51
|
Abstract
Vascular endothelial cells (ECs) maintain circulatory system homeostasis by changing their functions in response to changes in hemodynamic forces, including shear stress and stretching. However, it is unclear how ECs sense changes in shear stress and stretching and transduce these changes into intracellular biochemical signals. The plasma membranes of ECs have recently been shown to respond to shear stress and stretching differently by rapidly changing their lipid order, fluidity, and cholesterol content. Such changes in the membranes' physical properties trigger the activation of membrane receptors and cell responses specific to each type of force. Artificial lipid-bilayer membranes show similar changes in lipid order in response to shear stress and stretching, indicating that they are physical phenomena rather than biological reactions. These findings suggest that the plasma membranes of ECs act as mechanosensors; in response to mechanical forces, they first alter their physical properties, modifying the conformation and function of membrane proteins, which then activates downstream signaling pathways. This new appreciation of plasma membranes as mechanosensors could help to explain the distinctive features of mechanotransduction in ECs involving shear stress and stretching, which activate a variety of membrane proteins and multiple signal transduction pathways almost simultaneously.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo
| | - Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University
| |
Collapse
|
52
|
Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 2018; 19:638-653. [DOI: 10.1038/s41580-018-0049-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Wang YJ, Rico-Lastres P, Lezamiz A, Mora M, Solsona C, Stirnemann G, Garcia-Manyes S. DNA Binding Induces a Nanomechanical Switch in the RRM1 Domain of TDP-43. J Phys Chem Lett 2018; 9:3800-3807. [PMID: 29924934 DOI: 10.1021/acs.jpclett.8b01494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the molecular mechanisms governing protein-nucleic acid interactions is fundamental to many nuclear processes. However, how nucleic acid binding affects the conformation and dynamics of the substrate protein remains poorly understood. Here we use a combination of single molecule force spectroscopy AFM and biochemical assays to show that the binding of TG-rich ssDNA triggers a mechanical switch in the RRM1 domain of TDP-43, toggling between an entropic spring devoid of mechanical stability and a shock absorber bound-form that resists unfolding forces of ∼40 pN. The fraction of mechanically resistant proteins correlates with an increasing length of the TG n oligonucleotide, demonstrating that protein mechanical stability is a direct reporter of nucleic acid binding. Steered molecular dynamics simulations on related RNA oligonucleotides reveal that the increased mechanical stability fingerprinting the holo-form is likely to stem from a unique scenario whereby the nucleic acid acts as a "mechanical staple" that protects RRM1 from mechanical unfolding. Our approach highlights nucleic acid binding as an effective strategy to control protein nanomechanics.
Collapse
Affiliation(s)
- Yong Jian Wang
- Department of Physics and Randall Centre for Cell and Molecular Biophysics , King's College London , WC2R 2LS , London , United Kingdom
| | - Palma Rico-Lastres
- Department of Physics and Randall Centre for Cell and Molecular Biophysics , King's College London , WC2R 2LS , London , United Kingdom
| | - Ainhoa Lezamiz
- Department of Physics and Randall Centre for Cell and Molecular Biophysics , King's College London , WC2R 2LS , London , United Kingdom
| | - Marc Mora
- Department of Physics and Randall Centre for Cell and Molecular Biophysics , King's College London , WC2R 2LS , London , United Kingdom
| | - Carles Solsona
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences , University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet de Llobregat , Barcelona 08907 , Spain
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique , Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University , 75005 Paris , France
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Centre for Cell and Molecular Biophysics , King's College London , WC2R 2LS , London , United Kingdom
| |
Collapse
|
54
|
Kalli AC, Reithmeier RAF. Interaction of the human erythrocyte Band 3 anion exchanger 1 (AE1, SLC4A1) with lipids and glycophorin A: Molecular organization of the Wright (Wr) blood group antigen. PLoS Comput Biol 2018; 14:e1006284. [PMID: 30011272 PMCID: PMC6080803 DOI: 10.1371/journal.pcbi.1006284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/07/2018] [Accepted: 06/08/2018] [Indexed: 11/29/2022] Open
Abstract
The Band 3 (AE1, SLC4A1) membrane protein is found in red blood cells and in kidney where it functions as an electro-neutral chloride/bicarbonate exchanger. In this study, we have used molecular dynamics simulations to provide the first realistic model of the dimeric membrane domain of human Band 3 in an asymmetric lipid bilayer containing a full complement of phospholipids, including phosphatidylinositol 4,5–bisphosphate (PIP2) and cholesterol, and its partner membrane protein Glycophorin A (GPA). The simulations show that the annular layer in the inner leaflet surrounding Band 3 was enriched in phosphatidylserine and PIP2 molecules. Cholesterol was also enriched around Band 3 but also at the dimer interface. The interaction of these lipids with specific sites on Band 3 may play a role in the folding and function of this anion transport membrane protein. GPA associates with Band 3 to form the Wright (Wr) blood group antigen, an interaction that involves an ionic bond between Glu658 in Band 3 and Arg61 in GPA. We were able to recreate this complex by performing simulations to allow the dimeric transmembrane portion of GPA to interact with Band 3 in a model membrane. Large-scale simulations showed that the GPA dimer can bridge Band 3 dimers resulting in the dynamic formation of long strands of alternating Band 3 and GPA dimers. Human Band 3 (AE1, SLC4A1), an abundant 911 amino acid glycoprotein, catalyzes the exchange of bicarbonate and chloride across the red blood cell membrane, a process necessary for efficient respiration. Malfunction of Band 3 leads to inherited diseases such as Southeast Asian Ovalocytosis, hereditary spherocytosis and distal renal tubular acidosis. Despite much available structural and functional data about Band 3, key questions about the conformational changes associated with transport and the molecular details of its interaction with lipids and other proteins remain unanswered. In this study, we have used computer simulations to investigate the dynamics of Band 3 in lipid bilayers that resemble the red blood cell plasma membrane. Our results suggest that negatively charged phospholipids and cholesterol interact strongly with Band 3 forming an annulus around the protein. Glycophorin A (GPA) interacts with Band 3 to form the Wright (Wr) blood group antigen. We were able to recreate this complex and show that GPA promotes the clustering of Band 3 in red blood cell membranes. Understanding the molecular details of the interaction of Band 3 with GPA has provided new insights into the nature of the Wright blood group antigen.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | | |
