51
|
Activation of Autophagy by Metals in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2015; 14:964-73. [PMID: 26163317 DOI: 10.1128/ec.00081-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/05/2015] [Indexed: 12/31/2022]
Abstract
Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.
Collapse
|
52
|
Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Retrograde signaling between plastid and nucleus: A review. JOURNAL OF PLANT PHYSIOLOGY 2015; 181:55-66. [PMID: 25974370 DOI: 10.1016/j.jplph.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 05/17/2023]
Abstract
Retrograde signaling, defined as the signaling events leading from the plastids to the nucleus, coordinates the expression of plastid and nuclear genes and is crucial for metabolic as well as developmental processes of the plastids. In the recent past, the identification of various components that are involved in the generation and transmission of plastid-originated retrograde signals and the regulation of nuclear gene expression has only provided a glimpse of the plastid retrograde signaling network, which remains poorly understood. The basic assumptions underlying our current understanding of retrograde signaling stayed untouched for many years. Therefore, an attempt has been made in this review article to summarize established facts and recent advances regarding various retrograde signaling pathways derived from different sources, the identification of key elements mediating retrograde signal transduction and also to give an overview of possible signaling molecules that remain to be investigated.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India
| | - Vijay Pratap Singh
- Govt Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, Koriya-497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad-211002, India.
| |
Collapse
|
53
|
Chi W, Feng P, Ma J, Zhang L. Metabolites and chloroplast retrograde signaling. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:32-8. [PMID: 25912815 DOI: 10.1016/j.pbi.2015.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 05/23/2023]
Abstract
Intracellular signaling from chloroplast to nucleus followed by a subsequent response in the chloroplast is called retrograde signaling. It not only coordinates the expression of nuclear and chloroplast genes, which is essential for chloroplast biogenesis, but also maintains chloroplast function at optimal levels in response to fluxes in metabolites and changes in environmental conditions. In recent years several putative retrograde signals have been identified and signaling pathways have been proposed. Here we review retrograde signals derived from tetrapyrroles, carotenoids, nucleotides and isoprene precursors in response to abiotic stresses, including oxidative stress. We discuss the responses that these signals elicit and show that they not only modify chloroplast function but also influence other aspects of plant development and adaptation.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Peiqiang Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinfang Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
54
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
55
|
Laloi C, Havaux M. Key players of singlet oxygen-induced cell death in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:39. [PMID: 25699067 PMCID: PMC4316694 DOI: 10.3389/fpls.2015.00039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/15/2015] [Indexed: 05/03/2023]
Abstract
The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen ((1)O2) is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of (1)O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two (1)O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled (1)O2 cell death pathways and a (1)O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of (1)O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the (1)O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to (1)O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.
Collapse
Affiliation(s)
- Christophe Laloi
- Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesMarseille, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| | - Michel Havaux
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesSaint-Paul-lez-Durance, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| |
Collapse
|
56
|
Pérez-Martín M, Pérez-Pérez ME, Lemaire SD, Crespo JL. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2014; 166:997-1008. [PMID: 25143584 PMCID: PMC4213124 DOI: 10.1104/pp.114.243659] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.
Collapse
Affiliation(s)
- Marta Pérez-Martín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Stéphane D Lemaire
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092 Seville, Spain (M.P.-M., J.L.C.); andCentre National de la Recherche Scientifique (M.E.P.-P.; S.D.L.) andSorbonne Universités, Université Pierre et Marie Curie, University of Paris 06 (M.E.P.-P.; S.D.L.), Unité Mixte de Recherche 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
57
|
Havaux M. Carotenoid oxidation products as stress signals in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:597-606. [PMID: 24267746 DOI: 10.1111/tpj.12386] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 05/17/2023]
Abstract
Carotenoids are known to play important roles in plants as antioxidants, accessory light-harvesting pigments, and attractants for pollinators and seed dispersers. A new function for carotenoids has recently emerged, which relates to the response of plants to environmental stresses. Reactive oxygen species, especially singlet oxygen, produced in the chloroplasts under stress conditions, can oxidize carotenoids leading to a variety of oxidized products, including aldehydes, ketones, endoperoxides and lactones. Some of those carotenoid derivatives, such as volatile β-cyclocitral, derived from the oxidation of β-carotene, are reactive electrophile species that are bioactive and can induce changes in gene expression leading to acclimation to stress conditions. This review summarizes the current knowledge on the non-enzymatic oxidation of carotenoids, the bioactivity of the resulting cleavage compounds and their functions as stress signals in plants.
