51
|
DeMayo MM, Pokorski I, Song YJC, Thapa R, Patel S, Ambarchi Z, Soligo D, Sadeli I, Thomas EE, Hickie IB, Guastella AJ. The Feasibility of Magnetic Resonance Imaging in a Non-Selective Comprehensive Clinical Trial in Pediatric Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:1211-1222. [PMID: 33903957 DOI: 10.1007/s10803-021-05028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
There is an increasing interest in using magnetic resonance imaging (MRI) as a tool for precision medicine in autism spectrum disorder (ASD). This study investigated the feasibility of MRI scanning in a large comprehensive, inclusive and test heavy clinical trial for children (aged 3-12 years) with ASD, without functioning constraints for participation. Of the 71 participants enrolled who consented to the MRI, 24 participants (38%) successfully completed an MRI scan at baseline along with other assessments. This scanning followed a familiarization procedure at two preceding visits. At post-treatment, 21 participants successfully completed the MRI scan. This study highlights the challenge of completing MRI assessments in ASD populations when conducted as one of a number of tests in a clinical trial.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Izabella Pokorski
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Yun J C Song
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Rinku Thapa
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Shrujna Patel
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Zahava Ambarchi
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | | | - Indra Sadeli
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Emma E Thomas
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Ian B Hickie
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.,Faculty of Medicine and Health, Brain and Mind Centre, Central Clinical School, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia
| | - Adam J Guastella
- Faculty of Medicine and Health, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Autism Clinic for Translational Research, University of Sydney, 100 Mallett Street, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
52
|
Rae M, Lemos Duarte M, Gomes I, Camarini R, Devi LA. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. Br J Pharmacol 2021; 179:1544-1564. [PMID: 33817785 DOI: 10.1111/bph.15481] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are endogenous ligands for OT and AVP receptors in the brain and in the peripheral system. Several studies demonstrate that OT and AVP have opposite roles in modulating stress, anxiety and social behaviours. Interestingly, both peptides and their receptors exhibit high sequence homology which could account for the biased signalling interaction of the peptides with OT and AVP receptors. However, how and under which conditions this crosstalk occurs in vivo remains unclear. In this review we shed light on the complexity of the roles of OT and AVP, by focusing on their signalling and behavioural differences and exploring the crosstalk between the receptor systems. Moreover, we discuss the potential of OT and AVP receptors as therapeutic targets to treat human disorders, such as autism, schizophrenia and drug abuse.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
53
|
Li X, Zhang K, He X, Zhou J, Jin C, Shen L, Gao Y, Tian M, Zhang H. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci Bull 2021; 37:1051-1071. [PMID: 33779890 DOI: 10.1007/s12264-021-00673-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/20/2020] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder associated with both genetic and environmental risks. Neuroimaging approaches have been widely employed to parse the neurophysiological mechanisms underlying ASD, and provide critical insights into the anatomical, functional, and neurochemical changes. We reviewed recent advances in neuroimaging studies that focused on ASD by using magnetic resonance imaging (MRI), positron emission tomography (PET), or single-positron emission tomography (SPECT). Longitudinal structural MRI has delineated an abnormal developmental trajectory of ASD that is associated with cascading neurobiological processes, and functional MRI has pointed to disrupted functional neural networks. Meanwhile, PET and SPECT imaging have revealed that metabolic and neurotransmitter abnormalities may contribute to shaping the aberrant neural circuits of ASD. Future large-scale, multi-center, multimodal investigations are essential to elucidate the neurophysiological underpinnings of ASD, and facilitate the development of novel diagnostic biomarkers and better-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Kai Zhang
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Xiao He
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Lesang Shen
- Department of Surgical Oncology, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
54
|
Shimon-Raz O, Salomon R, Bloch M, Aisenberg Romano G, Yeshurun Y, Ulmer Yaniv A, Zagoory-Sharon O, Feldman R. Mother brain is wired for social moments. eLife 2021; 10:e59436. [PMID: 33764299 PMCID: PMC8026217 DOI: 10.7554/elife.59436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Reorganization of the maternal brain upon childbirth triggers the species-typical maternal social behavior. These brief social moments carry profound effects on the infant's brain and likely have a distinct signature in the maternal brain. Utilizing a double-blind, within-subject oxytocin/placebo administration crossover design, mothers' brain was imaged twice using fMRI while observing three naturalistic maternal-infant contexts in the home ecology; 'unavailable', 'unresponsive', and 'social', when mothers engaged in synchronous peek-a-boo play. The social condition elicited greater neural response across the human caregiving network, including amygdala, VTA, hippocampus, insula, ACC, and temporal cortex. Oxytocin impacted neural response primarily to the social condition and attenuated differences between social and non-social stimuli. Greater temporal consistency emerged in the 'social' condition across the two imaging sessions, particularly in insula, amygdala, and TP. Findings describe how mother's brain varies by caregiving experiences and gives salience to moments of social synchrony that support infant development and brain maturation.
Collapse
Affiliation(s)
- Ortal Shimon-Raz
- IDC Herzliya, Bar Ilan UniversityRamat GanIsrael
- Department of Psychology, Bar Ilan UniversityRamat GanIsrael
| | - Roy Salomon
- Gonda Brain Research Center, Bar Ilan UniversityRamat GanIsrael
| | - Miki Bloch
- Department of Psychiatry, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Gabi Aisenberg Romano
- Department of Psychiatry, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Yaara Yeshurun
- School of Psychological Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Adi Ulmer Yaniv
- IDC Herzliya, Bar Ilan UniversityRamat GanIsrael
- Gonda Brain Research Center, Bar Ilan UniversityRamat GanIsrael
| | | | - Ruth Feldman
- IDC Herzliya, Bar Ilan UniversityRamat GanIsrael
| |
Collapse
|
55
|
Kato Y, Kuwabara H, Okada T, Munesue T, Benner S, Kuroda M, Kojima M, Yassin W, Eriguchi Y, Kameno Y, Murayama C, Nishimura T, Tsuchiya K, Kasai K, Ozaki N, Kosaka H, Yamasue H. Oxytocin-induced increase in N,N-dimethylglycine and time course of changes in oxytocin efficacy for autism social core symptoms. Mol Autism 2021; 12:15. [PMID: 33622389 PMCID: PMC7903697 DOI: 10.1186/s13229-021-00423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oxytocin is expected as a novel therapeutic agent for autism spectrum disorder (ASD) core symptoms. However, previous results on the efficacy of repeated administrations of oxytocin are controversial. Recently, we reported time-course changes in the efficacy of the neuropeptide underlying the controversial effects of repeated administration; however, the underlying mechanisms remained unknown. Methods The current study explored metabolites representing the molecular mechanisms of oxytocin’s efficacy using high-throughput metabolomics analysis on plasma collected before and after 6-week repeated intranasal administration of oxytocin (48 IU/day) or placebo in adult males with ASD (N = 106) who participated in a multi-center, parallel-group, double-blind, placebo-controlled, randomized controlled trial. Results Among the 35 metabolites measured, a significant increase in N,N-dimethylglycine was detected in the subjects administered oxytocin compared with those given placebo at a medium effect size (false discovery rate (FDR) corrected P = 0.043, d = 0.74, N = 83). Furthermore, subgroup analyses of the participants displaying a prominent time-course change in oxytocin efficacy revealed a significant effect of oxytocin on N,N-dimethylglycine levels with a large effect size (PFDR = 0.004, d = 1.13, N = 60). The increase in N,N-dimethylglycine was significantly correlated with oxytocin-induced clinical changes, assessed as changes in quantifiable characteristics of autistic facial expression, including both of improvements between baseline and 2 weeks (PFDR = 0.006, r = − 0.485, N = 43) and deteriorations between 2 and 4 weeks (PFDR = 0.032, r = 0.415, N = 37). Limitations The metabolites changes caused by oxytocin administration were quantified using peripheral blood and therefore may not directly reflect central nervous system changes. Conclusion Our findings demonstrate an association of N,N-dimethylglycine upregulation with the time-course change in the efficacy of oxytocin on autistic social deficits. Furthermore, the current findings support the involvement of the N-methyl-D-aspartate receptor and neural plasticity to the time-course change in oxytocin’s efficacy. Trial registration: A multi-center, parallel-group, placebo-controlled, double-blind, confirmatory trial of intranasal oxytocin in participants with autism spectrum disorders (the date registered: 30 October 2014; UMIN Clinical Trials Registry: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017703) (UMIN000015264).
Collapse
Affiliation(s)
- Yasuhiko Kato
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Chihiro Murayama
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Tomoko Nishimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kenji Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan. .,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan.
| |
Collapse
|
56
|
Benner S, Aoki Y, Watanabe T, Endo N, Abe O, Kuroda M, Kuwabara H, Kawakubo Y, Takao H, Kunimatsu A, Kasai K, Bito H, Kakeyama M, Yamasue H. Neurochemical evidence for differential effects of acute and repeated oxytocin administration. Mol Psychiatry 2021; 26:710-720. [PMID: 30262887 DOI: 10.1038/s41380-018-0249-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/08/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022]
Abstract
A discrepancy in oxytocin's behavioral effects between acute and repeated administrations indicates distinct underlying neurobiological mechanisms. The current study employed a combination of human clinical trial and animal study to compare neurochemical changes induced by acute and repeated oxytocin administrations. Human study analyzed medial prefrontal metabolite levels by using 1H-magnetic resonance spectroscopy, a secondary outcome in our randomized, double-blind, placebo-controlled crossover trial of 6 weeks intranasal administrations of oxytocin (48 IU/day) and placebo within-subject design in 17 psychotropic-free high-functioning men with autism spectrum disorder. Medial prefrontal transcript expression levels were analyzed in adult male C57BL/6J mice after intraperitoneal injection of oxytocin or saline either once (200 ng/100 μL/mouse, n = 12) or for 14 consecutive days (200 ng/100 μL/mouse/day, n = 16). As the results, repeated administration of oxytocin significantly decreased the medial prefrontal N-acetylaspartate (NAA; p = 0.043) and glutamate-glutamine levels (Glx; p = 0.001), unlike the acute oxytocin. The decreases were inversely and specifically associated (r = 0.680, p = 0.004 for NAA; r = 0.491, p = 0.053 for Glx) with oxytocin-induced improvements of medial prefrontal functional MRI activity during a social judgment task not with changes during placebo administrations. In wild-type mice, we found that repeated oxytocin administration reduced medial frontal transcript expression of N-methyl-D-aspartate receptor type 2B (p = 0.018), unlike the acute oxytocin, which instead changed the transcript expression associated with oxytocin (p = 0.0004) and neural activity (p = 0.0002). The present findings suggest that the unique sensitivity of the glutamatergic system to repeated oxytocin administration may explain the differential behavioral effects of oxytocin between acute and repeated administration.
