51
|
Amelio D, Garofalo F. Morpho-functional changes of lungfish Protopterus dolloi skin in the shift from freshwater to aestivating conditions. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110846. [PMID: 36894022 DOI: 10.1016/j.cbpb.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
African dipnoi (Protopterus sp.) are obligate air-breathing fish that, during dry season, may experience a period of dormancy named aestivation. Aestivation is characterized by complete reliance on pulmonary breathing, general decrease of metabolism and down-regulation of respiratory and cardiovascular functions. To date, little is known about morpho-functional rearrangements induced by aestivation in the skin of African lungfishes. Our study aims to identify, in the skin of P. dolloi, structural modifications and stress-induced molecules in response to short-term (6 days) and long-term (40 days) aestivation. Light microscopy showed that short-term aestivation induces major reorganization, with narrowing of epidermal layers and decrease of mucous cells; prolonged aestivation is characterized by regenerative processes and re-thickening of epidermal layers. Immunofluorescence reveals that aestivation correlates with an increased oxidative stress and changes of Heat Shock Proteins expression, suggesting a protective role for these chaperons. Our findings revealed that lungfish skin undergoes remarkable morphological and biochemical readjustments in response to stressful conditions associated with aestivation.
Collapse
Affiliation(s)
- Daniela Amelio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Filippo Garofalo
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| |
Collapse
|
52
|
Mateus AP, Costa RA, Sadoul B, Bégout ML, Cousin X, Canario AV, Power DM. Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108647. [PMID: 36842641 DOI: 10.1016/j.fsi.2023.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita A Costa
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bastien Sadoul
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France; DECOD, Ecosystem Dynamics and Sustainability, Institut Agro, Ifremer, INRAE, Rennes, France
| | - Marie-Laure Bégout
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-Les-Flots, France
| | - Adelino Vm Canario
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centro de Ciências do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
53
|
Ding Y, Fern Ndez-Montero A, Mani A, Casadei E, Shibasaki Y, Takizawa F, Miyazawa R, Salinas I, Sunyer JO. Secretory IgM (sIgM) is an ancient master regulator of microbiota homeostasis and metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530119. [PMID: 36909635 PMCID: PMC10002622 DOI: 10.1101/2023.02.26.530119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
UNLABELLED The co-evolution between secretory immunoglobulins (sIgs) and microbiota began with the emergence of IgM over half a billion years ago. Yet, IgM function in vertebrates is mostly associated with systemic immunity against pathogens. sIgA and sIgT are the only sIgs known to be required in the control of microbiota homeostasis in warm- and cold-blooded vertebrates respectively. Recent studies have shown that sIgM coats a large proportion of the gut microbiota of humans and teleost fish, thus suggesting an ancient and conserved relationship between sIgM and microbiota early in vertebrate evolution. To test this hypothesis, we temporarily and selectively depleted IgM from rainbow trout, an old bony fish species. IgM depletion resulted in a drastic reduction in microbiota IgM coating levels and losses in gutassociated bacteria. These were accompanied by bacterial translocation, severe gut tissue damage, inflammation and dysbiosis predictive of metabolic shifts. Furthermore, depletion of IgM resulted in body weight loss and lethality in an experimental colitis model. Recovery of sIgM to physiological levels restores tissue barrier integrity, while microbiome homeostasis and their predictive metabolic capabilities are not fully restituted. Our findings uncover a previously unrecognized role of sIgM as an ancient master regulator of microbiota homeostasis and metabolism and challenge the current paradigm that sIgA and sIgT are the key vertebrate sIgs regulating microbiome homeostasis. ONE-SENTENCE SUMMARY IgM, the most ancient and conserved immunoglobulin in jawed vertebrates, is required for successful symbiosis with the gut microbiota.
Collapse
|
54
|
Zhao L, Huang J, Li Y, Wu S, Kang Y. Comprehensive analysis of immune parameters, mRNA and miRNA profiles, and immune genes expression in the gill of rainbow trout infected with infectious hematopoietic necrosis virus (IHNV). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108546. [PMID: 36646338 DOI: 10.1016/j.fsi.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is a species of cold-water fish with important economic values, widely cultivated worldwide. However, the outbreak of infectious hematopoietic necrosis virus (IHNV) caused the large-scale death of rainbow trout and seriously restricted the development of the trout farming industry. In this study, the changes of immune parameters in different periods (6-, 12-, 24-, 48-, 72-, 96-, 120-, and 144 h post-infection (hpi)), transcriptome profiles of 48 hpi (T48G) compared to control (C48G), and key immune-related genes expression patterns were measured in rainbow trout gill following IHNV challenge through biochemical methods, RNA sequencing (RNA-seq), and quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that alkaline phosphatase (AKP), acid phosphatase (ACP), total superoxide dismutase (T-SOD), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities, as well as lysozyme (LZM) and malonaldehyde (MDA) content decreased and then increased during infection, and remained at a high level after 48 hpi (P < 0.05), whereas catalase (CAT) activity showed a significant peak at 48 hpi (P < 0.05). The mRNA and miRNA analysis identified 4343 differentially expressed genes (DEGs) and 11 differentially expressed miRNAs (DEMs), and numerous immune-related DEGs involved in the Toll-like receptor signaling pathway, apoptosis, DNA replication, p53 signaling, RIG-I-like receptor signaling pathway, and NOD-like receptor signaling pathway and expression were significantly up-regulated in T48Gm group, including tlr3, tlr7, tlr8, traf3, ifih1, trim25, dhx58, ddh58, hsp90a.1, nlrc3, nlrc5, socs3, irf3, irf7, casp7, mx1, and vig2. The integrated analysis identified several important miRNAs (ola-miR-27d-3p_R+5, gmo-miR-124-3-5p, ssa-miR-301a-5p_L+2, and ssa-miR-146d-3p) that targeted key immune-related DEGs. Expression analysis showed that tlr3, tlr7, traf3, ifih1, dhx58, hap90a.1, irf3, irf7, and mx1 genes increased and then decreased during infection, and peaked at 72 hpi (P < 0.05). However, trim25 expression peaked at 96 hpi (P < 0.05). This study contributes to understanding immune response of rainbow trout against IHNV infection, and provides new insights into the immune regulation mechanisms and disease resistance breeding studies.
Collapse
Affiliation(s)
- Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
55
|
Cao M, Li Q, Liu X, Fu Q, Li C. Molecular characterization and expression analysis of immunoglobulins (IgM and IgT) heavy chains in black rockfish (Sebastes schlegelii) that response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108555. [PMID: 36669604 DOI: 10.1016/j.fsi.2023.108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Sebastes schlegelii is a kind of fish with great economic values. Recently, with the continuous expansion of aquaculture scale and the continuous improvement of aquaculture density, outbreak of various diseases has caused huge economic losses to its aquaculture industry. Study of fish immune system can help to understand the mechanism of immune response to external pathogens and can promote the development of immune prevention and control methods. Immunoglobulins (Igs) are complex glycoproteins that appear to be unique to the vertebrates that can recognize a wide variety of pathogens and recruit immune cells and molecules to destroy pathogens, which are generated by a series of rearrangement and somatic mutations. We therefore studied the immunoglobulin genes of S. schlegelii in view of their important roles in resisting to external pathogen infections. In this study, the immunoglobulin heavy chain genes (sIgM, mIgM, sIgT, and mIgT) of S. schlegelii were successfully identified and cloned. Phylogenetic analysis showed that the IgM and IgT genes of S. schlegelii were clustered together with homologous genes of other species, indicating that they were highly conserved during the evolutionary process. Collinearity analysis showed that the immunoglobulin genes and their adjacent genes were aligned with zebrafish, Atlantic salmon and tilapia, which further confirmed the conserved immunoglobulin gene of teleost. Expression analysis of healthy tissues showed that the expression levels of sIgM, sIgT and mIgT were the highest in the skin, while mIgM was the highest in spleen. After different bacterial infection, IgM and IgT were significantly expressed in skin and gill, which may be because skin and gill are the first line of defense against the infection pathogens. Subcellular localization showed that the mIgT protein was expressed in both the cell membrane and cytoplasm. Meanwhile, recombinant protein of mIgT was obtained in vitro, which laid a foundation for subsequent protein function studies. These results provide a theoretical basis for understanding the immunity role of immunoglobulin in S. schlegelii.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiantong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
56
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunity of the intestinal mucosa in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108572. [PMID: 36717066 DOI: 10.1016/j.fsi.2023.108572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
57
|
A century of parasitology in fisheries and aquaculture. J Helminthol 2023; 97:e4. [PMID: 36631485 DOI: 10.1017/s0022149x22000797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fish parasitological research associated with fisheries and aquaculture has expanded remarkably over the past century. The application of parasites as biological tags has been one of the fields in which fish parasitology has generated new insight into fish migration and stock assessments worldwide. It is a well-established discipline whose methodological issues are regularly reviewed and updated. Therefore, no concepts or case-studies will be repeated here; instead, we summarize some of the main recent findings and achievements of this methodology. These include the extension of its use in hosts other than bony fishes; the improvements in the selection of parasite tags; the recognition of the host traits affecting the use of parasite tags; and the increasingly recognized need for integrative, multidisciplinary studies combining parasites with classical methods and modern techniques, such as otolith microchemistry and genetics. Archaeological evidence points to the existence of parasitic problems associated with aquaculture activities more than a thousand years ago. However, the main surge of research within aquaculture parasitology occurred with the impressive development of aquaculture over the past century. Protozoan and metazoan parasites, causing disease in domesticated fish in confined environments, have attracted the interest of parasitologists and, due to their economic importance, funding was made available for basic and applied research. This has resulted in a profusion of basic knowledge about parasite biology, physiology, parasite-host interactions, life cycles and biochemistry. Due to the need for effective control methods, various solutions targeting host-parasite interactions (immune responses and host finding), genetics and pharmacological aspects have been in focus.