Collapse
Affiliation(s)
- Michel Havaux
- Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA, DSV, IBEB, F-13108, Saint-Paul-lez-Durance, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108, Saint-Paul-lez-Durance, France; Aix-Marseille Université, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
58
|
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. eLife 2014; 3:e02286. [PMID: 24859755 PMCID: PMC4067076 DOI: 10.7554/elife.02286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023] Open
Abstract
Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001.
Collapse
Affiliation(s)
- Setsuko Wakao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Brian L Chin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Heidi K Ledford
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Rachel M Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - David Casero
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States
| | - Sabeeha S Merchant
- Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
59
|
Mor A, Koh E, Weiner L, Rosenwasser S, Sibony-Benyamini H, Fluhr R. Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. PLANT PHYSIOLOGY 2014; 165:249-61. [PMID: 24599491 PMCID: PMC4012584 DOI: 10.1104/pp.114.236380] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
The production of singlet oxygen is typically associated with inefficient dissipation of photosynthetic energy or can arise from light reactions as a result of accumulation of chlorophyll precursors as observed in fluorescent (flu)-like mutants. Such photodynamic production of singlet oxygen is thought to be involved in stress signaling and programmed cell death. Here we show that transcriptomes of multiple stresses, whether from light or dark treatments, were correlated with the transcriptome of the flu mutant. A core gene set of 118 genes, common to singlet oxygen, biotic and abiotic stresses was defined and confirmed to be activated photodynamically by the photosensitizer Rose Bengal. In addition, induction of the core gene set by abiotic and biotic selected stresses was shown to occur in the dark and in nonphotosynthetic tissue. Furthermore, when subjected to various biotic and abiotic stresses in the dark, the singlet oxygen-specific probe Singlet Oxygen Sensor Green detected rapid production of singlet oxygen in the Arabidopsis (Arabidopsis thaliana) root. Subcellular localization of Singlet Oxygen Sensor Green fluorescence showed its accumulation in mitochondria, peroxisomes, and the nucleus, suggesting several compartments as the possible origins or targets for singlet oxygen. Collectively, the results show that singlet oxygen can be produced by multiple stress pathways and can emanate from compartments other than the chloroplast in a light-independent manner. The results imply that the role of singlet oxygen in plant stress regulation and response is more ubiquitous than previously thought.
Collapse
|
60
|
Pilati S, Brazzale D, Guella G, Milli A, Ruberti C, Biasioli F, Zottini M, Moser C. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC PLANT BIOLOGY 2014; 14:87. [PMID: 24693871 PMCID: PMC4021102 DOI: 10.1186/1471-2229-14-87] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The ripening of fleshy fruits is a complex developmental program characterized by extensive transcriptomic and metabolic remodeling in the pericarp tissues (pulp and skin) making unripe green fruits soft, tasteful and colored. The onset of ripening is regulated by a plethora of endogenous signals tuned to external stimuli. In grapevine and tomato, which are classified as non-climacteric and climacteric species respectively, the accumulation of hydrogen peroxide (H2O2) and extensive modulation of reactive oxygen species (ROS) scavenging enzymes at the onset of ripening has been reported, suggesting that ROS could participate to the regulatory network of fruit development. In order to investigate this hypothesis, a comprehensive biochemical study of the oxidative events occurring at the beginning of ripening in Vitis vinifera cv. Pinot Noir has been undertaken. RESULTS ROS-specific staining allowed to visualize not only H2O2 but also singlet oxygen (1O2) in berry skin cells just before color change in distinct subcellular locations, i.e. cytosol and plastids. H2O2 peak in sample skins at véraison was confirmed by in vitro quantification and was supported by the concomitant increase of catalase