Collapse
Affiliation(s)
- Seico Benner
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuta Aoki
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takamitsu Watanabe
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, United Kingdom
| | - Nozomi Endo
- Laboratory for Environmental Brain Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, 359-1192, Japan.,Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Osamu Abe
- Department of Radiology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hidemasa Takao
- Department of Radiology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Akira Kunimatsu
- Department of Radiology, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Kakeyama
- Laboratory for Environmental Brain Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, 359-1192, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
57
|
The promiscuity of the oxytocin-vasopressin systems and their involvement in autism spectrum disorder. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:121-140. [PMID: 34266588 DOI: 10.1016/b978-0-12-819973-2.00009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin and vasopressin systems have been studied separately in autism spectrum disorder (ASD). Here, we provide evidence from an evolutionary and neuroscience perspective about the shared mechanisms and the common roles in regulating social behaviors. We first discuss findings on the evolutionary history of oxytocin and vasopressin ligands and receptors that highlight their common origin and clarify the evolutionary background of the crosstalk between them. Second, we conducted a comprehensive review of the increasing evidence for the role of both neuropeptides in regulating social behaviors. Third, we reviewed the growing evidence on the associations between the oxytocin/vasopressin systems and ASD, which includes oxytocin and vasopressin dysfunction in animal models of autism and in human patients, and the impact of treatments targeting the oxytocin or the vasopressin systems in children and in adults. Here, we highlight the potential of targeting the oxytocin/vasopressin systems to improve social deficits observed in ASD and the need for further investigations on how to transfer these research innovations into clinical applications.
Collapse
|
58
|
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder that leads to poor social function. Oxytocin (OXT), a neuropeptide involved in social cognition, is a potential therapeutic agent for alleviating social dysfunction. Therefore, we investigated the effects of intranasal oxytocin (IN-OXT) on emotional processes in experimental interactive social contexts in individuals with SCZ. METHODS In a male-only parallel randomized placebo-controlled double-blind trial, we investigated the effects of IN-OXT (24 IU) on visual fixation on pictures of faces and emotion recognition in an interactive ball-tossing game that probed processing of social and nonsocial stimuli. RESULTS Intranasal oxytocin enhanced the recognition of emotions during an emotion-based ball-tossing game. This improvement was specific to the game that included social cue processing. Intranasal oxytocin did not affect eye gaze duration or gaze dwell time on faces in these patients. CONCLUSIONS An acute low dose of IN-OXT had a modest effect on social cue processing and was limited to emotion recognition. Higher doses and long-term trials targeting emotional processing in SCZ may lead to improved social function.
Collapse
|
59
|
Horta M, Pehlivanoglu D, Ebner NC. The Role of Intranasal Oxytocin on Social Cognition: An Integrative Human Lifespan Approach. Curr Behav Neurosci Rep 2020; 7:175-192. [PMID: 33717829 PMCID: PMC7951958 DOI: 10.1007/s40473-020-00214-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This narrative review synthesizes research from the last two decades on the modulatory role of intranasal OT administration (IN-OT) on social cognition in early life, young/middle adulthood, and older adulthood. Advances and knowledge gaps are identified, and future research directions are discussed within an integrative human lifespan framework to guide novel research on IN-OT and social cognition. RECENT FINDINGS Current evidence regarding IN-OT modulation of social-cognitive processes, behavior, and related neurocircuitry is mixed, with some studies suggesting benefits (e.g., improved social perception/interactions, emotion processing) depending on contextual (e.g., social stimuli) and interindividual factors (e.g., age, sex, clinical status). Current research, however, is limited by a focus on isolated life phases, males, and select clinical populations as well as a lack of standardized protocols. SUMMARY This literature-based reflection proposes that greater generalizability of findings and scientific advancement on social-cognitive modulation via IN-OT require standardized, multi-method, longitudinal, and cross-sequential assessments in well-powered, well-controlled, and representative samples in line with an integrative lifespan approach, which considers development as a lifelong dynamic process involving both change and stability characterized by the interplay between genetic, neurobiological, and socio-behavioral factors.
Collapse
Affiliation(s)
- Marilyn Horta
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | | | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Institute on Aging, Department of Aging & Geriatric Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
60
|
Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr Opin Neurobiol 2020; 68:1-8. [PMID: 33260106 DOI: 10.1016/j.conb.2020.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
The recent advancements of social behavioral neuroscience are unprecedented. Through manipulations targeting neural circuits, complex behaviors can be switched on and off, social bonds can be induced, and false memories can be 'incepted.' Psychiatry, however, remains tethered to concepts and techniques developed over half a century ago, including purely behavioral definitions of psychopathology and chronic, brain-wide pharmacological interventions. Drawing on recent animal and human research, we outline a circuit-level approach to the social brain and highlight studies demonstrating the translational potential of this approach. We conclude by suggesting ways both clinical practice and translational research can apply circuit-level neuroscientific knowledge to advance psychiatry, including adopting neuroscience-based nomenclature, stratifying patients into diagnostic subgroups based on neurobiological phenotypes, and pharmacologically enhancing psychotherapy.
Collapse
|
61
|
Lopatina OL, Komleva YK, Malinovskaya NA, Panina YA, Morgun AV, Salmina AB. CD157 and Brain Immune System in (Patho)physiological Conditions: Focus on Brain Plasticity. Front Immunol 2020; 11:585294. [PMID: 33304350 PMCID: PMC7693531 DOI: 10.3389/fimmu.2020.585294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Ectoenzyme and receptor BST-1/CD157 has been considered as a key molecule involved in the regulation of functional activity of cells in various tissues and organs. It is commonly accepted that CD157 catalyzes NAD+ hydrolysis and acts as a component of integrin adhesion receptor complex. Such properties are important for the regulatory role of CD157 in neuronal and glial cells: in addition to recently discovered role in the regulation of emotions, motor functions, and social behavior, CD157 might serve as an important component of innate immune reactions in the central nervous system. Activation of innate immune system in the brain occurs in response to infectious agents as well as in brain injury and neurodegeneration. As an example, in microglial cells, association of CD157 with CD11b/CD18 complex drives reactive gliosis and neuroinflammation evident in brain ischemia, chronic neurodegeneration, and aging. There are various non-substrate ligands of CD157 belonging to the family of extracellular matrix proteins (fibronectin, collagen I, finbrinogen, and laminin) whose activity is required for controlling cell adhesion and migration. Therefore, CD157 could control structural and functional integrity of the blood-brain barrier and barriergenesis. On the other hand, contribution of CD157 to the regulation of brain development is rather possible since in the embryonic brain, CD157 expression is very high, whereas in the adult brain, CD157 is expressed on neural stem cells and, presumably, is involved in the neurogenesis. Besides, CD157 could mediate astrocytes' action on neural stem and progenitor cells within neurogenic niches. In this review we will summarize how CD157 may affect brain plasticity acting as a molecule at the crossroad of neurogenesis, cerebral angiogenesis, and immune regulation.
Collapse
Affiliation(s)
- Olga L. Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Department of Biophysics, Siberian Federal University, Krasnoyarsk, Russia
| | - Yulia K. Komleva
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Natalia A. Malinovskaya
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yulia A. Panina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Andrey V. Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B. Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
62
|
Oxytocin treatment attenuates amygdala activity in autism: a treatment-mechanism study with long-term follow-up. Transl Psychiatry 2020; 10:383. [PMID: 33159033 PMCID: PMC7648620 DOI: 10.1038/s41398-020-01069-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intranasal administration of the neuropeptide oxytocin (IN-OT) is increasingly considered as a potential treatment for targeting the core symptoms of autism spectrum disorder (ASD), but the effects of continual use on neural substrates are fairly unexplored and long-term effects are unknown. In this double-blind, randomized, placebo-controlled study, we investigated the effects of single-dose and multiple-dose IN-OT treatment (4 weeks of daily (24 IU) administrations) on brain activity related to processing emotional states. Thirty-eight adult men with ASD (aged between 18 and 35 years) underwent functional magnetic resonance imaging of the posterior superior temporal gyrus (pSTS) and amygdala regions while processing emotional states from point-light biological motion. In line with prior research, a single dose of IN-OT induced a reliable increase in pSTS brain activity during the processing of point-light biological motion, but no consistent long-term changes in pSTS activity were induced after the multiple-dose treatment. In terms of bilateral amygdala, the multiple-dose treatment induced a consistent attenuation in brain activity, which outlasted the period of actual administrations until four weeks and one year post-treatment. Critically, participants with stronger attenuations in amygdala-activity showed greater behavioral improvements, particularly in terms of self-reported feelings of avoidant attachment and social functioning. Together, these observations provide initial insights into the long-lasting neural consequences of chronic IN-OT use on amygdala functioning and provide first indications that the acute versus chronic effects of IN-OT administration may be qualitatively different. Larger studies are however warranted to further elucidate the long-term impact of IN-OT treatment on human neural substrates and its behavioral consequences.
Collapse
|
63
|
Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neurosci Biobehav Rev 2020; 118:384-396. [DOI: 10.1016/j.neubiorev.2020.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
64
|
Abraham E, Posner J, Wickramaratne PJ, Aw N, van Dijk MT, Cha J, Weissman MM, Talati A. Concordance in parent and offspring cortico-basal ganglia white matter connectivity varies by parental history of major depressive disorder and early parental care. Soc Cogn Affect Neurosci 2020; 15:889-903. [PMID: 33031555 PMCID: PMC7543940 DOI: 10.1093/scan/nsaa118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Social behavior is transmitted cross-generationally through coordinated behavior within attachment bonds. Parental depression and poor parental care are major risks for disruptions of such coordination and are associated with offspring's psychopathology and interpersonal dysfunction. Given the key role of the cortico-basal ganglia (CBG) circuits in social communication, we examined similarities (concordance) of parent-offspring CBG white matter (WM) connections and how parental history of major depressive disorder (MDD) and early parental care moderate these similarities. We imaged 44 parent-offspring dyads and investigated WM connections between basal-ganglia seeds and selected regions in temporal cortex using diffusion tensor imaging (DTI) tractography. We found significant concordance in parent-offspring strength of CBG WM connections, moderated by parental lifetime-MDD and care. The results showed diminished neural concordance among dyads with a depressed parent and that better parental care predicted greater concordance, which also provided a protective buffer against attenuated concordance among dyads with a depressed parent. Our findings provide the first neurobiological evidence of concordance between parents-offspring in WM tracts and that concordance is diminished in families where parents have lifetime-MDD. This disruption may be a risk factor for intergenerational transmission of psychopathology. Findings emphasize the long-term role of early caregiving in shaping the neural concordance among at-risk and affected dyads.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Priya J Wickramaratne
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Natalie Aw
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Milenna T van Dijk
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jiook Cha
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Child Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Departments of Epidemiology, New York, NY, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Divisions of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
65
|
Oxytocin increases the pleasantness of affective touch and orbitofrontal cortex activity independent of valence. Eur Neuropsychopharmacol 2020; 39:99-110. [PMID: 32861545 DOI: 10.1016/j.euroneuro.2020.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
Abstract
Touch plays a crucial role in affiliative behavior and social communication. The neuropeptide oxytocin is released in response to touch and may act to facilitate the rewarding effects of social touch. However, no studies to date have determined whether oxytocin facilitates behavioral or neural responses to non-socially administered affective touch and possible differential effects of touch valence. In a functional MRI experiment using a randomized placebo-controlled, within-subject design in 40 male subjects we investigated the effects of intranasal oxytocin (24IU) on behavioral and neural responses to positive, neutral and negative valence touch administered to the arm via different types of materials at a frequency aimed to optimally stimulate C-fibers. Results showed that oxytocin significantly increased both the perceived pleasantness of touch and activation of the orbitofrontal cortex independent of touch valence. The effects of OT on touch-evoked orbitofrontal activation were also positively associated with basal oxytocin concentrations in blood. Additionally, anterior insula activity and the functional connectivity between the amygdala and right anterior insula were enhanced only in response to negative valence touch. Overall, the present study provides the first evidence that oxytocin may facilitate the rewarding effects of all types of touch, irrespective of valence.
