51
|
Comparative Correlation Between Chemical Composition and Cytotoxic Potential of the Coral-Associated Fungus Aspergillus sp. 2C1-EGY Against Human Colon Cancer Cells. Curr Microbiol 2017; 74:1294-1300. [PMID: 28752341 DOI: 10.1007/s00284-017-1316-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death in several countries. In the search for new anticancer drugs, marine organisms have played an important role in the discovery of lead compounds and the development of new pharmaceuticals for their wide diversity of chemical structures and biological activities. In the present study, the cytotoxicity on colorectal cancer cells HCT116 exerted by marine fungus Aspergillus sp. 2C1-EGY extracts associated with the soft coral Sinularia sp. was investigated; the sub-fractions Fr 2c and Fr 2d had significantly high cytotoxic activity (88 and 85%, respectively). Moreover, the major hexadecanoic, octadecanoic, and octadecenoic acids as well as their methyl esters were isolated. GC/MS analysis revealed the identification of 46 major and minor compounds, from which 19 saturated and unsaturated fatty acids and eight fatty acid esters were identified.
Collapse
|
52
|
Alvarez R, Casas J, López DJ, Ibarguren M, Suari-Rivera A, Terés S, Guardiola-Serrano F, Lossos A, Busquets X, Kakhlon O, Escribá PV. Triacylglycerol mimetics regulate membrane interactions of glycogen branching enzyme: implications for therapy. J Lipid Res 2017. [PMID: 28630259 DOI: 10.1194/jlr.m075531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD.
Collapse
Affiliation(s)
- Rafael Alvarez
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jesús Casas
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Ariadna Suari-Rivera
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Silvia Terés
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Francisca Guardiola-Serrano
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Alexander Lossos
- Department of Neurology, Hadassah-Hebrew University Medical Center, E-91120 Jerusalem, Israel
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, E-91120 Jerusalem, Israel.
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
53
|
Mezzar S, De Schryver E, Asselberghs S, Meyhi E, Morvay PL, Baes M, Van Veldhoven PP. Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28629946 DOI: 10.1016/j.bbalip.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2-Hydroxyacyl-CoA lyase (HACL1) is a key enzyme of the peroxisomal α-oxidation of phytanic acid. To better understand its role in health and disease, a mouse model lacking HACL1 was investigated. Under normal conditions, these mice did not display a particular phenotype. However, upon dietary administration of phytol, phytanic acid accumulated in tissues, mainly in liver and serum of KO mice. As a consequence of phytanic acid (or a metabolite) toxicity, KO mice displayed a significant weight loss, absence of abdominal white adipose tissue, enlarged and mottled liver and reduced hepatic glycogen and triglycerides. In addition, hepatic PPARα was activated. The central nervous system of the phytol-treated mice was apparently not affected. In addition, 2OH-FA did not accumulate in the central nervous system of HACL1 deficient mice, likely due to the presence in the endoplasmic reticulum of an alternate HACL1-unrelated lyase. The latter may serve as a backup system in certain tissues and account for the formation of pristanic acid in the phytol-fed KO mice. As the degradation of pristanic acid is also impaired, both phytanoyl- and pristanoyl-CoA levels are increased in liver, and the ω-oxidized metabolites are excreted in urine. In conclusion, HACL1 deficiency is not associated with a severe phenotype, but in combination with phytanic acid intake, the normal situation in man, it might present with phytanic acid elevation and resemble a Refsum like disorder.