activity. Membrane peroxidation was also observed by HPLC-MS on galactolipid species at véraison. Mono- and digalactosyl diacylglycerols were found peroxidized on one or both α-linolenic fatty acid chains, with a 13(S) absolute configuration implying the action of a specific enzyme. A lipoxygenase (PnLOXA), expressed at véraison and localizing inside the chloroplasts, was indeed able to catalyze membrane galactolipid peroxidation when overexpressed in tobacco leaves. CONCLUSIONS The present work demonstrates the controlled, harmless accumulation of specific ROS in distinct cellular compartments, i.e. cytosol and chloroplasts, at a definite developmental stage, the onset of grape berry ripening. These features strongly candidate ROS as cellular signals in fruit ripening and encourage further studies to identify downstream elements of this cascade. This paper also reports the transient galactolipid peroxidation carried out by a véraison-specific chloroplastic lipoxygenase. The function of peroxidized membranes, likely distinct from that of free fatty acids due to their structural role and tight interaction with photosynthesis protein complexes, has to be ascertained.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Daniele Brazzale
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Graziano Guella
- Department of Physics, Bioorganic Chemistry Lab, University of Trento, Via Sommarive 14, 38123 Trento, Povo, Italy
- CNR, Istituto di Biofisica Trento, Via alla Cascata 56/C, 38123 Trento, Povo, Italy
| | - Alberto Milli
- Department of Physics, Bioorganic Chemistry Lab, University of Trento, Via Sommarive 14, 38123 Trento, Povo, Italy
| | - Cristina Ruberti
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| |
Collapse
|
61
|
Murik O, Elboher A, Kaplan A. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2014; 202:471-484. [PMID: 24345283 DOI: 10.1111/nph.12649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/18/2013] [Indexed: 05/06/2023]
Abstract
Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Ahinoam Elboher
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
62
|
Chang HL, Tseng YL, Ho KL, Shie SC, Wu PS, Hsu YT, Lee TM. Reactive oxygen species modulate the differential expression of methionine sulfoxide reductase genes in Chlamydomonas reinhardtii under high light illumination. PHYSIOLOGIA PLANTARUM 2014; 150:550-564. [PMID: 24102363 DOI: 10.1111/ppl.12102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/18/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Illumination of Chlamydomonas reinhardtii cells at 1000 (high light, HL) or 3000 (very high light, VHL) µmol photons m(-2) s(-1) intensity increased superoxide anion radical (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) production, and VHL illumination also increased the singlet oxygen ((1)O(2)) level. HL and VHL illumination decreased methionine sulfoxide reductase A4 (CrMSRA4) transcript levels but increased CrMSRA3, CrMSRA5 and CrMSRB2.1 transcripts levels. CrMSRB2.2 transcript levels increased only under VHL conditions. The role of reactive oxygen species (ROS) on CrMSR expression was studied using ROS scavengers and generators. Treatment with dimethylthiourea (DMTU), a H(2)O(2) scavenger, suppressed HL- and VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.1 expression, whereas H(2)O(2) treatment stimulated the expression of these genes under 50 µmol photons m(-2) s(-1) conditions (low light, LL). Treatment with diphenylamine (DPA), a (1)O(2) quencher, reduced VHL-induced CrMSRA3, CrMSRA5 and CrMSRB2.2 expression and deuterium oxide, which delays (1)O(2) decay, enhanced these gene expression, whereas treatment with (1)O(2) (rose bengal, methylene blue and neutral red) or O(2)(•-) (menadione and methyl viologen) generators under LL conditions induced their expression. DPA treatment inhibited the VHL-induced decrease in CrMSRA4 expression, but other ROS scavengers and ROS generators did not affect its expression under LL or HL conditions. These results demonstrate that the differential expression of CrMSRs under HL illumination can be attributed to different types of ROS. H(2)O(2), O(2) (•-) and (1)O(2) modulate CrMSRA3 and CrMSRA5 expression, whereas H(2)O(2) and O(2)(•-) regulate CrMSRB2.1 and CrMSRB2.2 expression, respectively. (1)O(2) mediates the decrease of CrMSRA4 expression by VHL illumination, but ROS do not modulate its decrease under HL conditions.