Collapse
|
66
|
Kordás K, Kis-Varga Á, Varga A, Eldering H, Bulthuis R, Lendvai B, Lévay G, Román V. Measuring sociability of mice using a novel three-chamber apparatus and algorithm of the LABORAS™ system. J Neurosci Methods 2020; 343:108841. [PMID: 32621917 DOI: 10.1016/j.jneumeth.2020.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND The social approach and social novelty tests utilizing the three-chamber apparatus are widely accepted to measure social behavior of rodents. The LABORAS™ system offers a possibility to assess sociability of mice in a reliable and objective manner. NEW METHOD We assessed the capability of the LABORAS™ sociability cage and algorithm (2.6.6) to detect social behaviors in mice. Furthermore, we investigated whether the system is able to detect various levels of sociability due to genetic background or after pharmacological treatments. RESULTS By comparing manual scoring with various detection zone settings of the automated registration, the most fitting algorithm with a detection zone radius of 90 mm was identified. When different strains were investigated, C57Bl/6 J and NMRI mice proved to be social, while CD1 mice were found asocial. The system was able to detect the sociability increasing effect of R-baclofen (0.5 mg/kg i.p.) and oxytocin (12 ng i.c.v.) in asocial CD1 mice. The negative control PCP impaired social behavior of C57Bl/6 J mice (1 mg/kg i.p.) and increased social avoidance in CD1 mice (0.3 mg/kg i.p.). COMPARISON WITH EXISTING METHOD(S) This setup, in contrast to video frame analysis softwares, determines signal changes caused by movements of rodents allowing accurate detection and analysis of trajectories. Parallel automated measurements also allow replacing time and labor intensive, highly subjective human observational work. CONCLUSIONS The set-up provides a fast and reliable method to examine social behavior of mice in the three-chamber apparatus. The system is capable of detecting pro or antisocial activity of pharmacological agents.
Collapse
Affiliation(s)
- Krisztina Kordás
- Pharmacology and Drug Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Ágnes Kis-Varga
- Pharmacology and Drug Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Anita Varga
- Pharmacology and Drug Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Herman Eldering
- Metris B.V., Kruisweg 829c, 2132NG Hoofddorp, the Netherlands
| | - Ronald Bulthuis
- Metris B.V., Kruisweg 829c, 2132NG Hoofddorp, the Netherlands
| | - Balázs Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, 1103 Budapest, Hungary
| | - György Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, 1103 Budapest, Hungary
| | - Viktor Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, 1103 Budapest, Hungary.
| |
Collapse
|
67
|
Spanos M, Chandrasekhar T, Kim SJ, Hamer RM, King BH, McDougle CJ, Sanders KB, Gregory SG, Kolevzon A, Veenstra-VanderWeele J, Sikich L. Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). Contemp Clin Trials 2020; 98:106103. [PMID: 32777383 DOI: 10.1016/j.cct.2020.106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe the rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). METHOD This phase 2 clinical trial was designed to evaluate the use of intranasal oxytocin treatment to improve social difficulties in individuals with autism spectrum disorder (ASD). In total, 290 participants ages 3 to 17 years with a DSM-5 diagnosis of ASD were enrolled to receive 24 weeks of treatment with either oxytocin or a matched placebo at one of seven collaborating sites. Participants were subsequently treated with open-label oxytocin for 24 additional weeks. Post-treatment assessments were done approximately 4 weeks after treatment discontinuation. Plasma oxytocin and oxytocin receptor gene (OXTR) methylation level were measured at baseline, and week 8, 24 and 36 to explore potential relationships between these biomarkers and treatment response. RESULTS This report describes the rationale, design, and methods of the SOARS-B clinical trial. CONCLUSIONS There is a tremendous unmet need for safe and effective pharmacological treatment options that target the core symptoms of ASD. Several studies support the hypothesis that intranasal oxytocin could improve social orienting and the salience of social rewards in ASD, thereby enhancing reciprocal social behaviors. However, due to conflicting results from a number of pilot studies on the prosocial effects of exogenous oxytocin, this hypothesis remains controversial and inconclusive. SOARS-B is the best powered study to date to address this hypothesis and promises to improve our understanding of the safety and efficacy of intranasal oxytocin in the treatment of social deficits in children with ASD.
Collapse
Affiliation(s)
- Marina Spanos
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America.
| | - Tara Chandrasekhar
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| | - Soo-Jeong Kim
- Seattle Children's Autism Center, Department of Psychiatry and Behavioral Sciences, University of Washington; Seattle, WA, United States of America
| | - Robert M Hamer
- Departments of Psychiatry and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bryan H King
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, UCSF Benioff Children's Hospitals, San Francisco, CA, United States of America
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Kevin B Sanders
- Neuroscience Product Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States of America; Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute; Center for Autism and the Developing Brain, New York-Presbyterian Hospital, United States of America
| | - Linmarie Sikich
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| |
Collapse
|
68
|
Yamasue H, Okada T, Munesue T, Kuroda M, Fujioka T, Uno Y, Matsumoto K, Kuwabara H, Mori D, Okamoto Y, Yoshimura Y, Kawakubo Y, Arioka Y, Kojima M, Yuhi T, Owada K, Yassin W, Kushima I, Benner S, Ogawa N, Eriguchi Y, Kawano N, Uemura Y, Yamamoto M, Kano Y, Kasai K, Higashida H, Ozaki N, Kosaka H. Effect of intranasal oxytocin on the core social symptoms of autism spectrum disorder: a randomized clinical trial. Mol Psychiatry 2020; 25:1849-1858. [PMID: 29955161 DOI: 10.1038/s41380-018-0097-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022]
Abstract
Although small-scale studies have described the effects of oxytocin on social deficits in autism spectrum disorder (ASD), no large-scale study has been conducted. In this randomized, parallel-group, multicenter, placebo-controlled, double-blind trial in Japan, 106 ASD individuals (18-48 y.o.) were enrolled between Jan 2015 and March 2016. Participants were randomly assigned to a 6-week intranasal oxytocin (48IU/day, n = 53) or placebo (n = 53) group. One-hundred-three participants were analyzed. Since oxytocin reduced the primary endpoint, Autism Diagnostic Observation Schedule (ADOS) reciprocity, (from 8.5 to 7.7; P < .001) but placebo also reduced the score (8.3 to 7.2; P < .001), no between-group difference was found (effect size -0.08; 95% CI, -0.46 to 0.31; P = .69); however, plasma oxytocin was only elevated from baseline to endpoint in the oxytocin-group compared with the placebo-group (effect size -1.12; -1.53 to -0.70; P < .0001). Among the secondary endpoints, oxytocin reduced ADOS repetitive behavior (2.0 to 1.5; P < .0001) compared with placebo (2.0 to 1.8; P = .43) (effect size 0.44; 0.05 to 0.83; P = .026). In addition, the duration of gaze fixation on socially relevant regions, another secondary endpoint, was increased by oxytocin (41.2 to 52.3; P = .03) compared with placebo (45.7 to 40.4; P = .25) (effect size 0.55; 0.10 to 1.0; P = .018). No significant effects were observed for the other secondary endpoints. No significant difference in the prevalence of adverse events was observed between groups, although one participant experienced temporary gynecomastia during oxytocin administration. Based on the present findings, we cannot recommend continuous intranasal oxytocin treatment alone at the current dose and duration for treatment of the core social symptoms of high-functioning ASD in adult men, although this large-scale trial suggests oxytocin's possibility to treat ASD repetitive behavior.
Collapse
Affiliation(s)
- Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan. .,Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toru Fujioka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Kaori Matsumoto
- Graduate School of Psychology, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, 921-8054, Japan
| | - Hitoshi Kuwabara
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Child Development, United Graduate School of Child Development at Hamamatsu, Handayama 1 Higashiku, Hamamatsu, 431-3192, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuko Okamoto
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Yuki Kawakubo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Teruko Yuhi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Keiho Owada
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Seico Benner
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoko Kawano
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yukari Uemura
- Biostatistics Division, Clinical Research Support Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yukiko Kano
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, 910-1193, Japan.,Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
69
|
Antineuroinflammatory therapy: potential treatment for autism spectrum disorder by inhibiting glial activation and restoring synaptic function. CNS Spectr 2020; 25:493-501. [PMID: 31659946 DOI: 10.1017/s1092852919001603] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by deficits in social interactions and perseverative and stereotypical behavior. Growing evidence points toward a critical role for synaptic dysfunction in the onset of ASD, and synaptic function is influenced by glial cells. Considering the evidence that neuroinflammation in ASD is mediated by glial cells, one hypothesis is that reactive glial cells, under inflammatory conditions, contribute to the loss of synaptic functions and trigger ASD. Ongoing pharmacological treatments for ASD, including oxytocin, vitamin D, sulforaphane, and resveratrol, are promising and are shown to lead to improvements in behavioral performance in ASD. More importantly, their pharmacological mechanisms are closely related to anti-inflammation and synaptic protection. We focus this review on the hypothesis that synaptic dysfunction caused by reactive glial cells would lead to ASD, and discuss the potentials of antineuroinflammatory therapy for ASD.
Collapse
|
70
|
Neuroimaging Markers of Risk and Pathways to Resilience in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:200-210. [PMID: 32839155 DOI: 10.1016/j.bpsc.2020.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 01/22/2023]
Abstract
Autism spectrum disorder is a complex, heterogeneous neurodevelopmental condition of largely unknown etiology. This heterogeneity of symptom presentation, combined with high rates of comorbidity with other developmental disorders and a lack of reliable biomarkers, makes diagnosing and evaluating life outcomes for individuals with autism spectrum disorder a challenge. We review the growing literature on neuroimaging-based biomarkers of risk for the development of autism and explore evidence for resilience in some autistic individuals. The current literature suggests that neuroimaging during early infancy, in combination with prebirth and early genetic studies, is a promising tool for identifying biomarkers of risk, while studies of gene expression and DNA methylation have provided some key insights into mechanisms of resilience. With genetics and the environment contributing to both risk for the development of autism spectrum disorder and conditions for resilience, additional studies are needed to understand how risk and resilience interact mechanistically, whereby factors of risk may engender conditions for adaptation. Future studies should prioritize longitudinal designs in global cohorts, with the involvement of the autism community as partners in research to help identify domains of functioning that hold value and importance to the community.