Collapse
|
58
|
Chan J, Carmen LCP, Lee SQ, Prabakaran M. Identification and characterization of immunoglobulin tau (IgT) in Asian Seabass ( Lates calcarifer) and mucosal immune response to nervous necrosis virus. Front Immunol 2023; 14:1146387. [PMID: 36891305 PMCID: PMC9986254 DOI: 10.3389/fimmu.2023.1146387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Mucosal immunity plays a critical role in the protection of teleost fish against infection, but mucosal immunoglobulin of important aquaculture species unique to Southeast Asia remained greatly understudied. In this study, the sequence of immunoglobulin T (IgT) from Asian sea bass (ASB) is described for the first time. IgT of ASB possesses the characteristic structure of immunoglobulin with a variable heavy chain and four CH4 domains. The CH2-CH4 domains and full-length IgT were expressed and CH2-CH4 specific antibody was validated against full-length IgT expressed in Sf9 III cells. Subsequent use of the anti-CH2-CH4 antibody in immunofluorescence staining confirmed the presence of IgT-positive cells in the ASB gill and intestine. The constitutive expression of ASB IgT was characterized in different tissues and in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. The highest basal expression of secretory IgT (sIgT) was observed in the mucosal and lymphoid tissues such as the gills, intestine and head kidney. Following NNV infection, IgT expression was upregulated in the head kidney and mucosal tissues. Moreover, a significant increase in localized IgT was found in gills and intestines of infected fish on day 14 post-infection. Interestingly, a significant increase in NNV-specific IgT secretion was only observed in the gills of the infected group. Our results suggest that ASB IgT may play an important role in the adaptive mucosal immune responses against viral infection and could potentially be adapted as a tool for the evaluation of prospective mucosal vaccines and adjuvants for the species.
Collapse
Affiliation(s)
- Janlin Chan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Lee Ching Pei Carmen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Si Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| |
Collapse
|
59
|
Wu S, Meng K, Wu Z, Sun R, Han G, Qin D, He Y, Qin C, Deng P, Cao J, Ji W, Zhang L, Xu Z. Expression analysis of Igs and mucosal immune responses upon SVCV infection in common carp (Cyprinus carpio L.). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100048. [PMID: 36419606 PMCID: PMC9680059 DOI: 10.1016/j.fsirep.2021.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
The immunoglobulin (Ig) is a crucial component of adaptive immune system in vertebrates including teleost fish. Here complete cDNA sequence of IgD heavy chain gene from common carp (Cyprinus carpio) was cloned and analyzed. The full-length cDNA of IgD heavy chain gene contained an open reading frame (ORF) of 2460 bp encoding 813 amino acids. According to amino acids sequence, multiple alignment and phylogenetic analysis showed that carp Igs are closely related to those of Cyprinidae fish. Transcriptional expression of IgD as well as IgM, IgZ1 and IgZ2 showed similar expression patterns in different organs, this is, high expression level in systemic immune tissues (ie, head kidney, heart and spleen) and low expression in mucosal tissues (ie, gill, skin and gut). Following viral infection with spring viraemia of carp virus (SVCV), obvious pathological changes in skin, gill and gut mucosa and up-regulated expression of antiviral related genes in skin, gill, gut and spleen were observed, indicating that SVCV successfully infected common carp and activated the systemic and mucosal immune system. Interestingly, IgM showed a significant up-regulation only in systemic tissue (spleen), but not in mucosal tissues (gut, gills and skin), while increased expression of IgZ1 and IgZ2 was found in gut. In contrast, the expression of IgD increased significantly in spleen, gills and skin. These strongly suggest that fish Ig isotypes play different roles in mucosal and systemic immunity during viral infection. Common carp (Cyprinus carpio); Igs; Spring viraemia of carp virus (SVCV)
Collapse
|
60
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
61
|
Alterations of the Mucosal Immune Response and Microbial Community of the Skin upon Viral Infection in Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2022; 23:ijms232214037. [PMID: 36430516 PMCID: PMC9698461 DOI: 10.3390/ijms232214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The skin is the largest organ on the surface of vertebrates, which not only acts as the first line of defense against pathogens but also harbors diverse symbiotic microorganisms. The complex interaction between skin immunity, pathogens, and commensal bacteria has been extensively studied in mammals. However, little is known regarding the effects of viral infection on the skin immune response and microbial composition in teleost fish. In this study, we exposed rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus (IHNV) by immersion infection. Through pathogen load detection and pathological evaluation, we confirmed that IHNV successfully invaded the rainbow trout, causing severe damage to the epidermis of the skin. qPCR analyses revealed that IHNV invasion significantly upregulated antiviral genes and elicited strong innate immune responses. Transcriptome analyses indicated that IHNV challenge induced strong antiviral responses mediated by pattern recognition receptor (PRR) signaling pathways in the early stage of the infection (4 days post-infection (dpi)), and an extremely strong antibacterial immune response occurred at 14 dpi. Our 16S rRNA sequencing results indicated that the skin microbial community of IHNV-infected fish was significantly richer and more diverse. Particularly, the infected fish exhibited a decrease in Proteobacteria accompanied by an increase in Actinobacteria. Furthermore, IHNV invasion favored the colonization of opportunistic pathogens such as Rhodococcus and Vibrio on the skin, especially in the later stage of infection, leading to dysbiosis. Our findings suggest that IHNV invasion is associated with skin microbiota dysbiosis and could thus lead to secondary bacterial infection.
Collapse
|
62
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
63
|
Leal E, Angotzi AR, Gregório SF, Ortiz-Delgado JB, Rotllant J, Fuentes J, Tafalla C, Cerdá-Reverter JM. Role of the melanocortin system in zebrafish skin physiology. FISH & SHELLFISH IMMUNOLOGY 2022; 130:591-601. [PMID: 36150411 DOI: 10.1016/j.fsi.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The agouti-signaling protein (ASIP) acts as both a competitive antagonist and inverse agonist of melanocortin receptors which regulate dorsal-ventral pigmentation patterns in fish. However, the potential role of ASIP in the regulation of additional physiological pathways in the skin is unknown. The skin plays a crucial role in the immune function, acting as a physical limitation against infestation and also as a chemical barrier due to its ability to synthesize and secrete mucus and many immune effector proteins. In this study, the putative role of ASIP in regulating the immune system of skin has been explored using a transgenic zebrafish model overexpressing the asip1 gene (ASIPzf). Initially, the structural changes in skin induced by asip1 overexpression were studied, revealing that the ventral skin of ASIPzf was thinner than that of wild type (WT) animals. A moderate hypertrophy of mucous cells was also found in ASIPzf. Histochemical studies showed that transgenic animals appear to compensate for the lower number of cell layers by modifying the mucus composition and increasing lectin affinity and mucin content in order to maintain or improve protection against microorganism adhesion. ASIPzf also exhibit higher protein concentration under crowding conditions suggesting an increased mucus production under stressful conditions. Exposure to bacterial lipopolysaccharide (LPS) showed that ASIPzf exhibit a faster pro-inflammatory response and increased mucin expression yet severe skin injures and a slight increase in mortality was observed. Electrophysiological measurements show that the ASIP1 genotype exhibits reduced epithelial resistance, an indicator of reduced tissue integrity and barrier function. Overall, not only are ASIP1 animals more prone to infiltration and subsequent infections due to reduced skin epithelial integrity, but also display an increased inflammatory response that can lead to increased skin sensitivity to external infections.