Collapse
Affiliation(s)
- Hsueh-Ling Chang
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | | | | | | | | | | | | |
Collapse
|
63
|
Zheng HQ, Chiang-Hsieh YF, Chien CH, Hsu BKJ, Liu TL, Chen CNN, Chang WC. AlgaePath: comprehensive analysis of metabolic pathways using transcript abundance data from next-generation sequencing in green algae. BMC Genomics 2014; 15:196. [PMID: 24628857 PMCID: PMC4028061 DOI: 10.1186/1471-2164-15-196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/26/2014] [Indexed: 01/10/2023] Open
Abstract
Background Algae are important non-vascular plants that have many research applications, including high species diversity, biofuel sources, and adsorption of heavy metals and, following processing, are used as ingredients in health supplements. The increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes has made the development of an integrated resource for retrieving gene expression data and metabolic pathway essential for functional analysis and systems biology. In a currently available resource, gene expression profiles and biological pathways are displayed separately, making it impossible to easily search current databases to identify the cellular response mechanisms. Therefore, in this work the novel AlgaePath database was developed to retrieve transcript abundance profiles efficiently under various conditions in numerous metabolic pathways. Description AlgaePath is a web-based database that integrates gene information, biological pathways, and NGS datasets for the green algae Chlamydomonas reinhardtii and Neodesmus sp. UTEX 2219–4. Users can search this database to identify transcript abundance profiles and pathway information using five query pages (Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-expression Analysis). The transcript abundance data of 45 and four samples from C. reinhardtii and Neodesmus sp. UTEX 2219–4, respectively, can be obtained directly on pathway maps. Genes that are differentially expressed between two conditions can be identified using Folds Search. The Gene Group Analysis page includes a pathway enrichment analysis, and can be used to easily compare the transcript abundance profiles of functionally related genes on a map. Finally, the Co-expression Analysis page can be used to search for co-expressed transcripts of a target gene. The results of the searches will provide a valuable reference for designing further experiments and for elucidating critical mechanisms from high-throughput data. Conclusions AlgaePath is an effective interface that can be used to clarify the transcript response mechanisms in different metabolic pathways under various conditions. Importantly, AlgaePath can be mined to identify critical mechanisms based on high-throughput sequencing. To our knowledge, AlgaePath is the most comprehensive resource for integrating numerous databases and analysis tools in algae. The system can be accessed freely online at http://algaepath.itps.ncku.edu.tw. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-196) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ching-Nen Nathan Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| | | |
Collapse
|
64
|
Schmitt FJ, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI. Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:835-48. [PMID: 24530357 DOI: 10.1016/j.bbabio.2014.02.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
Abstract
This review provides an overview about recent developments and current knowledge about monitoring, generation and the functional role of reactive oxygen species (ROS) - H2O2, HO2, HO, OH(-), (1)O2 and O2(-) - in both oxidative degradation and signal transduction in photosynthetic organisms including microscopic techniques for ROS detection and controlled generation. Reaction schemes elucidating formation, decay and signaling of ROS in cyanobacteria as well as from chloroplasts to the nuclear genome in eukaryotes during exposure of oxygen-evolving photosynthetic organisms to oxidative stress are discussed that target the rapidly growing field of regulatory effects of ROS on nuclear gene expression.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Technical University Berlin, Institute of Chemistry, Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Gernot Renger
- Technical University Berlin, Institute of Chemistry, Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technical University Berlin, Institute of Chemistry, Sekr. PC 14, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Vladimir D Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Sergei K Zharmukhamedov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir V Kuznetsov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Tomsk State University, Lenin Avenue 36, Tomsk 634050, Russia
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia; Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia.
| |
Collapse
|
65
|
Barth J, Bergner SV, Jaeger D, Niehues A, Schulze S, Scholz M, Fufezan C. The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry. Mol Cell Proteomics 2014; 13:969-89. [PMID: 24482124 DOI: 10.1074/mcp.m113.032771] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redox(II) was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O₂ and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.