Collapse
|
55
|
Yen HY, Hoi KK, Liko I, Hedger G, Horrell MR, Song W, Wu D, Heine P, Warne T, Lee Y, Carpenter B, Plückthun A, Tate CG, Sansom MSP, Robinson CV. PtdIns(4,5)P 2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 2018; 559:423-427. [PMID: 29995853 PMCID: PMC6059376 DOI: 10.1038/s41586-018-0325-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/14/2018] [Indexed: 11/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) are involved in many physiological processes and are therefore key drug targets1. Although detailed structural information is available for GPCRs, the effects of lipids on the receptors, and on downstream coupling of GPCRs to G proteins are largely unknown. Here we use native mass spectrometry to identify endogenous lipids bound to three class A GPCRs. We observed preferential binding of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) over related lipids and confirm that the intracellular surface of the receptors contain hotspots for PtdIns(4,5)P2 binding. Endogenous lipids were also observed bound directly to the trimeric Gαsβγ protein complex of the adenosine A2A receptor (A2AR) in the gas phase. Using engineered Gα subunits (mini-Gαs, mini-Gαi and mini-Gα12)2, we demonstrate that the complex of mini-Gαs with the β1 adrenergic receptor (β1AR) is stabilized by the binding of two PtdIns(4,5)P2 molecules. By contrast, PtdIns(4,5)P2 does not stabilize coupling between β1AR and other Gα subunits (mini-Gαi or mini-Gα12) or a high-affinity nanobody. Other endogenous lipids that bind to these receptors have no effect on coupling, highlighting the specificity of PtdIns(4,5)P2. Calculations of potential of mean force and increased GTP turnover by the activated neurotensin receptor when coupled to trimeric Gαiβγ complex in the presence of PtdIns(4,5)P2 provide further evidence for a specific effect of PtdIns(4,5)P2 on coupling. We identify key residues on cognate Gα subunits through which PtdIns(4,5)P2 forms bridging interactions with basic residues on class A GPCRs. These modulating effects of lipids on receptors suggest consequences for understanding function, G-protein selectivity and drug targeting of class A GPCRs.
Collapse
MESH Headings
- Animals
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Molecular Dynamics Simulation
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Protein Stability
- Rats
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Neurotensin/chemistry
- Receptors, Neurotensin/genetics
- Receptors, Neurotensin/metabolism
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/metabolism
- Substrate Specificity
- Turkeys
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Chemical Research Laboratory, University of Oxford, Oxford, UK
- OMass Technologies, Kidlington, UK
| | - Kin Kuan Hoi
- Chemical Research Laboratory, University of Oxford, Oxford, UK
| | - Idlir Liko
- Chemical Research Laboratory, University of Oxford, Oxford, UK
- OMass Technologies, Kidlington, UK
| | - George Hedger
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Wanling Song
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Di Wu
- Chemical Research Laboratory, University of Oxford, Oxford, UK
| | - Philipp Heine
- Biochemisches Institut, Universität Zürich, Zurich, Switzerland
| | - Tony Warne
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, The University of Warwick, Coventry, UK
| | | | | | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | | |
Collapse
|
56
|
Cerminati S, Paoletti L, Peirú S, Menzella HG, Castelli ME. The βγ-crystallin domain of Lysinibacillus sphaericus phosphatidylinositol phospholipase C plays a central role in protein stability. Appl Microbiol Biotechnol 2018; 102:6997-7005. [DOI: 10.1007/s00253-018-9136-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
|
57
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Goni L, Cuervo M, Martinez JA. Differential lipid metabolism outcomes associated with ADRB2 gene polymorphisms in response to two dietary interventions in overweight/obese subjects. Nutr Metab Cardiovasc Dis 2018; 28:165-172. [PMID: 29331538 DOI: 10.1016/j.numecd.2017.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS A precise nutrigenetic management of hypercholesterolemia involves the understanding of the interactions between the individual's genotype and dietary intake. The aim of this study was to analyze the response to two dietary energy-restricted interventions on cholesterol changes in carriers of two ADRB2 polymorphisms. METHODS AND RESULTS A 4-month nutritional intervention was conducted involving two different hypo-energetic diets based on low-fat (LF) and moderately high-protein (MHP) dietary patterns. A total of 107 unrelated overweight/obese individuals were genotyped for two ADRB2 non-synonymous polymorphisms: Arg16Gly (rs1042713) and Gln27Glu (rs1042714). Genotyping was performed by next-generation sequencing and haplotypes were phenotypically screened. Anthropometric measurements and the biochemical profile were assessed by conventional methods. Both diets induced cholesterol decreases at the end of both nutritional interventions. Interestingly, phenotypical differences were observed according to the Arg16Gly polymorphism. Within the MHP group, Gly16Gly homozygotes had lower reductions in total cholesterol (-6.5 mg/dL vs. -24.2 mg/dL, p = 0.009), LDL-c levels (-1.4 mg/dL vs. -16.5 mg/dL, p = 0.005), and non-HDL-c (-4.5 mg/dL vs. -21.5 mg/dL, p = 0.008) than Arg16 allele carriers. Conversely, within the LF group, Gly16Gly homozygotes underwent similar falls in total cholesterol (-18.5 mg/dL vs. -18.7 mg/dL, ns), LDL-c levels (-9.7 mg/dL vs. -13.1 mg/dL, ns), and non-HDL-c (-15.3 mg/dL vs. -15.7 mg/dL, ns) than Arg16 allele carriers. The Gln27Glu polymorphism and the Gly16/Glu27 haplotype showed similar, but not greater effects. CONCLUSIONS An energy-restricted LF diet could be more beneficial than a MHP diet to reduce serum cholesterol, LDL-c, and non-HDL-c among Gly16Gly genotype carriers. CLINICALTRIALS.GOV: Identifier: NCT02737267.