Collapse
|
71
|
Owada K, Okada T, Munesue T, Kuroda M, Fujioka T, Uno Y, Matsumoto K, Kuwabara H, Mori D, Okamoto Y, Yoshimura Y, Kawakubo Y, Arioka Y, Kojima M, Yuhi T, Yassin W, Kushima I, Benner S, Ogawa N, Kawano N, Eriguchi Y, Uemura Y, Yamamoto M, Kano Y, Kasai K, Higashida H, Ozaki N, Kosaka H, Yamasue H. Quantitative facial expression analysis revealed the efficacy and time course of oxytocin in autism. Brain 2020; 142:2127-2136. [PMID: 31096266 DOI: 10.1093/brain/awz126] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/09/2019] [Accepted: 03/10/2019] [Indexed: 11/14/2022] Open
Abstract
Discrepancies in efficacy between single-dose and repeated administration of oxytocin for autism spectrum disorder have led researchers to hypothesize that time-course changes in efficacy are induced by repeated administrations of the peptide hormone. However, repeatable, objective, and quantitative measurement of autism spectrum disorder's core symptoms are lacking, making it difficult to examine potential time-course changes in efficacy. We tested this hypothesis using repeatable, objective, and quantitative measurement of the core symptoms of autism spectrum disorder. We examined videos recorded during semi-structured social interaction administered as the primary outcome in single-site exploratory (n = 18, crossover within-subjects design) and multisite confirmatory (n = 106, parallel-group design), double-blind, placebo-controlled 6-week trials of repeated intranasal administrations of oxytocin (48 IU/day) in adult males with autism spectrum disorder. The main outcomes were statistical representative values of objectively quantified facial expression intensity in a repeatable part of the Autism Diagnostic Observation Schedule: the maximum probability (i.e. mode) and the natural logarithm of mode on the probability density function of neutral facial expression and the natural logarithm of mode on the probability density function of happy expression. Our recent study revealed that increases in these indices characterize autistic facial expression, compared with neurotypical individuals. The current results revealed that oxytocin consistently and significantly decreased the increased natural logarithm of mode on the probability density function of neutral facial expression compared with placebo in exploratory (effect-size, -0.57; 95% CI, -1.27 to 0.13; P = 0.023) and confirmatory trials (-0.41; -0.62 to -0.20; P < 0.001). A significant interaction between time-course (at baseline, 2, 4, 6, and 8 weeks) and the efficacy of oxytocin on the natural logarithm of mode on the probability density function of neutral facial expression was found in confirmatory trial (P < 0.001). Post hoc analyses revealed maximum efficacy at 2 weeks (P < 0.001, Cohen's d = -0.78; 95% CI, -1.21 to -0.35) and deterioration of efficacy at 4 weeks (P = 0.042, Cohen's d = -0.46; 95% CI, -0.90 to -0.01) and 6 weeks (P = 0.10, Cohen's d = -0.35; 95% CI, -0.77 to 0.08), while efficacy was preserved at 2 weeks post-treatment (i.e. 8 weeks) (P < 0.001, Cohen's d = -1.24; 95% CI, -1.71 to -0.78). Quantitative facial expression analyses successfully verified the positive effects of repeated oxytocin on autistic individuals' facial expressions and demonstrated a time-course change in efficacy. The current findings support further development of an optimized regimen of oxytocin treatment.
Collapse
Affiliation(s)
- Keiho Owada
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Toru Fujioka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital, 115 Mill Street Belmont, MA, USA
| | - Kaori Matsumoto
- Graduate School of Psychology, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Yuko Okamoto
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Teruko Yuhi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Seico Benner
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Naoko Kawano
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yukari Uemura
- Biostatistics Division, Clinical Research Support Center, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Yukiko Kano
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Fukui, Japan.,UTokyo Center for Integrative Science of Human Behavior (CiSHuB), Fukui, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui, Japan.,Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, Japan.,Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
72
|
Baker E, Stavropoulos KKM. The effects of oxytocin administration on individuals with ASD: Neuroimaging and behavioral evidence. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:209-238. [PMID: 32711811 DOI: 10.1016/bs.pmbts.2020.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social communication and the presence of restricted interests and repetitive behaviors. Although behavioral interventions are numerous, there are no Federal Drug Administration approved pharmacological treatments for the core symptoms of ASD. The neuropeptide oxytocin has been studied in animals for decades, and is involved in pair bonding and social affiliation. Given oxytocin's involvement in social communication in animals, researchers have begun exploring whether oxytocin administration in humans affects social behaviors and attachment. Particular attention has been paid to whether oxytocin has therapeutic benefits for improving social behaviors in individuals with ASD. Research on oxytocin administration in ASD has utilized both behavioral and brain-based outcomes. This chapter reviews the effects of oxytocin administration in ASD, with a focus on functional outcomes from neuroimaging investigations. Evidence of potential therapeutic benefits are reviewed, as well as limitations of extant research. A proposed model for future research into the therapeutic benefits of oxytocin includes combining pharmacological (e.g. oxytocin) and behavioral (e.g. evidence-based behavioral interventions) techniques to improve social communication skills in ASD.
Collapse
Affiliation(s)
- Elizabeth Baker
- University of California, Graduate School of Education, Riverside, CA, United States
| | | |
Collapse
|
73
|
Mayo O, Gordon I. In and out of synchrony-Behavioral and physiological dynamics of dyadic interpersonal coordination. Psychophysiology 2020; 57:e13574. [PMID: 32221984 DOI: 10.1111/psyp.13574] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
Interpersonal synchrony, the temporal coordination of actions, emotions, thoughts and physiological processes, is a widely studied ubiquitous phenomenon. Research has already established that more synchrony is not always more beneficial, especially in the fields of emotional and physiological synchrony. Despite this fact, the dominant tone in the literature is that behavioral interpersonal synchrony is a pro-social phenomenon, and hence, in social contexts, more behavioral synchrony is generally considered better. In accordance with that tone, the naturally occurring dynamics of moving in and out of synchrony have rarely been studied or considered as an adaptive state. In the present article, we aim to present a new model of interpersonal synchrony, based on the existing literature assessing synchrony as well as the ideas of complex dynamical systems. At the core of our model is the idea that two tendencies exist simultaneously, one to synchronize with others and another to move out of synchrony and act independently. We suggest that an adaptive interpersonal system is a flexible one, able to continuously adjust itself to the social context. We suggest that the concept of meta-stability might be a marker of such a flexible interpersonal system. Moreover, the model considers both behavioral and physiological aspects in order to provide a more extensive account. We present research implications of the model, as well as a demonstration of the model's applicability to data, and provide code researchers can use to analyze their own data in these methods. Finally, we discuss future directions in detail.
Collapse
Affiliation(s)
- Oded Mayo
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Ilanit Gordon
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel.,The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
74
|
Hernandez LM, Lawrence KE, Padgaonkar NT, Inada M, Hoekstra JN, Lowe JK, Eilbott J, Jack A, Aylward E, Gaab N, Van Horn JD, Bernier RA, McPartland JC, Webb SJ, Pelphrey KA, Green SA, Geschwind DH, Bookheimer SY, Dapretto M. Imaging-genetics of sex differences in ASD: distinct effects of OXTR variants on brain connectivity. Transl Psychiatry 2020; 10:82. [PMID: 32127526 PMCID: PMC7054353 DOI: 10.1038/s41398-020-0750-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is more prevalent in males than in females, but the neurobiological mechanisms that give rise to this sex-bias are poorly understood. The female protective hypothesis suggests that the manifestation of ASD in females requires higher cumulative genetic and environmental risk relative to males. Here, we test this hypothesis by assessing the additive impact of several ASD-associated OXTR variants on reward network resting-state functional connectivity in males and females with and without ASD, and explore how genotype, sex, and diagnosis relate to heterogeneity in neuroendophenotypes. Females with ASD who carried a greater number of ASD-associated risk alleles in the OXTR gene showed greater functional connectivity between the nucleus accumbens (NAcc; hub of the reward network) and subcortical brain areas important for motor learning. Relative to males with ASD, females with ASD and higher OXTR risk-allele-dosage showed increased connectivity between the NAcc, subcortical regions, and prefrontal brain areas involved in mentalizing. This increased connectivity between NAcc and prefrontal cortex mirrored the relationship between genetic risk and brain connectivity observed in neurotypical males showing that, under increased OXTR genetic risk load, females with ASD and neurotypical males displayed increased connectivity between reward-related brain regions and prefrontal cortex. These results indicate that females with ASD differentially modulate the effects of increased genetic risk on brain connectivity relative to males with ASD, providing new insights into the neurobiological mechanisms through which the female protective effect may manifest.
Collapse
Affiliation(s)
- Leanna M Hernandez
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Katherine E Lawrence
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - N Tanya Padgaonkar
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Marisa Inada
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jackson N Hoekstra
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lowe
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey Eilbott
- Autism & Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC, USA
| | - Allison Jack
- Autism & Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC, USA
| | - Elizabeth Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nadine Gaab
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John D Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Sara J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kevin A Pelphrey
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shulamite A Green
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
75
|
Shi Y, Liu J, Hu Z, Gao S. Opposing sex-dependent effects of oxytocin on the perception of gaze direction. Psychopharmacology (Berl) 2020; 237:869-876. [PMID: 31844937 DOI: 10.1007/s00213-019-05423-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Gaze direction is an important cue of the eye region. Previous studies have revealed that oxytocin (OXT) increases orienting to the eye region of face. However, little has been known about the effect of OXT in men and women on the perception of gaze direction particularly when associated with different emotions. OBJECTIVES We investigated how oxytocin would affect gaze direction judgments for threatening, angry, and neutral facial expressions and whether this effect would be modulated by observers' sex. METHODS We used the cone of direct gaze (CoDG) task. Participants were required to judge the gaze direction of face between directed and averted gaze. RESULTS Results showed opposing sex-dependent effects of OXT such that OXT, as compared with placebo, tended to decrease the CoDG in men but increase it in women. The CoDG was marginally wider in men than in women in the placebo condition, and however, this difference was abolished following OXT treatment. We also found that the perception of gaze direction varied as a function of emotional expression such that the CoDG for angry and neutral faces was wider than that for fearful faces and the CoDG for angry faces was marginally wider than that for neutral ones. However, there was no significant interaction between treatment and facial expression. CONCLUSIONS Our findings provide the first evidence for sex-dependent effects of OXT on gaze direction perception, suggesting that OXT attenuates the self-referential judgment of gaze directions of others in men and enhances it in women despite differentiated emotions of faces.
