement of Glu90 in general base catalysis. Counter to the generally accepted mechanistic hypothesis for pyruvate lyases, we propose for PchB a rare [1,5]-sigmatropic reaction mechanism that invokes electrostatic catalysis in analogy to the [3,3]-pericyclic rearrangement of chorismate in CMs. A common catalytic principle for both PchB functions is also supported by the covariance of the catalytic parameters for the CM and IPL activities and the shared functional requirement for a protonated Glu91 in Q91E variants. The experiments demonstrate that focusing directed evolution strategies on the readily accessible surrogate activity of an enzyme can provide valuable insights into the mechanism of the primary reaction.
Collapse
Affiliation(s)
- Dominik E Künzler
- Laboratorium für Organische Chemie, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
79
|
Payne RJ, Toscano MD, Bulloch EMM, Abell AD, Abell C. Design and synthesis of aromatic inhibitors of anthranilate synthase. Org Biomol Chem 2005; 3:2271-81. [PMID: 16010361 DOI: 10.1039/b503802b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic analogues of chorismate were synthesised as potential inhibitors of anthranilate synthase. Molecular modelling using GOLD2.1 showed that these analogues docked into the active site of Serratia marcescens anthranilate synthase in the same conformation as chorismate. Most compounds were found to be micromolar inhibitors of S. marcescens anthranilate synthase. The most potent analogue, 3-(1-carboxy-ethoxy)-4-hydroxybenzoate (K(I) 3 microM), included a lactyl ether side chain. This appears to be a good replacement for the enol-pyruvyl side chain of chorismate.
Collapse
Affiliation(s)
- Richard J Payne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | | | | | |
Collapse
|
80
|
Payne RJ, Kerbarh O, Miguel RN, Abell AD, Abell C. Inhibition studies on salicylate synthase. Org Biomol Chem 2005; 3:1825-7. [PMID: 15889161 DOI: 10.1039/b503800f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of chorismate and isochorismate were designed and tested as potential inhibitors in the first inhibition study against a salicylate synthase.
Collapse
Affiliation(s)
- Richard J Payne
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | | | | | |
Collapse
|
81
|
Goto M, Omi R, Nakagawa N, Miyahara I, Hirotsu K. Crystal structures of CTP synthetase reveal ATP, UTP, and glutamine binding sites. Structure 2005; 12:1413-23. [PMID: 15296735 DOI: 10.1016/j.str.2004.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 03/10/2004] [Accepted: 05/14/2004] [Indexed: 01/28/2023]
Abstract
CTP synthetase (CTPs) catalyzes the last step in CTP biosynthesis, in which ammonia generated at the glutaminase domain reacts with the ATP-phosphorylated UTP at the synthetase domain to give CTP. Glutamine hydrolysis is active in the presence of ATP and UTP and is stimulated by the addition of GTP. We report the crystal structures of Thermus thermophilus HB8 CTPs alone, CTPs with 3SO4(2-), and CTPs with glutamine. The enzyme is folded into a homotetramer with a cross-shaped structure. Based on the binding mode of sulfate anions to the synthetase site, ATP and UTP are computer modeled into CTPs with a geometry favorable for the reaction. Glutamine bound to the glutaminase domain is situated next to the triad of Glu-His-Cys as a catalyst and a water molecule. Structural information provides an insight into the conformational changes associated with the binding of ATP and UTP and the formation of the GTP binding site.
Collapse
Affiliation(s)
- Masaru Goto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
82
|
Payne RJ, Bulloch EMM, Abell AD, Abell C. Design and synthesis of aromatic inhibitors of anthranilate synthase. Org Biomol Chem 2005; 3:3629-35. [PMID: 16211099 DOI: 10.1039/b510633h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthranilate synthase catalyses the conversion of chorismate to anthranilate, a key step in tryptophan biosynthesis. A series of 3-(1-carboxy-ethoxy) benzoic acids were synthesised as chorismate analogues, with varying functionality at C-4, the position of the departing hydroxyl group in chorismate. Most of the compounds were moderate inhibitors of anthranilate synthase, with inhibition constants between 20-30 microM. The exception was 3-(1-carboxy-ethoxy) benzoic acid, (C-4 = H), for which K(I)= 2.4 microM. These results suggest that a hydrogen bonding interaction with the active site general acid (Glu309) is less important than previously assumed for inhibition of the enzyme by these aromatic chorismate analogues.