Collapse
Affiliation(s)
- O Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - F I Milagro
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - L Goni
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - M Cuervo
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - J A Martinez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain; Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain.
| |
Collapse
|
58
|
Lundgren A, Fast BJ, Block S, Agnarsson B, Reimhult E, Gunnarsson A, Höök F. Affinity Purification and Single-Molecule Analysis of Integral Membrane Proteins from Crude Cell-Membrane Preparations. NANO LETTERS 2018; 18:381-385. [PMID: 29231738 DOI: 10.1021/acs.nanolett.7b04227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The function of integral membrane proteins is critically dependent on their naturally surrounding lipid membrane. Detergent-solubilized and purified membrane proteins are therefore often reconstituted into cell-membrane mimics and analyzed for their function with single-molecule microscopy. Expansion of this approach toward a broad range of pharmaceutically interesting drug targets and biomarkers however remains hampered by the fact that these proteins have low expression levels, and that detergent solubilization and reconstitution often cause protein conformational changes and loss of membrane-specific cofactors, which may impair protein function. To overcome this limitation, we here demonstrate how antibody-modified nanoparticles can be used to achieve affinity purification and enrichment of selected integral membrane proteins directly from cell membrane preparations. Nanoparticles were first bound to the ectodomain of β-secretase 1 (BACE1) contained in cell-derived membrane vesicles. In a subsequent step, these were merged into a continuous supported membrane in a microfluidic channel. Through the extended nanoparticle tag, a weak (∼fN) hydrodynamic force could be applied, inducing directed in-membrane movement of targeted BACE1 exclusively. This enabled selective thousand-fold enrichment of the targeted membrane protein while preserving a natural lipid environment. In addition, nanoparticle-targeting also enabled simultaneous tracking analysis of each individual manipulated protein, revealing how their mobility changed when moved from one lipid environment to another. We therefore believe this approach will be particularly useful for separation in-line with single-molecule analysis, eventually opening up for membrane-protein sorting devices analogous to fluorescence-activated cell sorting.
Collapse
Affiliation(s)
- Anders Lundgren
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , 1190 Vienna, Austria
| | - Björn Johansson Fast
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , 1190 Vienna, Austria
| | - Anders Gunnarsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , 43183 Mölndal, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| |
Collapse
|
59
|
Batchelor M, Wolny M, Kurzawa M, Dougan L, Knight PJ, Peckham M. Determining Stable Single Alpha Helical (SAH) Domain Properties by Circular Dichroism and Atomic Force Microscopy. Methods Mol Biol 2018; 1805:185-211. [PMID: 29971719 DOI: 10.1007/978-1-4939-8556-2_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stable, single α-helical (SAH) domains exist in a number of unconventional myosin isoforms, as well as other proteins. These domains are formed from sequences rich in charged residues (Arg, Lys, and Glu), they can be hundreds of residues long, and in isolation they can tolerate significant changes in pH and salt concentration without loss in helicity. Here we describe methods for the preparation and purification of SAH domains and SAH domain-containing constructs, using the myosin 10 SAH domain as an example. We go on to describe the use of circular dichroism spectroscopy and force spectroscopy with the atomic force microscope for the elucidation of structural and mechanical properties of these unusual helical species.
Collapse
Affiliation(s)
- Matthew Batchelor
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marcin Wolny
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marta Kurzawa
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- Astbury Centre for Structural Molecular Biology and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter J Knight
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
60
|
Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 2017; 359:228-232. [PMID: 29217581 DOI: 10.1126/science.aar4510] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) melastatin 4 (TRPM4) is a widely expressed cation channel associated with a variety of cardiovascular disorders. TRPM4 is activated by increased intracellular calcium in a voltage-dependent manner but, unlike many other TRP channels, is permeable to monovalent cations only. Here we present two structures of full-length human TRPM4 embedded in lipid nanodiscs at ~3-angstrom resolution, as determined by single-particle cryo-electron microscopy. These structures, with and without calcium bound, reveal a general architecture for this major subfamily of TRP channels and a well-defined calcium-binding site within the intracellular side of the S1-S4 domain. The structures correspond to two distinct closed states. Calcium binding induces conformational changes that likely prime the channel for voltage-dependent opening.
Collapse
Affiliation(s)
- Henriette E Autzen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.,Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - Daniel Asarnow
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
61
|
Ramírez-Anguita JM, Rodríguez-Espigares I, Guixà-González R, Bruno A, Torrens-Fontanals M, Varela-Rial A, Selent J. Membrane cholesterol effect on the 5-HT 2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target. Biotechnol Appl Biochem 2017; 65:29-37. [PMID: 28877377 DOI: 10.1002/bab.1608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The serotonin 5-hydroxytryptamine 2A (5-HT2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs.
Collapse
Affiliation(s)
- Juan Manuel Ramírez-Anguita
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ismael Rodríguez-Espigares
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ramon Guixà-González
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institut für Medizinische Physik und Biophysik, Charité, Berlin, Germany
| | - Agostino Bruno
- Department of Pharmacy, Università degli studi di Parma, Italy, Parma
| | - Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alejandro Varela-Rial
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
62
|
Maity S, Ilieva N, Laio A, Torre V, Mazzolini M. New views on phototransduction from atomic force microscopy and single molecule force spectroscopy on native rods. Sci Rep 2017; 7:12000. [PMID: 28931892 PMCID: PMC5607320 DOI: 10.1038/s41598-017-11912-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
By combining atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS), we analyzed membrane proteins of the rod outer segments (OS). With this combined approach we were able to study the membrane proteins in their natural environment. In the plasma membrane we identified native cyclic nucleotide-gated (CNG) channels which are organized in single file strings. We also identified rhodopsin located both in the discs and in the plasma membrane. SMFS reveals strikingly different mechanical properties of rhodopsin unfolding in the two environments. Molecular dynamic simulations suggest that this difference is likely to be related to the higher hydrophobicity of the plasma membrane, due to the higher cholesterol concentration. This increases rhodopsin mechanical stability lowering the rate of transition towards its active form, hindering, in this manner, phototransduction.