Collapse
Affiliation(s)
- E Leal
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain.
| | - A R Angotzi
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain
| | - S F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - J B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - J Rotllant
- Instituto de Investigaciones Marinas (IIM), CSIC, 36208, Vigo, Spain
| | - J Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - C Tafalla
- Animal Health Research Center (CISA-INIA-CSIC), Valdeolmos, 28130, Madrid, Spain
| | - J M Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain.
| |
Collapse
|
64
|
García-Meilán I, Tort L, Khansari AR. Rainbow trout integrated response after recovery from short-term acute hypoxia. Front Physiol 2022; 13:1021927. [DOI: 10.3389/fphys.2022.1021927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Overcoming a stress situation, such as hypoxia episodes, which involve an allostatic load, will depend on the ability of fish to modulate physiological and biochemical systems to maintain homeostasis. The aim of the study was to determine the integrated stress response after acute hypoxia of the rainbow trout considering the different elements and areas of the stress response: systemic and mucosal, local and global, and from the systemic hypothalamic–pituitary–interrenal axis to skin mucosa. For this purpose, trout were subjected to acute hypoxia (dissolved O2 down to 2 mg/L) for 1 h and then recovered and sampled at 1, 6, and 24 h after reoxygenation. Physiological responses were significantly affected by hypoxic stress and their interaction with time after the challenge, being significant for plasma lactate and cortisol levels, in both plasma and skin mucus. At the central brain level, only trh expression was modulated 1 h after hypoxia which indicates that brain function is not heavily affected by this particular stress. Unlike the brain, the head kidney and skin were more affected by hypoxia and reoxygenation. In the head kidney, an upregulation in the expression of most of the genes studied (gr, il1β, il6, tgfβ1, lysozyme, caspase 3, enolase, hif-1, myoglobin, sod2, gpx, gst, and gsr) took place 6 h after recovery, whereas only hsp70 and il10 were upregulated after 1 h. On the contrary, in the skin, most of the analyzed genes showed a higher upregulation during 1 h after stress suggesting that, in the skin, a local response took place as soon as the stressor was detected, thus indicating the importance of the skin in the building of a stress response, whereas the interrenal tissue participated in a later time point to help prevent further alteration at the central level. The present results also show that, even though the stressor is a physical/environmental stressor, all components of the biological systems participate in the regulation of the response process and the recovery process, including neuroendocrine, metabolism, and immunity.
Collapse
|
65
|
Han Q, Mo Z, Lai X, Guo W, Hu Y, Chen H, He Z, Dan X, Li Y. Mucosal immunoglobulin response in Epinephelus coioides after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:436-446. [PMID: 35985626 DOI: 10.1016/j.fsi.2022.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The teleost mucosal immune system consists mainly of the skin, gills and gut, which play crucial roles in local immune responses against invading organisms. Immunoglobulins are essential molecules in adaptive immunity that perform crucial biological functions. In our study, a mucosal immunity model was constructed in Epinephelus coioides groupers after Cryptocaryon irritans infection, according to previous experience. Total IgM and IgT in the groupers increased in the serum and mucus in the immune group, whereas only pathogen-specific IgM were detected existence. More critically, pathogen-specific IgM was detected in the head kidney, gill and skin supernatants, thus suggesting that the systematic immune and mucosal immune system secreted immunoglobulins. Furthermore, an early response in the skin was observed, on the basis of the detection of pathogen-specific IgM in the skin supernatant. In conclusion, this research characterized the grouper IgM and IgT in mucosal immune responses to pathogens in the gills and skin, thus providing a theoretical basis for future studies on vaccines against C. irritans.
Collapse
Affiliation(s)
- Qing Han
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhichang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
66
|
Li X, Hu X, Lv A, Guan Z. Skin immune response to Aeromonas hydrophila infection in crucian carp Carassius auratus revealed by multi-omics analysis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:866-875. [PMID: 35850458 DOI: 10.1016/j.fsi.2022.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Fish skin is an essential protective barrier and functions as the first line of immune defense against pathogens. However, the molecular mechanism at the proteome-level remains unclear in the skin of fish. In this study, the comparative proteomics of skin immune responses of crucian carp Carassius auratus infected with Aeromonas hydrophila was investigated by isobaric tags for relative and absolute quantification (iTRAQ), two-dimensional gel electrophoresis combined with mass spectrometry (2-DE/MS) as well as high-throughput transcriptome (RNA-seq) techniques. A total of 241 and 178 differentially expressed proteins (DEPs) at 6 and 12 h post-infection (hpi) were respectively identified by iTRAQ, and key-DEPs were furtherly verified with 2-DE/MS analysis. GO and KEGG analysis showed that these DEPs were mostly related to metabolism, regulation of the cytoskeleton, stress and immune responses. Co-association results of proteome and transcriptome revealed the lysozyme (LYZ), complement C3, DnaJ (Hsp40) homolog subfamily C member 8 (DNAJC8) and allograft inflammatory factor 1-like (AIF1L) play important roles in skin immune responses of crucian carp. The significantly up-regulated expression of detected immune-related genes (c3, mapk3, f5, nlr, hsp90, itgb2, fnl, flnca, p47, mhc and pros1) were validated by qRT-PCR analysis. To our knowledge, this is first report on multi-omics analysis of the differential proteomics for the skin immune response of C. auratus against A.hydrophila infection, which contribute to the understanding the mechanisms of skin mucosal immunity in cyprinid fish.
Collapse
Affiliation(s)
- Xiaowei Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Zhenguo Guan
- S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin, 300383, China
| |
Collapse
|
67
|
Haugland GT, Rønneseth A, Gundersen L, Lunde HS, Nordland K, Wergeland HI. Neutrophils in Atlantic salmon (Salmo salar L.) are MHC class II+ and secret IL-12p40 upon bacterial exposure. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Ametrano A, Picchietti S, Guerra L, Giacomelli S, Oreste U, Coscia MR. Comparative Analysis of the pIgR Gene from the Antarctic Teleost Trematomus bernacchii Reveals Distinctive Features of Cold-Adapted Notothenioidei. Int J Mol Sci 2022; 23:7783. [PMID: 35887127 PMCID: PMC9321927 DOI: 10.3390/ijms23147783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The IgM and IgT classes were previously identified and characterized in the Antarctic teleost Trematomus bernacchii, a species belonging to the Perciform suborder Notothenoidei. Herein, we characterized the gene encoding the polymeric immunoglobulin receptor (pIgR) in the same species and compared it to the pIgR of multiple teleost species belonging to five perciform suborders, including 11 Antarctic and 1 non-Antarctic (Cottoperca gobio) notothenioid species, the latter living in the less-cold peri-Antarctic sea. Antarctic pIgR genes displayed particularly long introns marked by sites of transposable elements and transcription factors. Furthermore, analysis of T. bernacchii pIgR cDNA unveiled multiple amino acid substitutions unique to the Antarctic species, all introducing adaptive features, including N-glycosylation sequons. Interestingly, C. gobio shared most features with the other perciforms rather than with the cold-adapted relatives. T. bernacchii pIgR transcripts were predominantly expressed in mucosal tissues, as indicated by q-PCR and in situ hybridization analysis. These results suggest that in cold-adapted species, pIgR preserved its fundamental role in mucosal immune defense, although remarkable gene structure modifications occurred.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (S.P.); (L.G.)
| | - Laura Guerra
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (S.P.); (L.G.)
| | - Stefano Giacomelli
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy; (A.A.); (S.G.); (U.O.)
| |
Collapse
|
69
|
Huang X, Liu S, Zuo F, Luo L, Chen D, Ou Y, Geng Y, Zhang Y, Lin G, Yang S, Luo W, Yin L, He Z. cMOS enhanced the mucosal immune function of skin and gill of goldfish (Carassius auratus Linnaeus) to improve the resistance to Ichthyophthirius multifiliis infection. FISH & SHELLFISH IMMUNOLOGY 2022; 126:1-11. [PMID: 35595060 DOI: 10.1016/j.fsi.2022.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
of supporting mucosal immune barrier integrity and prevention of some pathogenic infections in aquatic species, are key areas of active study, often focusing on feed additives. The objectives of this study were to explore the effects of feeding cMOS (concentrated mannan oligosaccharide) on the gill and skin mucosal barriers of goldfish (Carassius auratus Linnaeus) and evaluate health status during Ichthyophthirius multifiliis infection. After feeding the cMOS-containing diet for 60 days, Hematoxylin and eosin (H&E) staining showed greater length of gill lamella and thicker dermal dense layer, while Alcian Blue and Periodic acid-Schiff (AB-PAS) staining showed higher numbers of mucin cells in cMOS fed fish. Chemical analysis showed that fish fed cMOS had greater enzyme activity of lysozyme (LZM) and alkaline phosphatase (AKP) in gill and skin tissues, while qRT-PCR revealed higher expression of Muc-2 and IL-1β, as well as lower expression of IL-10. After Ichthyophthirius multifiliis challenge, goldfish fed the cMOS diet had lower mortality and infection rates, as well as fewer visible white spots on the body surfaces. Histologically, the gill and skin of these fish presented less tissue damage and fewer parasites, and had a greater number of mucus cells. In addition, the expression of Muc-2 and IL-10 were notably higher while the expression of IL-1β was significantly lower in cMOS fed goldfish than control fed fish. In this study, cMOS fed goldfish had stronger immune barrier function of skin and gill mucous, and better survival following Ichthyophthirius multifiliis infection.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China.