Collapse
Affiliation(s)
- Richard J Payne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UKCB2 1EW
| | | | | | | |
Collapse
|
83
|
Lunn FA, Bearne SL. Alternative substrates for wild-type and L109A E. coli CTP synthases: kinetic evidence for a constricted ammonia tunnel. ACTA ACUST UNITED AC 2004; 271:4204-12. [PMID: 15511226 DOI: 10.1111/j.1432-1033.2004.04360.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytidine 5'-triphosphate (CTP) synthase catalyses the ATP-dependent formation of CTP from uridine 5'-triphosphate using either NH(3) or l-glutamine as the nitrogen source. The hydrolysis of glutamine is catalysed in the C-terminal glutamine amide transfer domain and the nascent NH(3) that is generated is transferred via an NH(3) tunnel [Endrizzi, J.A., Kim, H., Anderson, P.M. & Baldwin, E.P. (2004) Biochemistry43, 6447-6463] to the active site of the N-terminal synthase domain where the amination reaction occurs. Replacement of Leu109 by alanine in Escherichia coli CTP synthase causes an uncoupling of glutamine hydrolysis and glutamine-dependent CTP formation [Iyengar, A. & Bearne, S.L. (2003) Biochem. J.369, 497-507]. To test our hypothesis that L109A CTP synthase has a constricted or a leaky NH(3) tunnel, we examined the ability of wild-type and L109A CTP synthases to utilize NH(3), NH(2)OH, and NH(2)NH(2) as exogenous substrates, and as nascent substrates generated via the hydrolysis of glutamine, gamma-glutamyl hydroxamate, and gamma-glutamyl hydrazide, respectively. We show that the uncoupling of the hydrolysis of gamma-glutamyl hydroxamate and nascent NH(2)OH production from N(4)-hydroxy-CTP formation is more pronounced with the L109A enzyme, relative to the wild-type CTP synthase. These results suggest that the NH(3) tunnel of L109A, in the presence of bound allosteric effector guanosine 5'-triphosphate, is not leaky but contains a constriction that discriminates between NH(3) and NH(2)OH on the basis of size.
Collapse
Affiliation(s)
- Faylene A Lunn
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
84
|
Byrnes WM, Vilker VL. Extrinsic factors potassium chloride and glycerol induce thermostability in recombinant anthranilate synthase from Archaeoglobus fulgidus. Extremophiles 2004; 8:455-62. [PMID: 15235940 DOI: 10.1007/s00792-004-0406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2003] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Thermostable anthranilate synthase from the marine sulfate-reducing hyperthermophile Archaeoglobus fulgidus has been expressed in Escherichia coli, purified, and characterized. The functional enzyme is an alpha2beta2 heterotetrameric complex of molecular mass 150+/-15 kDa. It is composed of two TrpE (50 kDa) and two TrpG (18 kDa) subunits. The extrinsic factors glycerol (25%) and potassium chloride (2 M) stabilized the recombinant enzyme against thermal inactivation. In the presence of these extrinsic factors, the enzyme was highly thermostable, exhibiting a half-life of thermal inactivation of about 1 h at 85 degrees C. The kinetic constants for the enzyme under these conditions were: Km (chorismate) 84 microM, Km (glutamine) 7.0 mM, kcat 0.25 s(-1), and pH optimum 8.0. The enzyme was competitively, though non-cooperatively, inhibited by tryptophan.