Collapse
Affiliation(s)
- Johannes Barth
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Münster
| | | | | | | | | | | | | |
Collapse
|
66
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|
67
|
Park S, Lee Y, Lee JH, Jin E. Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. PLANTA 2013; 238:1147-56. [PMID: 24043576 DOI: 10.1007/s00425-013-1955-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/28/2013] [Indexed: 05/24/2023]
Abstract
The development of highly inducible promoters is critical for designing effective transformation systems for transgenic analyses. In this study, we investigated the promoter of the light-inducible protein gene (LIP) of the marine alga Dunaliella sp. LIPs are homologs of the early light-induced proteins (ELIPs) of Arabidopsis thaliana. DNA sequence analysis revealed that the LIP promoter contains several light-responsive motifs. Constructs containing progressive truncations of the LIP promoter fused with a Renilla luciferase gene were introduced into Chlamydomonas reinhardtii to identify the light-responsive region in the promoter. Transcription from the LIP promoter was stimulated by high light (HL) in a light intensity-dependent manner. In contrast, oxidative stress induced by chemicals had little effect on the LIP promoter, which implies that the LIP promoter is exclusively induced by high light. Truncation of the promoter to a -100 base pair (bp) region abrogated light inducibility, which suggests the presence of a negative cis-regulatory element upstream of the -100 bp fragment. The LIP promoter can be utilized in transgenic research to specifically select and propagate transgenic microalgae under high-light conditions.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Yew Lee
- Department of Life Science, Hanyang University, Seoul, South Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, South Korea.
| |
Collapse
|
68
|
Shao N, Duan GY, Bock R. A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells. THE PLANT CELL 2013; 25:4209-26. [PMID: 24151292 PMCID: PMC3877789 DOI: 10.1105/tpc.113.117390] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All cells produce reactive oxygen species (ROS) as by-products of their metabolism. In addition to being cytotoxic, ROS act as regulators of a wide range of developmental and physiological processes. Little is known about the molecular mechanisms underlying the perception of ROS and initiation of cellular responses in eukaryotes. Using the unicellular green alga Chlamydomonas reinhardtii, we developed a genetic screen for early components of singlet oxygen signaling. Here, we report the identification of a small zinc finger protein, methylene blue sensitivity (MBS), that is required for induction of singlet oxygen-dependent gene expression and, upon oxidative stress, accumulates in distinct granules in the cytosol. Loss-of-function mbs mutants produce singlet oxygen but are unable to fully respond to it at the level of gene expression. Knockout or knockdown of the homologous genes in the higher plant model Arabidopsis thaliana results in mutants that are hypersensitive to photooxidative stress, whereas overexpression produces plants with elevated stress tolerance. Together, our data indicate an important and evolutionarily conserved role of the MBS protein in ROS signaling and provide a strategy for engineering stress-tolerant plants.
Collapse
|
69
|
Toepel J, Illmer-Kephalides M, Jaenicke S, Straube J, May P, Goesmann A, Kruse O. New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:717-33. [PMID: 23551401 DOI: 10.1111/pbi.12062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/07/2013] [Accepted: 02/09/2013] [Indexed: 05/06/2023]
Abstract
Hydrogen production with Chlamydomonas reinhardtii induced by sulphur starvation is a multiphase process while the cell internal metabolism is completely remodelled. The first cellular response is characterized by induction of genes with regulatory functions, followed by a total remodelling of the metabolism to provide reduction equivalents for cellular processes. We were able to characterize all major processes that provide energy and reduction equivalents during hydrogen production. Furthermore, C. reinhardtii showed a strong transcript increase for gene models responsible for stress response and detoxification of oxygen radicals. Finally, we were able to determine potential bottlenecks and target genes for manipulation to increase hydrogen production or to prolong the hydrogen production phase. The investigation of transcriptomic changes during the time course of hydrogen production in C. reinhardtii with microarrays and RNA-seq revealed new insights into the regulation and remodelling of the cell internal metabolism. Both methods showed a good correlation. The microarray platform can be used as a reliable standard tool for routine gene expression analysis. RNA-seq additionally allowed a detailed time-dependent study of gene expression and determination of new genes involved in the hydrogen production process.