Collapse
Affiliation(s)
- Serena Mezzar
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Evelyn De Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Stanny Asselberghs
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Els Meyhi
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Petruta L Morvay
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | | |
Collapse
|
54
|
Escribá PV. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1493-1506. [PMID: 28577973 DOI: 10.1016/j.bbamem.2017.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
55
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
56
|
Escribá PV. WITHDRAWN: Membrane-lipid therapy: A historical perspective of membrane-targeted therapies-From lipid bilayer structure to the pathophysiological regulation of cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017:S0005-2736(17)30139-6. [PMID: 28476630 DOI: 10.1016/j.bbamem.2017.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.bbamem.2017.05.017. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
57
|
Piotto S, Sessa L, Iannelli P, Concilio S. Computational study on human sphingomyelin synthase 1 (hSMS1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1517-1525. [PMID: 28411172 DOI: 10.1016/j.bbamem.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/23/2017] [Accepted: 04/09/2017] [Indexed: 01/28/2023]
Abstract
Human sphingomyelin synthase 1 (hSMS1) is the last enzyme for sphingomyelin (SM) biosynthesis. It has been discovered that in different human tumor tissues the SM levels are lower compared to normal tissues and the activation of hSMS1, to restore the normal levels of SM, inhibits cell cycle proliferation of cancer cells. Since the importance of SM and other lipid metabolism genes in the malignant transformation, we decided to explore the hSMS1 mechanism of action. Enzymes capable to regulate the formation of lipids are therefore of paramount importance. Here we present a computational study on sphingomyelin synthases hSMS1. The full structure of the enzyme was obtained by means of homology and ab initio techniques. Further molecular dynamics and docking studies permitted to identify putative binding sites and to identify the key residues for binding. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Pio Iannelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
58
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
59
|
Ellegaard AM, Dehlendorff C, Vind AC, Anand A, Cederkvist L, Petersen NHT, Nylandsted J, Stenvang J, Mellemgaard A, Østerlind K, Friis S, Jäättelä M. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment. EBioMedicine 2016; 9:130-139. [PMID: 27333030 PMCID: PMC4972561 DOI: 10.1016/j.ebiom.2016.06.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy. Use of cationic amphiphilic antihistamines is associated with reduced mortality among patients with non-localized cancer. Clinically relevant concentrations of cationic amphiphilic antihistamines sensitize cancer cells to chemotherapy. Clinically relevant concentrations of cationic amphiphilic antihistamines revert multidrug resistance. Research Context Cationic amphiphilic drugs (CADs) induce lysosomal membrane permeabilization and cell death preferentially in cancer cells. Here, we show that antihistamines with CAD structure, i.e. astemizole, ebastine and loratadine, sensitize cancer cells to chemotherapy and revert multidrug resistance even at low, clinically relevant concentrations. The significance of these experimental findings is supported by an association between CAD antihistamine use and reduced mortality among patients diagnosed with non-localized cancer, especially among those receiving concurrent chemotherapy. These findings are immediately translatable to clinical trials, as loratadine and ebastine, are safe, inexpensive and approved for clinical use.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Christian Dehlendorff
- Statistics, Bioinformatics & Registry, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Anna C Vind
- Department of Veterinary Disease Biology, Section for Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Atul Anand
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Luise Cederkvist
- Statistics, Bioinformatics & Registry, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Nikolaj H T Petersen
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Jan Stenvang
- Department of Veterinary Disease Biology, Section for Molecular Disease Biology, Faculty of Health and Medical Sciences, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Anders Mellemgaard
- Department of Oncology, Copenhagen University Hospital Herlev, DK-2730 Herlev, Denmark
| | - Kell Østerlind
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, DK-2200 DK-2730 Copenhagen, Denmark
| | - Søren Friis
- Statistics, Bioinformatics & Registry, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death & Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
60
|
Fernández R, Garate J, Lage S, Terés S, Higuera M, Bestard-Escalas J, Martin ML, López DH, Guardiola-Serrano F, Escribá PV, Barceló-Coblijn G, Fernández JA. Optimized Protocol To Analyze Changes in the Lipidome of Xenografts after Treatment with 2-Hydroxyoleic Acid. Anal Chem 2016; 88:1022-9. [PMID: 26607740 PMCID: PMC5017204 DOI: 10.1021/acs.analchem.5b03978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xenografts are a popular model for the study of the action of new antitumor drugs. However, xenografts are highly heterogeneous structures, and therefore it is sometimes difficult to evaluate the effects of the compounds on tumor metabolism. In this context, imaging mass spectrometry (IMS) may yield the required information, due to its inherent characteristics of sensitivity and spatial resolution. To the best of our knowledge, there is still no clear analysis protocol to properly evaluate the changes between samples due to the treatment. Here we present a protocol for the evaluation of the effect of 2-hydroxyoleic acid (2-OHOA), an antitumor compound, on xenografts lipidome based on IMS. Direct treated/control comparison did not show conclusive results. As we will demonstrate, a more sophisticated protocol was required to evaluate these changes including the following: (1) identification of different areas in the xenograft, (2) classification of these areas (necrotic/viable) to compare similar types of tissues, (3) suppression of the effect of the variation of adduct formation between samples, and (4) normalization of the variables using the standard deviation to eliminate the excessive impact of the stronger peaks in the statistical analysis. In this way, the 36 lipid species that experienced the largest changes between treated and control were identified. Furthermore, incorporation of 2-hydroxyoleic acid to a sphinganine base was also confirmed by MS/MS. Comparison of the changes observed here with previous results obtained with different techniques demonstrates the validity of the protocol.