Collapse
Affiliation(s)
- W Malcolm Byrnes
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W. Street, N.W., Washington, DC 20059, USA.
| | | |
Collapse
|
85
|
He Z, Stigers Lavoie KD, Bartlett PA, Toney MD. Conservation of mechanism in three chorismate-utilizing enzymes. J Am Chem Soc 2004; 126:2378-85. [PMID: 14982443 DOI: 10.1021/ja0389927] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chorismate is the end-product of the shikimate pathway for biosynthesis of carbocyclic aromatic compounds in plants, bacteria, fungi, and some parasites. Anthranilate synthase (AS), 4-amino-4-deoxychorismate synthase (ADCS), and isochorismate synthase (IS) are homologous enzymes that carry out the initial transformations on chorismate in the biosynthesis of tryptophan, p-aminobenzoate, and enterobactin, respectively, and are expected to share a common mechanism. Poor binding to ADCS of two potential transition state analogues for addition of a nucleophile to C6 of chorismate implies that it, like AS and IS, initiates reaction by addition of a nucleophile to C2. Molecular modeling based on the X-ray structures of AS and ADCS suggests that the active site residue K274 is the nucleophile employed by ADCS to initiate the reaction, forming a covalent intermediate. The K274A and K274R mutants were shown to have 265- and 640-fold reduced k(cat) values when PabA (the cognate amidotransferase) + glutamine are used as the nitrogen source. Under conditions of saturating chorismate and NH(4)(+), ADCS and the K274A mutant have identical k(cat) values, suggesting the participation of NH(4)(+) as a rescue agent. Such participation was confirmed by the buildup of 2-amino-2-deoxyisochorismate in the reactions of the K274A mutant but not ADCS, when either NH(4)(+) or PabA + glutamine is used as the nitrogen source. Additionally, the inclusion of ethylamine in the reactions of K274A yields the N-ethyl derivative of 2-amino-2-deoxyisochorismate. A unifying mechanism for AS, ADCS, and IS entailing nucleophile addition to C2 of chorismate in an S(N)2' ' process is proposed.
Collapse
Affiliation(s)
- Ze He
- Department of Chemistry, University of California-Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
86
|
Schwarzenbacher R, Deacon AM, Jaroszewski L, Brinen LS, Canaves JM, Dai X, Elsliger MA, Floyd R, Godzik A, Grittini C, Grzechnik SK, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, McMullan D, McPhillips TM, Miller MD, Morse A, Moy K, Nelson MS, Ouyang J, Page R, Robb A, Quijano K, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, von Delft F, Wang X, West B, Wolf G, Hodgson KO, Wooley J, Wilson IA. Crystal structure of a putative glutamine amido transferase (TM1158) from Thermotoga maritima
at 1.7 Å resolution. Proteins 2004; 54:801-5. [PMID: 14997577 DOI: 10.1002/prot.10614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
87
|
Kanno T, Kasai K, Ikejiri-Kanno Y, Wakasa K, Tozawa Y. In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. PLANT MOLECULAR BIOLOGY 2004; 54:11-22. [PMID: 15159631 DOI: 10.1023/b:plan.0000028729.79034.07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Anthranilate synthase (AS) is a key enzyme in the biosynthesis of various indole compounds including tryptophan. AS consists of two subunits, alpha and beta, and converts chorismate to anthranilate. Two or more AS alpha-subunit genes have been identified and characterized in several land plants. Although alpha subunits of AS induced by elicitation have been suggested to play significant roles in secondary metabolism, the biochemical and precise functional properties of individual AS isozymes have remained unclear. We have previously identified and characterized two AS alpha-subunit genes (OASA1 and OASA2) in rice (Oryza sativa ). To provide further insight into the enzymatic functions of AS isozymes in rice, we have now isolated rice cDNAs encoding the AS beta subunits OASB1 and OASB2 and reconstituted AS isozymes in vitro with the wheat germ cell-free system for protein expression. Both OASB subunits conferred glutamine-dependent AS activity on either OASA1 or OASA2, indicating the absence of a marked functional difference between the two beta subunits in terms of amidotransferase activity. Furthermore, both OASA subunits required assembly with a beta subunit to achieve maximal enzymatic activity even with NH(4)(+) as the amino donor. The V (max) and K (i) for tryptophan of the OASA1-OASB1 isozyme with glutamine as the amino donor, however, were 2.4 and 7.5 times, respectively, those of OASA2-OASB1, suggesting that AS isozymes containing OASA1 possess a higher activity and are less sensitive to feedback inhibition than those containing OASA2. Our biochemical characterization of reconstituted AS isozymes has thus revealed distinct functional properties of these isozymes in rice.