| | - Yufan Zhang
- Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China
| | - Zhi He
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
70
|
Wu S, Huang J, Li Y, Liu Z, Zhao L. Integrated Analysis of lncRNA and circRNA Mediated ceRNA Regulatory Networks in Skin Reveals Innate Immunity Differences Between Wild-Type and Yellow Mutant Rainbow Trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:802731. [PMID: 35655786 PMCID: PMC9152293 DOI: 10.3389/fimmu.2022.802731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Fish skin is a vital immune organ that forms the first protective barrier preventing entry of external pathogens. Rainbow trout is an important aquaculture fish species that is farmed worldwide. However, our knowledge of innate immunity differences between wild-type (WR_S) and yellow mutant rainbow trout (YR_S) remains limited. In this study, we performed whole transcriptome analysis of skin from WR_S and YR_S cultured in a natural flowing water pond. A total of 2448 mRNAs, 1630 lncRNAs, 22 circRNAs and 50 miRNAs were found to be differentially expressed (DE). Among these DEmRNAs, numerous key immune-related genes, including ifih1, dhx58, trim25, atp6v1e1, tap1, tap2, cd209, hsp90a.1, nlrp3, nlrc3, and several other genes associated with metabolism (gstp1, nampt, naprt and cd38) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEmRNAs revealed that many were significantly enriched in innate immune-related GO terms and pathways, including NAD+ADP-ribosyltransferase activity, complement binding, immune response and response to bacterium GO terms, and RIG-I-like receptor signaling, NOD-like receptor signaling and phagosome KEGG pathways. Furthermore, the immune-related competing endogenous RNA networks were constructed, from which we found that lncRNAs MSTRG.11484.2, MSTRG.32014.1 and MSTRG.29012.1 regulated at least three immune-related genes (ifih1, dhx58 and irf3) through PC-5p-43254_34, PC-3p-28352_70 and bta-miR-11987_L-1R-1_1ss8TA, and tap2 was regulated by two circRNAs (circRNA5279 and circRNA5277) by oni-mir-124a-2-p5_1ss13GA. The findings expand our understanding of the innate immune system of rainbow trout, and lay the foundation for further study of immune mechanisms and disease resistance breeding.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
71
|
Lactobacillus casei (IBRC-M 10,711) ameliorates the growth retardation, oxidative stress, and immunosuppression induced by malathion toxicity in goldfish ( Carassius auratus). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Probiotics can functionality improve fish wellbeing and are suggested as antioxidative agents to protect fish from xenobiotics toxicity. Herein, dietary Lactobacillus casei (IBRC-M 10,711) was included in the diets of goldfish (Carassius auratus) to protect against malathion toxicity. Fish (12.47 ± 0.06 g) were randomly allocated to six groups (triplicates), as follows: T1) control; T2) fish exposed to 50% of malathion 96 h LC50; T3) L. casei at 106 CFU/g diet; T4) L. casei at 107 CFU/g diet; T5) fish exposed to 50% of malathion 96 h LC50 + L. casei at 106 CFU/g diet; T6) fish exposed to 50% of malathion 96 h LC50 + L. casei at 107 CFU/g diet. After 60 days, goldfish fed T4 had the highest final body weight (FBW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among the groups (P < 0.05). However, the T2 group showed lower FBW, WG, and SGR and higher FCR than fish in T1 (P < 0.05). Fish in the T4 group had the highest blood total proteins, albumin, and globulin, while fish in T2 had the lowest levels (P < 0.05). Fish in the group T2 had the highest triglycerides, cholesterol, cortisol, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels in the blood, while fish fed T4 had the lowest values (P < 0.05). The superoxide dismutase (SOD) and catalase (CAT) showed the highest activities in T3 and T4 groups, and the lowest SOD was seen in the T2 group, whereas the lowest CAT was seen in the T2, T5, and T6 groups (P < 0.05). Fish in the T5 and T6 groups had higher glutathione peroxidase (GSH-Px) activities than fish in T1 and T2 groups but T3 and T4 groups showed the highest values (P < 0.05). T2 group had the highest malondialdehyde (MDA) level, while T3 and T4 groups had the lowest MDA level (P < 0.05). Blood immunoglobulin (Ig) and lysozyme activity were significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The alternative complement pathway (ACH50) was significantly higher in T2, T3, T4, T5, and T6 groups than in the T1 group (P < 0.05). Skin mucus Ig was significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The highest lysozyme activity, protease, and ACH50 in the skin mucus samples were in the T4 group, while the lowest values were in the T2 group (P < 0.05). In conclusion, dietary L. casei protects goldfish from malathion-induced growth retardation, oxidative stress, and immunosuppression.
Collapse
|
72
|
Small, charged proteins in salmon louse (Lepeophtheirus salmonis) secretions modulate Atlantic salmon (Salmo salar) immune responses and coagulation. Sci Rep 2022; 12:7995. [PMID: 35568726 PMCID: PMC9107468 DOI: 10.1038/s41598-022-11773-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Little is known about glandular proteins secreted from the skin- and blood-feeding ectoparasite salmon louse (Lepeophtheirus salmonis). The labial gland has ducts extending into the oral cavity of the lice, and the present study aimed to identify novel genes expressed by this gland type and to investigate their role in modulation of host parameters at the lice feeding site. Five genes associated with labial gland function were identified and named Lepeophteirus salmonis labial gland protein (LsLGP) 1-4 and 1 like (LsLGP1L). All LsLGPs were predicted to be small charged secreted proteins not encoding any known protein domains. Functional studies revealed that LsLGP1 and/or LsLGP1L regulated the expression of other labial gland genes. Immune dampening functions were indicated for LsLGP2 and 3. Whereas LsLGP2 was expressed throughout the parasitic life cycle and found to dampen inflammatory cytokines, LsLGP3 displayed an increased expression in mobile stages and appeared to dampen adaptive immune responses. Expression of LsLGP4 coincided with moulting to the mobile pre-adult I stage where hematophagous feeding is initiated, and synthetic LsLGP4 decreased the clotting time of Atlantic salmon plasma. Results from the present study confirm that the salmon louse secretes immune modulating and anti-coagulative proteins with a potential application in new immune based anti-salmon louse treatments.
Collapse
|
73
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
74
|
Etayo A, Bjørgen H, Koppang EO, Hordvik I. The teleost polymeric Ig receptor counterpart in ballan wrasse (Labrus bergylta) differs from pIgR in higher vertebrates. Vet Immunol Immunopathol 2022; 249:110440. [DOI: 10.1016/j.vetimm.2022.110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022]
|
75
|
Anderson KC, Ghosh B, Chetty T, Walker SP, Symonds JE, Nowak BF. Transcriptomic characterisation of a common skin lesion in farmed chinook salmon. FISH & SHELLFISH IMMUNOLOGY 2022; 124:28-38. [PMID: 35367374 DOI: 10.1016/j.fsi.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/20/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Little is known about host responses of farmed Chinook salmon with skin lesions, despite the lesions being associated with increased water temperatures and elevated mortality rates. To address this shortfall, a transcriptomic approach was used to characterise the molecular landscape of spot lesions, the most commonly reported lesion type in New Zealand Chinook salmon, versus healthy appearing skin in fish with and without spot lesions. Many biological (gene ontology) pathways were enriched in lesion adjacent tissue, relative to control skin tissue, including proteolysis, fin regeneration, calcium ion binding, mitochondrial transport, actin cytoskeleton organisation, epithelium development, and tissue development. In terms of specific transcripts of interest, pro-inflammatory cytokines (interleukin 1β and tumour necrosis factor), annexin A1, mucin 2, and calreticulin were upregulated, while cathepsin H, mucin 5AC, and perforin 1 were downregulated in lesion tissue. In some instances, changes in gene expression were consistent between lesion and healthy appearing skin from the same fish relative to lesion free fish, suggesting that host responses weren't limited to the site of the lesion. Goblet cell density in skin histological sections was not different between skin sample types. Collectively, these results provide insights into the physiological changes associated with common spot lesions in farmed Chinook salmon.