Collapse
Affiliation(s)
- Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Jone Garate
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Sergio Lage
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Silvia Terés
- Unité de recherche Inserm 0916, Institut Européen de Chimie et Biologie (IECB)-INSERM, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Mónica Higuera
- Laboratory of Molecular and Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Joan Bestard-Escalas
- Research Unit, Hospital Universitari Son Espases, Institut d’Investigació Sanitária de Palma (IdISPa), Carretera Valldemossa 79, E-07010 Palma, Balearic Islands, Spain
| | - M. Laura Martin
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, 415 East 68th Street, New York, New York 10065, United States
| | - Daniel H. López
- Research Unit, Hospital Universitari Son Espases, Institut d’Investigació Sanitária de Palma (IdISPa), Carretera Valldemossa 79, E-07010 Palma, Balearic Islands, Spain
| | - Francisca Guardiola-Serrano
- Laboratory of Molecular and Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular and Cell Biomedicine, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Research Unit, Hospital Universitari Son Espases, Institut d’Investigació Sanitária de Palma (IdISPa), Carretera Valldemossa 79, E-07010 Palma, Balearic Islands, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
61
|
The unfolded protein response in the therapeutic effect of hydroxy-DHA against Alzheimer's disease. Apoptosis 2015; 20:712-24. [PMID: 25663172 DOI: 10.1007/s10495-015-1099-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unfolded protein response (UPR) and autophagy are two cellular processes involved in the clearing of intracellular misfolded proteins. Both pathways are targets for molecules that may serve as treatments for several diseases, including neurodegenerative disorders like Alzheimer's disease (AD). In the present work, we show that 2-hydroxy-DHA (HDHA), a docosahexaenoic acid (DHA) derivate that restores cognitive function in a transgenic mouse model of AD, modulates UPR and autophagy in differentiated neuron-like SH-SY5Y cells. Mild therapeutic HDHA exposure induced UPR activation, characterized by the up-regulation of the molecular chaperone Bip as well as PERK-mediated stimulation of eIF2α phosphorylation. Key proteins involved in initiating autophagy, such as beclin-1, and several Atg proteins involved in autophagosome maturation (Atg3, Atg5, Atg12 and Atg7), were also up-regulated on exposure to HDHA. Moreover, when HDHA-mediated autophagy was studied after amyloid-β peptide (Aβ) stimulation to mimic the neurotoxic environment of AD, it was associated with increased cell survival, suggesting that HDHA driven modulation of this process at least in part mediates the neuroprotective effects of this new anti-neurodegenerative drug. The present results in part explain the pharmacological effects of HDHA inducing full recovery of the cognitive scores in murine models of AD.