Collapse
Affiliation(s)
- Takuya Kanno
- Cell-Free Science and Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
88
|
Bauer JA, Bennett EM, Begley TP, Ealick SE. Three-dimensional structure of YaaE from Bacillus subtilis, a glutaminase implicated in pyridoxal-5'-phosphate biosynthesis. J Biol Chem 2003; 279:2704-11. [PMID: 14585832 DOI: 10.1074/jbc.m310311200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of YaaE from Bacillus subtilis was determined at 2.5-A resolution. YaaE is a member of the triad glutamine aminotransferase family and functions in a recently identified alternate pathway for the biosynthesis of vitamin B(6). Proposed active residues include conserved Cys-79, His-170, and Glu-172. YaaE shows similarity to HisH, a glutaminase involved in histidine biosynthesis. YaaD associates with YaaE. A homology model of this protein was constructed. YaaD is predicted to be a (beta/alpha)(8) barrel on the basis of sequence comparisons. The predicted active site includes highly conserved residues 211-216 and 233-235. Finally, a homology model of a putative YaaD-YaaE complex was prepared using the structure of HisH-F as a model. This model predicts that the ammonia molecule generated by YaaE is channeled through the center of the YaaD barrel to the putative YaaD active site.
Collapse
Affiliation(s)
- Jacob A Bauer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
89
|
Honbou K, Suzuki NN, Horiuchi M, Niki T, Taira T, Ariga H, Inagaki F. The crystal structure of DJ-1, a protein related to male fertility and Parkinson's disease. J Biol Chem 2003; 278:31380-4. [PMID: 12796482 DOI: 10.1074/jbc.m305878200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DJ-1 is a multifunctional protein that plays essential roles in tissues with higher order biological functions such as the testis and brain. DJ-1 is related to male fertility, and its level in sperm decreases in response to exposure to sperm toxicants. DJ-1 has also been identified as a hydroperoxide-responsive protein. Recently, a mutation of DJ-1 was found to be responsible for familial Parkinson's disease. Here, we present the crystal structure of DJ-1 refined to 1.95-A resolution. DJ-1 forms a dimer in the crystal, and the monomer takes a flavodoxin-like Rossmann-fold. DJ-1 is structurally most similar to the monomer subunit of protease I, the intracellular cysteine protease from Pyrococcus horikoshii, and belongs to the Class I glutamine amidotransferase-like superfamily. However, DJ-1 contains an additional alpha-helix at the C-terminal region, which blocks the putative catalytic site of DJ-1 and appears to regulate the enzymatic activity. DJ-1 may induce conformational changes to acquire catalytic activity in response to oxidative stress.