Collapse
Affiliation(s)
- Yahuan Shi
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, People's Republic of China.,Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China
| | - Jinmeng Liu
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, People's Republic of China.,Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China
| | - Zhonghua Hu
- Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, People's Republic of China. .,Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China.
| | - Shan Gao
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China. .,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
76
|
Arias del Razo R, Berger T, Conley AJ, Freeman SM, Goetze LR, Jacob S, Lawrence RH, Mendoza SP, Rothwell ES, Savidge LE, Solomon M, Weinstein TA, Witczak LR, Bales KL. Effects of chronic intranasal oxytocin on behavior and cerebral glucose uptake in juvenile titi monkeys. Psychoneuroendocrinology 2020; 113:104494. [PMID: 31862614 PMCID: PMC7909742 DOI: 10.1016/j.psyneuen.2019.104494] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/07/2023]
Abstract
Intranasal oxytocin (IN OXT) has been proposed as a treatment for autism spectrum disorder (ASD); however, little is known about the effects of long-term exposure. This is the first study in a non-human primate species to examine how developmental exposure to chronic IN OXT affects juvenile's interactions with family members, social preference for parents versus strangers, anxiety-like behavior, and cerebral glucose metabolism. Titi monkeys are socially monogamous and biparental; their family bonds share important characteristics with human family bonds. Fourteen males and 15 females were treated intranasally with saline (n = 14) or 0.8 IU/kg OXT (n = 15), daily from 12 to 18 months of age. Compared to SAL-treated animals, OXT-treated animals of both sexes spent significantly more time grooming other family members (F1 = 8.97, p = 0.006). Overall, OXT-treated subjects were more social (F1 = 8.35, p = 0.005) during preference tests. OXT-treated females displayed an enhanced preference for their parents (t = 2.265, p = 0.026). OXT-treated males had a blunted preference for their parents and an increase in the time spent near unfamiliar pairs (F1 = 10.89, p = 0.001). During anxiety tests, OXT-treated males refused to complete the task more often than SAL-treated males and had longer latencies (p < 0.0001). Neuroimaging studies revealed that OXT-treated animals had higher glucose uptake across the social salience network as a whole after one month of treatment (F1,9 = 1.07, p = 0.042). Our results suggest moderate prosocial effects of chronic IN OXT, that did not depend on anxiolytic properties. We also found important sex differences that should be considered in a translational context.
Collapse
Affiliation(s)
- Rocío Arias del Razo
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Trish Berger
- University of California-Davis, Department of Animal Science, One Shields Avenue, Davis, CA, 95616, USA
| | - Alan J. Conley
- University of California-Davis, Department of Population Health and Reproduction, School of Veterinary Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Sara M. Freeman
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Leana R. Goetze
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Suma Jacob
- University of Minnesota, Department of Psychiatry Center for Neurobehavioral Development, 2450 Riverside Ave. Minneapolis, MN 55454, USA
| | - Rebecca H. Lawrence
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Sally P. Mendoza
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Emily S. Rothwell
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Logan E. Savidge
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Marjorie Solomon
- University of California-Davis, MIND Institute, 2825 50th Street, Sacramento, CA 95817, USA
| | - Tamara A.R. Weinstein
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Lynea R. Witczak
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| | - Karen L. Bales
- University of California-Davis, Department of Psychology, California National Primate Research Center, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
77
|
Bernaerts S, Boets B, Bosmans G, Steyaert J, Alaerts K. Behavioral effects of multiple-dose oxytocin treatment in autism: a randomized, placebo-controlled trial with long-term follow-up. Mol Autism 2020; 11:6. [PMID: 31969977 PMCID: PMC6964112 DOI: 10.1186/s13229-020-0313-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/02/2020] [Indexed: 11/14/2022] Open
Abstract
Background Intranasal administration of the "prosocial" neuropeptide oxytocin is increasingly explored as a potential treatment for targeting the core characteristics of autism spectrum disorder (ASD). However, long-term follow-up studies, evaluating the possibility of long-lasting retention effects, are currently lacking. Methods Using a double-blind, randomized, placebo-controlled, parallel design, this pilot clinical trial explored the possibility of long-lasting behavioral effects of 4 weeks of intranasal oxytocin treatment (24 International Units once daily in the morning) in 40 adult men with ASD. To do so, self-report and informant-based questionnaires assessing core autism symptoms and characterizations of attachment were administered at baseline, immediately after 4 weeks of treatment (approximately 24 h after the last nasal spray administration), and at two follow-up sessions, 4 weeks and 1 year post-treatment. Results No treatment-specific effects were identified in the primary outcome assessing social symptoms (Social Responsiveness Scale, self- and informant-rated). In particular, with respect to self-reported social responsiveness, improvements were evident both in the oxytocin and in the placebo group, yielding no significant between-group difference (p = .37). Also informant-rated improvements in social responsiveness were not significantly larger in the oxytocin, compared to the placebo group (between-group difference: p = .19). Among the secondary outcome measures, treatment-specific improvements were identified in the Repetitive Behavior Scale and State Adult Attachment Measure, indicating reductions in self-reported repetitive behaviors (p = .04) and reduced feelings of avoidance toward others (p = .03) in the oxytocin group compared to the placebo group, up to 1 month and even 1 year post-treatment. Treatment-specific effects were also revealed in screenings of mood states (Profile of Mood States), indicating higher reports of "vigor" (feeling energetic, active, lively) in the oxytocin, compared to the placebo group (p = .03). Conclusions While no treatment-specific improvements were evident in terms of core social symptoms, the current observations of long-term beneficial effects on repetitive behaviors and feelings of avoidance are promising and suggestive of a therapeutic potential of oxytocin treatment for ASD. However, given the exploratory nature of this pilot study, future studies are warranted to evaluate the long-term effects of OT administration further. Trial registration The trial was registered with the European Clinical Trial Registry (Eudract 2014-000586-45) on January 22, 2014 (https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-000586-45/BE).
Collapse
Affiliation(s)
- Sylvie Bernaerts
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Tervuursevest 101 box 1501, 3001 Leuven, Belgium
- Leuven Autism Research consortium, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Leuven Autism Research consortium, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, Kapucijnenvoer 7 blok h - box 7001, 3000 Leuven, Belgium
| | - Guy Bosmans
- Faculty of Psychology and Educational Sciences, Parenting and Special Education Research Group, KU Leuven, Leopold Vanderkelenstraat 32 box 3765, 3000 Leuven, Belgium
| | - Jean Steyaert
- Leuven Autism Research consortium, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Center for Developmental Psychiatry, KU Leuven, O&N II Herestraat 49 box 7003, 3000 Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, KU Leuven, Tervuursevest 101 box 1501, 3001 Leuven, Belgium
- Leuven Autism Research consortium, KU Leuven, Leuven, Belgium
| |
Collapse
|
78
|
Acute and Repeated Intranasal Oxytocin Differentially Modulate Brain-wide Functional Connectivity. Neuroscience 2020; 445:83-94. [PMID: 31917352 DOI: 10.1016/j.neuroscience.2019.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022]
Abstract
Central release of the neuropeptide oxytocin (OXT) modulates neural substrates involved in socio-affective behavior. This property has prompted research into the use of intranasal OXT administration as an adjunctive therapy for brain conditions characterized by social impairment, such as autism spectrum disorders (ASD). However, the neural circuitry and brain-wide functional networks recruited by intranasal OXT administration remain elusive. Moreover, little is known of the neuroadaptive cascade triggered by long-term administration of this peptide at the network level. To address these questions, we applied fMRI-based circuit mapping in adult mice upon acute and repeated (seven-day) intranasal dosing of OXT. We report that acute and chronic OXT administration elicit comparable fMRI activity as assessed with cerebral blood volume mapping, but entail largely different patterns of brain-wide functional connectivity. Specifically, acute OXT administration focally boosted connectivity within key limbic components of the rodent social brain, whereas repeated dosing led to a prominent and widespread increase in functional connectivity, involving a strong coupling between the amygdala and extended cortical territories. Importantly, this connectional reconfiguration was accompanied by a paradoxical reduction in social interaction and communication in wild-type mice. Our results identify the network substrates engaged by exogenous OXT administration, and show that repeated OXT dosing leads to a substantial reconfiguration of brain-wide connectivity, entailing an aberrant functional coupling between cortico-limbic structures involved in socio-communicative and affective functions. Such divergent patterns of network connectivity might contribute to discrepant clinical findings involving acute or long-term OXT dosing in clinical populations.
Collapse
|
79
|
DeMayo MM, Young LJ, Hickie IB, Song YJC, Guastella AJ. Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neurosci Biobehav Rev 2019; 107:388-398. [PMID: 31560922 DOI: 10.1016/j.neubiorev.2019.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
Early life social experiences shape neural pathways in infants to develop lifelong social skills. This review presents the first unified circuit-based model of social learning that can be applied to early life social development, drawing together unique human developmental milestones, sensitive learning periods, and behavioral and neural scaffolds. Circuit domains for social learning are identified governing Activation, Integration, Discrimination, Response and Reward (AIDRR) to sculpt and drive human social learning. This unified model can be used to identify social delays earlier in development. We propose social impairments observed in Autism Spectrum Disorder are underpinned by early mistimed sensitive periods in brain development and alterations in amygdala development to disrupt the AIDRR circuits. This model directs how interventions can target neural circuits for social development and be applied early in life. To illustrate, the role of oxytocin and its use as an intervention is explored. The AIDRR model shifts focus away from delivering broad treatments based only on diagnostic classifications, to specifying and targeting the relevant circuits, at the right time of development, to optimize social learning.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.
| | - Ian B Hickie
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Yun Ju C Song
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia; Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, University of Sydney, 2050, Australia.
| |
Collapse
|
80
|
Ito E, Shima R, Yoshioka T. A novel role of oxytocin: Oxytocin-induced well-being in humans. Biophys Physicobiol 2019; 16:132-139. [PMID: 31608203 PMCID: PMC6784812 DOI: 10.2142/biophysico.16.0_132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/27/2019] [Indexed: 12/19/2022] Open
Abstract
We review the involvement of a small molecule, oxytocin, in various effects of physical stimulation of somatosensory organs, mindfulness meditation, emotion and fragrance on humans, and then propose a hypothesis that complex human states and behaviors, such as well-being, social bonding, and emotional behavior, are explained by oxytocin. We previously reported that oxytocin can induce pain relief and described the possibility how oxytocin in the dorsal horn and/or the dorsal root ganglion relieves joint and muscle pain. In the present article, we expand our research target from the physical analgesic effects of oxytocin to its psychologic effects to upregulate well-being and downregulate stress and anxiety. For this purpose, we propose a “hypothalamic-pituitary-adrenal (HPA) axis-oxytocin model” to explain why mindfulness meditation, placebo, and fragrance can reduce stress and anxiety, resulting in contentment. This new proposed model of HPA axis-oxytocin in the brain also provides a target to address other questions regarding emotional behaviors, learning and memory, and excess food intake leading to obesity, aimed at promoting a healthy life.
Collapse
Affiliation(s)
- Etsuro Ito
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Rei Shima
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tohru Yoshioka
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
81
|
Clinical potential of oxytocin in autism spectrum disorder: current issues and future perspectives. Behav Pharmacol 2019; 29:1-12. [PMID: 28857771 DOI: 10.1097/fbp.0000000000000341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of oxytocin on social cognition and behavior have recently attracted considerable attention. In particular, oxytocin has been proposed as a novel therapeutic for psychiatric disorders with social deficits such as autism spectrum disorders. This review provides a brief overview of behavioral and neural responses to oxytocin manipulations in humans and animal models. Although the differences in findings between human and animal studies should be interpreted carefully, shared behavioral phenotypes have been recognized, such as social bonding, social responses, and recognition and usage of social cues. Previous literature suggests that the neural effects of oxytocin in humans and animals overlap in the prefrontal, limbic, and paralimbic cortices. Oxytocin-induced alterations in these regions may indicate a fundamental basis for how oxytocin modulates social behaviors and facilitate the discovery of new pharmaceutical targets for treating social deficits.