Collapse
|
62
|
Choi JY, Hong WG, Cho JH, Kim EM, Kim J, Jung CH, Hwang SG, Um HD, Park JK. Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. Int J Oncol 2015; 47:1257-65. [PMID: 26314270 PMCID: PMC4583522 DOI: 10.3892/ijo.2015.3123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 01/07/2023] Open
Abstract
We previously reported that podophyllotoxin acetate (PA) radiosensitizes NCI-H460 cells. Here, we confirmed that PA treatment also induces cell death among two other non-small cell lung cancer (NSCLC) cell lines: NCI-H1299 and A549 cells (IC50 values = 7.6 and 16.1 nM, respectively). Our experiments further showed that PA treatment was able to induce cell death via various mechanisms. First, PA dose-dependently induced cell cycle arrest at G2/M phase, as shown by accumulation of the mitosis-related proteins, p21, survivin and Aurora B. This G2/M phase arrest was due to the PA-induced inhibition of microtubule polymerization. Together, the decreased microtubule polymerization and increased cell cycle arrest induced DNA damage (reflected by accumulation of γ-H2AX) and triggered the induction of intrinsic and extrinsic apoptotic pathways, as shown by the time-dependent activations of caspase-3, -8 and -9. Second, PA time-dependently activated the pro-apoptotic ER stress pathway, as evidenced by increased expression levels of BiP, CHOP, IRE1-α, phospho-PERK, and phospho-JNK. Third, PA activated autophagy, as reflected by time-dependent increases in the expression levels of beclin-1, Atg3, Atg5 and Atg7, and the cleavage of LC3. Collectively, these results suggest a model wherein PA decreases microtubule polymerization and increases cell cycle arrest, thereby inducing apoptotic cell death via the activation of DNA damage, ER stress and autophagy.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Wan Gi Hong
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Hyun Cho
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Eun Mi Kim
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jongdoo Kim
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chan-Hun Jung
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang-Gu Hwang
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hong-Duck Um
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jong Kuk Park
- Department of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
63
|
Álvarez R, López DJ, Casas J, Lladó V, Higuera M, Nagy T, Barceló M, Busquets X, Escribá PV. G protein-membrane interactions I: Gαi1 myristoyl and palmitoyl modifications in protein-lipid interactions and its implications in membrane microdomain localization. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1511-20. [PMID: 26253820 DOI: 10.1016/j.bbalip.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.
Collapse
Affiliation(s)
- Rafael Álvarez
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Jesús Casas
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Mónica Higuera
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Tünde Nagy
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Barceló
- Bioinorganic and Bioorganic Research Group, Department of Chemistry, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
64
|
Guardiola-Serrano F, Beteta-Göbel R, Rodríguez-Lorca R, Ibarguren M, López DJ, Terés S, Alvarez R, Alonso-Sande M, Busquets X, Escribá PV. The Novel Anticancer Drug Hydroxytriolein Inhibits Lung Cancer Cell Proliferation via a Protein Kinase Cα– and Extracellular Signal-Regulated Kinase 1/2–Dependent Mechanism. J Pharmacol Exp Ther 2015; 354:213-24. [DOI: 10.1124/jpet.114.222281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/09/2015] [Indexed: 01/13/2023] Open
|
65
|
Abstract
The metabolism of malignant cells is profoundly altered in order to maintain their survival and proliferation in adverse microenvironmental conditions. Autophagy is an intracellular recycling process that maintains basal levels of metabolites and biosynthetic intermediates under starvation or other forms of stress, hence serving as an important mechanism for metabolic adaptation in cancer cells. Although it is widely acknowledged that autophagy sustains metabolism in neoplastic cells under duress, many questions remain with regard to the mutual relationship between autophagy and metabolism in cancer. Importantly, autophagy has often been described as a "double-edged sword" that can either impede or promote cancer initiation and progression. Here, we overview such a dual function of autophagy in tumorigenesis and our current understanding of the coordinated regulation of autophagy and cancer cell metabolism in the control of tumor growth, progression, and resistance to therapy.
Collapse
|
66
|
Escribá PV, Busquets X, Inokuchi JI, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res 2015; 59:38-53. [PMID: 25969421 DOI: 10.1016/j.plipres.2015.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023]
Abstract
Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein-lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein-lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
67
|
Wang FW, Wang SQ, Zhao BX, Miao JY. Discovery of 2'-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org Biomol Chem 2015; 12:3062-70. [PMID: 24695783 DOI: 10.1039/c3ob42429d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of 2'-hydroxychalcone derivatives was synthesized and the effects of all the compounds on growth of A549 lung cancer cell were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.