Collapse
Affiliation(s)
- Kelli C Anderson
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Bikramjit Ghosh
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Thaveshini Chetty
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia
| | - Seumas P Walker
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Jane E Symonds
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| |
Collapse
|
76
|
Sheng X, Guo Y, Zhu H, Chai B, Tang X, Xing J, Chi H, Zhan W. Transepithelial Secretion of Mucosal IgM Mediated by Polymeric Immunoglobulin Receptor of Flounder ( Paralichthys olivaceus): In-Vivo and In-Vitro Evidence. Front Immunol 2022; 13:868753. [PMID: 35464454 PMCID: PMC9019723 DOI: 10.3389/fimmu.2022.868753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Secretory immunoglobulin (SIg) is crucial for mucosal surface defenses, but the transepithelial secretion of SIg mediated by polymeric immunoglobulin receptor (pIgR) is not clarified in fish. We previously found that flounder (Paralichthys olivaceus) pIgR (fpIgR) and secretory IgM (SIgM) increased in gut mucus post-vaccination. Here, the fpIgR-positive signal was mainly observed in the intestinal epithelium, whereas the IgM-positive signal was mainly distributed in the lamina propria, before immunization. IgM signals increased in the lamina propria and then in the epithelium after immunization with inactivated Vibrio anguillarum, and co-localization between IgM and fpIgR in the epithelium was determined, while the presence of EdU+IgM+ cells in the lamina propria identified the proliferative B cells, revealing that the secretion and transepithelial transport of SIgM locally occurred in the gut of flounder. Subsequently, we established an in-vitro model of transfected MDCK cells that stably expressed the fpIgR. After a recombinant eukaryotic expression plasmid (pCIneoEGFP-fpIgR) was constructed and transfected into MDCK cells, stable expression of the fpIgR in transfected MDCK-fpIgR cells was confirmed, and the tightness and integrity of the polarized cell monolayers grown on Transwells were evaluated. Afterward, the serum IgM of flounder was purified as a binding ligand and placed in the lower compartment of Transwells. An ~800-kDa protein band in the upper compartment was shown to be IgM- and fpIgR-positive, and IgM-positive fluorescence was seen in MDCK-fpIgR cells but not in MDCK-mock cells. Hence, the fpIgR helped polymeric IgM to pass across MDCK-fpIgR cells via transcytosis in a basolateral-to-apical fashion. These new findings provide a better understanding of the pathways shaping mucosal IgM responses and the local mucosal immune mechanisms in teleosts.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuan Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hui Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Baihui Chai
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
77
|
Fu PP, Xiong F, Wu SG, Zou H, Li M, Wang GT, Li WX. Effects of Schyzocotyle acheilognathi (Yamaguti, 1934) infection on the intestinal microbiota, growth and immune reactions of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266766. [PMID: 35413087 PMCID: PMC9004761 DOI: 10.1371/journal.pone.0266766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Our understanding of interactions among intestinal helminths, gut microbiota and host is still in its infancy in fish. In this study, the effects of Schyzocotyle acheilognathi infection on the intestinal microbiota, growth and immune reactions of grass carp were explored under laboratory conditions. 16S rDNA amplification sequencing results showed that S. acheilognathi infection altered the composition of intestinal microbiota only at the genus level, with a significant increase in the relative abundance of Turicibacter and Ruminococcus (P < 0.05) and a significant decrease in the relative abundance of Gordonia, Mycobacterium and Pseudocanthomonas (P < 0.05). Schyzocotyle acheilognathi infection had no significant effect (P > 0.05) on the alpha diversity indices (including Chao1, ACE, Shannon, Simpson index) of intestinal microbiota in grass carp, but PERMANOVA analysis showed that microbial structure significantly (P < 0.01) differed between hindgut and foregut. PICRUST prediction showed that some metabolism-related pathways were significantly changed after S. acheilognathi infection. The relative abundance of Turicibacter was positively correlated with the fresh weight of tapeworm (foregut: r = 0.48, P = 0.044; hindgut: r = 0.63, P = 0.005). There was no significant difference in the body condition of grass carp between the S. acheilognathi infected group and the uninfected group (P > 0.05). Intestinal tissue section with HE staining showed that S. acheilognathi infection severely damaged the intestinal villi, causing serious degeneration, necrosis and shedding of intestinal epithelial cells. The real-time fluorescent quantitative PCR results showed that S. acheilognathi infection upregulated the mRNA expression of the immune-related genes: Gal1−L2, TGF−β1 and IgM.
Collapse
Affiliation(s)
- Pei P. Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, P. R. China
| | - Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
78
|
Rozas-Serri M. Why Does Piscirickettsia salmonis Break the Immunological Paradigm in Farmed Salmon? Biological Context to Understand the Relative Control of Piscirickettsiosis. Front Immunol 2022; 13:856896. [PMID: 35386699 PMCID: PMC8979166 DOI: 10.3389/fimmu.2022.856896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host’s own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics—to control SRS—because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.
Collapse
|
79
|
Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses. Cell Discov 2022; 8:31. [PMID: 35379790 PMCID: PMC8979957 DOI: 10.1038/s41421-022-00393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
Collapse
|
80
|
Wang J, Wu CS, Hu YZ, Yang L, Zhang XJ, Zhang YA. Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr Polym 2022; 281:119073. [DOI: 10.1016/j.carbpol.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
|
81
|
Zhao N, Guo J, Zhang B, Liu K, Liu Y, Shen Y, Li J. Heterogeneity of the Tissue-specific Mucosal Microbiome of Normal Grass Carp (Ctenopharyngodon idella). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:366-379. [PMID: 35303209 DOI: 10.1007/s10126-022-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Microbiome plays key roles in the digestion, metabolism, and immunity of the grass carp (Ctenopharyngodon idella). Here, we characterized the normal microbiome of the intestinal contents (IC), skin mucus (SM), oral mucosa (OM), and gill mucosa (GM) of the grass carp, as well as the microbiome of the sidewall (SW) of the raising pool, using full-length 16S rRNA sequencing based on the PacBio platform in this specie for the first time. Twenty phyla, 38 classes, 130 families, 219 genera, and 291 species were classified. One hundred four common classified species might be core microbiota of grass carp. Proteobacteria, Bacteroides, and Cyanobacteria were the dominant phyla in the niche of grass carp. Proteobacteria and Bacteroides dominated the taxonomic composition in the SM, GM, and OM, while Proteobacteria, Planctomycetota, and Cyanobacteria preponderated in the IC and SW groups. Microbiota of IC exhibited higher alpha diversity indices. The microbial communities clustered either in SW or the niche from grass carp, significantly tighter in the SW, based on Bray-Curtis distances (P < 0.05). SM, GM, and OM were similar in microbial composition but were significantly different from IC and SW, while IC had similarity with SW due to their common Cyanobacteria (P < 0.05). Differences were also reflected by niche-specific and differentially abundant microorganisms such as Noviherbaspirillum in the SM and Rhodopseudomonas palustris, Mycobacterium fortuitum, and Acinetobacter schindleri in GM. Significantly raised gene expression was found in IC and SM associated with cell cycle control, cell division, chromosome, coenzyme transport and metabolism, replication, recombination and repair, cell motility, post-translational modification, signal transduction mechanisms, intracellular trafficking, secretion, and vesicles by PICRUSt. This work may be of great value for understanding of fish-microbial co-workshops, especially in different niche of grass carp.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Jiamin Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Bo Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Kai Liu
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Yuting Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
82
|
Wang L, Zhang F, Chen Y, Wang S, Chen Z, Zhou Q, Chen S. Molecular cloning, expression analysis of the IgT gene and detection of IgT + B cells in the half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2022; 123:113-126. [PMID: 35218973 DOI: 10.1016/j.fsi.2022.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
IgT is a specific Ig isotype in teleosts, which plays extremely important roles in the mucosal immunity of fish. In the present study, the membrane-bound and secretory IgT of the half-smooth tongue sole (Cynoglossus semilaevis) were identified for the first time. The V-D-J-C structure of two forms of csIgT are translated by the same Cτ gene, and the secretory tail and transmembrane domain were encoded through alternative splicing at the 3' end of the Cτ4. The CH regions of csIgT had high similarity with that of other flatfish (P. olivaceus and S. maximus). In healthy C. semilaevis, sIgT and mIgT were mainly expressed in mucus related tissues such as skin, intestine and gill. The transcript levels of sIgT and mIgT mRNA showed a significant induction in the immune-related tissues upon Vibrio Harveyi infection. A polyclonal rabbit anti-csIgT was successfully prepared using the csIgT heavy chain recombinant protein. Using this antibody, we detected the native IgT with the molecular mass at 220 kDa in skin total protein under non-reducing SDS-PAGE condition. Immunofluorescence analysis indicated that IgT+ B lymphocytes were intensively located in the skin, gill, intestine, and head kidney of C. semilaevis. These results suggest that IgT may participate in the immune response of C. semilaevis, which will facilitate the investigations of the immunoglobulins of marine fish.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Fumiao Zhang
- Shandong Normal University, Jinan, 250014, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shuangyan Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhangfan Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Zhou
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
83
|
Identification and Characterization of Immunoglobulin T Heavy Chain in Large Yellow Croaker (Larimichthys crocea). FISHES 2022. [DOI: 10.3390/fishes7010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three immunoglobulin (Ig) isotypes have been identified in teleosts, IgM, IgD, and IgT or IgZ. IgT, a new teleost Ig isotype, plays a vital role in mucosal immunity. However, information on molecular and functional characteristics of fish IgT is still limited. In this study, an IgT heavy chain (LcIgT) gene was cloned and characterized in large yellow croaker (Larimichthys crocea). Complete cDNA of LcIgT was 1930 bp in length, encoding a protein of 554 amino acids. The deduced LcIgT contains a VH region and only three CH regions (CH1, CH2, CH4), but no transmembrane region was predicted. Phylogenetic analysis showed that IgT heavy chain sequences from all fish species are grouped together. Homology comparison showed that LcIgT shares the highest amino acid identity of 58.73% with IgT heavy chain in Scophthalmus maximus. The VH domain of LcIgT has the highest identity of 72.50% with that of Scophthalmus maximus IgT. Relatively, each constant domain of LcIgT exhibits the highest amino acid identity with that of IgT in Oreochromis niloticus (67.61% identity for CH1, 61.11% identity for CH2, and 63.74% identity for CH4). LcIgT was constitutively expressed in various tissues tested, with the highest levels in mucosa-associated tissues such as gills and skin. After Cryptocaryon irritans infection, the mRNA levels of LcIgT were significantly up-regulated in the spleen (3.27-fold) at 4 d, in the head kidney (3.98-fold) and skin (2.11-fold) at 7 d, and in gills (4.45-fold) at 14 d. The protein levels in these detected tissues were all significantly up-regulated; the peak of its up-regulation was 6.33-fold at 28d in gills, 3.44-fold at 7d in skin, and 3.72-fold at 14d in spleen. These results showed that IgT response could be simultaneously induced in both systemic and mucosal tissues after parasitic infection and that IgT may be involved in systemic immunity and mucosal immunity against parasitic infection.