Collapse
Affiliation(s)
- Kazuya Honbou
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, N-12, W-6, Kita-ku, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
90
|
Tesson AR, Soper TS, Ciustea M, Richards NGJ. Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli. Arch Biochem Biophys 2003; 413:23-31. [PMID: 12706338 DOI: 10.1016/s0003-9861(03)00118-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli asparagine synthetase B (AS-B) catalyzes the formation of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the in vivo nitrogen source. In an effort to reconcile several different kinetic models that have been proposed for glutamine-dependent asparagine synthetases, we have used numerical methods to investigate the kinetic mechanism of AS-B. Our simulations demonstrate that literature proposals cannot reproduce the glutamine dependence of the glutamate/asparagine stoichiometry observed for AS-B, and we have therefore developed a new kinetic model that describes the behavior of AS-B more completely. The key difference between this new model and the literature proposals is the inclusion of an E.ATP.Asp.Gln quaternary complex that can either proceed to form asparagine or release ammonia through nonproductive glutamine hydrolysis. The implication of this model is that the two active sites in AS-B become coordinated only after formation of a beta-aspartyl-AMP intermediate in the synthetase site of the enzyme. The coupling of glutaminase and synthetase activities in AS is therefore different from that observed in all other well-characterized glutamine-dependent amidotransferases.
Collapse
Affiliation(s)
- Alan R Tesson
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | | | | | |
Collapse
|
91
|
Iyengar A, Bearne SL. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase. Biochem J 2003; 369:497-507. [PMID: 12383057 PMCID: PMC1223111 DOI: 10.1042/bj20021110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 10/01/2002] [Accepted: 10/17/2002] [Indexed: 11/17/2022]
Abstract
CTP synthase catalyses the ATP-dependent formation of CTP from UTP using either NH(3) or L-glutamine as the nitrogen source. GTP is required as an allosteric effector to promote glutamine hydrolysis. In an attempt to identify nucleotide-binding sites, scanning alanine mutagenesis was conducted on a highly conserved region of amino acid sequence (residues 102-118) within the synthase domain of Escherichia coli CTP synthase. Mutant K102A CTP synthase exhibited wild-type activity with respect to NH(3) and glutamine; however, the R105A, D107A, L109A and G110A enzymes exhibited wild-type NH(3)-dependent activity and affinity for glutamine, but impaired glutamine-dependent CTP formation. The E103A, R104A and H118A enzymes exhibited no glutamine-dependent activity and were only partially active with NH(3). Although these observations were compatible with impaired activation by GTP, the apparent affinity of the D107A, L109A and G110A enzymes for GTP was reduced only 2-4-fold, suggesting that these residues do not play a significant role in GTP binding. In the presence of GTP, the k (cat) values for glutamine hydrolysis by the D107A and L109A enzymes were identical with that of wild-type CTP synthase. Overall, the kinetic properties of L109A CTP synthase were consistent with an uncoupling of glutamine hydrolysis from CTP formation that occurs because an NH(3) tunnel has its normal structure altered or fails to form. L109F CTP synthase was prepared to block totally the putative NH(3) tunnel; however, this enzyme's rate of glutamine-dependent CTP formation and glutaminase activity were both impaired. In addition, we observed that mutation of amino acids located between residues 102 and 118 in the synthase domain can affect the enzyme's glutaminase activity, suggesting that these residues interact with residues in the glutamine amide transfer domain because they are in close proximity or via a conformationally dependent signalling mechanism.
Collapse
Affiliation(s)
- Akshai Iyengar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | |
Collapse
|
92
|
Kim C, Xuong NH, Edwards S, Yee MC, Spraggon G, Mills SE. The crystal structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum. FEBS Lett 2002; 523:239-46. [PMID: 12123839 DOI: 10.1016/s0014-5793(02)02905-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The structure of anthranilate phosphoribosyltransferase from the enterobacterium Pectobacterium carotovorum has been solved at 2.4 A in complex with Mn(2+)-pyrophosphate, and at 1.9 A without ligands. The enzyme structure has a novel phosphoribosyltransferase (PRT) fold and displays close homology to the structures of pyrimidine nucleoside phosphorylases. The enzyme is a homodimer with a monomer of 345 residues. Each monomer consists of two subdomains, alpha and alpha/beta, which form a cleft containing the active site. The nature of the active site is inferred from the trapped MnPPi complex and detailed knowledge of the active sites of nucleoside phosphorylases. With the anthranilate (An)PRT structure solved, the structures of all the enzymes required for tryptophan biosynthesis are now known.