Collapse
Affiliation(s)
- Jörg Toepel
- Algae Biotechnology & Bioenergy Group, Department of Biology/Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
70
|
Chang HL, Hsu YT, Kang CY, Lee TM. Nitric Oxide Down-Regulation of Carotenoid Synthesis and PSII Activity in Relation to Very High Light-Induced Singlet Oxygen Production and Oxidative Stress in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2013; 54:1296-315. [DOI: 10.1093/pcp/pct078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
71
|
Roach T, Sedoud A, Krieger-Liszkay A. Acetate in mixotrophic growth medium affects photosystem II in Chlamydomonas reinhardtii and protects against photoinhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1183-90. [PMID: 23791666 DOI: 10.1016/j.bbabio.2013.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022]
Abstract
Chlamydomonas reinhardtii is a photoautotrophic green alga, which can be grown mixotrophically in acetate-supplemented media (Tris-acetate-phosphate). We show that acetate has a direct effect on photosystem II (PSII). As a consequence, Tris-acetate-phosphate-grown mixotrophic C. reinhardtii cultures are less susceptible to photoinhibition than photoautotrophic cultures when subjected to high light. Spin-trapping electron paramagnetic resonance spectroscopy showed that thylakoids from mixotrophic C. reinhardtii produced less (1)O2 than those from photoautotrophic cultures. The same was observed in vivo by measuring DanePy oxalate fluorescence quenching. Photoinhibition can be induced by the production of (1)O2 originating from charge recombination events in photosystem II, which are governed by the midpoint potentials (Em) of the quinone electron acceptors. Thermoluminescence indicated that the Em of the primary quinone acceptor (QA/QA(-)) of mixotrophic cells was stabilised while the Em of the secondary quinone acceptor (QB/QB(-)) was destabilised, therefore favouring direct non-radiative charge recombination events that do not lead to (1)O2 production. Acetate treatment of photosystem II-enriched membrane fragments from spinach led to the same thermoluminescence shifts as observed in C. reinhardtii, showing that acetate exhibits a direct effect on photosystem II independent from the metabolic state of a cell. A change in the environment of the non-heme iron of acetate-treated photosystem II particles was detected by low temperature electron paramagnetic resonance spectroscopy. We hypothesise that acetate replaces the bicarbonate associated to the non-heme iron and changes the environment of QA and QB affecting photosystem II charge recombination events and photoinhibition.
Collapse
Affiliation(s)
- Thomas Roach
- Commissariat à l'Energie Atomique (CEA) Saclay, iBiTec-S, CNRS UMR 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
72
|
Michelet L, Roach T, Fischer BB, Bedhomme M, Lemaire SD, Krieger-Liszkay A. Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2013; 36:1204-13. [PMID: 23237476 DOI: 10.1111/pce.12053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 05/18/2023]
Abstract
In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2 O2 in the 10 μm range. This concentration range seems to be necessary to activate H2 O2 -dependent signalling pathways stimulating the expression of H2 O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock-down mutants had lost the transient accumulation of H2 O2 , suggesting that a decrease in catalase activity was the key element for establishing a transient H2 O2 burst. Catalase was inactivated by a one-electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2 O2 , inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast-directed protection enzymes.