Collapse
|
84
|
Effects of Continuous Light (LD24:0) Modulate the Expression of Lysozyme, Mucin and Peripheral Blood Cells in Rainbow Trout. FISHES 2022. [DOI: 10.3390/fishes7010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Continuous photoperiod is extensively used in fish farming, to regulate the reproductive cycle, despite evidence suggesting that artificial photoperiods can act as a stressor and impair the immune system. We evaluated the potential effects of an artificial photoperiod on mucus components: lysozyme and mucin, in juvenile rainbow trout (Oncorhynchus mykiss) after exposure for one month to natural photoperiod (LD12:12) or constant light (LD24:0) artificial photoperiod. For each treatment, we assessed changes in peripheral blood cells (erythrocytes and leukocytes) and skin mucus component concentrations. Our results show a decrease in lysozyme concentration, while mucin levels are increased. Similarly, we find elevated monocytes and polymorphonuclears under constant light photoperiod. These findings suggest that LD24:0 regulates lysozyme, mucin, and leukocytes, implying that artificial photoperiods could be a stressful.
Collapse
|
85
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
86
|
Ripszky Totan A, Greabu M, Stanescu-Spinu II, Imre M, Spinu TC, Miricescu D, Ilinca R, Coculescu EC, Badoiu SC, Coculescu BI, Albu C. The Yin and Yang dualistic features of autophagy in thermal burn wound healing. Int J Immunopathol Pharmacol 2022; 36:3946320221125090. [PMID: 36121435 PMCID: PMC9490459 DOI: 10.1177/03946320221125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Burn healing should be regarded as a dynamic process consisting of two main, interrelated phases: (a) the inflammatory phase when neutrophils and monocytes infiltrate the injury site, through localized vasodilation and fluid extravasation, and (b) the proliferative-remodeling phase, which represents a key event in wound healing. In the skin, both canonical autophagy (induced by starvation, oxidative stress, and environmental aggressions) and non-canonical or selective autophagy have evolved to play a discrete, but, essential, “housekeeping” role, for homeostasis, immune tolerance, and survival. Experimental data supporting the pro-survival roles of autophagy, highlighting its Yang, luminous and positive feature of this complex but insufficient explored molecular pathway, have been reported. Autophagic cell death describes an “excessive” degradation of important cellular components that are necessary for normal cell function. This deadly molecular mechanism brings to light the darker, concealed, Yin feature of autophagy. Autophagy seems to perform dual, conflicting roles in the angiogenesis context, revealing once again, its Yin–Yang features. Autophagy with its Yin–Yang features remains the shadow player, able to decide quietly whether the cell survives or dies.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Maria Greabu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Marina Imre
- Department of Complete Denture, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Tudor-Claudiu Spinu
- Department of Fixed Prosthodontics and Occlusology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Daniela Miricescu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Radu Ilinca
- Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Elena Claudia Coculescu
- Department of Oral Pathology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Crenguta Albu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Bucharest, Romania
| |
Collapse
|
87
|
Tartor H, Karlsen M, Skern-Mauritzen R, Monjane AL, Press CM, Wiik-Nielsen C, Olsen RH, Leknes LM, Yttredal K, Brudeseth BE, Grove S. Protective Immunization of Atlantic Salmon (S almo salar L.) against Salmon Lice ( Lepeophtheirus salmonis) Infestation. Vaccines (Basel) 2021; 10:vaccines10010016. [PMID: 35062677 PMCID: PMC8780844 DOI: 10.3390/vaccines10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination against salmon lice (Lepeophtheirus salmonis) is a means of control that averts the negative effects of chemical approaches. Here, we studied the immunogenicity and protective effect of a vaccine formulation (based on a salmon lice-gut recombinant protein [P33]) against Lepeophtheirus salmonis infestation in Atlantic salmon in a laboratory-based trial. Our findings revealed that P33 vaccine can provide a measure of protection against immature and adult salmon lice infestation. This protection seemed to be vaccine dose-dependent, where higher doses resulted in lower parasitic infestation rates. We also provide immunological evidence confirming that P33-specific immune response can be triggered in Atlantic salmon after P33 vaccination, and that production of P33-specific antibodies in blood can be detected in vaccinated fish. The negative correlation between P33-specific IgM in salmon plasma and salmon lice numbers on vaccinated fish suggests that protection against lice can be mediated by the specific antibody in salmon plasma. The success of P33 vaccination in protecting salmon against lice confirms the possibility of employing the hematophagous nature of the parasite to deliver salmon-specific antibodies against lice-gut proteins.
Collapse
Affiliation(s)
- Haitham Tartor
- Norwegian Veterinary Institute, 1433 Ås, Norway; (H.T.); (A.L.M.)
| | - Marius Karlsen
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | | | | | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 1430 Ås, Norway;
| | - Christer Wiik-Nielsen
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Rolf Hetlelid Olsen
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Lisa Marie Leknes
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Karine Yttredal
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
| | - Bjørn Erik Brudeseth
- PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; (M.K.); (C.W.-N.); (R.H.O.); (L.M.L.); (K.Y.)
- Correspondence: (B.E.B.); (S.G.); Tel.: +47-9288-1518 (B.E.B.); +47-4588-2346 (S.G.)
| | - Søren Grove
- Norwegian Veterinary Institute, 1433 Ås, Norway; (H.T.); (A.L.M.)
- Institute of Marine Research, 5005 Bergen, Norway;
- Correspondence: (B.E.B.); (S.G.); Tel.: +47-9288-1518 (B.E.B.); +47-4588-2346 (S.G.)
| |
Collapse
|
88
|
An oral vaccine based on chitosan/aluminum adjuvant induces both local and systemic immune responses in turbot (Scophthalmus maximus). Vaccine 2021; 39:7477-7484. [PMID: 34844823 DOI: 10.1016/j.vaccine.2021.10.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Oral vaccination is the most convenient method for disease protection in aquaculture due to possibility of adding vaccines as part of fish diet. However, low protective efficiency is the major problem of oral vaccination owing to some reasons, especially for antigens degradation. In this study, we developed an oral inactivated vaccine based on a chitosan/aluminum adjuvant system, and investigated immune response induced by the vaccine. As a result, Th1 and Th2 cells mediated immune responses were observed after the vaccination according to the upregulation of IL-6, IL-12, IFNγ and IgM genes expression that were deemed as the driver cytokines for triggering the responses. Moreover, ratio of IgT+/IgM+ B cells was elevated in intestine after vaccination, while IgM antibodies were also observed in the sera of vaccinated fish, suggested that both local and systemic immune responses were induced by the inactivated vaccine. Totally, this oral vaccine can be used for V. anguillarum protection and this chitosan/aluminum system is an efficient candidate adjuvant for developing more vaccines in the future.