Collapse
Affiliation(s)
- Fang-Wu Wang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, P.R. China.
| | | | | | | |
Collapse
|
68
|
|
69
|
Liu Q, Xu X, Zhao M, Wei Z, Li X, Zhang X, Liu Z, Gong Y, Shao C. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol Cancer Ther 2014; 14:355-63. [PMID: 25504754 DOI: 10.1158/1535-7163.mct-14-0634] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and has a poor prognosis. We, here, report a potent antitumor effect of berberine, an isoquinoline alkaloid, on GBM. Berberine was found to have an IC50 that is much lower than temozolomide in vitro in U87, U251, and U118 glioblastoma cells. Although previous studies showed that berberine primarily exerts its anticancer effect by inducing cell-cycle arrest, apoptosis, and autophagy, we observed that the antitumor effect of berberine on glioblastoma cells was primarily achieved through induction of cellular senescence. In glioblastoma cells treated with berberine, the level of epidermal growth factor receptor (EGFR) was greatly reduced. Examination of the activities of the kinases downstream of EGFR revealed that the RAF-MEK-ERK signaling pathway was remarkably inhibited, whereas AKT phosphorylation was not altered. Pharmacologic inhibition or RNA interference of EGFR similarly induced cellular senescence of glioblastoma cells. Furthermore, the cellular senescence induced by berberine could be rescued by introduction of a constitutive active MKK. Berberine also potently inhibited the growth of tumor xenografts, which was accompanied by downregulation of EGFR and induction of senescence. Our findings thus revealed a new route by which berberine exerts its anticancer activity. Because EGFR is commonly upregulated in glioblastoma, the demonstration of effective inhibition of EGFR by berberine points to the possibility of using berberine in the treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Qiao Liu
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiuhua Xu
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Minnan Zhao
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhao Wei
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xi Li
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology of Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University School of Medicine, Jinan, Shandong, China. Department of Genetics/Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
70
|
Zerkowski JA, Solaiman DKY. 2-Fatty Acrylic Acids: New Highly Derivatizable Lipophilic Platform Molecules. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2459-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Ibarguren M, López DJ, Escribá PV. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1518-28. [DOI: 10.1016/j.bbamem.2013.12.021] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023]
|
72
|
Lladó V, López DJ, Ibarguren M, Alonso M, Soriano JB, Escribá PV, Busquets X. Regulation of the cancer cell membrane lipid composition by NaCHOleate: effects on cell signaling and therapeutical relevance in glioma. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1619-27. [PMID: 24525074 DOI: 10.1016/j.bbamem.2014.01.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022]
Abstract
This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - María Alonso
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - Joan B Soriano
- Epidemiology and Clinical Research, CIMERA, Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | - Xavier Busquets
- Cell Biology (IUNICS), University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain.
| |
Collapse
|
73
|
Piotto S, Trapani A, Bianchino E, Ibarguren M, López DJ, Busquets X, Concilio S. The effect of hydroxylated fatty acid-containing phospholipids in the remodeling of lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1509-17. [PMID: 24463068 DOI: 10.1016/j.bbamem.2014.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 11/17/2022]
Abstract
The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is an antitumor drug that regulates membrane lipid composition and structure. An important effect of this drug is the restoration of sphingomyelin (SM) levels in cancer cell membranes, where the SM concentration is lower than in non-tumor cells. It is well known that free fatty acid concentration in cell membranes is lower than 5%, and that fatty acid excess is rapidly incorporated into phospholipids. In a recent work, we have considered the effect of free 2OHOA in model membranes in liquid ordered (Lo) and liquid disordered (Ld) phases, by using all-atom molecular dynamics. This study concerns membranes that are modified upon incorporation of 2OHOA into different phospholipids. 2OHOA-containing phospholipids have a permanent effect on lipid membranes, making a Ld membrane surface more compact and less hydrated, whereas the opposite effect is observed in Lo domains. Moreover, the hydroxyl group of fatty acid chains increases the propensity of Ld model membranes to form hexagonal or other non-lamellar structures. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy.