Collapse
Affiliation(s)
- Laure Michelet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Institut de Biologie et Technologie de Saclay, Centre National de la Recherche Scientifique, UMR 8221, 91191, Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
73
|
Fischer BB, Hideg É, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 2013; 18:2145-62. [PMID: 23320833 DOI: 10.1089/ars.2012.5124] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, excited chlorophylls (Chl) can stimulate the formation of singlet oxygen ((1)O(2)), a highly toxic molecule that acts in addition to its damaging nature as an important signaling molecule. Thus, due to this dual role of (1)O(2), its production and detoxification have to be strictly controlled. RECENT ADVANCES Regulation of pigment synthesis is essential to control (1)O(2) production, and several components of the Chl synthesis and pigment insertion machineries to assemble and disassemble protein/pigment complexes have recently been identified. Once produced, (1)O(2) activates a signaling cascade from the chloroplast to the nucleus that can involve multiple mechanisms and stimulate a specific gene expression response. Further, (1)O(2) signaling was shown to interact with signal cascades of other reactive oxygen species, oxidized carotenoids, and lipid hydroperoxide-derived reactive electrophile species. CRITICAL ISSUES Despite recent progresses, hardly anything is known about how and where the (1)O(2) signal is sensed and transmitted to the cytoplasm. One reason for that is the limitation of available detection methods challenging the reliable quantification and localization of (1)O(2) in plant cells. In addition, the process of Chl insertion into the reaction centers and antenna complexes is still unclear. FUTURE DIRECTIONS Unraveling the mechanisms controlling (1)O(2) production and signaling would help clarifying the specific role of (1)O(2) in cellular stress responses. It would further enable to investigate the interaction and sensitivity to other abiotic and biotic stress signals and thus allow to better understand why some stressors activate an acclimation, while others provoke a programmed cell death response.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | | |
Collapse
|
74
|
Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci U S A 2013; 110:3621-6. [PMID: 23345435 DOI: 10.1073/pnas.1222375110] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period.
Collapse
|
75
|
Abstract
Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.
Collapse
|
76
|
Abstract
Intracellular signaling from plastids to the nucleus, called retrograde signaling, coordinates the expression of nuclear and plastid genes and is essential for plastid biogenesis and for maintaining plastid function at optimal levels. Recent identification of several components involved in plastid retrograde generation, transmission, and control of nuclear gene expression has provided significant insight into the regulatory network of plastid retrograde signaling. Here, we review the current knowledge of multiple plastid retrograde signaling pathways, which are derived from distinct sources, and of possible plastid signaling molecules. We describe the retrograde signaling-dependent regulation of nuclear gene expression, which involves multilayered transcriptional control, as well as the transcription factors involved. We also summarize recent advances in the identification of key components mediating signal transduction from plastids to the nucleus.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
77
|
Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:429-50. [PMID: 23451784 DOI: 10.1146/annurev-arplant-050312-120132] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nonenzymatic lipid oxidation is usually viewed as deleterious. But if this is the case, then why does it occur so frequently in cells? Here we review the mechanisms of membrane peroxidation and examine the genesis of reactive electrophile species (RES). Recent evidence suggests that during stress, both lipid peroxidation and RES generation can benefit cells. New results from genetic approaches support a model in which entire membranes can act as supramolecular sinks for singlet oxygen, the predominant reactive oxygen species (ROS) in plastids. RES reprogram gene expression through a class II TGA transcription factor module as well as other, unknown signaling pathways. We propose a framework to explain how RES signaling promotes cell "REScue" by stimulating the expression of genes encoding detoxification functions, cell cycle regulators, and chaperones. The majority of the known biological activities of oxygenated lipids (oxylipins) in plants are mediated either by jasmonate perception or through RES signaling networks.
Collapse
Affiliation(s)
- Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
78
|
Romero-Campero FJ, Lucas-Reina E, Said FE, Romero JM, Valverde F. A contribution to the study of plant development evolution based on gene co-expression networks. FRONTIERS IN PLANT SCIENCE 2013; 4:291. [PMID: 23935602 PMCID: PMC3732916 DOI: 10.3389/fpls.2013.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/13/2013] [Indexed: 05/04/2023]
Abstract
Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms.