Collapse
|
82
|
Guo BQ, Li HB, Zhai DS, Ding SB. Maternal multivitamin supplementation is associated with a reduced risk of autism spectrum disorder in children: a systematic review and meta-analysis. Nutr Res 2019; 65:4-16. [DOI: 10.1016/j.nutres.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/26/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
|
83
|
The interaction between oxytocin receptor gene methylation and maternal behavior on children's early theory of mind abilities. Dev Psychopathol 2019; 32:511-519. [PMID: 31030686 DOI: 10.1017/s0954579419000257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Theory of mind, the ability to represent the mental states of others, is an important social cognitive process, which contributes to the development of social competence. Recent research suggests that interactions between gene and environmental factors, such as oxytocin receptor gene (OXTR) polymorphisms and maternal parenting behavior, may underlie individual differences in children's theory of mind. However, the potential influence of DNA methylation of OXTR remains unclear. The current study investigated the roles of OXTR methylation, maternal behavior, and their statistical interaction on toddlers' early emerging theory of mind abilities. Participants included a community sample of 189 dyads of mothers and their 2- to 3-year-old children, whose salivary DNA was analyzed. Results indicated that more maternal structuring behavior was associated with better performance, on a battery of three theory of mind tasks, while higher OXTR methylation within exon 3 was associated with poorer performance. A significant interaction also emerged, such that OXTR methylation was related to theory of mind among children whose mothers displayed less structuring, when controlling for children's age, sex, ethnicity, number of child-aged siblings, verbal ability, and maternal education. Maternal structuring behavior may buffer the potential negative impact of hypermethylation on OXTR gene expression and function.
Collapse
|
84
|
Specific Patterns of Emotion Recognition from Faces in Children with ASD: Results of a Cross-Modal Matching Paradigm. J Autism Dev Disord 2019; 48:844-852. [PMID: 29164447 DOI: 10.1007/s10803-017-3389-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Children with ASD show emotion recognition difficulties, as part of their social communication deficits. We examined facial emotion recognition (FER) in intellectually disabled children with ASD and in younger typically developing (TD) controls, matched on mental age. Our emotion-matching paradigm employed three different modalities: facial, vocal and verbal. Results confirmed overall FER deficits in ASD. Compared to the TD group, children with ASD had the poorest performance in recognizing surprise and anger in comparison to happiness and sadness, and struggled with face-face matching, compared to voice-face and word-face combinations. Performance in the voice-face cross-modal recognition task was related to adaptive communication. These findings highlight the specific face processing deficit, and the relative merit of cross-modal integration in children with ASD.
Collapse
|
85
|
Tillman R, Gordon I, Naples A, Rolison M, Leckman JF, Feldman R, Pelphrey KA, McPartland JC. Oxytocin Enhances the Neural Efficiency of Social Perception. Front Hum Neurosci 2019; 13:71. [PMID: 30914935 PMCID: PMC6421852 DOI: 10.3389/fnhum.2019.00071] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Face perception is a highly conserved process that directs our attention from infancy and is supported by specialized neural circuitry. Oxytocin (OT) can increase accuracy and detection of emotional faces, but these effects are mediated by valence, individual differences, and context. We investigated the temporal dynamics of OT’s influence on the neural substrates of face perception using event related potentials (ERPs). In a double blind, placebo controlled within-subject design, 21 healthy male adults inhaled OT or placebo and underwent ERP imaging during two face processing tasks. Experiment 1 investigated effects of OT on neural correlates of fearful vs. neutral facial expressions, and Experiment 2 manipulated point-of-gaze to neutral faces. In Experiment 1, we found that OT reduced N170 latency to fearful faces. In Experiment 2, N170 latency was decreased when participant gaze was directed to the eyes of neutral faces; however, there were no OT-associated effects in response to different facial features. Findings suggest OT modulates early stages of social perception for socially complex information such as emotional faces relative to neutral. These results are consistent with models suggesting OT impacts the salience of socially informative cues during processing, which leads to downstream effects in behavior. Future work should examine how OT affects neural processes underlying basic components of social behavior (such as, face perception) while varying emotional expression of stimuli or comparing different characteristics of participants (e.g., gender, personality traits).
Collapse
Affiliation(s)
- Rachael Tillman
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| | - Ilanit Gordon
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States.,Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Adam Naples
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States
| | - Max Rolison
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States
| | - James F Leckman
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruth Feldman
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States.,Department of Psychology, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel
| | - Kevin A Pelphrey
- Harrison-Wood Jefferson Scholars Foundation Professor, University of Virginia, Charlottesville, VA, United States
| | - James C McPartland
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
86
|
Nomi JS, Molnar-Szakacs I, Uddin LQ. Insular function in autism: Update and future directions in neuroimaging and interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:412-426. [PMID: 30381235 DOI: 10.1016/j.pnpbp.2018.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
The insular cortex, hidden within the lateral sulcus of the human brain, participates in a range of cognitive, affective, and sensory functions. Autism spectrum disorder (ASD), a neurodevelopmental condition affecting all of these functional domains, has increasingly been linked with atypical activation and connectivity of the insular cortices. Here we review the latest research linking atypical insular function to a range of behaviors characteristic of ASD, with an emphasis on neuroimaging findings in the domains of social cognition and executive function. We summarize some of the recent work linking the insula to interventions in autism, including oxytocin-based pharmacological treatments and music therapy. We suggest that future directions likely to yield significant insights into insular pathology in ASD include the analysis of the dynamics of this brain region. We also conclude that more basic research is necessary on the use of oxytocin pharmacotherapy, and larger studies addressing participant heterogeneity are needed on the use of music therapy in ASD. Long-term studies are needed to ascertain sustained effects of these interventions.
Collapse
Affiliation(s)
- Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA; Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
87
|
Li Q, Becker B, Wernicke J, Chen Y, Zhang Y, Li R, Le J, Kou J, Zhao W, Kendrick KM. Foot massage evokes oxytocin release and activation of orbitofrontal cortex and superior temporal sulcus. Psychoneuroendocrinology 2019; 101:193-203. [PMID: 30469087 DOI: 10.1016/j.psyneuen.2018.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 01/27/2023]
Abstract
Massage may be an important method for increasing endogenous oxytocin concentrations and of potential therapeutic benefit in disorders with social dysfunction such as autism where basal oxytocin levels are typically reduced. Here we investigated oxytocin release and associated neural responses using functional near infrared spectroscopy (fNIRS) during hand- or machine-administered massage. 40 adult male subjects received 10 min of light foot massage either by hand or machine in a counterbalanced order and then rated pleasure, intensity, arousal and how much they would pay for the massage. Blood samples were taken before and after each massage condition to determine plasma oxytocin concentrations. Neural responses from medial and lateral orbitofrontal cortex, superior temporal sulcus and somatosensory cortex were measured (fNIRS oxy-Hb) together with skin conductance responses (SCR), ratings of the massage experience, autistic traits and sensitivity to social touch. Results showed subjects gave higher ratings of pleasure, but not intensity or arousal, after hand- compared with machine-administered massage and there were no differential effects on SCR. Subjects were also willing to pay more for the hand massage. Plasma oxytocin increased after both massage by hand or machine, but more potently after massage by hand. Both basal oxytocin concentrations and increases evoked by hand-, but not machine-administered massage, were negatively associated with trait autism and attitudes towards social touch, but massage by hand-evoked changes were significant in higher as well as lower trait individuals. Increased neural responses to hand vs. machine-administered massage were found in posterior superior temporal sulcus and medial/lateral orbitofrontal cortex but not somatosensory cortex. Orbitofrontal cortex and superior temporal cortex activation during hand massage was associated with the amount of money subjects were willing to pay and between orbitofrontal cortex activation and autism scores. Thus, hand-administered massage can potently increase oxytocin release and activity in brain regions involved in social cognition and reward but not sensory aspects of affective touch. Massage by hand induced changes in both oxytocin concentrations and neural circuits involved in processing social affective trust may have therapeutic potential in the context of autism.
Collapse
Affiliation(s)
- Qin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jennifer Wernicke
- Department of Molecular Psychology, Institute of Psychology and Education, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Yuanshu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Li
- Brain and Cognition Research Laboratory, Psyche-Ark Ltd., Beijing, China
| | - Jiao Le
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
88
|
Bjørklund G, Waly MI, Al-Farsi Y, Saad K, Dadar M, Rahman MM, Elhoufey A, Chirumbolo S, Jóźwik-Pruska J, Kałużna-Czaplińska J. The Role of Vitamins in Autism Spectrum Disorder: What Do We Know? J Mol Neurosci 2019; 67:373-387. [PMID: 30607900 DOI: 10.1007/s12031-018-1237-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Vitamin or mineral supplementation is considered to be the most commonly used medical treatment for autism spectrum disorder (ASD), in addition to other interventions such as neurological and psychological interventions. There is not much evidence of therapeutic efficacy between vitamin and mineral supplementation and improvements in ASD. However, several researchers have noted that patients with ASD have various metabolic and nutritional abnormalities including issues with sulfation, methylation, glutathione redox imbalances, oxidative stress, and mitochondrial dysfunction. There is some evidence that vitamin and mineral supplementation may support these basic physiologic processes. Recently, the nutritional status of ASD patients has been gaining focus in this particular area. Pointing out the nutritional status as a potential etiological factor for attention/communication disorders, more importance has been given to this particular point. Moreover, autistic specific considerations like the feature and behavior of ASD might be increased or at least fall in the higher risk due to the sub-optimal nutritional status.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Mostafa I Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Yahya Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Amira Elhoufey
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | - Jagoda Jóźwik-Pruska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
89
|
Kruppa JA, Gossen A, Oberwelland Weiß E, Kohls G, Großheinrich N, Cholemkery H, Freitag CM, Karges W, Wölfle E, Sinzig J, Fink GR, Herpertz-Dahlmann B, Konrad K, Schulte-Rüther M. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial. Neuropsychopharmacology 2019; 44:749-756. [PMID: 30390065 PMCID: PMC6372686 DOI: 10.1038/s41386-018-0258-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023]
Abstract
Reduced social motivation is a hallmark of individuals with autism spectrum disorders (ASDs). Although the exact neural mechanisms are unclear, oxytocin has been shown to enhance motivation and attention to social stimuli, suggesting a potential to augment social reinforcement learning as the central mechanism of behavioral interventions in ASD. We tested how reinforcement learning in social contexts and associated reward prediction error (RPE) signals in the nucleus accumbens (NAcc) were modulated by intranasal oxytocin. Male adults with a childhood diagnosis of ASD (n = 15) and healthy controls (n = 24; aged 18-26 years) performed a probabilistic reinforcement learning task during functional magnetic resonance imaging in a single-center (research center in Germany), randomized double-blind, placebo-controlled cross-over trial. The interventions were intranasal oxytocin (Syntocinon®, Novartis; 10 puffs = 20 international units (IUs) per treatment) and placebo spray. Using computational modeling of behavioral data, trial-by-trial RPE signals were assessed and related to brain activation in NAcc during reinforcing feedback in social and non-social contexts. The order of oxytocin/placebo was randomized for 60 participants. Twenty-one participants were excluded from analyses, leaving 39 for the final analysis. Behaviorally, individuals with ASD showed enhanced learning under oxytocin when the learning target as well as feedback was social as compared to non-social (social vs. non-social target: 87.09% vs. 71.29%, 95% confidence interval (CI): 7.28-24.33, p = .003; social vs. non-social feedback: 81.00% vs. 71.29%, 95% CI: 2.81-16.61, p = .027). Correspondingly, oxytocin enhanced the correlation of the RPE signal with NAcc activation during social (vs. non-social) feedback in ASD (3.48 vs. -1.12, respectively, 95% CI: 2.98-6.22, p = .000), whereas in controls, this effect was found in the placebo condition (2.90 vs. -1.14, respectively, 95% CI: 1.07-7.01, p = .010). In ASD, a similar pattern emerged when the learning target was social (3.00 vs. -0.64, respectively, 95% CI: -0.13 to 7.41, p = .057), whereas controls showed a reduced correlation for social learning targets under oxytocin (-0.70 vs. 2.72, respectively, 95% CI: -5.86 to 0.98, p = .008). The current data suggest that intranasal oxytocin has the potential to enhance social reinforcement learning in ASD. Future studies are warranted that investigate whether oxytocin can potentiate social learning when combined with behavioral therapies, resulting in greater treatment benefits than traditional behavior-only approaches.