Collapse
Affiliation(s)
- Sourav Maity
- International School for Advanced Studies (SISSA-ISAS) via Bonomea 265, 34136, Trieste, Italy
| | - Nina Ilieva
- International School for Advanced Studies (SISSA-ISAS) via Bonomea 265, 34136, Trieste, Italy
| | - Alessandro Laio
- International School for Advanced Studies (SISSA-ISAS) via Bonomea 265, 34136, Trieste, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA-ISAS) via Bonomea 265, 34136, Trieste, Italy.
| | - Monica Mazzolini
- International School for Advanced Studies (SISSA-ISAS) via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
63
|
Onfroy L, Galandrin S, Pontier SM, Seguelas MH, N'Guyen D, Sénard JM, Galés C. G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning. Sci Rep 2017; 7:7885. [PMID: 28801617 PMCID: PMC5554226 DOI: 10.1038/s41598-017-07392-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022] Open
Abstract
Biased agonism at G protein coupled receptors emerges as an opportunity for development of drugs with enhanced benefit/risk balance making biased ligand identification a priority. However, ligand biased signature, classically inferred from ligand activity across multiple pathways, displays high variability in recombinant systems. Functional assays usually necessity receptor/effector overexpression that should be controlled among assays to allow comparison but this calibration currently fails. Herein, we demonstrate that Gα expression level dictates the biased profiling of agonists and, to a lesser extent of β-blockers, in a Gα isoform- and receptor-specific way, depending on specific G protein activity in different membrane territories. These results have major therapeutic implications since they suggest that the ligand bias phenotype is not necessarily maintained in pathological cell background characterized by fluctuations in G protein expression. Thus, we recommend implementation of G protein stoichiometry as a new parameter in biased ligand screening programs.
Collapse
Affiliation(s)
- Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | | | - Marie-Hélène Seguelas
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Du N'Guyen
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France.,Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Faculté de Médecine, Université de Toulouse, F-31000, Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, U1048, Université de Toulouse, F-31432, Toulouse, France.
| |
Collapse
|
64
|
Desai AJ, Miller LJ. Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G protein-coupled receptor structure and function. Br J Pharmacol 2017; 175:4009-4025. [PMID: 28691227 DOI: 10.1111/bph.13943] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Drug development targeting GPCRs often utilizes model heterologous cell expression systems, reflecting an implicit assumption that the membrane environment has little functional impact on these receptors or on their responsiveness to drugs. However, much recent data have illustrated that membrane components can have an important functional impact on intrinsic membrane proteins. This review is directed toward gaining a better understanding of the structure of the plasma membrane in health and disease, and how this organelle can influence GPCR structure, function and regulation. It is important to recognize that the membrane provides a potential mode of lateral allosteric regulation of GPCRs and can affect the effectiveness of drugs and their biological responses in various disease states, which can even vary among individuals across the population. The type 1 cholecystokinin receptor is reviewed as an exemplar of a class A GPCR that is affected in this way by changes in the plasma membrane. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Aditya J Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
65
|
Seiwert D, Witt H, Janshoff A, Paulsen H. The non-bilayer lipid MGDG stabilizes the major light-harvesting complex (LHCII) against unfolding. Sci Rep 2017; 7:5158. [PMID: 28698661 PMCID: PMC5505961 DOI: 10.1038/s41598-017-05328-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/07/2017] [Indexed: 01/03/2023] Open
Abstract
In the photosynthetic apparatus of plants a high proportion of LHCII protein is needed to integrate 50% non-bilayer lipid MGDG into the lamellar thylakoid membrane, but whether and how the stability of the protein is also affected is not known. Here we use single-molecule force spectroscopy to map the stability of LHCII against mechanical unfolding along the polypeptide chain as a function of oligomerization state and lipid composition. Comparing unfolding forces between monomeric and trimeric LHCII demonstrates that the stability does not increase significantly upon trimerization but can mainly be correlated with specific contact sites between adjacent monomers. In contrast, unfolding of trimeric complexes in membranes composed of different thylakoid lipids reveals that the non-bilayer lipid MGDG substantially increases the mechanical stability of LHCII in many segments of the protein compared to other lipids such as DGDG or POPG. We attribute these findings to steric matching of conically formed MGDG and the hourglass shape of trimeric LHCII, thereby extending the role of non-bilayer lipids to the structural stabilization of membrane proteins in addition to the modulation of their folding, conformation and function.
Collapse
Affiliation(s)
- Dennis Seiwert
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Hannes Witt
- Institute of Physical Chemistry, University of Goettingen, 37077, Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, 37077, Göttingen, Germany.
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
66
|
Li X, Zhou M, Huang W, Yang H. N-glycosylation of the β2
adrenergic receptor regulates receptor function by modulating dimerization. FEBS J 2017; 284:2004-2018. [DOI: 10.1111/febs.14098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaona Li
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- The University of Chinese Academy of Sciences; Beijing China
| | - Mang Zhou
- CAS Key Laboratory of Receptor Research; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Pudong, Shanghai China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Pudong, Shanghai China
| | - Huaiyu Yang
- Drug Discovery and Design Center; State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- Shanghai Universities E-Institute for Chemical Biology; China
| |
Collapse
|
67
|
Jefferson RE, Min D, Corin K, Wang JY, Bowie JU. Applications of Single-Molecule Methods to Membrane Protein Folding Studies. J Mol Biol 2017; 430:424-437. [PMID: 28549924 DOI: 10.1016/j.jmb.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.