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy
| | - Erminia Bianchino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy; BIOGEM s.c.a.r.l. - Research Institute Gaetano Salvatore, Via camporeale - area P.I.P., 83031 Ariano Irpino, AV, Italy
| | - Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano 84084, SA, Italy
| |
Collapse
|
74
|
Piotto S, Concilio S, Bianchino E, Iannelli P, López DJ, Terés S, Ibarguren M, Barceló-Coblijn G, Martin ML, Guardiola-Serrano F, Alonso-Sande M, Funari SS, Busquets X, Escribá PV. Differential effect of 2-hydroxyoleic acid enantiomers on protein (sphingomyelin synthase) and lipid (membrane) targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1628-37. [PMID: 24412218 DOI: 10.1016/j.bbamem.2013.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 11/17/2022]
Abstract
The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Stefano Piotto
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy.
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy
| | - Erminia Bianchino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy
| | - Pio Iannelli
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano 84084, SA, Italy
| | - David J López
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Silvia Terés
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Gwendolyn Barceló-Coblijn
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Maria Laura Martin
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Francisca Guardiola-Serrano
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - María Alonso-Sande
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Sérgio S Funari
- HASYLAB at Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands - Lipopharma Therapeutics, S.L., Palma, Spain
| |
Collapse
|
75
|
Kota V, Hama H. 2'-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv Biol Regul 2013; 54:223-30. [PMID: 24139861 DOI: 10.1016/j.jbior.2013.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 09/15/2013] [Indexed: 01/25/2023]
Abstract
Ceramide is a precursor of complex sphingolipids and also plays important roles in cell signaling. With the advances in lipid analytical technologies, the structural diversity of ceramide species have become evident, and the complexity of cellular metabolism and function associated with distinct ceramide species is beginning to be revealed. One of the common structural variations of ceramide is 2'-hydroxylation of the N-acyl chain. Fatty acid 2-hydroxylase (FA2H) is one of the enzymes that introduce the hydroxyl group during de novo synthesis of ceramide. FA2H is essential for the normal functioning of the nervous system, as evidenced by demyelinating disorder associated with FA2H mutations in humans and mice. Studies of Fa2h mutant mice indicate that lack of 2'-hydroxy galactosylceramide in the myelin membrane results in loss of long-term stability of myelin and eventual demyelination. FA2H also regulates differentiation of various cell types (epidermal keratinocytes, schwannoma cells, adipocytes). When provided exogenously, ceramide induces apoptosis in many cell types. Interestingly, the effective concentration of 2'-hydroxy ceramide that induces apoptosis is significantly lower compared to non-hydroxy ceramide, and cells die much more rapidly, suggesting that 2'-hydroxy ceramide can mediate proapoptotic signaling distinct from non-hydroxy ceramide. Collectively, current evidence clearly shows that 2'-hydroxy ceramide and 2'-hydroxy complex sphingolipids have unique functions in membrane homeostasis and cell signaling that could not be substituted by non-hydroxy counterparts.