Collapse
Affiliation(s)
| | - Eva Lucas-Reina
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
| | - Fatima E. Said
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
| | - José M. Romero
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
| | - Federico Valverde
- Molecular Plant Development and Metabolism, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de SevillaSevilla, Spain
- *Correspondence: Federico Valverde, Molecular Plant Development and Metabolism Group, Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicasy Universidad de Sevilla, 49th, Americo Vespucio Avenue, 41092 Sevilla, Spain e-mail:
| |
Collapse
|
79
|
Ramel F, Mialoundama AS, Havaux M. Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:799-805. [PMID: 22915744 DOI: 10.1093/jxb/ers223] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carotenoids play a crucial protective role in photosynthetic organisms as quenchers of singlet oxygen ((1)O(2)). This function occurs either via a physical mechanism involving thermal energy dissipation or via a chemical mechanism involving direct oxidation of the carotenoid molecule. The latter mechanism can produce a variety of aldehydic or ketonic cleavage products containing a reactive carbonyl group. One such molecule, the volatile β-carotene derivative β-cyclocitral, triggers changes in the expression of (1)O(2)-responsive genes and leads to an enhancement of photooxidative stress tolerance. Thus, besides their well-known functions in light harvesting and photoprotection, carotenoids can also play a role through their nonenzymic oxidation in the sensing and signalling of reactive oxygen species and photooxidative stress in photosynthetic organisms. Enzymic carotenoid oxidation does not seem to play a significant role in this phenomenon. Elucidation of the carotenoid-mediated (1)O(2) signalling pathway could provide new targets for improving photooxidative stress tolerance of plants.
Collapse
Affiliation(s)
- Fanny Ramel
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
| | | | | |
Collapse
|
80
|
Ding J, Li X, Hu H. Systematic prediction of cis-regulatory elements in the Chlamydomonas reinhardtii genome using comparative genomics. PLANT PHYSIOLOGY 2012; 160:613-23. [PMID: 22915576 PMCID: PMC3461543 DOI: 10.1104/pp.112.200840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chlamydomonas reinhardtii is one of the most important microalgae model organisms and has been widely studied toward the understanding of chloroplast functions and various cellular processes. Further exploitation of C. reinhardtii as a model system to elucidate various molecular mechanisms and pathways requires systematic study of gene regulation. However, there is a general lack of genome-scale gene regulation study, such as global cis-regulatory element (CRE) identification, in C. reinhardtii. Recently, large-scale genomic data in microalgae species have become available, which enable the development of efficient computational methods to systematically identify CREs and characterize their roles in microalgae gene regulation. Here, we performed in silico CRE identification at the whole genome level in C. reinhardtii using a comparative genomics-based method. We predicted a large number of CREs in C. reinhardtii that are consistent with experimentally verified CREs. We also discovered that a large percentage of these CREs form combinations and have the potential to work together for coordinated gene regulation in C. reinhardtii. Multiple lines of evidence from literature, gene transcriptional profiles, and gene annotation resources support our prediction. The predicted CREs will serve, to our knowledge, as the first large-scale collection of CREs in C. reinhardtii to facilitate further experimental study of microalgae gene regulation. The accompanying software tool and the predictions in C. reinhardtii are also made available through a Web-accessible database (http://hulab.ucf.edu/research/projects/Microalgae/sdcre/motifcomb.html).
Collapse
|
81
|
Estavillo GM, Chan KX, Phua SY, Pogson BJ. Reconsidering the nature and mode of action of metabolite retrograde signals from the chloroplast. FRONTIERS IN PLANT SCIENCE 2012; 3:300. [PMID: 23316207 PMCID: PMC3539676 DOI: 10.3389/fpls.2012.00300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
Plant organelles produce retrograde signals to alter nuclear gene expression in order to coordinate their biogenesis, maintain homeostasis, or optimize their performance under adverse conditions. Many signals of different chemical nature have been described in the past decades, including chlorophyll intermediates, reactive oxygen species (ROS), and adenosine derivatives. While the effects of retrograde signaling on gene expression are well understood, the initiation and transport of the signals and their mode of action have either not been resolved, or are a matter of speculation. Moreover, retrograde signaling should be considered as part of a broader cellular network, instead of as separate pathways, required to adjust to changing physiologically relevant conditions. Here we summarize current plastid retrograde signaling models in plants, with a focus on new signaling pathways, SAL1-PAP, methylerythritol cyclodiphosphate (MEcPP), and β-cyclocitral (β-CC), and outline missing links or future areas of research that we believe need to be addressed to have a better understanding of plant intracellular signaling networks.
Collapse
Affiliation(s)
| | | | | | - Barry J. Pogson
- *Correspondence: Barry J. Pogson, ARC Centre of Excellence in Plant Energy of Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia. e-mail:
| |
Collapse
|