Collapse
Affiliation(s)
- Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Karolina Corin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Jing Yang Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
68
|
Membrane cholesterol access into a G-protein-coupled receptor. Nat Commun 2017; 8:14505. [PMID: 28220900 PMCID: PMC5321766 DOI: 10.1038/ncomms14505] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs. G-protein-coupled receptors trigger several signalling pathways and their activity was proposed to be allosteric modulated by cholesterol. Here the authors use molecular dynamics simulations and ligand binding assays to show that membrane cholesterol can bind to adenosine A2A receptor orthosteric site.
Collapse
|
69
|
Yano Y, Kondo K, Watanabe Y, Zhang TO, Ho JJ, Oishi S, Fujii N, Zanni MT, Matsuzaki K. GXXXG-Mediated Parallel and Antiparallel Dimerization of Transmembrane Helices and Its Inhibition by Cholesterol: Single-Pair FRET and 2D IR Studies. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Kotaro Kondo
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Yuta Watanabe
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Tianqi O. Zhang
- Department of Chemistry; University of Wisconsin; Madison WI 53706 USA
| | - Jia-Jung Ho
- Department of Chemistry; University of Wisconsin; Madison WI 53706 USA
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| | - Martin T. Zanni
- Department of Chemistry; University of Wisconsin; Madison WI 53706 USA
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto 606-8501 Japan
| |
Collapse
|
70
|
Genheden S, Essex JW, Lee AG. G protein coupled receptor interactions with cholesterol deep in the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:268-281. [DOI: 10.1016/j.bbamem.2016.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 12/01/2016] [Indexed: 01/20/2023]
|
71
|
Busija AR, Patel HH, Insel PA. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol 2017; 312:C459-C477. [PMID: 28122734 DOI: 10.1152/ajpcell.00355.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/09/2023]
Abstract
Caveolins (Cavs) are ~20 kDa scaffolding proteins that assemble as oligomeric complexes in lipid raft domains to form caveolae, flask-shaped plasma membrane (PM) invaginations. Caveolae ("little caves") require lipid-lipid, protein-lipid, and protein-protein interactions that can modulate the localization, conformational stability, ligand affinity, effector specificity, and other functions of proteins that are partners of Cavs. Cavs are assembled into small oligomers in the endoplasmic reticulum (ER), transported to the Golgi for assembly with cholesterol and other oligomers, and then exported to the PM as an intact coat complex. At the PM, cavins, ~50 kDa adapter proteins, oligomerize into an outer coat complex that remodels the membrane into caveolae. The structure of caveolae protects their contents (i.e., lipids and proteins) from degradation. Cellular changes, including signal transduction effects, can destabilize caveolae and produce cavin dissociation, restructuring of Cav oligomers, ubiquitination, internalization, and degradation. In this review, we provide a perspective of the life cycle (biogenesis, degradation), composition, and physiologic roles of Cavs and caveolae and identify unanswered questions regarding the roles of Cavs and cavins in caveolae and in regulating cell physiology.1.
Collapse
Affiliation(s)
- Anna R Busija
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Medicine, University of California, San Diego, La Jolla, California; and .,Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
72
|
Yano Y, Kondo K, Watanabe Y, Zhang TO, Ho JJ, Oishi S, Fujii N, Zanni MT, Matsuzaki K. GXXXG-Mediated Parallel and Antiparallel Dimerization of Transmembrane Helices and Its Inhibition by Cholesterol: Single-Pair FRET and 2D IR Studies. Angew Chem Int Ed Engl 2017; 56:1756-1759. [PMID: 28071848 DOI: 10.1002/anie.201609708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Indexed: 02/06/2023]
Abstract
Small-residue-mediated interhelical packings are ubiquitously found in helical membrane proteins, although their interaction dynamics and lipid dependence remain mostly uncharacterized. We used a single-pair FRET technique to examine the effect of a GXXXG motif on the association of de novo designed (AALALAA)3 helices in liposomes. Dimerization occurred with sub-second lifetimes, which was abolished by cholesterol. Utilizing the nearly instantaneous time-resolution of 2D IR spectroscopy, parallel and antiparallel helix associations were identified by vibrational couplings across helices at their interface. Taken together, the data illustrate that the GXXXG motif controls helix packing but still allows for a dynamic and lipid-regulated oligomeric state.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kotaro Kondo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuta Watanabe
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Tianqi O Zhang
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
73
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
74
|
Maity S, Marchesi A, Torre V, Mazzolini M. Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy. ACS OMEGA 2016; 1:1205-1219. [PMID: 31457189 PMCID: PMC6640748 DOI: 10.1021/acsomega.6b00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 06/10/2023]
Abstract
The determination at atomic resolution of the three-dimensional molecular structure of membrane proteins such as receptors and several ion channels has been a major breakthrough in structural biology. The molecular structure of several members of the superfamily of voltage-gated ionic channels such as K+ and Na+ is now available. However, despite several attempts, the molecular structure at atomic resolution of the full cyclic nucleotide-gated (CNG) ion channel, although a member of the same superfamily of voltage-gated ion channels, has not been obtained yet, neither by X-ray crystallography nor by electron cryomicroscopy (cryo-EM). It is possible that CNG channels have a high structural heterogeneity, making difficult crystallization and single-particle analysis. To address this issue, we have combined single-molecule force spectroscopy (SMFS) and electrophysiological experiments to characterize the structural heterogeneity of CNGA1 channels expressed in Xenopus laevis oocytes. The unfolding of the cytoplasmic domain had force peaks, occurring with a probability from 0.2 to 0.96. Force peaks during the unfolding of the transmembrane domain had a probability close to 1, but the distribution of the increase in contour length between two successive force peaks had multiple maxima differing by tens of nanometers. Concomitant electrophysiological experiments showed that the rundown in mutant channels S399C is highly variable and that the effect of thiol reagents when specific residues were mutated was consistent with a dynamic structural heterogeneity. These results show that CNGA1 channels have a wide spectrum of native conformations that are difficult to detect with X-ray crystallography and cryo-EM.