Collapse
|
89
|
Swain B, Powell CT, Curtiss R. Virulence, immunogenicity and live vaccine potential of aroA and phoP mutants of Edwardsiella piscicida in zebrafish. Microb Pathog 2021; 162:105355. [PMID: 34902537 DOI: 10.1016/j.micpath.2021.105355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
Vaccination remains the most effective approach for prevention and control of infectious diseases in aquaculture. Edwardsiella piscicida is a causative agent of edwardsiellosis leading to mass mortality in a variety of fish species, leading to huge economic losses in the aquaculture industry. In this study, we have deleted the aroA and phoP genes in E. piscicida and investigated the phenotype, degrees of attenuation, immunogenicity, and ability to confer immune protection in zebrafish host. Our vaccine strain χ16028 with genotype ΔaroA11 ΔphoP12, showed significantly reduced growth, motility, biofilm formation and intracellular replication compared to the wild-type strain J118. In this regard, χ16028 exhibited retarded colonization and attenuation phenotype in zebrafish. Studies showed that χ16028 induced TLR4 and TLR5 mediated NF-kB pathway and upregulated cytokine gene expression i.e., TNF-α, IL-1β, IL-6, IL-8 and type-I IFN in zebrafish. Zebrafish immunized by intracoelomic injection (i.c.) with χ16028 showed systemic and mucosal IgM responses and protection against the wild-type E. piscicida i.c. injection challenge. However, the protection was only 25% in zebrafish following i.c. challenge. We speculate that our vaccine strain might be very attenuated; a booster dose may trigger better immune response and increase the percentage of survival to a more significant level.
Collapse
Affiliation(s)
- Banikalyan Swain
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Cole T Powell
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| | - Roy Curtiss
- University of Florida, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, Gainesville, FL, 32608, USA
| |
Collapse
|
90
|
Su N, Hu CB, Shao T, Jin CY, Li H, Ji JF, Qin LL, Fan DD, Lin AF, Xiang LX, Shao JZ. Functional role of CD40 and CD154 costimulatory signals in IgZ-mediated immunity against bacterial infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100038. [DOI: 10.1016/j.fsirep.2021.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023] Open
|
91
|
Heimroth RD, Casadei E, Benedicenti O, Amemiya CT, Muñoz P, Salinas I. The lungfish cocoon is a living tissue with antimicrobial functions. SCIENCE ADVANCES 2021; 7:eabj0829. [PMID: 34788085 PMCID: PMC8597997 DOI: 10.1126/sciadv.abj0829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Terrestrialization is an extreme physiological adaptation by which African lungfish survive dry seasons. For months and up to several years, lungfish live inside a dry mucus cocoon that protects them from desiccation. Light and electron microscopy reveal that the lungfish cocoon is a living tissue that traps bacteria. Transcriptomic analyses identify a global state of inflammation in the terrestrialized lungfish skin characterized by granulocyte recruitment. Recruited granulocytes transmigrate into the cocoon where they release extracellular traps. In vivo DNase I surface spraying during terrestrialization results in dysbiosis, septicemia, skin wounds, and hemorrhages. Thus, lungfish have evolved unique immunological adaptations to protect their bodies from infection for extended periods of time while living on land. Trapping bacteria outside their bodies may benefit estivating vertebrates that undergo metabolic torpor.
Collapse
Affiliation(s)
- Ryan Darby Heimroth
- Center for Evolutionary and Theoretical Immunology, Biology Department, University of New Mexico, Albuquerque, NM, USA
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology, Biology Department, University of New Mexico, Albuquerque, NM, USA
| | - Ottavia Benedicenti
- Center for Evolutionary and Theoretical Immunology, Biology Department, University of New Mexico, Albuquerque, NM, USA
| | - Chris Tsuyoshi Amemiya
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, USA
| | - Pilar Muñoz
- Department of Animal Health, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Biology Department, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
92
|
Ye J, Li L, Duan C, Wu L, Tu X, Vogelbein MA, Bromage E, Kaattari SL. IgM-bearing B cell affinity subpopulations possess differential antigen sensitivity in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2021; 118:111-118. [PMID: 34481087 DOI: 10.1016/j.fsi.2021.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
The need for accurate assessments of in vitro generated antibody prompted examination of the effect of antigen on secreted antibody concentrations and affinities. It was found that the antigen concentrations commonly employed for in vitro stimulation were able to significantly compromise IgM titer and affinity estimates in rainbow trout. Specifically, IgM titers were underestimated with the high affinity antibodies being specifically blocked. To remedy this, pulsed antigen cultures were employed, and it was found to reveal more accurate IgM antibody titers and affinity estimates. Additionally, pulsed dose responses provided evidence that high antigen concentrations specifically suppressed high affinity B cell induction. Optimal expression of high affinity antibodies required exposure to lower concentrations of antigen. Each affinity subpopulation appeared to possess a graded sensitivity to each dose of antigen, revealing the complex dynamic for differential IgM-bearing B cell induction that is possible during a response. These results reveal not only the need for antigen removal prior to in vitro antibody secretion, but also the possible role of high zone immunological tolerance on IgM affinity maturation in rainbow trout.
Collapse
Affiliation(s)
- Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China.
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Chenxi Duan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China
| | - Xiao Tu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, China.
| | - Mary Ann Vogelbein
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, 23062, USA
| | - Erin Bromage
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA.
| | - Stephen L Kaattari
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, 23062, USA
| |
Collapse
|
93
|
Han Q, Hu Y, Lu Z, Wang J, Chen H, Mo Z, Luo X, Li A, Dan X, Li Y. Study on the characterization of grouper (Epinephelus coioides) immunoglobulin T and its positive cells. FISH & SHELLFISH IMMUNOLOGY 2021; 118:102-110. [PMID: 34481975 DOI: 10.1016/j.fsi.2021.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Immunoglobulins (Igs) play a vital role in the adaptive immunity of gnathostomes. IgT, a particular Ig class in teleost fishes, receives much attention concerning the mucosal immunity. While, the characteristic and function of Epinephelus coioides IgT is still unknown. In our study, a polyclonal antibody was first prepared with grouper IgT heavy chain recombinant protein. IgT was revealed to be polymeric in serum and mucus. In normal groupers, IgT had high expression level in head kidney and spleen, while little amount in gills, thymus, gut and liver. The number of IgT-positive cells in different tissues was in line with their IgT expression. Furthermore, IgT could coat fractional bacteria in the mucus. In conclusion, this research revealed the protein characteristic, basal expression and bacterial coverage of grouper IgT. This is the first study to identify the characteristic of grouper IgT and demonstrate the capacity of coating microbes.
Collapse
Affiliation(s)
- Qing Han
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Yingtong Hu
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Zijun Lu
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Jiule Wang
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Hongping Chen
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Zequan Mo
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China
| | - Xiaochun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, China
| | - Xueming Dan
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China.
| | - Yanwei Li
- College of Marine Science, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
94
|
Cheng GF, Kong WG, Zhai X, Mu QJ, Dong ZR, Zhan MT, Xu Z. Molecular cloning and expression analysis of CD79a and CD79b in rainbow trout (Oncorhynchus mykiss) after bacterial, parasitic, and viral infection. FISH & SHELLFISH IMMUNOLOGY 2021; 118:385-395. [PMID: 34563671 DOI: 10.1016/j.fsi.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
CD79a and CD79b heterodimers are important components that consist of B cell receptor compound, which play a crucial role in transduction activation signal of the antigen binding BCR, and B cell development and antibody production. In order to investigate the characters and potential functions of CD79a and CD79b in rainbow trout (Oncorhynchus mykiss), we firstly cloned and analyzed the expression of CD79a and CD79b and found that the cDNA sequences of CD79a and CD79b both contained open reading frame of 711 and 645 bp in length for encoding the protein of 237 and 215 amino acid residues, respectively. The predicted amino acid sequences from trout were highly conserved with those of other teleost fishes in structure. Phylogenetic tree was constructed to analyze the evolutionary relationship between the trout and other known species, the result indicated that CD79a and CD79b of trout clustered at high bootstrap values with Salmo salar. Moreover, three trout infection models with F. columnare G4, I. multifiliis and infectious hematopoietic necrosis virus (IHNV) were constructed, which resulted in morphological changes and serious lesions in skin and gills. Importantly, the high expression of CD79a and CD79b occurred in skin, gills, and followed by head kidney in response to bacterial, parasitic, and viral infection, as its expression was closely related to that of Igs. Our findings indicated that CD79a and CD79b play vital roles in both systemic and mucosal immune responses of rainbow trout during bacterial, parasitic, and viral infection, which will contribute to explore the roles of CD79 subunits in B cell signaling during ontogeny and disease.