Collapse
Affiliation(s)
- Jana A. Kruppa
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,grid.494742.8JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Anna Gossen
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Eileen Oberwelland Weiß
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,grid.494742.8JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Gregor Kohls
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicola Großheinrich
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany
| | - Hannah Cholemkery
- 0000 0004 0578 8220grid.411088.4Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Christine M. Freitag
- 0000 0004 0578 8220grid.411088.4Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Wolfram Karges
- 0000 0000 8653 1507grid.412301.5Division of Endocrinology and Diabetes, University Hospital RWTH Aachen, Aachen, Germany
| | - Elke Wölfle
- 0000 0000 8653 1507grid.412301.5Division of Endocrinology and Diabetes, University Hospital RWTH Aachen, Aachen, Germany
| | - Judith Sinzig
- 0000 0000 9702 9846grid.491992.eDepartment of Child and Adolescent Psychiatry and Psychotherapy, LVR-Klinik Bonn, Bonn, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany ,0000 0000 8852 305Xgrid.411097.aDepartment of Neurology, University Hospital Cologne, Cologne, Germany
| | - Beate Herpertz-Dahlmann
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Kerstin Konrad
- 0000 0000 8653 1507grid.412301.5Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany ,grid.494742.8JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany
| | - Martin Schulte-Rüther
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany. .,JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen and Jülich Research Center, Jülich, Germany. .,Institute of Neuroscience and Medicine (INM-3), Jülich Research Center, Jülich, Germany.
| |
Collapse
|
90
|
Tops S, Habel U, Radke S. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior. Horm Behav 2019; 108:84-93. [PMID: 29505762 DOI: 10.1016/j.yhbeh.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 11/23/2022]
Abstract
Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles.
Collapse
Affiliation(s)
- Sanne Tops
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| | - Sina Radke
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Germany; Jülich Aachen Research Alliance (JARA) - BRAIN Institute I, Jülich/Aachen, Germany
| |
Collapse
|
91
|
Crucianelli L, Paloyelis Y, Ricciardi L, Jenkinson PM, Fotopoulou A. Embodied Precision: Intranasal Oxytocin Modulates Multisensory Integration. J Cogn Neurosci 2018; 31:592-606. [PMID: 30562138 DOI: 10.1162/jocn_a_01366] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multisensory integration processes are fundamental to our sense of self as embodied beings. Bodily illusions, such as the rubber hand illusion (RHI) and the size-weight illusion (SWI), allow us to investigate how the brain resolves conflicting multisensory evidence during perceptual inference in relation to different facets of body representation. In the RHI, synchronous tactile stimulation of a participant's hidden hand and a visible rubber hand creates illusory body ownership; in the SWI, the perceived size of the body can modulate the estimated weight of external objects. According to Bayesian models, such illusions arise as an attempt to explain the causes of multisensory perception and may reflect the attenuation of somatosensory precision, which is required to resolve perceptual hypotheses about conflicting multisensory input. Recent hypotheses propose that the precision of sensorimotor representations is determined by modulators of synaptic gain, like dopamine, acetylcholine, and oxytocin. However, these neuromodulatory hypotheses have not been tested in the context of embodied multisensory integration. The present, double-blind, placebo-controlled, crossover study ( n = 41 healthy volunteers) aimed to investigate the effect of intranasal oxytocin (IN-OT) on multisensory integration processes, tested by means of the RHI and the SWI. Results showed that IN-OT enhanced the subjective feeling of ownership in the RHI, only when synchronous tactile stimulation was involved. Furthermore, IN-OT increased an embodied version of the SWI (quantified as estimation error during a weight estimation task). These findings suggest that oxytocin might modulate processes of visuotactile multisensory integration by increasing the precision of top-down signals against bottom-up sensory input.
Collapse
|
92
|
Grace SA, Rossell SL, Heinrichs M, Kordsachia C, Labuschagne I. Oxytocin and brain activity in humans: A systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology 2018; 96:6-24. [PMID: 29879563 DOI: 10.1016/j.psyneuen.2018.05.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 02/02/2023]
Abstract
Oxytocin (OXT) is a neuropeptide which has a critical role in human social behaviour and cognition. Research investigating the role of OXT on functional brain changes in humans has often used task paradigms that probe socioemotional processes. Preliminary evidence suggests a central role of the amygdala in the social cognitive effects of intranasal OXT (IN-OXT), however, inconsistencies in task-design and analysis methods have led to inconclusive findings regarding a cohesive model of the neural mechanisms underlying OXT's actions. The aim of this meta-analysis was to systematically investigate these findings. A systematic search of PubMed, PsycINFO, and Scopus databases was conducted for fMRI studies which compared IN-OXT to placebo in humans. First, we systematically reviewed functional magnetic resonance imaging (fMRI) studies of IN-OXT, including studies of healthy humans, those with clinical disorders, and studies examining resting-state fMRI (rsfMRI). Second, we employed a coordinate-based meta-analysis for task-based neuroimaging literature using activation likelihood estimation (ALE), whereby, coordinates were extracted from clusters with significant differences in IN-OXT versus placebo in healthy adults. Data were included for 39 fMRI studies that reported a total of 374 distinct foci. The meta-analysis identified task-related IN-OXT increases in activity within a cluster of the left superior temporal gyrus during tasks of emotion processing. These findings are important as they implicate regions beyond the amygdala in the neural effects of IN-OXT. The outcomes from this meta-analysis can guide a priori predictions for future OXT research, and provide an avenue for targeted treatment interventions.
Collapse
Affiliation(s)
- Sally A Grace
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia.
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia; Monash Alfred Psychiatry Research Centre, Monash University, Melbourne, Australia; Psychiatry, St Vincent's Hospital, Melbourne, Australia
| | - Markus Heinrichs
- School of Psychology, Australian Catholic University, Melbourne, Australia; Department of Psychology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | - Izelle Labuschagne
- School of Psychology, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
93
|
Frantz MC, Pellissier LP, Pflimlin E, Loison S, Gandía J, Marsol C, Durroux T, Mouillac B, Becker JAJ, Le Merrer J, Valencia C, Villa P, Bonnet D, Hibert M. LIT-001, the First Nonpeptide Oxytocin Receptor Agonist that Improves Social Interaction in a Mouse Model of Autism. J Med Chem 2018; 61:8670-8692. [DOI: 10.1021/acs.jmedchem.8b00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marie-Céline Frantz
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412 Illkirch, France
| | - Lucie P. Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Inserm, Université François Rabelais de Tours, F-37380 Nouzilly, France
| | - Elsa Pflimlin
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412 Illkirch, France
| | - Stéphanie Loison
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412 Illkirch, France
| | - Jorge Gandía
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Inserm, Université François Rabelais de Tours, F-37380 Nouzilly, France
| | - Claire Marsol
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412 Illkirch, France
- LabEx MEDALIS, Université de Strasbourg, F-67000 Strasbourg, France
- PCBIS Plateforme de Chimie Biologique Intégrative de Strasbourg, UMS3286, CNRS/Université de Strasbourg, F-67000 Strasbourg, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université de Montpellier (IFR3), 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U661, Université de Montpellier (IFR3), 141 Rue de la Cardonille, F-34094 Montpellier Cedex 5, France
| | - Jérôme A. J. Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Inserm, Université François Rabelais de Tours, F-37380 Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, IFCE, Inserm, Université François Rabelais de Tours, F-37380 Nouzilly, France
| | - Christel Valencia
- LabEx MEDALIS, Université de Strasbourg, F-67000 Strasbourg, France
- PCBIS Plateforme de Chimie Biologique Intégrative de Strasbourg, UMS3286, CNRS/Université de Strasbourg, F-67000 Strasbourg, France
| | - Pascal Villa
- LabEx MEDALIS, Université de Strasbourg, F-67000 Strasbourg, France
- PCBIS Plateforme de Chimie Biologique Intégrative de Strasbourg, UMS3286, CNRS/Université de Strasbourg, F-67000 Strasbourg, France
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412 Illkirch, France
- LabEx MEDALIS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Marcel Hibert
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS/Université de Strasbourg, 74 Route du Rhin, F-67412 Illkirch, France
- LabEx MEDALIS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
94
|
Imaging neuropeptide effects on human brain function. Cell Tissue Res 2018; 375:279-286. [PMID: 30069597 DOI: 10.1007/s00441-018-2899-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
The discovery of prosocial effects of oxytocin (OT) opened new directions for studying neuropeptide effects on the human brain. However, despite obvious effects of OT on neural responses as reported in numerous studies, other peptides have received less attention. Therefore, we will only briefly summarize evidence of OT effects on human functional magnetic resonance imaging (fMRI) and primarily focus on OT's sister neuropeptide arginine-vasopressin by presenting our own coordinated-based activation likelihood estimation meta-analysis. In addition, we will recapitulate rather limited data on few other neuropeptides, including pharmacological and genetic fMRI studies. Finally, we will review experiments with external neuropeptide administration to patients afflicted with mental disorders, such as autism or schizophrenia. In conclusion, despite remaining uncertainty regarding the penetrance of exogenous neuropeptides through the blood-brain barrier, it is evident that neuropeptides simultaneously influence the activity of limbic and cortical areas, indicating that these systems have a good potential for therapeutic drug development. Hence, this calls for further systematic studies of a wide spectrum of known and less known neuropeptides to understand their normal function in the brain and, subsequently, to tackle their potential contribution for pathophysiological mechanisms of mental disorders.