Collapse
|
75
|
Manna M, Niemelä M, Tynkkynen J, Javanainen M, Kulig W, Müller DJ, Rog T, Vattulainen I. Mechanism of allosteric regulation of β 2-adrenergic receptor by cholesterol. eLife 2016; 5. [PMID: 27897972 PMCID: PMC5182060 DOI: 10.7554/elife.18432] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/28/2016] [Indexed: 11/13/2022] Open
Abstract
There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Miia Niemelä
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Joona Tynkkynen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland.,Department of Physics, University of Helsinki, Helsinki, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
76
|
Gahbauer S, Böckmann RA. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front Physiol 2016; 7:494. [PMID: 27826255 PMCID: PMC5078798 DOI: 10.3389/fphys.2016.00494] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.
Collapse
Affiliation(s)
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
77
|
Casiraghi M, Damian M, Lescop E, Point E, Moncoq K, Morellet N, Levy D, Marie J, Guittet E, Banères JL, Catoire LJ. Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. J Am Chem Soc 2016; 138:11170-5. [DOI: 10.1021/jacs.6b04432] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marina Casiraghi
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Marjorie Damian
- Institut
des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue
C. Flahault, F-34093 Montpellier, France
| | - Ewen Lescop
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | - Elodie Point
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Karine Moncoq
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Nelly Morellet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | - Daniel Levy
- Institut Curie, Centre de Recherche, 75231 Paris, France
- UMR
168, CNRS, 75231 Paris, France
- Université Pierre et Marie Curie, F-75248 Paris, France
| | - Jacky Marie
- Institut
des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue
C. Flahault, F-34093 Montpellier, France
| | - Eric Guittet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| | - Jean-Louis Banères
- Institut
des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, 15 Avenue
C. Flahault, F-34093 Montpellier, France
| | - Laurent J. Catoire
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
78
|
Koldsø H, Reddy T, Fowler PW, Duncan AL, Sansom MSP. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane. J Phys Chem B 2016; 120:8873-81. [PMID: 27483109 DOI: 10.1021/acs.jpcb.6b05846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Tyler Reddy
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| |
Collapse
|
79
|
Patra SM, Chakraborty S, Shahane G, Prasanna X, Sengupta D, Maiti PK, Chattopadhyay A. Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation. Mol Membr Biol 2016; 32:127-37. [PMID: 26508556 DOI: 10.3109/09687688.2015.1096971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.
Collapse
Affiliation(s)
- Swarna M Patra
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India .,b Department of Chemistry , RV College of Engineering , Bangalore , India
| | - Sudip Chakraborty
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India
| | - Ganesh Shahane
- c CSIR-National Chemical Laboratory , Pune , India , and
| | | | - Durba Sengupta
- c CSIR-National Chemical Laboratory , Pune , India , and
| | - Prabal K Maiti
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India
| | | |
Collapse
|
80
|
Manna M, Kulig W, Javanainen M, Tynkkynen J, Hensen U, Müller DJ, Rog T, Vattulainen I. How To Minimize Artifacts in Atomistic Simulations of Membrane Proteins, Whose Crystal Structure Is Heavily Engineered: β₂-Adrenergic Receptor in the Spotlight. J Chem Theory Comput 2016; 11:3432-45. [PMID: 26575777 DOI: 10.1021/acs.jctc.5b00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atomistic molecular dynamics (MD) simulations are used extensively to elucidate membrane protein properties. These simulations are based on three-dimensional protein structures that in turn are often based on crystallography. The protein structures resolved in crystallographic studies typically do not correspond to pristine proteins, however. Instead the crystallized proteins are commonly engineered, including structural modifications (mutations, replacement of protein sequences by antibodies, bound ligands, etc.) whose impact on protein structure and dynamics is largely unknown. Here we explore this issue through atomistic MD simulations (∼5 μs in total), focusing on the β2-adrenergic receptor (β2AR) that is one of the most studied members of the G-protein coupled receptor superfamily. Starting from an inactive-state crystal structure of β2AR, we remove the many modifications in β2AR systematically one at a time, in six consecutive steps. After each step, we equilibrate the system and simulate it quite extensively. The results of this step-by-step approach highlight that the structural modifications used in crystallization can affect ligand and G-protein binding sites, packing at the transmembrane-helix interface region, and the dynamics of connecting loops in β2AR. When the results of the systematic step-by-step approach are compared to an all-at-once technique where all modifications done on β2AR are removed instantaneously at the same time, it turns out that the step-by-step method provides results that are superior in terms of maintaining protein structural stability. The results provide compelling evidence that for membrane proteins whose 3D structure is based on structural engineering, the preparation of protein structure for atomistic MD simulations is a delicate and sensitive process. The results show that most valid results are found when the structural modifications are reverted slowly, one at a time.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Waldemar Kulig
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Joona Tynkkynen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ulf Hensen
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich , 4058 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich , 4058 Basel, Switzerland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland.,MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark
| |
Collapse
|
81
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
82
|
Naranjo AN, McNeely PM, Katsaras J, Robinson AS. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids. Protein Expr Purif 2016; 124:62-7. [PMID: 27241126 DOI: 10.1016/j.pep.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 02/08/2023]
Abstract
The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.
Collapse
Affiliation(s)
- Andrea N Naranjo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, United States
| | - Patrick M McNeely
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, United States
| | - John Katsaras
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100, United States; Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6453, United States
| | - Anne Skaja Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, United States; Department of Chemical and Biomolecular Engineering, 300 Lindy Boggs Laboratory, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
83
|
Hedger G, Shorthouse D, Koldsø H, Sansom MSP. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor. J Phys Chem B 2016; 120:8154-63. [PMID: 27109430 PMCID: PMC5002933 DOI: 10.1021/acs.jpcb.6b01387] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Lipid molecules can
bind to specific sites on integral membrane
proteins, modulating their structure and function. We have undertaken
coarse-grained simulations to calculate free energy profiles for glycolipids
and phospholipids interacting with modulatory sites on the transmembrane
helix dimer of the EGF receptor within a lipid bilayer environment.