Collapse
Affiliation(s)
- Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei-Guang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qing-Jiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhao-Ran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Meng-Ting Zhan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
95
|
Huang L, Qiao Y, Xu W, Gong L, He R, Qi W, Gao Q, Cai H, Grossart HP, Yan Q. Full-Length Transcriptome: A Reliable Alternative for Single-Cell RNA-Seq Analysis in the Spleen of Teleost Without Reference Genome. Front Immunol 2021; 12:737332. [PMID: 34646272 PMCID: PMC8502891 DOI: 10.3389/fimmu.2021.737332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Wei Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Weilu Qi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qiancheng Gao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute of Biochemistry and Biology, Postdam University, Potsdam, Germany
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
96
|
Soliman AM, Yoon T, Wang J, Stafford JL, Barreda DR. Isolation of Skin Leukocytes Uncovers Phagocyte Inflammatory Responses During Induction and Resolution of Cutaneous Inflammation in Fish. Front Immunol 2021; 12:725063. [PMID: 34630399 PMCID: PMC8497900 DOI: 10.3389/fimmu.2021.725063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Leukocytes offer a critical layer of protection to the host following skin infections. Delineating the kinetics of cutaneous leukocyte recruitment as well as their anti-microbial and regulatory profiles is challenging since it requires the isolation of adequate cell numbers and maintenance of their functional properties. Herein, we took advantage of a modified procedure to gain insights into the contributions of fish phagocytes through induction and resolution phases of acute cutaneous inflammation in goldfish (Carassius auratus). Our data shows early upregulation of pro-inflammatory cytokines and chemokines, which was paired with neutrophil-dominant leukocyte migration of neutrophils from circulation to the injury site. Recruited neutrophils were associated with high levels of reactive oxygen species (ROS). Following pathogen elimination, a reduction in ROS levels and pro-inflammatory cytokines expression preceded the resolution of inflammation. These results provide a better understanding of the cutaneous immune responses in fish. Moreover, the increased viability and functionality of isolated skin leukocytes opens the door to better understand a range of additional skin diseases.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Taekwan Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Wang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
97
|
Kogame T, Kabashima K, Egawa G. Putative Immunological Functions of Inducible Skin-Associated Lymphoid Tissue in the Context of Mucosa-Associated Lymphoid Tissue. Front Immunol 2021; 12:733484. [PMID: 34512668 PMCID: PMC8426509 DOI: 10.3389/fimmu.2021.733484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Acquired immunity is orchestrated in various lymphoid organs, including bone marrow, thymus, spleen, and lymph nodes in humans. However, mucosa-associated lymphoid tissue (MALT) is evolutionally known to be emerged in the oldest vertebrates as an immunological tissue for acquired immunity, much earlier than the advent of lymph nodes which appeared in endotherms. Furthermore, the lymphocytes which developed in MALT are known to circulate within the limited anatomical areas. Thus, MALT is comprehended as not the structure but the immune network dedicated to local immunity. As for the skin, skin-associated lymphoid tissue (SALT) was previously postulated; however, its existence has not been proven. Our group recently showed that aggregations of dendritic cells, M2 macrophages, and high endothelial venules (HEVs) are essential components to activate effector T cells in the murine contact hypersensitivity model and termed it as inducible SALT (iSALT) since it was a transient entity that serves for acquired immunity of the skin. Furthermore, in various human skin diseases, we reported that the ectopic formation of lymphoid follicles that immunohistochemically analogous to MALT and regarded them as human counterparts of iSALT. These data raised the possibility that SALT can exist as an inducible form, namely iSALT, which shares the biological significance of MALT. In this article, we revisit the evolution of immunological organs and the related components among vertebrates to discuss the conserved functions of MALT. Furthermore, we also discuss the putative characteristics and functions of iSALT in the context of the MALT concept.
Collapse
Affiliation(s)
- Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
98
|
Campos-Sánchez JC, Guardiola FA, García Beltrán JM, Ceballos-Francisco D, Esteban MÁ. Effects of subcutaneous injection of λ/κ-carrageenin on the immune and liver antioxidant status of gilthead seabream (Sparus aurata). JOURNAL OF FISH DISEASES 2021; 44:1449-1462. [PMID: 34032302 DOI: 10.1111/jfd.13452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the acute inflammatory response induced by subcutaneous injection of carrageenin (1%) or phosphate-buffered saline (control) in gilthead seabream (Sparus aurata). Skin mucus, serum, head kidney (HK) and liver were sampled at 1.5, 3 and 6 hr post-injection (p.i.) to determine the immune and antioxidant status of this fish species. The skin mucus of the carrageenin group showed increased superoxide dismutase and peroxidase activities, lysozyme abundance, bactericidal activity against Vibrio anguillarum and Photobacterium damselae, and total immunoglobulins compared with those of the control group. However, the carrageenin-injected fish sampled at 6 hr p.i. showed decreased protease activity in the skin mucus and peroxidase activity in the HK leucocytes compared with the control. Moreover, the carrageenin injection had no effects on the systemic immune system, but it reduced the liver catalase activities at both 3 and 6 hr in the carrageenin group relative to those in the control group. The expression levels of several proinflammatory and cell marker genes in the HK and liver were also determined. In the HK, the expression levels of interleukin-1β and prostaglandin D synthase 1 were upregulated at 1.5 and 3 hr, respectively, in the carrageenin group compared with those in the control group. Contrarily, the expression of the NADPH oxidase subunit phox40 (an acidophilic granulocyte marker) in the carrageenin group at 6 hr was downregulated compared with that in the control group. These results suggested that subcutaneous injection of κ/λ-carrageenin in gilthead seabream triggered an acute skin inflammation characterized by the rapid recruitment of acidophilic granulocytes and the release of humoral mediators into the skin mucus.
Collapse
Affiliation(s)
- José Carlos Campos-Sánchez
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - José María García Beltrán
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Faculty of Biology, Department of Cell Biology and Histology, Immunobiology for Aquaculture Group, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
99
|
Wang KL, Chen SN, Li L, Huo HJ, Nie P. Functional characterization of four TIR domain-containing adaptors, MyD88, TRIF, MAL, and SARM in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104110. [PMID: 33933533 DOI: 10.1016/j.dci.2021.104110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain-containing adaptors, serve as pivotal signal transduction molecules in Toll-like receptor (TLR) signalling pathway to mediate downstream signalling cascades. In this study, four TIR-domain containing adaptors, MyD88, TRIF, MAL and SARM, were identified in mandarin fish Siniperca chuatsi, and they all contain TIR domains, of which MyD88 and SARM had high sequence homology with their vertebrate homologues. The expression analysis at mRNA level indicated that these genes were ubiquitously distributed in different tissues, being high in immune- and mucosa-related tissues such as head-kidney and intestine. The transcripts of these adaptor genes were up-regulated by poly(I:C) and LPS stimulation in isolated head-kidney lymphocytes (HKLs) of mandarin fish. Fluorescence microscopy revealed that all these molecules were localized in cytoplasm, and further investigations showed that the over-expression of MyD88, TRIF and MAL activated the NF-κB, ISRE or type Ι IFN promoters and inhibited SVCV replication, whereas their antiviral effects were significantly impaired when co-transfected with SARM. It was also confirmed by co-immunoprecipitation (Co-IP) that SARM interacts separately with MyD88, TRIF and MAL, and MAL interacts with MyD88. However, the regulatory mechanisms of these adaptors involved in signalling pathways of different TLRs should be of interest for further research.
Collapse
Affiliation(s)
- Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Hui Jun Huo
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
100
|
Kong L, Qian K, Wu S, Li B, Guo Z, Yin X, Huang Y, Ye J, Tu X, Fu S. Functional characterization of TNF-α in pufferfish (Takifugu obscurus) in immune response and apoptosis against Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2021; 44:1343-1353. [PMID: 33956340 DOI: 10.1111/jfd.13393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Tumour necrosis factor-α (TNF-α) is a multifunctional cytokine involved in immune system homeostasis, antimicrobial defence, regulation of apoptosis, cell proliferation and differentiation. Although the pro-inflammatory property of TNF-α has been made new progress, detailed research on host defence against bacterial infection and inducing apoptosis remains to be revealed in early vertebrates. Here, we reported the TNF-α homologue (ToTNF-α) from pufferfish (Takifugu obscurus). The open reading frame (ORF) of ToTNF-α was 753 bp, encoding a protein of 250 aa contained the TNF family signature and conserved cysteine residues. The mRNA expression of ToTNF-α had a wide range of tested tissues, with the highest expression in the skin. After Aeromonas hydrophila infection, the mRNA expression of ToTNF-α was significantly up-regulated both in vivo and in vitro experiments. After stimulation by recombinant protein of ToTNF-α ((r)ToTNF-α), the relative expressions of endogenous TNF-α, caspase 8, caspase 3, p53, and Bax inhibitor-1 in head kidney leucocytes were all notably up-regulated. These results showed that ToTNF-α might induce apoptosis depend on pro- and anti-apoptotic proteins at mRNA level. Moreover, flow cytometry analysis indicated that the (r)ToTNF-α can induce apoptosis of head kidney leucocytes. Taken together, these characteristics suggest that ToTNF-α can participate in immune response against A. hydrophila and induce apoptosis at mRNA and cellular level, which will help to understand the mechanism of apoptosis and immune response in teleost fish.
Collapse
Affiliation(s)
- Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kun Qian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Siwei Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Yu Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao Tu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|