Collapse
|
95
|
Liu Y, Wu B, Wang X, Li W, Zhang T, Wu X, Han S. Oxytocin effects on self-referential processing: behavioral and neuroimaging evidence. Soc Cogn Affect Neurosci 2018; 12:1845-1858. [PMID: 29040763 PMCID: PMC5716198 DOI: 10.1093/scan/nsx116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022] Open
Abstract
Oxytocin (OT) influences other-oriented mental processes (e.g. trust and empathy) and the underlying neural substrates. However, whether and how OT modulates self-oriented processes and the underlying brain activity remains unclear. Using a double-blind, placebo-controlled between-subjects design, we manipulated memory encoding and retrieval of trait adjectives related to the self, a friend and a celebrity in a self-referential task in male adults. Experiment 1 (N = 51) found that OT vs placebo treatments reduced response times during encoding self-related trait adjectives but increased recognition scores of self-related information during memory retrieval. Experiment 2 (N = 50) showed similar OT effects on response times during encoding self-related trait adjectives. Moreover, functional magnetic resonance imaging (fMRI) results revealed that OT vs placebo treatments decreased the activity in the medial prefrontal cortex (MPFC) involved in encoding of self-related trait adjectives and weakened the coupling between the MPFC activity and a cultural trait (i.e. interdependence). Experiment 3 (N = 52) revealed that OT vs placebo treatments increased the right superior frontal activity during memory retrieval of self-related information. The results provide behavioral and fMRI evidence for OT effects on self-referential processing and suggest distinct patterns of OT modulations of brain activities engaged in encoding and retrieval of self-related information.
Collapse
Affiliation(s)
- Yi Liu
- School of Psychological and Cognitive Sciences.,PKU-IDG/McGovern Institute for Brain Research.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Bing Wu
- Department of Radiology, PLA Army General Hospital, Beijing, China
| | - Xuena Wang
- School of Psychological and Cognitive Sciences.,PKU-IDG/McGovern Institute for Brain Research.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Wenxin Li
- Academy for Advanced Interdisciplinary Studies.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ting Zhang
- School of Psychological and Cognitive Sciences.,PKU-IDG/McGovern Institute for Brain Research.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xinhuai Wu
- Department of Radiology, PLA Army General Hospital, Beijing, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences.,PKU-IDG/McGovern Institute for Brain Research.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
96
|
Wang D, Yan X, Li M, Ma Y. Neural substrates underlying the effects of oxytocin: a quantitative meta-analysis of pharmaco-imaging studies. Soc Cogn Affect Neurosci 2018; 12:1565-1573. [PMID: 29048602 PMCID: PMC5647800 DOI: 10.1093/scan/nsx085] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
The hypothalamic peptide oxytocin (OT) is crucial in social adaptation and used to treat emotional and social deficits. Here, we conducted a systematic, quantitative meta-analysis of functional-MRI studies intranasally administering OT (IN-OT) to uncover neural substrates underlying the IN-OT effects and to elucidate differential IN-OT effects between healthy and clinical populations. Meta-analyses were conducted on 66 IN-OT fMRI studies, stratified by psychopathology, valence and sex. IN-OT increased bilateral amygdala, caudate head, and superior temporal activity in healthy individuals and increased dorsal anterior cingulate activity in patients. Moreover, IN-OT decreased amygdala activity in both patients and healthy individuals but did so to a greater degree in patients than healthy individuals. The OT-increased amygdala activity was only found on the negative social and affective processes, whereas the OT-decreased amygdala activity was mainly contributed by contrasts on negative-valenced processes. IN-OT increased parahippocampal activity and decreased amygdala activity during negative socio-affective processing. During positive socio-affective processes, IN-OT increased caudate head activity. This study indicates convergent neural substrates and the underlying neuropsychological mechanisms for IN-OT effects on social and affective processes. The common and different effects of IN-OT on patients and healthy individuals and the modulation of OT effects by valence have critical implications.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xinyuan Yan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
97
|
Liu R, Yuan X, Chen K, Jiang Y, Zhou W. Perception of social interaction compresses subjective duration in an oxytocin-dependent manner. eLife 2018; 7:32100. [PMID: 29784084 PMCID: PMC5963918 DOI: 10.7554/elife.32100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Communication through body gestures permeates our daily life. Efficient perception of the message therein reflects one’s social cognitive competency. Here we report that such competency is manifested temporally as shortened subjective duration of social interactions: motion sequences showing agents acting communicatively are perceived to be significantly shorter in duration as compared with those acting noncommunicatively. The strength of this effect is negatively correlated with one’s autistic-like tendency. Critically, intranasal oxytocin administration restores the temporal compression effect in socially less proficient individuals, whereas the administration of atosiban, a competitive antagonist of oxytocin, diminishes the effect in socially proficient individuals. These findings indicate that perceived time, rather than being a faithful representation of physical time, is highly idiosyncratic and ingrained with one’s personality trait. Moreover, they suggest that oxytocin is involved in mediating time perception of social interaction, further supporting the role of oxytocin in human social cognition. Einstein once joked: “Put your hand on a hot stove for a minute, and it seems like an hour. Sit with a pretty girl for an hour, and it seems like a minute. That’s relativity.” While it may not have helped explain the space-time continuum, his joke neatly captures how time can appear to pass at different rates. This perception depends in part on the sensory properties of the stimuli we are experiencing. Intense stimuli, such as bright and fast-moving objects, trigger stronger responses in the brain than less intense stimuli, and so we perceive them as longer lasting. But what role do we, as the experiencers, play in how we perceive time? To find out, Liu, Yuan, Chen et al. showed volunteers pairs of movie clips, each featuring two human figures outlined by dots. In one clip, the two figures interacted socially, for example by passing an object between them. In the other, the two figures moved independently of each other. The volunteers had to decide which clip lasted longer. The volunteers generally judged clips containing social interactions to be shorter than those without such interactions, even when this was not the case. Moreover, volunteers with better social skills tended to underestimate the length of the social interaction clips to a greater extent. Previous studies have shown that people who are more social tend to have higher levels of a hormone called oxytocin in their blood. Oxytocin is sometimes referred to as the ‘love hormone’ because it promotes social behavior and bonding. Applying an oxytocin nasal spray to the volunteers who were less socially proficient caused them to perceive the social interaction clips as shorter than before. By contrast, socially proficient volunteers who used a nasal spray that blocks the effects of oxytocin perceived these clips as longer than they had done previously (although they still judged the clips to be shorter than videos that did not show people interacting). The perception of time thus varies between people and may depend at least in part on personality. These results open up a new avenue for studying and manipulating how we process social situations. This could eventually benefit people who struggle with social interactions, such as those with autism spectrum disorders.
Collapse
Affiliation(s)
- Rui Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Xiangyong Yuan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Kepu Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Yi Jiang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wen Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
98
|
Torres N, Martins D, Santos AJ, Prata D, Veríssimo M. How do hypothalamic nonapeptides shape youth's sociality? A systematic review on oxytocin, vasopressin and human socio-emotional development. Neurosci Biobehav Rev 2018; 90:309-331. [PMID: 29738796 DOI: 10.1016/j.neubiorev.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
The hypothalamic nonapeptides oxytocin and vasopressin are important modulators of socio-affective behaviours in a wide variety of animal species, including humans. Nevertheless, there is little research addressing their possible roles on socio-affective dimensions of human behaviour across development, during which considerable behavioural and physiological change occurs. Questions still remain about the extent to which findings from adults may directly apply to earlier phases of human development. In this article, we systematically summarize and discuss all existing studies investigating the developmental association of endogenous levels of hypothalamic neuropeptides oxytocin and vasopressin with human social behaviour or on its disruption in paediatric populations. Evidence is sparse insofar as there are still relatively few developmental studies and limited due to correlational research designs and unreliability of methods currently used for neuropeptide measurements in biological fluids. The findings to date generally converge with adult evidence, but also suggest that important differences between age stages may exist. Further studies focusing these differences may prove critical for informing drug development for socio-affective deficits in paediatric populations.
Collapse
Affiliation(s)
- Nuno Torres
- William James Center for Research, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - António J Santos
- William James Center for Research, ISPA - Instituto Universitário, Lisboa, Portugal
| | - Diana Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; ISCTE - Instituto Universitário de Lisboa, Portugal
| | - Manuela Veríssimo
- William James Center for Research, ISPA - Instituto Universitário, Lisboa, Portugal.
| |
Collapse
|
99
|
Strathearn L, Kim S, Bastian DA, Jung J, Iyengar U, Martinez S, Goin-Kochel RP, Fonagy P. Visual systemizing preference in children with autism: A randomized controlled trial of intranasal oxytocin. Dev Psychopathol 2018; 30:511-521. [PMID: 28712371 PMCID: PMC5771998 DOI: 10.1017/s0954579417001018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several studies have suggested that the neuropeptide oxytocin may enhance aspects of social communication in autism. Little is known, however, about its effects on nonsocial manifestations, such as restricted interests and repetitive behaviors. In the empathizing-systemizing theory of autism, social deficits are described along the continuum of empathizing ability, whereas nonsocial aspects are characterized in terms of an increased preference for patterned or rule-based systems, called systemizing. We therefore developed an automated eye-tracking task to test whether children and adolescents with autism spectrum disorder (ASD) compared to matched controls display a visual preference for more highly organized and structured (systemized) real-life images. Then, as part of a randomized, double-blind, placebo-controlled crossover study, we examined the effect of intranasal oxytocin on systemizing preferences in 16 male children with ASD, compared with 16 matched controls. Participants viewed 14 slides, each containing four related pictures (e.g., of people, animals, scenes, or objects) that differed primarily on the degree of systemizing. Visual systemizing preference was defined in terms of the fixation time and count for each image. Unlike control subjects who showed no gaze preference, individuals with ASD preferred to fixate on more highly systemized pictures. Intranasal oxytocin eliminated this preference in ASD participants, who now showed a similar response to control subjects on placebo. In contrast, control participants increased their visual preference for more systemized images after receiving oxytocin versus placebo. These results suggest that, in addition to its effects on social communication, oxytocin may play a role in some of the nonsocial manifestations of autism.
Collapse
Affiliation(s)
- Lane Strathearn
- University of Iowa
- Baylor College of Medicine
- Texas Children's Hospital
| | - Sohye Kim
- Baylor College of Medicine
- Texas Children's Hospital
| | - D Anthony Bastian
- Baylor College of Medicine
- Texas Tech Paul L. Foster School of Medicine
| | | | | | | | | | - Peter Fonagy
- Baylor College of Medicine
- University College London
| |
Collapse
|
100
|
Mastinu A, Premoli M, Maccarinelli G, Grilli M, Memo M, Bonini SA. Melanocortin 4 receptor stimulation improves social deficits in mice through oxytocin pathway. Neuropharmacology 2018; 133:366-374. [DOI: 10.1016/j.neuropharm.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|