We identify lipid interaction sites at each end of the transmembrane
domain and compute interaction free energy profiles for lipids with
these sites. Interaction free energies ranged from ca. −40
to −4 kJ/mol for different lipid species. Those lipids (glycolipid
GM3 and phosphoinositide PIP2) known to modulate EGFR function
exhibit the strongest binding to interaction sites on the EGFR, and
we are able to reproduce the preference for interaction with GM3 over
other glycolipids suggested by experiment. Mutation of amino acid
residues essential for EGFR function reduce the binding free energy
of these key lipid species. The residues interacting with the lipids
in the simulations are in agreement with those suggested by experimental
(mutational) studies. This approach provides a generalizable tool
for characterizing the interactions of lipids that bind to specific
sites on integral membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - David Shorthouse
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,MRC Cancer Unit, University of Cambridge , MRC Research Centre, Box 197, Cambridge CB2 0X1, United Kingdom
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.,D. E. Shaw Research , 120 West 45th Street, 39th floor, New York, New York 10036, United States
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
84
|
Galandrin S, Onfroy L, Poirot MC, Sénard JM, Galés C. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol 2016; 77:251-63. [PMID: 27107932 DOI: 10.1016/j.biocel.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Lauriane Onfroy
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Mathias Charles Poirot
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France; Service de Pharmacologie Clinique, Faculté de médecine, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, F-31000 Toulouse, France
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM, UMR 1048, Université Toulouse, F-31432 Toulouse, France.
| |
Collapse
|
85
|
Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids 2016; 199:61-73. [PMID: 27108066 DOI: 10.1016/j.chemphyslip.2016.04.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.
Collapse
|
86
|
Ge L, Villinger S, Mari SA, Giller K, Griesinger C, Becker S, Müller DJ, Zweckstetter M. Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane. Structure 2016; 24:585-594. [PMID: 27021164 PMCID: PMC5654509 DOI: 10.1016/j.str.2016.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 12/28/2022]
Abstract
The voltage-dependent anion channel (VDAC) regulates the flux of metabolites and ions across the outer mitochondrial membrane. Regulation of ion flow involves conformational transitions in VDAC, but the nature of these changes has not been resolved to date. By combining single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca(2+), a key regulator of metabolism and apoptosis, considerably decreases the barrel's conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel.
Collapse
Affiliation(s)
- Lin Ge
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Saskia Villinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, University of Göttingen, Am Waldweg 33, 37073 Göttingen, Germany.
| |
Collapse
|
87
|
Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation. Proc Natl Acad Sci U S A 2016; 113:3539-44. [PMID: 26979958 DOI: 10.1073/pnas.1516579113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The structural basis of allosteric signaling in G protein-coupled receptors (GPCRs) is important in guiding design of therapeutics and understanding phenotypic consequences of genetic variation. The Evolutionary Trace (ET) algorithm previously proved effective in redesigning receptors to mimic the ligand specificities of functionally distinct homologs. We now expand ET to consider mutual information, with validation in GPCR structure and dopamine D2 receptor (D2R) function. The new algorithm, called ET-MIp, identifies evolutionarily relevant patterns of amino acid covariations. The improved predictions of structural proximity and D2R mutagenesis demonstrate that ET-MIp predicts functional interactions between residue pairs, particularly potency and efficacy of activation by dopamine. Remarkably, although most of the residue pairs chosen for mutagenesis are neither in the binding pocket nor in contact with each other, many exhibited functional interactions, implying at-a-distance coupling. The functional interaction between the coupled pairs correlated best with the evolutionary coupling potential derived from dopamine receptor sequences rather than with broader sets of GPCR sequences. These data suggest that the allosteric communication responsible for dopamine responses is resolved by ET-MIp and best discerned within a short evolutionary distance. Most double mutants restored dopamine response to wild-type levels, also suggesting that tight regulation of the response to dopamine drove the coevolution and intramolecular communications between coupled residues. Our approach provides a general tool to identify evolutionary covariation patterns in small sets of close sequence homologs and to translate them into functional linkages between residues.
Collapse
|
88
|
Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2390-2400. [PMID: 26946244 DOI: 10.1016/j.bbamem.2016.02.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 11/22/2022]
Abstract
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterization of these sites are of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
89
|
Kepczynski M, Róg T. Functionalized lipids and surfactants for specific applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2362-2379. [PMID: 26946243 DOI: 10.1016/j.bbamem.2016.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022]
Abstract
Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101, Tampere, Finland; Department of Physics, Helsinki University, P.O. Box 64, FI 00014 Helsinki, Finland.
| |
Collapse
|
90
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
91
|
Abstract
The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity.
Collapse
Affiliation(s)
- Eva Sevcsik
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
92
|
Koldsø H, Sansom MSP. Organization and Dynamics of Receptor Proteins in a Plasma Membrane. J Am Chem Soc 2015; 137:14694-704. [PMID: 26517394 DOI: 10.1021/jacs.5b08048] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
93
|
Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat Commun 2015; 6:8857. [PMID: 26561004 PMCID: PMC4660198 DOI: 10.1038/ncomms9857] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/11/2015] [Indexed: 01/29/2023] Open
Abstract
A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.