Collapse
Affiliation(s)
- Venkatesh Kota
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Hiroko Hama
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
76
|
Nemashkalova EL, Kazakov AS, Khasanova LM, Permyakov EA, Permyakov SE. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. Biochemistry 2013; 52:6286-99. [PMID: 23947814 DOI: 10.1021/bi400643s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region 142290, Russia
| | | | | | | | | |
Collapse
|
77
|
Ibarguren M, López DJ, Encinar JA, González-Ros JM, Busquets X, Escribá PV. Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2553-63. [PMID: 23792066 DOI: 10.1016/j.bbamem.2013.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/19/2013] [Accepted: 06/10/2013] [Indexed: 01/15/2023]
Abstract
Cellular functions are usually associated with the activity of proteins and nucleic acids. Recent studies have shown that lipids modulate the localization and activity of key membrane-associated signal transduction proteins, thus regulating the cell's physiology. Membrane Lipid Therapy aims to reverse cell dysfunctions (i.e., diseases) by modulating the activity of membrane signaling proteins through regulation of the lipid bilayer structure. The present work shows the ability of a series of 2-hydroxyfatty acid (2OHFA) derivatives, varying in the acyl chain length and degree of unsaturation, to regulate the membrane lipid structure. These molecules have shown greater therapeutic potential than their natural non-hydroxylated counterparts. We demonstrated that both 2OHFA and natural FAs induced reorganization of lipid domains in model membranes of POPC:SM:PE:Cho, modulating the liquid-ordered/liquid-disordered structures ratio and the microdomain lipid composition. Fluorescence spectroscopy, confocal microscopy, Fourier transform infrared spectroscopy and differential detergent solubilization experiments showed a destabilization of the membranes upon addition of the 2OHFAs and FAs which correlated with the observed disordering effect. The changes produced by these synthetic fatty acids on the lipid structure may constitute part of their mechanism of action, leading to changes in the localization/activity of membrane proteins involved in signaling cascades, and therefore modulating cell responses.
Collapse
Affiliation(s)
- Maitane Ibarguren
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands-Lipopharma Therapeutics, S.L., Palma, Spain
| | | | | | | | | | | |
Collapse
|
78
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
79
|
Martin ML, Liebisch G, Lehneis S, Schmitz G, Alonso-Sande M, Bestard-Escalas J, Lopez DH, García-Verdugo JM, Soriano-Navarro M, Busquets X, Escribá PV, Barceló-Coblijn G. Sustained activation of sphingomyelin synthase by 2-hydroxyoleic acid induces sphingolipidosis in tumor cells. J Lipid Res 2013; 54:1457-65. [PMID: 23471028 PMCID: PMC3653406 DOI: 10.1194/jlr.m036749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/07/2013] [Indexed: 12/22/2022] Open
Abstract
The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor drug, involves the rapid and specific activation of sphingomyelin synthase (SMS), leading to a 4-fold increase in SM mass in tumor cells. In the present study, we investigated the source of the ceramides required to sustain this dramatic increase in SM. Through radioactive and fluorescent labeling, we demonstrated that sphingolipid metabolism was altered by a 24 h exposure to 2OHOA, and we observed a consistent increase in the number of lysosomes and the presence of unidentified storage materials in treated cells. Mass spectroscopy revealed that different sphingolipid classes accumulated in human glioma U118 cells after exposure to 2OHOA, demonstrating a specific effect on C16-, C20-, and C22-containing sphingolipids. Based on these findings, we propose that the demand for ceramides required to sustain the SMS activation (ca. 200-fold higher than the basal level) profoundly modifies both sphingolipid and phospholipid metabolism. As the treatment is prolonged, tumor cells fail to adequately metabolize sphingolipids, leading to a situation resembling sphingolipidosis, whereby cell viability is compromised.