Collapse
Affiliation(s)
- Choel Kim
- Department of Chemistry/Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
93
|
Mayans O, Ivens A, Nissen L, Kirschner K, Wilmanns M. Structural analysis of two enzymes catalysing reverse metabolic reactions implies common ancestry. EMBO J 2002; 21:3245-54. [PMID: 12093726 PMCID: PMC126076 DOI: 10.1093/emboj/cdf298] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crystal structure of the dimeric anthranilate phosphoribosyltransferase (AnPRT) reveals a new category of phosphoribosyltransferases, designated as class III. The active site of this enzyme is located within the flexible hinge region of its two-domain structure. The pyrophosphate moiety of phosphoribosylpyrophosphate is co-ordinated by a metal ion and is bound by two conserved loop regions within this hinge region. With the structure of AnPRT available, structural analysis of all enzymatic activities of the tryptophan biosynthesis pathway is complete, thereby connecting the evolution of its enzyme members to the general development of metabolic processes. Its structure reveals it to have the same fold, topology, active site location and type of association as class II nucleoside phosphorylases. At the level of sequences, this relationship is mirrored by 13 structurally invariant residues common to both enzyme families. Taken together, these data imply common ancestry of enzymes catalysing reverse biological processes--the ribosylation and deribosylation of metabolic pathway intermediates. These relationships establish new links for enzymes involved in nucleotide and amino acid metabolism.
Collapse
Affiliation(s)
- Olga Mayans
- EMBL Hamburg Outstation c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany and Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Universität zu Köln, Institut für Biochemie, Otto-Fischer-Strasse 12–14, D-50674 Köln, Germany Corresponding author e-mail:
| | - Andreas Ivens
- EMBL Hamburg Outstation c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany and Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Universität zu Köln, Institut für Biochemie, Otto-Fischer-Strasse 12–14, D-50674 Köln, Germany Corresponding author e-mail:
| | - L.Johan Nissen
- EMBL Hamburg Outstation c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany and Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Universität zu Köln, Institut für Biochemie, Otto-Fischer-Strasse 12–14, D-50674 Köln, Germany Corresponding author e-mail:
| | - Kasper Kirschner
- EMBL Hamburg Outstation c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany and Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Universität zu Köln, Institut für Biochemie, Otto-Fischer-Strasse 12–14, D-50674 Köln, Germany Corresponding author e-mail:
| | - Matthias Wilmanns
- EMBL Hamburg Outstation c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany and Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Department of Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: Universität zu Köln, Institut für Biochemie, Otto-Fischer-Strasse 12–14, D-50674 Köln, Germany Corresponding author e-mail:
| |
Collapse
|
94
|
Douangamath A, Walker M, Beismann-Driemeyer S, Vega-Fernandez MC, Sterner R, Wilmanns M. Structural evidence for ammonia tunneling across the (beta alpha)(8) barrel of the imidazole glycerol phosphate synthase bienzyme complex. Structure 2002; 10:185-93. [PMID: 11839304 DOI: 10.1016/s0969-2126(02)00702-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Since reactive ammonia is not available under physiological conditions, glutamine is used as a source for the incorporation of nitrogen in a number of metabolic pathway intermediates. The heterodimeric ImGP synthase that links histidine and purine biosynthesis belongs to the family of glutamine amidotransferases in which the glutaminase activity is coupled with a subsequent synthase activity specific for each member of the enzyme family. Its X-ray structure from the hyperthermophile Thermotoga maritima shows that the glutaminase subunit is associated with the N-terminal face of the (beta alpha)(8) barrel cyclase subunit. The complex reveals a putative tunnel for the transfer of ammonia over a distance of 25 A. Although ammonia tunneling has been reported for glutamine amidotransferases, the ImGP synthase has evolved a novel mechanism, which extends the known functional properties of the versatile (beta alpha)(8) barrel fold.
Collapse
Affiliation(s)
- Alice Douangamath
- EMBL Hamburg Outstation c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|