Collapse
|
94
|
Clay AT, Lu P, Sharom FJ. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols. Biochemistry 2015; 54:6586-97. [DOI: 10.1021/acs.biochem.5b00904] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Adam T. Clay
- Department of Molecular and
Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Peihua Lu
- Department of Molecular and
Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Frances J. Sharom
- Department of Molecular and
Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
95
|
Kotamarthi HC, Yadav A, Koti Ainavarapu SR. Small peptide binding stiffens the ubiquitin-like protein SUMO1. Biophys J 2015; 108:360-7. [PMID: 25606684 DOI: 10.1016/j.bpj.2014.11.3474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Posttranslational modification by small ubiquitin-like modifiers (SUMOs), known as SUMOylation, is a key regulatory event in many eukaryotic cellular processes in which SUMOs interact with a large number of target proteins. SUMO binding motifs (SBMs) are small peptides derived from these target proteins that interact noncovalently with SUMOs and induce conformational changes. To determine the effect of SBMs on the mechanical properties of SUMO1 (the first member of the human SUMO family), we performed single-molecule force spectroscopy experiments on SUMO1/SBM complexes. The unfolding force of SUMO1 (at a pulling speed of 400 nm/s) increased from ∼ 130 pN to ∼ 170 pN upon binding to SBMs, indicating mechanical stabilization upon complexation. Pulling-speed-dependent experiments and Monte Carlo simulations measured a large decrease in distance to the unfolding transition state for SUMO1 upon SBM binding, which is by far the largest change measured for any ligand binding protein. The stiffness of SUMO1 (measured as a spring constant for the deformation response along the line joining the N- and C-termini) increased upon SBM binding from ∼ 1 N/m to ∼ 3.5 N/m. The relatively higher flexibility of ligand-free SUMO1 might play a role in accessing various conformations before binding to a target.
Collapse
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Anju Yadav
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | |
Collapse
|
96
|
Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat Struct Mol Biol 2015; 22:795-802. [PMID: 26344570 DOI: 10.1038/nsmb.3087] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 08/13/2015] [Indexed: 12/27/2022]
Abstract
Chaperones increase the folding yields of soluble proteins by suppressing misfolding and aggregation, but how they modulate the folding of integral membrane proteins is not well understood. Here we use single-molecule force spectroscopy and NMR spectroscopy to observe the periplasmic holdase chaperones SurA and Skp shaping the folding trajectory of the large β-barrel outer-membrane receptor FhuA from Escherichia coli. Either chaperone prevents FhuA from misfolding by stabilizing a dynamic, unfolded state, thus allowing the substrate to search for structural intermediates. During this search, the SurA-chaperoned FhuA polypeptide inserts β-hairpins into the membrane in a stepwise manner until the β-barrel is folded. The membrane acts as a free-energy sink for β-hairpin insertion and physically separates transient folds from chaperones. This stabilization of dynamic unfolded states and the trapping of folding intermediates funnel the FhuA polypeptide toward the native conformation.
Collapse
|
97
|
Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–cholesterol interaction: An emerging paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1775-82. [DOI: 10.1016/j.bbamem.2015.03.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
|
98
|
Scholtysek P, Shah SWH, Müller SS, Schöps R, Frey H, Blume A, Kressler J. Unusual triskelion patterns and dye-labelled GUVs: consequences of the interaction of cholesterol-containing linear-hyperbranched block copolymers with phospholipids. SOFT MATTER 2015; 11:6106-6117. [PMID: 26133098 DOI: 10.1039/c5sm01017a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cholesterol (Ch) linked to a linear-hyperbranched block copolymer composed of poly(ethylene glycol) (PEG) and poly(glycerol) (hbPG) was investigated for its membrane anchoring properties. Two polyether-based linear-hyperbranched block copolymers with and without a covalently attached rhodamine fluorescence label (Rho) were employed (Ch-PEG30-b-hbPG23 and Ch-PEG30-b-hbPG17-Rho). Compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with the respective polymers were measured on the Langmuir trough and the morphology development of the liquid-condensed (LC) domains was studied by epi-fluorescence microscopy. LC domains were strongly deformed due to the localization of the polymers at the domain interface, indicating a line activity for both block copolymers. Simultaneously, it was observed that the presence of the fluorescence label significantly influences the domain morphology, the rhodamine labelled polymer showing higher line activity. Adsorption isotherms of the polymers to the water surface or to monolayers of DPPC and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), respectively, were collected. Again the rhodamine labelled polymer showed higher surface activity and a higher affinity for insertion into lipid monolayers, which was negligibly affected when the sub-phase was changed to aqueous sodium chloride solution or phosphate buffer. Calorimetric investigations in bulk confirmed the results found using tensiometry. Confocal laser scanning microscopy (CLSM) of giant unilamellar vesicles (GUVs) also confirmed the polymers' fast adsorption to and insertion into phospholipid membranes.
Collapse
Affiliation(s)
- Peggy Scholtysek
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
99
|
Autzen HE, Siuda I, Sonntag Y, Nissen P, Møller JV, Thøgersen L. Regulation of the Ca(2+)-ATPase by cholesterol: a specific or non-specific effect? Mol Membr Biol 2015; 32:75-87. [PMID: 26260074 DOI: 10.3109/09687688.2015.1073382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Like other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA. In the current study, coarse-grained molecular dynamics simulations are used to address how a mixed lipid-cholesterol membrane interacts with SERCA. Candidates for direct regulatory sites with specific cholesterol binding modes are extracted from the simulations. The binding pocket for thapsigargin, a nanomolar inhibitor of SERCA, has been suggested as a cholesterol binding site. However, the thapsigargin binding pocket displayed very little cholesterol occupation in the simulations. Neither did atomistic simulations of cholesterol in the thapsigargin binding pocket support any specific interaction. The current study points to a non-specific effect of cholesterol on SERCA activity, and offers an alternative interpretation of the experimental results used to argue for a specific effect.
Collapse
Affiliation(s)
- Henriette Elisabeth Autzen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Iwona Siuda
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| | - Yonathan Sonntag
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Poul Nissen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Jesper Vuust Møller
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,d Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Lea Thøgersen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| |
Collapse
|
100
|
Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape. Nat Methods 2015; 12:845-851. [PMID: 26167642 DOI: 10.1038/nmeth.3479] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/29/2015] [Indexed: 11/08/2022]
Abstract
Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors.
Collapse
|