Collapse
Affiliation(s)
- Maria Laura Martin
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, 93042 Regensburg, Germany; and
| | - Stefan Lehneis
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, 93042 Regensburg, Germany; and
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, 93042 Regensburg, Germany; and
| | - María Alonso-Sande
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Joan Bestard-Escalas
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Daniel H. Lopez
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Morfología Celular, Unidad Mixta Centre d'Investigació Príncep Felipe-Universitat de València Estudis Generals (CIPF-UVEG), Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), 46013 Valencia, Spain
| | - Mario Soriano-Navarro
- Laboratorio de Morfología Celular, Unidad Mixta Centre d'Investigació Príncep Felipe-Universitat de València Estudis Generals (CIPF-UVEG), Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas (CIBERNED), 46013 Valencia, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University Institute for Research into Health Sciences (IUNICS), University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain
| |
Collapse
|
80
|
Martin ML, Barceló-Coblijn G, de Almeida RFM, Noguera-Salvà MA, Terés S, Higuera M, Liebisch G, Schmitz G, Busquets X, Escribá PV. The role of membrane fatty acid remodeling in the antitumor mechanism of action of 2-hydroxyoleic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1405-13. [PMID: 23360770 DOI: 10.1016/j.bbamem.2013.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 12/15/2012] [Accepted: 01/17/2013] [Indexed: 01/08/2023]
Abstract
The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is a potent antitumor drug that we rationally designed to regulate the membrane lipid composition and structure. The lipid modifications caused by 2OHOA treatments induce important signaling changes that end up with cell death (Terés et al., 2012 [1]). One of these regulatory effects is restoration of sphingomyelin levels, which are markedly lower in cancer cells compared to normal cells (Barceló-Coblijn et al., 2011 [2]). In this study, we report another important regulatory effect of 2OHOA on cancer cell membrane composition: a large increase in 2OHOA levels, accounting for ~15% of the fatty acids present in membrane phospholipids, in human glioma (SF767 and U118) and lung cancer (A549) cells. Concomitantly, we observed marked reductions in oleic acid levels and inhibition of stearoyl-CoA desaturase. The impact of these changes on the biophysical properties of the lipid bilayer was evaluated in liposomes reconstituted from cancer cell membrane lipid extracts. Thus, 2OHOA increased the packing of ordered domains and decreased the global order of the membrane. The present results further support and extend the knowledge about the mechanism of action for 2OHOA, based on the regulation of the membrane lipid composition and structure and subsequent modulation of membrane protein-associated signaling.
Collapse
Affiliation(s)
- Maria Laura Martin
- Department of Biology, University of the Balearic Islands, Balearic Islands, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
2-Hydroxyoleic acid induces ER stress and autophagy in various human glioma cell lines. PLoS One 2012; 7:e48235. [PMID: 23133576 PMCID: PMC3484997 DOI: 10.1371/journal.pone.0048235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023] Open
Abstract
Background 2-Hydroxyoleic acid is a synthetic fatty acid with potent anti-cancer activity which does not induce undesired side effects. However, the molecular and cellular mechanisms by which this compound selectively kills human glioma cancer cells without killing normal cells is not fully understood. The present study was designed to determine the molecular bases underlying the potency against 1321N1, SF-767 and U118 human glioma cell lines growth without affecting non cancer MRC-5 cells. Methodology/Principal Findings The cellular levels of endoplasmic reticulum (ER) stress, unfolded protein response (UPR) and autophagy markers were determined by quantitative RT-PCR and immunoblotting on 1321N1, SF-767 and U118 human glioma cells and non-tumor MRC-5 cells incubated in the presence or absence of 2OHOA or the ER stress/autophagy inducer, palmitate. The cellular response to these agents was evaluated by fluorescence microscopy, electron microscopy and flow cytometry. We have observed that 2OHOA treatments induced augments in the expression of important ER stress/UPR markers, such as phosphorylated eIF2α, IRE1α, CHOP, ATF4 and the spliced form of XBP1 in human glioma cells. Concomitantly, 2OHOA led to the arrest of 1321N1 cells in the G2/M phase of the cell cycle, with down-regulation of cyclin B1 and Cdk1/Cdc2 proteins in the three glioma cell lines studied. Finally, 2OHOA induced autophagy in 1321N1, SF-767 and U118 cells, with the appearance of autophagic vesicles and the up-regulation of LC3BI, LC3BII and ATG7 in 1321N1 cells, increases of LC3BI, LC3BII and ATG5 in SF-767 cells and up-regulation of LC3BI and LC3BII in U118 cells. Importantly, 2OHOA failed to induce such changes in non-tumor MRC-5 cells. Conclusion/Significance The present results demonstrate that 2OHOA induces ER stress/UPR and autophagy in human glioma (1321N1, SF-767 and U118 cell lines) but not normal (MRC-5) cells, unraveling the molecular bases underlying the efficacy and lack of toxicity of this compound.
Collapse
|